

UNIVERSIDAD DE BURGOS FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOTECNOLOGÍA Y CIENCIA DE LOS ALIMENTOS ÁREA DE INGENIERÍA QUÍMICA

TECNOLOGÍA RIE PARA EL FRACCIONAMIENTO DE AMINOÁCIDOS

PROYECTO DE INVESTIGACIÓN

ANA ISABEL HORTA RONDA

Junio 2006

TECNOLOGÍA RIE PARA EL FRACCIONAMIENTO DE AMINOÁCIDOS

Proyecto de Investigación del Programa de Doctorado: AVANCES EN CIENCIA Y BIOTECNOLOGÍA ALIMENTARIAS

Memoria que para obtener la suficiencia investigadora presenta

ANA ISABEL HORTA RONDA

Burgos, Junio 2006

presente Memoria queda registrada en el folio nº ___ del correspondiente Libro de Registros, con el nº ____

Burgos, a de

de 2006

El Encargado del Registro

UNIVERSIDAD DE BURGOS

FACULTAD DE CIENCIAS

1.1.1.2.1.1.1.1 DEPARTAMENTO DE BIOTECNOLOGÍA Y CIENCIA DE LOS ALIMENTOS ÁREA DE INGENIERÍA QUÍMICA

DRA. MARÍA OLGA RUIZ PÉREZ, PROFESORA DEL ÁREA DE INGENIERÍA QUÍMICA DE LA UNIVERSIDAD DE BURGOS

DRA. MARÍA ISABEL ESCUDERO BARBERO, PROFESORA DEL ÁREA DE INGENIERÍA QUÍMICA DE LA UNIVERSIDAD DE BURGOS

CERTIFICA:

Que el trabajo descrito en la presente memoria titulado «TECNOLOGÍA RIE PARA EL FRACCIONAMIENTO DE AMINOÁCIDOS », que para alcanzar la suficiencia investigadora presenta Doña ANA ISABEL HORTA RONDA, ha sido realizado bajo mi dirección en el Área de Ingeniería Química del Departamento de Biotecnología y Ciencia de los Alimentos de la Universidad de Burgos.

La memoria presentada corresponde al trabajo de investigación tutelado por mi "Línea de procesos de extracción e intercambio iónico" (código 5030) del programa de doctorado "Avances en Ciencia y Biotecnología Alimentarías" (programa 107).

Considero que dicho trabajo reúne los requisitos exigidos para su presentación.

Y para que así conste, firmo el presente certificado en Burgos a 30 de junio de 2006.

Fdo. María Olga Ruiz Pérez

Fdo. Isabel Escudero Barbero

UNIVERSIDAD DE BURGOS

DEPARTAMENTO DE BIOTECNOLOGÍA Y CIENCIA DE LOS ALIMENTOS

D. MANUEL PÉREZ MATEOS, DIRECTOR DEL DEPARTAMENTO DE BIOTECNOLOGÍA Y CIENCIAS DE LOS ALIMENTOS DE LA UNIVERSIDAD DE BURGOS

CERTIFICA:

Que el trabajo descrito en la presente memoria titulado «TECNOLOGÍA RIE PARA EL FRACCIONAMIENTO DE AMINOÁCIDOS», que para obtener la suficiencia investigadora presenta Doña ANA ISABEL HORTA RONDA, ha sido realizada en el Departamento de Biotecnología y Ciencia de los Alimentos (Área de Ingeniería Química) de la Universidad de Burgos, bajo la dirección de la doctora María Olga Ruiz Pérez.

Burgos a 30 de Junio de 2006

Fdo. Manuel Pérez Mateos Director del Departamento

AGRADECIMIENTOS

A la Dra. María Olga Ruiz Pérez directora de este trabajo de investigación por su apoyo y constante seguimiento del trabajo, brindándome su opinión y conocimiento a través de intensas horas de trabajo en equipo.

A la Dra. Isabel Escudero Barbero directora del proyecto de investigación por ofrecerme la oportunidad de trabajar en un proyecto de alto interés científico, por su colaboración y ayuda en el desarrollo del mismo.

A la Universidad de Burgos, al Ministerio de Educación y Ciencia y a la Junta de Castilla y León por haber financiado este trabajo.

A mis amigos y compañeros de la Universidad de Burgos y del Área de Ingeniería Química por su apoyo y amistad en todo momento.

A mi familia y a Santiago por estar siempre ahí cuando lo he necesitado, por sus consejos, ayuda, apoyo y cariño recibido.

