TESIS DE MÁSTER

DETERMINACIÓN DE PUTRESCINA UTILIZANDO BIOSENSORES ELECTROQUIMICOS

WILDER HENAO ESCOBAR

Tutoras: Mª Julia Arcos Martínez / Mª Asunción Alonso Lomillo
Línea de investigación: Sensores electroquímicos
ÍNDICE GENERAL

I. INTRODUCCIÓN ... 3
 I.1. Biosensores .. 3
 I.1.1. Enzimas .. 4
 I.1.2. Inmovilización mediante entrecruzamiento .. 4
 I.1.3. Mecanismo de acción del enzima PAO ... 5
II. OBJETIVO .. 7
III. REACTIVOS E INSTRUMENTACIÓN .. 8
 III.1. Reactivos .. 8
 III.2. Equipos y software ... 8
IV. PROCEDIMIENTO EXPERIMENTAL .. 9
 IV.1. Modificación de los electrodos serigrafiados con AuNPs ... 9
 IV.2. Inmovilización enzimática .. 9
 IV.3. Modificación de los electrodos serigrafiados con TTF ... 9
V. DETERMINACIÓN DE PUTRESCINA UTILIZANDO PAO-SPCEs 11
 V.1. Optimización de las variables experimentales ... 11
 V.2. Caracterización de los PAO-SPCEs para la determinación de Put 13
VI. DETERMINACIÓN DE PUTRESCINA UTILIZANDO PAO-AuNPs-SPCE 15
 VI.1. Optimización de las variables experimentales ... 15
 VI.2. Caracterización de los PAO-AuNPs-SPCE para la determinación de Put 16
 VI.3. Estudio de la interferencia producida por la presencia de otras aminas 17
VII. DETERMINACIÓN DE PUTRESCINA UTILIZANDO PAO-TTF-SPCEs 18
 VII.1. Optimización de las variables experimentales ... 18
 VII.2. Caracterización de los PAO-TTF-SPCEs para la determinación de Put 20
 VII.3. Estudio de la interferencia producida por la presencia de otras aminas 21
VIII. CONCLUSIONES .. 22
IX. BIBLIOGRAFÍA ... 23
I. INTRODUCCIÓN

Putrescina (Put) es una amina biógena (BA) alifática (1,4-diaminobutano) cuya presencia en ciertos niveles en los alimentos está relacionada con olores y sabores desagradables. Además, puede potenciar los efectos negativos sobre la salud humana causados por otras BAs, como histamina (His) y tiramina (Ty), responsables de la aparición de náuseas, calor súbito, sudoración, dolor de cabeza e hipertensión o hipotensión. [1]. Por ello, son numerosos los estudios encaminados a optimizar un método fiable y sensible para su determinación, con el fin de disminuir la concentración de Put en la fabricación de los productos alimenticios, favoreciendo la seguridad nutricional [2].

I.1. Biosensores

Un biosensor se define como un dispositivo compacto de análisis que incorpora una molécula biológica (enzima, célula, anticuerpo, ácido nucleído, tejido) asociada a un sistema de transducción (Figura 1). Este sistema permite procesar la señal producida por la interacción entre el elemento de reconocimiento y el analito, produciendo variación en propiedades físico-químicas como pH, transferencia de electrones o calor, en una señal eléctrica, óptica, calorimétrica, acústica, etc [3].

![Figura 1. Esquema de los componentes de un biosensor.](image)

El empleo de biosensores tiene la ventaja de que la instrumentación requerida es barata y sencilla, a la vez que su análisis presenta una alta selectividad y sensibilidad, que se consigue mediante la utilización de elementos de reconocimiento muy específicos [4].

Los biosensores se pueden clasificar en función del tipo de interacción que se establece entre el elemento de reconocimiento y el analito en sensores biocatalíticos y sensores de bioafinidad. Los sensores biocatalíticos se basan en la utilización de biocatalizadores (enzimas, anticuerpos, etc.), que son elementos que favorecen que ocurra una reacción química en la que uno o varios sustratos se transforman en uno o varios productos sin consumo del biocatalizador [5]. Para el desarrollo de este trabajo se han utilizado sensores biocatalíticos, en donde el elemento de reconocimiento, un enzima, se ha inmovilizado en un transductor electroquímico.
I.1.1. Enzimas

Los enzimas son proteínas que catalizan reacciones químicas en los seres vivos. La actividad enzimática está controlada normalmente por el pH, la fuerza iónica, la temperatura y la presencia de cofactores. La estabilidad de los enzimas es un factor limitante para el tiempo de vida de un biosensor de tipo enzimático. Con el fin de aumentarla se utilizan distintas técnicas, como la estabilización química (inmovilización). En general, los métodos de inmovilización se suelen clasificar en dos categorías: retención física y unión química (Figura 2) [4].

![Figura 2. Clasificación de los métodos de inmovilización.](image)

En el método de inmovilización por *adsorción* el enzima se une a un soporte sin funcionalizar mediante interacciones iónicas, fuerzas de Van der Waals y por puentes de hidrógeno. En la *microencapsulación* los enzimas están rodeados de membranas semipermeables que permiten el paso de moléculas de sustrato y producto. El *atrapamiento* consiste en la retención física del enzima en cavidades interiores de una matriz sólida porosa (generalmente polímeros). El *entrecruzamiento* consiste en el uso de reactivos bifuncionales que originan uniones intermoleculares entre las moléculas de enzima, el agente bifuncional y el soporte. La metodología de la *unión covalente* entre la enzima y el transductor se basa en la activación de grupos químicos del soporte que reaccionen con las proteínas (enzimas) [4].

