Multiprocessors on the market

José M. Cámara
(checam@ubu.es)
v. 1.0
MIMD

Multiprocessors (shared memory)
- UMA
- NUMA
 - CC – NUMA (Cache coherence)
 - AlphaServer GS320
 - AlphaServer GS1280
 - NCC – NUMA
 - Non cache coherent
 - Cray T3E
- SMP
- Constellations
 - AlphaServer 8400

Multicomputers (distributed memory)
- MPP
 - Massive Parallel Processors
 - Bluegene/Q
- Clusters
 - Road Runner
 - HP Cluster Platform
SMP Architecture

AlphaServer 8400
General statements

• Uniform memory access (UMA), symmetric multiprocessor (SMP) system.
• Up to 12 CPU Alpha 21164.
• Up to 14 GB main memory.
• 3200MB/s system bus.
• Operating systems: OpenVMS & Digital UNIX.
At least one CPU, one memory and one I/O modules are mandatory.
CPU module

Diagram showing the CPU module with various components including Cache, 21164, MMG, and DIGA, connected with arrows indicating data and command flow.
Alpha 21164

• Vendor: Digital.
• Year: 1996.
• Clock freq.: up to 500 MHz.
• Technology: CMOS 0.35 microns.
• Cache L1: 8 + 8 kB.
• Cache L2: 96 kB.
• Cache L3 external (optional).
• Transistors: 93 millions.
• Power: 25W.
Coherence protocol

- **I**: invalid
- **S**: shared
- **D**: dirty

- Pw in a shared line updates main memory and disables D in the local copy.
CPU module

- One or two CPUs inside.
- Each CPU works independently and has its own L3 cache.
- CPUs from 142 to 357 MHz are supported.
- L3 is 4MB with 64 bytes lines.
- Has the required duplicated tag space.
- Multplexors – demultplexors (DIGA) to adapt CPU’s data width (128) to the bus (256). Data buffer is used for temporary storage.
- Address multiplexor (MMG) hold the duplicated tag space as well.
- The address interface receives also commands and manages the duplicated tag space. It is responsible for cache coherence.
System bus

- Capacity for up to 9 modules.
- One of them must be I/O, another one memory and also a CPU module is required. In case more than 3 CPU modules are installed, at least 3 memory ones are mandatory.
- 40 bits address bus and 256 bits data bus.
- Synchronous bus whose clock is a multiple of the CPU’s (33-100 MHz).
- Peak transfer speed: 3200 MB/s.
- Simple parity in addresses and commands and ECC in data.
Memory module

- From 128 MB to 2 GB.
- Maximum storage capacity = 14 GB.
- ECC.
- Write invalidate protocol.
- Writes on shared lines demand bus control thus updating main memory alongside.
I/O module

• Provides connection to standard buses:
 – XMI (2)
 – PCI
 – Futurebus+
Non uniform memory access architectures: CC-NUMA
AlphaServer GS320
General statements

- CC-NUMA architecture.
- 4 processor modules (Alpha 21264).
- Up to 8 modules (32 processors max.)
- Crossbar interconnect 8x8 at 1’6 GB/s.
- Full mapping directories.
- Operating systems: Tru64 UNIX, Open VMS, LINUX
Architecture

Crossbar (8 x 8)

CPU module

CPU module

CPU module

CPU module

CPU module
CPU module

Local Switch

Alpha 21264

L2

L2

L2

L2

M M M M

D-Tag

Arbitration point

DIR

TTT

Global port

I/O interface

Crossbar
Alpha 21264

- 731 MHz in this system.
- Cache L1: 64 + 64 kB 2 way set associative.
- Cache L2: external 4 MB direct mapping.
- Out-of-order execution permitted.
- Simplified pipeline.
Memory

- 4 memory modules: 1 to 8 GB each.
- Maximum capacity per module: 32 GB.
- Each module is 8 way interleaved.
- Overall bandwidth: 6’4 GB/s
- 2 level cache coherence:
 - Intra-module: duplicated tag behaves as a full mapping directory.
 - Inter-module: directory is located in the global port.
Switch

• Local switch is very much like a crossbar but with an asymmetric structure.
• Not all connections are possible since, for instance, connections between memory modules are not implemented.
• Not all connections are equally fast. Global port’s bandwidth is double.
Coherence

- Involves several elements: DIR, TTT, D-Tag & arbitration point.
- 64 bytes cache lines with 14 bits tag: 6 to locate the owner + 8 to locate copies at module level, not CPU yet.
- Duplicated tag space makes location of copies at CPU level possible.
- The TTT is an associative table meant to hold a list of up to 48 transactions not yet reported to main memory (write-backs).
- 4 possible access requests: read, exclusive read, exclusive, data less exclusive.

```
8 bits (sharer)
| 6 bits (owner)
| 14 bits (Tag)
```

- Owner: module (8)
- Owner: CPU (32) + i/o (8) + memory (1)
Mismatches

• A memory access request gets to the owner after a write-back.
 – Cache line is kept in a victim buffer until all pending requests in the D-Tag have been served.
 – Afterwards, it is kept in the TTT until main memory acknowledges its reception.

• A memory access request gets to the owner before it receives the data.
 – Owner processor compares this request with its list of cache misses. If there is a coincidence, the request is simply delayed.
AlphaServer GS1280
General statements

• 64 CPU Alpha 21364 at 1.5 GHz
• 2-D torus interconnect.
• Adaptive routing with at least 3 virtual channels.
• Each node is formed by a CPU, main memory and I/O.
• Full mapping directories for cache coherence.
CPU

- On-chip L2 cache 1.75 MB 7 way set associative.
- Integrated memory controller.
- Integrated 2D torus router.
- 0.18 microns technology.
- 152 million transistors.
Memory

- On-chip L1 cache 64 +64 kB 2 way set associative.
- On-chip L2 cache 1’75 MB 7 way set associative with ECC.
- 8 GB main memory per node with ECC.
Interconnect

- 2-D torus direct interconnect.
- Bidirectional point to point links 6’2 GB/s (2 x 3’1)
- 3 virtual channels: 2 DOR + 1 adaptive. Packets try to move along the adaptive channel but shift to one DOR if not possible.
- Deadlock free network: inter-dimension because of the DOR, intra-dimension because of the presence of virtual channels.
NCC – NUMA Architectures

CRAY T3E
General statements

• NCC-NUMA architecture.
• Up to 2048 Alpha 21164 nodes.
• 3-D torus interconnect.
• Additional rings for I/O.
• UNICOS operating system.
Architecture

Hard drives, tapes, peripherals, SCSI, ATM, FDDI....

Rings

Processing element

Processing element

3-D torus
Processing element

- Alpha 21164
- Memoria local
- Registers & control
- Router

Inputs: X+, X-, Y+, Y-, Z+, Z-
Memory

- Embedded L1 & L2 cache.
- Up to 2 GB main memory with ECC.
- No hardware mechanism to guarantee cache coherence.
- Within each processing element a 3 state protocol is used.
- Remote data are accessed individually instead of as cache lines.
Interconnect

- 3-D torus with bidirectional links 600 MB/s.
- Wormhole flow control.
- Adaptive routing.
- Up to 128 independent rings.
- Rings are made up from 1 GB/s bidirectional links connecting 16 nodes which include processing nodes, peripherals and ports.
Deadlock

• Deadlock free network.
• Between different dimensions deadlock is avoided by means of a combination of virtual channels and DOR.
• Within each dimension a packet elimination mechanism is used.
References

• **AlphaServer ES47, ES80, and GS1280 Systems.** Technical Summary. Available at: http://www.compaq.com/alphaserver/gs1280/gs1280_tech.html