La elección de uno u otro procedimiento depende de la naturaleza del elemento biológico, el tipo de transductor, las propiedades físico-químicas del analito y las condiciones de trabajo del biosensor [6]. De entre los posibles métodos de inmovilización de enzimas se describe a continuación el procedimiento de entrecruzamiento, ya que ha sido la metodología utilizada en este trabajo para la inmovilización del enzima Plasma amino oxidasa (*PAO*).

I.1.2. Inmovilización mediante entrecruzamiento.

La inmovilización del enzima *PAO* se llevó a cabo por entrecruzamiento con glutaraldehído (GA) y seroalbúmina bovina (BSA), técnica ampliamente utilizada en la estabilización de muchos enzimas, ya que se trata de un método simple y sencillo [7]. El resultado del entrecruzamiento son enlaces intramoleculares irreversibles, entre moléculas del enzima y entre éstas y el soporte, capaces de resistir condiciones extremas de pH y temperatura [7].
GA y BSA originan un entramado cristalino donde las moléculas del enzima están rodeadas exclusivamente por otras moléculas de proteína, generalmente BSA, lo que produce un aumento de su estabilidad (Figura 3). La estructura cristalina posee canales microscópicos (20-50 Å) que permiten el paso de sustratos hasta el centro activo del enzima, donde se cataliza la reacción [8].

I.1.3. Mecanismo de acción del enzima PAO

El mecanismo de la detección amperométrica de Put se basa en la acción del enzima PAO (Figura 4), el cual cataliza la oxidación de los grupos amino a su correspondiente aldehído, liberando amoniaco y peróxido de hidrógeno. Al aplicar un potencial adecuado, el peróxido de hidrógeno se oxida y genera una señal amperométrica que es proporcional a la concentración de la amina adicionada [9].

\[
\text{R-CH}_2\text{-NH}_2 + \text{O}_2 + \text{H}_2\text{O} \xrightarrow{\text{PAO}} \text{R-CHO} + \text{NH}_3 + \text{H}_2\text{O}_2
\]

\[
\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + 2 \, \text{e}^-
\]

Figura 4. Mecanismo de acción del enzima PAO.

En los últimos años el uso de amino oxidasas (AO) en combinación con varios transductores electroquímicos para la de detección amperométrica de aminas ha sido ampliamente aplicado, ya sea en una configuración mono-enzimática [2, 9-12, 20] o bi-enzimática [13-15, 18,], utilizando una combinación de AO y Horseradish peroxidasa (HRP) para reducir el potencial operacional (Tabla 1) y de esta forma reducir la probabilidad de interferencias en el análisis de muestras reales.
Determinación de putrescina utilizando biosensores electroquímicos

Tabla 1. Diversas configuraciones de electrodos desarrollados para la determinación de BAs. amino-oxidasa (AO), diamino-oxidasa (DAO), AO aislada del forraje del guisante (GPAO), monoamino-oxidasa (MAO), plasma amino-oxidasa (PAO), AO aislada del guisante (PSAO), putrescina-oxidasa (PUO), tiramina-oxidasa (TAO), peroxidas aislada de la patata (SSP), agmatina (Agm), cadaverina (Cad), espermidina (Spd), espermina (Spm), tryptamina (Try).

<table>
<thead>
<tr>
<th>Enzima</th>
<th>Tipo de electrodo de trabajo</th>
<th>Método de inmovilización</th>
<th>E [mV] (vs. Ag/AgCl)</th>
<th>pH Buffer</th>
<th>Capacidad de detección</th>
<th>Muestra real</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAO-DAO /HRP</td>
<td>SPCE</td>
<td>Unión covalente</td>
<td>+ 250</td>
<td>9.3</td>
<td>DAO/HRP (0.18 µM His) MAO/HRP (0.40 µM His)</td>
<td>Anchoas</td>
<td>13</td>
</tr>
<tr>
<td>PSAO</td>
<td>Sensor de oxígeno tipo Clark Pt</td>
<td>Disuelta en disolución</td>
<td>- 800</td>
<td>7.0</td>
<td>10 µM (His, Cad, Put)</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>GPAO /HRP</td>
<td>Grafito</td>
<td>Entrecruzamiento</td>
<td>-50</td>
<td>7.2</td>
<td>500 µM (His, Cad, Put, Spd, Ty)</td>
<td>Bacalao</td>
<td>14</td>
</tr>
<tr>
<td>DAO</td>
<td>Pt</td>
<td>Entrecruzamiento</td>
<td>+ 700</td>
<td>7.0</td>
<td>125 µM His, 250 µM Put, 500 µM Cad</td>
<td>Queso, Anchoas</td>
<td>2</td>
</tr>
<tr>
<td>PUO</td>
<td>GC (MWCNT₈/APTES)</td>
<td>Entrecruzamiento</td>
<td>- 250</td>
<td>8.4</td>
<td>0.5 µM Put</td>
<td>N/A</td>
<td>17</td>
</tr>
<tr>
<td>PAO- TAO-DAO</td>
<td>SPPtE</td>
<td>Entrecruzamiento</td>
<td>+ 700</td>
<td>7.5</td>
<td>10 mg/kg His, Ty 5 mg/kg Put</td>
<td>Salmon, Cerveza, Queso, Salami, Vino</td>
<td>9</td>
</tr>
<tr>
<td>SSP /HRP</td>
<td>Grafito</td>
<td>Entrecruzamiento</td>
<td>-50</td>
<td>7.0</td>
<td>100 µM Put</td>
<td>N/A</td>
<td>18</td>
</tr>
<tr>
<td>PUO</td>
<td>Pt (fotolitografía)</td>
<td>Entrecruzamiento</td>
<td>+ 600</td>
<td>8.5</td>
<td>0.5 µM Put</td>
<td>Sangre Humana</td>
<td>10</td>
</tr>
<tr>
<td>AO/ Polímero</td>
<td>Grafito</td>
<td>Entrecruzamiento</td>
<td>+ 200</td>
<td>7.0</td>
<td>2.2 µM His</td>
<td>N/A</td>
<td>19</td>
</tr>
<tr>
<td>DAO</td>
<td>Pt</td>
<td>Entrecruzamiento</td>
<td>+ 650</td>
<td>8.0</td>
<td>0.5 µM (Put-Cad-His-Spd-Spm-Ty), 0.1 µM Try</td>
<td>Anchoas</td>
<td>11</td>
</tr>
<tr>
<td>PSAO/HRP</td>
<td>GC</td>
<td>Entrecruzamiento</td>
<td>0.0</td>
<td>7.4</td>
<td>25 µM Put</td>
<td>N/A</td>
<td>15</td>
</tr>
<tr>
<td>PUO</td>
<td>Au-Pt</td>
<td>Entrecruzamiento</td>
<td>+ 500</td>
<td>8.5</td>
<td>25 µM Put</td>
<td>Fluido Vaginal</td>
<td>20</td>
</tr>
<tr>
<td>PUO-MAO</td>
<td>SPPtE</td>
<td>Entrecruzamiento</td>
<td>+ 600</td>
<td>8.5</td>
<td>0.06 µM Put - 0.1 µM (Cad- Spd – Ty) 1.5 µM Agm</td>
<td>Caballa</td>
<td>12</td>
</tr>
</tbody>
</table>
II. OBJETIVO

Este trabajo tiene por objeto la puesta a punto de un método sencillo para la determinación de Put, de forma rápida y sensible, utilizando biosensores basados en la modificación de electrodos serigrafiados de carbono (SPCEs). El logro de este objetivo global implica la consecución de distintas etapas con los objetivos específicos que se indican a continuación:

✓ Optimización de las variables experimentales más influyentes en la determinación amperométrica de este compuesto, mediante el uso de biosensores basados en SPCEs inmovilizados con el enzima PAO (PAO-SPCEs)

✓ Caracterización de la precisión de los PAO-SPCEs para la determinación de Put en términos de reproducibilidad, repetibilidad y capacidad de detección.

✓ Modificación de SPCEs con nanopartículas de oro (AuNPs-SPCEs), con el fin de mejorar la conductividad de los electrodos y poder lograr una mayor sensibilidad, y posterior inmovilización con PAO (PAO-AuNPs-SPCEs).

✓ Optimización de las variables experimentales más influyentes en la determinación amperométrica de este compuesto utilizando PAO-AuNPs-SPCEs.

✓ Caracterización de la precisión de los biosensores PAO-AuNPs-SPCEs para la determinación de Put en términos de reproducibilidad, repetibilidad y capacidad de detección.

✓ Determinación de las posibles aminas interferentes en la determinación de Put, mediante el uso de PAO-AuNPs-SPCEs.

✓ Modificación de SPCEs con el mediador tetratiofulvaleno (TTF) (TTF-SPCEs), con la finalidad de reducir la probabilidad de interferencias de otras aminas al realizar las determinaciones a potenciales reducidos.

✓ Modificación de los TTF-SPCEs con el enzima PAO (PAO-TTF-SPCEs).

✓ Optimización de las variables experimentales más influyentes en la determinación de Put utilizando PAO-TTF-SPCEs.

✓ Caracterización de la precisión de los PAO-TTF-SPCEs para la determinación de Put en términos de reproducibilidad, repetibilidad y capacidad de detección.

✓ Determinación de las posibles aminas interferentes en la determinación de Put, mediante el uso de PAO-TTF-SPCEs.
III. REACTIVOS E INSTRUMENTACIÓN

III.1. Reactivos

Todas las disoluciones se prepararon en agua Milli-Q.

Las tintas para la fabricación de los electrodos serigrafiados fueron Electrodag PF-407 A (carbono), Electrodag 6037 SS (Ag/AgCl) y Electrodag 452 SS (dieléctrico) suministradas por Acheson Colloiden (Scheemda, Países Bajos). El mediador TTF fue proporcionado por Sigma-Aldrich (Steinheim, Alemania).

El electrolito de soporte empleado para las medidas fue una disolución tampón de fosfato, preparada a partir de KH$_2$PO$_4$ 50 mM (Fluka, Steinheim, Alemania) y KCl 100 mM (Merck, Darmstadt, Alemania) ajustando al pH deseado con NaOH 1M (JT Baker, Deventer, Holanda).

En el procedimiento de inmovilización de la enzima en el electrodo de trabajo se utilizó BSA 6%, (Sigma-Aldrich, Steinheim, Alemania), PAO 6% (Worthington, Lakewood, USA), preparadas disolviendo la cantidad adecuada de cada reactivo en KH$_2$PO$_4$ 10 mM pH 6 (Fluka, Steinheim, Alemania) y GA 2.5 % (Sigma-Aldrich, Steinheim, Alemania).

Para el estudio de las aminas se utilizó Put, Cad (Sigma-Aldrich, Steinheim, Alemania), Ty, His (Fluka, Steinheim, Alemania), Spd, Spm y Try (Acros Organics, Geel, Bélgica).

Para depositar las AuNPs en los SPCEs se utilizó una disolución de HAuCl$_4$.3H$_2$O 0.1 mM (Sigma-Aldrich, Steinheim, Alemania) en H$_2$SO$_4$ 0.5 M (Merck, Darmstadt, Alemania).

III.2. Equipos y software

Los electrodos serigrafiados fueron impresos por medio de un equipo de serigrafía DEK 248 (DEK, Weymouth, Reino Unido).

Las medidas electroquímicas fueron realizadas utilizando un potenciómetro µAutolab tipo III (Eco Chemie, Utrecht, Países bajos) y un potenciostato PalmSens (Palm Instrument BV, Houten, Países bajos).

El pH de las soluciones tampón fueron medidos en un pHmetro HI 221 (HANNA Instruments, USA).

El análisis de los datos fue realizado por medio del software STATGRAPHICS PLUS 5.1 para el diseño de experimentos [21], PROGRESS para las regresiones robustas [22] y DETARCHI para el cálculo de la capacidad de detección [23].
IV. PROCEDIMIENTO EXPERIMENTAL

IV.1. Modificación de los electrodos serigrafiados con AuNPs

La modificación de la superficie del electrodo de trabajo de los SPCEs mediante la deposición de AuNPs se llevó a cabo según el procedimiento descrito por Domínguez et al. [24], donde la deposición electroquímica se realiza en una disolución de H\textsubscript{AuCl\textsubscript{4}}3H\textsubscript{2}O 0.1 mM en H\textsubscript{2}SO\textsubscript{4} 0.5 M, aplicando un potencial de acumulación de 0.18 V durante 15 segundos.

IV.2. Inmovilización enzimática

La inmovilización del enzima PAO sobre la superficie del electrodo de trabajo se realizó mediante el procedimiento de entrecruzamiento descrito en la sección I.1.2. Así, se depositaron sucesivamente sobre la superficie electródica 5 µL de una mezcla de 1.25 µL de BSA al 6% y 1.25 µL de PAO al 6%, ambas preparadas en KH\textsubscript{2}PO\textsubscript{4} 10 mM pH 6, y finalmente 2.5 µL de GA al 2.5%. Posteriormente, se permitió reaccionar la mezcla durante 90 minutos a 4º C.

IV.3. Modificación de los electrodos serigrafiados con TTF

La incorporación del mediador TTF sobre el electrodo de trabajo se realizó mediante una modificación del procedimiento descrito por Alonso et al. [13], para la fabricación de los distintos electrodos (trabajo, referencia y contraelectrodo) (Figura 5). En este caso, el electrodo de trabajo se construyó utilizando una mezcla de TTF al 5% con tinta de carbono.

Figura 5. Diseño y esquema de los pasos seguidos en la fabricación de los electrodos serigrafiados.

Una vez impresos los electrodos, se comprobó la presencia del TTF mediante un barrido voltamperométrico entre -0.4 V y 0.8 V en KCl 0.1 M (Figura 6).
Los voltamperogramas cíclicos de los electrodos de carbono modificados con TTF presentan los dos picos anódicos característicos del TTF y sus derivados (TTF → TTF$^+$ → TTF$^{2+}$) y los correspondientes catódicos [25].
V. DETERMINACIÓN DE PUTRESCINA UTILIZANDO PAO-SPCEs

En esta etapa del trabajo se pretende poner a punto un método electroquímico, empleando un biosensor basado en el enzima PAO inmovilizado sobre SPCEs, que permita la determinación amperométrica de Put. La modificación de la superficie electrodica se realizó mediante el método de inmovilización entrecruzamiento, descrito en la sección IV.2.

V.1. Optimización de las variables experimentales

En cualquier procedimiento de análisis en el que se trata de obtener una respuesta relacionada con el analito de interés, es de gran utilidad estudiar los parámetros o variables experimentales que intervienen en el proceso, así como sus interacciones. Además, es importante encontrar los valores de dichas variables experimentales para los cuales la respuesta sea máxima. Con el fin de lograr este objetivo se utilizó la metodología del diseño de experimentos [26].

La determinación amperométrica de Put implica la oxidación del analito a un potencial de trabajo determinado y tanto esta variable como el pH del electrolito de soporte utilizado, influyen significativamente en la señal registrada, por lo que se realizó un diseño central compuesto 2^2 para su optimización. Consta de 11 experiencias correspondientes a todas las posibles combinaciones entre los niveles seleccionados de las dos variables experimentales:

- pH (-) = 7
- pH (0) = 9
- pH (+) = 11
- E (-) = 0.3 V
- E (0) = 0.6 V
- E (+) = 0.9 V

La señal electroquímica a optimizar fue la intensidad de oxidación del agua oxigenada generado enzimáticamente, que puede relacionarse con la concentración de Put en el medio (0.195 mM).

El análisis de los resultados se presenta en forma de análisis de varianza (ANOVA) en la tabla 3.

<table>
<thead>
<tr>
<th>Efecto</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>F_{exp}</th>
<th>P_{actual}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:pH</td>
<td>0.011951</td>
<td>1</td>
<td>0.011951</td>
<td>0.17</td>
<td>0.7196</td>
</tr>
<tr>
<td>B:Potencial</td>
<td>1.26405</td>
<td>1</td>
<td>1.26405</td>
<td>18.06</td>
<td>0.0512</td>
</tr>
<tr>
<td>AA</td>
<td>1.59377</td>
<td>1</td>
<td>1.59377</td>
<td>22.77</td>
<td>0.0412*</td>
</tr>
<tr>
<td>AB</td>
<td>0.156025</td>
<td>1</td>
<td>0.156025</td>
<td>2.23</td>
<td>0.2740</td>
</tr>
<tr>
<td>BB</td>
<td>0.407874</td>
<td>1</td>
<td>0.407874</td>
<td>5.83</td>
<td>0.1372</td>
</tr>
<tr>
<td>Fallo de ajuste</td>
<td>0.818313</td>
<td>3</td>
<td>0.272771</td>
<td>3.90</td>
<td>0.2109</td>
</tr>
<tr>
<td>Error puro</td>
<td>0.14</td>
<td>2</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (corr.)</td>
<td>4.06236</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 76.41\%$
Puede observarse que una función de segundo grado es adecuada para modelar los datos, ya que el fallo de ajuste no es significativo a un nivel de confianza del 95 %. Ni el potencial aplicado ni sus interacciones son factores significativos en la variable respuesta, pero sí que lo es el pH del medio, puesto que lo es una de sus interacciones ($P_{\text{actual}} < 0.05$).

La representación de la intensidad de oxidación registrada en función del pH y del potencial de medida indica un máximo claramente definido para la variable respuesta en las siguientes condiciones experimentales (Figura 7):

$$\text{pH} = 8.5 \quad \text{E} = 0.85 \text{ V}$$

La señal obtenida en las condiciones óptimas permite realizar calibrados en el rango de concentraciones de 39.6 a 345.7 µM de Put, tal y como se muestra en la figura 8.
V. Determinación de Put por medio de PAO-SPCEs

V.2. Caracterización de los PAO-SPCEs para la determinación de Put

Para caracterizar un procedimiento analítico y asegurar su calidad es importante establecer su precisión, en términos de reproducibilidad y repetibilidad, así como su capacidad de detección. Inicialmente, se comprobó la reproducibilidad del procedimiento, para lo cual se realizaron 3 calibrados utilizando electrodos diferentes en el rango de concentración de 39.6 a 345.7 µM de Put en celda, en las condiciones optimizadas de las variables experimentales.

Con el objetivo de detectar la existencia de puntos anómalos, se utilizó el programa PROGRESS [22], que evalúa el intervalo lineal y la presencia de datos anómalos mediante una regresión en mínima mediana de cuadrados (LMS). Una vez que estos puntos son eliminados del conjunto de calibración, se construye nuevamente con los restantes puntos una recta de calibración mediante una regresión en mínimos cuadrados ordinarios (OLS). Esta regresión OLS proporciona una correcta valoración de la pendiente (sensibilidad) y del término independiente del calibrado, siendo ambos importantes para juzgar la calidad del calibrado y a partir de ésta, la del método analítico.

En la figura 9 se representan los puntos experimentales y las rectas de calibración construidas a partir de ellos, al igual que el coeficiente de determinación (R^2), y la desviación estándar residual (S_{yx}). La reproducibilidad del método de análisis de Put utilizando PAO-SPCEs en términos de desviación estándar relativa (RSD), asociada a las pendientes de dichas rectas fue de un 8.91 % ($n=3$).

![Figura 9. Puntos experimentales y rectas de calibración obtenidas para estimar la reproducibilidad del biosensor en la determinación de Put.](image)

De igual manera se calculó la repetibilidad del método, realizando sucesivos calibrados en las condiciones óptimas de las variables experimentales, utilizando el mismo electrodo, en el intervalo de concentraciones comprendido entre 39.6 a 345.7 µM de Put en celda. En la figura 10 se representan los puntos experimentales y las
Determinación de putrescina utilizando biosensores electroquímicos

rectas de calibración construidas a partir de ellos, una vez eliminados los puntos anómalos, en los diferentes calibrados realizados. La repetibilidad de los PAO-SPCEs, en términos de RSD asociada a las pendientes de las rectas de calibración construidas, fue de 6.10 % (n = 3).

Estos índices de calidad reflejan la buena fiabilidad del procedimiento analítico desarrollado para la determinación de Put.

Figura 10. Puntos experimentales y rectas de calibrado construidas para calcular la repetibilidad de consecutivas réplicas con un mismo electrodo.

El procedimiento propuesto fue a su vez caracterizado mediante su capacidad de detección, teniendo en cuenta la probabilidad de falso positivo (α) y falso negativo (β) [27], para lo que se utilizó el programa DETARCHI [23]. En el cálculo de este índice de calidad también se precisan regresiones lineales validadas entre la concentración y la señal analítica. El valor de capacidad de detección obtenido fue de 68.43 ± 0.44 µM (α = 0.05, β = 0.05; n = 3).
VI. DETERMINACIÓN DE PUTRESCINA UTILIZANDO PAO-AuNPs-SPCE

Es conocido el efecto catalítico que los nanomateriales inmovilizados sobre las superficies electródicas ejercen sobre muchas reacciones químicas [27].

En previas experiencias en la determinación de Put, se logró obtener una mayor sensibilidad de los SPCEs al modificar la superficie del electrodo de trabajo mediante la deposición de AuNPs, por lo que la etapa siguiente en la realización de este trabajo, fue la inmovilización del enzima PAO sobre SPCEs previamente modificados con AuNPs con el fin de aumentar la sensibilidad en la determinación de Put.

Para ello se llevo a cabo inicialmente la deposición de AuNPs mediante la metodología descrita en la sección IV.1 Posteriormente se inmovilizó el enzima PAO por el método de entrecruzamiento, descrito en la sección IV.2.

VI.1. Optimización de las variables experimentales.

Tal como se indicó en el capítulo anterior, los factores que influyen en la determinación amperométrica de Put son el potencial de trabajo y el pH del electrolito de soporte, por lo que se evaluó su influencia mediante un diseño central compuesto 2^2 [26]. Los valores elegidos para los niveles alto (+), bajo (-) y punto central (0) fueron:

- pH (-) = 7
- pH (0) = 9
- pH (+) = 11
- E (-) = 0.5 V
- E (0) = 0.7 V
- E (+) = 0.9 V

Se tomó como variable respuesta la intensidad de la reacción de oxidación del agua oxigenada, generado enzimáticamente, que puede relacionarse con la concentración de Put en el medio (39.6 µM). Del análisis de los resultados presentado en forma de ANOVA (Tabla 4), puede deducirse la adecuación del modelo utilizado para el análisis de estos datos, ya que el fallo de ajuste no es significativo a un nivel de confianza del 95 %.

<table>
<thead>
<tr>
<th>Efecto</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>F_{exp}</th>
<th>P_{actual}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:pH</td>
<td>230.203</td>
<td>1</td>
<td>230.203</td>
<td>19.18</td>
<td>0.0484*</td>
</tr>
<tr>
<td>B:Potencial</td>
<td>48.0114</td>
<td>1</td>
<td>48.0114</td>
<td>4.00</td>
<td>0.1835</td>
</tr>
<tr>
<td>AA</td>
<td>559.135</td>
<td>1</td>
<td>559.135</td>
<td>46.59</td>
<td>0.0208*</td>
</tr>
<tr>
<td>AB</td>
<td>115.563</td>
<td>1</td>
<td>115.563</td>
<td>9.63</td>
<td>0.0900</td>
</tr>
<tr>
<td>BB</td>
<td>9.5711</td>
<td>1</td>
<td>9.5711</td>
<td>0.80</td>
<td>0.4661</td>
</tr>
<tr>
<td>Fallo de ajuste</td>
<td>257.798</td>
<td>3</td>
<td>85.9326</td>
<td>7.16</td>
<td>0.1250</td>
</tr>
<tr>
<td>Error puro</td>
<td>24.0</td>
<td>2</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cor</td>
<td>1339.33</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 78.96$ %

Tabla 4. Análisis de los resultados en forma de ANOVA del diseño 2^2 para la optimización de las variables experimentales en la determinación de Put utilizando PAO-AuNPs-SPCEs.
Determinación de putrescina utilizando biosensores electroquímicos

El análisis de los resultados condujo al siguiente óptimo matemático de las variables experimentales, que se tomó como valor óptimo de las mismas:

\[
\begin{align*}
\text{pH} &= 9 \\
E &= 0.98 \text{ V}
\end{align*}
\]

La señal obtenida en las condiciones óptimas permite realizar calibrados en el rango de concentraciones de 1.99 a 19.7 µM de Put, tal y como se muestra en la figura 11.

![Cronoamperograma registrado para la determinación de Put en las condiciones optimizadas utilizando un PAO-AuNPs-SPCE.](image)

Figura 11. Cronoamperograma registrado para la determinación de Put en las condiciones optimizadas utilizando un PAO-AuNPs-SPCE.

VI.2. Caracterización de los PAO-AuNPs-SPCE para la determinación de Put.

Con el fin de comprobar la reproducibilidad del procedimiento, se realizaron 4 calibrados en el rango de concentración de Put comprendido entre 1.99 a 19.7 µM, en las condiciones optimizadas de las variables experimentales, utilizando distintos AuNPs-SPCE + PAO. Los puntos anómalos fueron detectados y eliminados de los calibrados, tal y como se indicó en el capítulo anterior. En la figura 12 se presentan los puntos experimentales y las rectas de calibración construidas a partir de ellos. La RSD, asociada a las pendientes de dichos calibrados, fue de 6.17 % (n = 4), lo que indica una buena reproducibilidad del procedimiento.

A su vez, se estimó la repetibilidad a dos niveles de concentración de Put, 1.99 y 19.7 µM, que coinciden con el mínimo y el máximo del intervalo en el que se construyeron las rectas. La RSD de las intensidades registradas a ambos niveles fue de 10 % (n = 3) y de 13.18 % (n = 3), respectivamente.

Se caracterizó de igual manera la capacidad de detección del método, teniendo en cuenta la probabilidad de falso positivo (α) y falso negativo (β) [27], utilizando el programa DETARCHI [23]. El valor de capacidad de detección obtenido fue de 2.22 ± 0.24 µM (α = 0.05, β = 0.05; n = 4), indicándonos que la combinación de ambas modificaciones (AuNPs y PAO) conduce a obtener una mayor sensibilidad en la determinación de Put.
VI. Determinación de Put por medio de PAO-AuNPs-SPCE

Figura 12. Puntos experimentales y rectas de calibración obtenidas para estimar la reproducibilidad del biosensor en la determinación de Put.

VI.3. Estudio de la interferencia producida por la presencia de otras aminas

Con la finalidad de aplicar el método propuesto para la determinación de Put en muestras reales, es de gran interés conocer previamente las posibles interferencias de otras BAs que puedan afectar el análisis, para ello, se evaluaron seis de las principales aminas encontradas frecuentemente en alimentos fermentados: Cad, His, Ty, Spd, Spm y Try [9].

Las condiciones elegidas para realizar el estudio fueron las condiciones óptimas elegidas para la determinación de Put mediante el empleo de PAO-AuNPs-SPCE.

De los resultados obtenidos puede concluirse que Cad, Spd e His no presentan interferencia alguna en la determinación de Put al mismo nivel de concentración (1.96 μM), sin embargo la Try, Ty, Spm, presentaron una señal de 15.2 %, 9.6 %, y 5.9% respectivamente en relación con la señal de registrada para la Put (Figura 13).

Figura 13. Porcentaje de respuestas del biosensor PAO-AuNPs-SPCE para las BAs: Put, Cad, Ty, Try, His, Spd, Spm.
VII. DETERMINACIÓN DE PUTRESCINA UTILIZANDO PAO-TTF-SPCEs

Con la finalidad de reducir la probabilidad de interferencias en el análisis de muestras reales, en la determinación de BAs, en los últimos años se han utilizado combinaciones de diversas amino oxidas con otras enzimas y mediadores [13-15, 18], permitiendo realizar las determinaciones analíticas a potenciales inferiores a + 300 mV.

En este capítulo se pretende desarrollar un método para la determinación de Put mediante el empleo de biosensores, basados en SPCE modificados, en éste caso con TTF como agente mediador (Sección IV.3) y posterior inmovilización del enzima PAO por entrecruzamiento (Sección IV.2.).

En este caso, la detección amperométrica se ha realizado mediante la medición de la corriente catódica debida a la oxidación del mediador TTF al aplicar un potencial adecuado.

Como se ha descrito previamente, el mecanismo de la detección amperométrica de Put se basa en la acción del enzima PAO, que cataliza la oxidación de los grupos amino a su correspondiente aldehído, liberando amoníaco y peróxido de hidrógeno. En este caso, el peróxido de hidrógeno se oxida en presencia del mediador que es a su vez oxidado electroquímicamente a un potencial adecuado, generando una señal amperométrica que es proporcional a la concentración de Put adicionada:

Este mecanismo se comprobó experimentalmente mediante el estudio de la intensidad de oxidación del peróxido de hidrógeno utilizando SPCEs y TTF-SPCEs. Al realizar sucesivas adicciones de \(\text{H}_2\text{O}_2 \), únicamente es posible registrar amperométricamente, aplicando un potencial operacional de 250 mV, una intensidad de oxidación cuando se emplean los sensores que contienen TTF.

VII.1. Optimización de las variables experimentales

Al igual que en los capítulos anteriores se evaluó la influencia del pH y del potencial aplicado mediante un diseño central compuesto \(2^2 \) [26]. Se tomó como variable respuesta la intensidad de la oxidación registrada para una concentración de Put de 98.5 μM. Los valores elegidos para los niveles alto (+), bajo (-) y punto central (0) fueron:

\[
\begin{align*}
\text{pH} (-) &= 7 & \text{E} (-) &= 0.1 \text{ V} \\
\text{pH} (0) &= 8 & \text{E} (0) &= 0.2 \text{ V} \\
\text{pH} (+) &= 9 & \text{E} (+) &= 0.3 \text{ V}
\end{align*}
\]
VII. Determinación de Put por medio de PAO-TTF-SPCE

En este caso, los valores de potencial seleccionados se tomaron en torno al potencial de oxidación del mediador (TTF → TTF⁺).

El análisis de los resultados obtenidos se presenta en la superficie de respuesta mostrada en la figura 14. Puede observarse como a pH en torno a 9 se registran mayores intensidades de oxidación, por lo que se fijó este valor como óptimo.

Así, con el objetivo de evaluar la influencia del potencial aplicado, se realizaron diferentes experiencias a pH 9, tomando nuevamente como variable respuesta la intensidad de la oxidación registrada para una concentración de Put de 98.5 μM (Figura 15). Se registró un máximo de intensidad a 250 mV, por lo que se tomó este valor como óptimo para análisis posteriores.
La señal obtenida en las condiciones óptimas, pH 9 y potencial de trabajo 250 mV, permite realizar curvas de calibrado en el rango de concentraciones de 59 a 566 µM de Put, tal y como se muestra en la figura 16.

Figura 16. Cronoamperograma registrado para la determinación de Put en las condiciones optimizadas utilizando un PAO-TTF-SPCE.

VII.2. Caracterización de los PAO-TTF-SPCEs para la determinación de Put

Con el fin de comprobar la reproducibilidad del procedimiento, se realizaron 4 calibrados en el rango de concentración de Put comprendido entre 59 a 566 µM, en las condiciones optimizadas de las variables experimentales, utilizando distintos PAO-TTF-SPCEs. Los puntos anómalos fueron detectados y eliminados de los calibrados de acuerdo con el procedimiento descrito previamente. En la figura 17 se presentan los puntos experimentales y las rectas de calibración construidas a partir de ellos.

La reproducibilidad del método para la determinación de Put utilizando PAO-TTF-SPCEs, en términos de RSD, asociada a las pendientes de las rectas de calibración construidas, fue de 7.89 % (n = 4), lo que indica la fiabilidad del procedimiento desarrollado.

La caracterización la capacidad de detección del método, se realizó teniendo en cuenta la probabilidad de falso positivo (α) y falso negativo (β) [27], utilizando el programa DETARCHI [23]. El valor de capacidad de detección obtenido fue de 103.9 ± 0.54 µM ($\alpha = \beta = 0.05$; $n = 4$).
VII. Determinación de Put por medio de PAO-TTF-SPCE

Figura 17. Rectas de calibración obtenidas para estimar la reproducibilidad del biosensor en la determinación de Put.

VII.3. Estudio de la interferencia producida por la presencia de otras aminas

Se realizó el estudio de las posibles interferencias en el análisis de Put producidas por otras BAs presentes en los distintos tipos muestras. Para ello se evaluaron, al igual que en el capítulo anterior, seis de las principales aminas encontradas frecuentemente en alimentos fermentados Cad, His, Ty, Spm, Spd y Try [9].

Las condiciones elegidas para realizar el estudio fueron las condiciones óptimas encontradas para la determinación de Put mediante el empleo de PAO-TTF-SPCE, pH 9 y potencial de medida 0.25 V.

De los resultados obtenidos puede concluirse que Cad y Ty son las únicas aminas que pueden presentar algún tipo de interferencia en la determinación de Put al mismo nivel de concentración (99 μM), con unos porcentajes de 55 %, 28.6% respectivamente en relación a la señal registrada para la Put (Figura 18).

Figura 18. Porcentaje de respuestas del biosensor PAO-TTF-SPCE para las BAs Put, Cad, Ty, Try, His, Spd, Spm
VIII. CONCLUSIONES

Los resultados de los capítulos precedentes pueden ser resumidos en las siguientes conclusiones:

- El uso de biosensores basados en SPCEs inmovilizados con el enzima PAO resultan viables en la determinación de Put por medios chronoamperométricos.
- La combinación de las variables experimentales que maximizan la intensidad de oxidación en la determinación de Put, mediante chronoamperometría utilizando PAO-SPCEs son pH 8.5 y potencial de medida + 0.85 V.
- La repetibilidad y reproducibilidad del método para la determinación de Put utilizando PAO-SPCEs fue de 6.1 % (n = 3) y 8.91 % (n = 3), respectivamente, calculándose dichos valores a partir de la RSD de las pendientes de las rectas de calibración.
- La capacidad de detección de Put obtenida utilizando PAO-SPCEs en las condiciones optimizadas es de $68.43 \pm 0.44 \, \mu\text{M} \, (\alpha = \beta = 0.05; \, n = 3)$.
- Las condiciones óptimas de las variables experimentales para la determinación de Put mediante el uso de PAO-AuNPs-SPCEs son pH 9 y potencial de medida de + 0.98V.
- El empleo de PAO-AuNPs-SPCEs permite obtener una mayor sensibilidad en la determinación de Put respecto a la obtenida en el caso de PAO-SPCEs.
- La capacidad de detección de Put obtenida utilizando PAO-AuNPs-SPCEs en las condiciones optimizadas es de $2.22 \pm 0.24 \, \mu\text{M} \, (\alpha = \beta = 0.05; \, n = 4)$, con una reproducibilidad de 6.17 % (n =3) y repetibilidad con valores entorno 10 %.
- En el caso de los biosensores PAO-AuNPs-SPCEs las aminas biógenas His, Spd y Cad no suponen interferencia alguna en la determinación de Put al mismo nivel de concentración (1.96 \, \mu\text{M}).
- La incorporación del mediador TTF en la composición del electrodo de trabajo (TTF-SPCEs), permitió realizar las determinaciones de Put a un potencial de +250 mV y pH 9.
- Los biosensores PAO-TTF-SPCEs permiten obtener una capacidad de detección de $103.9 \pm 0.54 \, \mu\text{M} \, (\alpha = \beta = 0.05; \, n = 4)$, con una reproducibilidad de 7.89 % (n = 4), lo que indica que el procedimiento desarrollado en la fabricación y modificación de los electrodos serigrafados es fiable, ya que diferentes electrodos conducen a respuestas amperométricas reproducibles.
- Spd, Spm, His y Try no representan una interferencia en la determinación de la Put mediante el uso de PAO-TTF-SPCEs.
IX. BIBLIOGRAFÍA

[5]. Sanllorente, S., (2010). Determinación de Arsénico por Técnicas Electroquímicas: Desarrollo de Sensores y Biosensores. Tesis Doctoral, Departamento de Química, Universidad de Burgos.

Determinación de putrescina utilizando biosensores electroquímicos