<u>ÍNDICE</u>

1.	INTRODUCCIÓN	3
	1.1 OBJETIVOS	
2.	AMINOÁCIDOS	5
	2.1 GENERALIDADES	7
	2.2 ESTRUCTURA Y CLASIFICACIÓN	
	2.3 PROPIEDADES FÍSICAS Y QUÍMICAS	
	2.4 FABRICACIÓN Y PROCESADO	
	2.5 RECUPERACIÓN DE AMINOÁCIDOS	
	2.5.1 Extracción con Disolventes	
	2.5.2 Electrodiálisis	
	2.5.3 Precipitación	
	2.5.4 Cromatografía en capa fina y electroforesis	
	2.5.5 Cromatografía de gases	
	2.5.6 Analizador automático de aminoácidos - HPLC	
	2.6 APLICACIONES	
	2.7 α-FENILGLICINA	
	2.8 ÁCIDO ASPÁRTICO	
3.	EXTRACCIÓN LÍQUIDO-LÍQUIDO	27
	3.1 CONCEPTOS GENERALES	
	3.2 CARACTERÍSTICAS DEL DISOLVENTE	
	3.3 PÉRDIDAS DE DISOLVENTE	
	3.4 EQUILIBRIOS DE EXTRACCIÓN DE AMINOÁCIDOS	
	3.4.1. Extracción por formación de pares iónicos	
	3.5 ETAPA DE REEXTRACCIÓN	
4.	SEPARACIÓN CON RESINAS	41
	4.1 ADSORCIÓN	
	4.1.1 Conceptos generales	
	4.1.2 Factores que influyen en la adsorción	
	4.1.3 Principales adsorbentes sólidos.	
	4.1.4 Aplicaciones	
	4.1.5 Características de las resinas macroporosas XAD	
	4.1.6 Equilibrios: isotermas de adsorción	

	4.1.7 Cinéticas de adsorcion en baños	59
	4.1.8 Cinéticas de adsorcion en lecho fijo	64
	4.1.9 Desorción y regeneración del adsorbente	69
	4.2 TECNOLOGÍA RIE DE ADSORCIÓN-EXTRACCIÓN	
	4.2.1 Conceptos generales	
	4.2.2 Resinas poliméricas modificadas	73
	4.2.3 Impregnación de la resina	
5.	PARTE EXPERIMENTAL	79
	5.1 PRODUCTOS UTILIZADOS	
	5.2 DISPOSITIVOS EXPERIMENTALES	85
	5.2.1 Ensayos de equilibrio	85
	5.2.2 Ensayos cinéticos en tanques agitados	85
	5.3 PROCEDIMIENTO EXPERIMENTAL	87
	5.3.1 Lavado e impregnación de la resina	
	5.3.2 Datos de equilibrio	
	5.3.3 Datos cinéticos en baños agitados	
	5.3.4 Determinación de la concentración de ácido aspártico	
	5.3.5 Determinación de la concentración de α -fenilglicina y ácido aspártico en sus mezclas bina	ırias . 91
	5.3.6 Determinación del pH	
6.	RESULTADOS EXPERIMENTALES Y DISCUSIÓN	93
	6.1 EQUILIBRIOS DE EXTRACCIÓN DE AMINOÁCIDOS DE SUS MEZCLAS BINARIAS CON	NRIE95
	6.1.1 Datos experimentales de las isotermas de equilibrio	
	6.1.2 Modelo para la estimación de las isotermas de equilibrio a p H_i =5	101
	6.1.3 Modelo para la estimación de las isotermas de equilibrio a $pH_i=11$ y 12	104
	6.1.4 Comparación de los equilibrios de extracción individual y conjunta de ácido aspártico y a fenilglicina	- 110
	6.2 CINÉTICAS DE EXTRACCIÓN DE AMINOÁCIDOS EN BAÑOS AGITADOS CON RIE	114
	6.2.1 Cinéticas de extracción individual de ácido aspártico	114
	6.2.2 Cinéticas de extracción de ácido aspártico y α-fenilglicina de sus mezclas binarias a pH _i = 12	11 y 133
	6.2.3 Comparación de los resultados cinéticos de la extracción individual y conjunta de ácido as y α-fenilglicina	spártico 149
7.	CONCLUSIONES	151
8.	BIBLIOGRAFÍA	157
9.	NOMENCLATURA	171
Δ.	DÉNDICES	177
л.		••••• 1 / /

- APÉNDICE C. Resultados experimentales de cinéticas de extracción de ácido aspártico y αfenilglicina de sus mezclas binarias con RIE a pH_i=11 y 12.....201

1. INTRODUCCIÓN

Los aminoácidos se utilizan habitualmente como materias primas en diversos procesos industriales, especialmente en la industria química, alimentaría, cosmética y farmacéutica.

En este trabajo se ha estudiado el fraccionamiento y concentración de ácido aspártico y α -fenilglicina como aminoácidos modelo, elegidos ambos por su elevado consumo industrial. En concreto, el ácido aspártico se utiliza como materia prima junto con el aminoácido α -fenilalanina para la síntesis de aspartamo, edulcorante artificial 200 veces más dulce que la sacarosa, en la preparación de medios de cultivo, en detergentes, fungicidas, germicidas y está presente con el aminoácido fenilglicina en el proceso de obtención de antibióticos beta-lactámicos como son las penicilinas sintéticas o las cefalosporinas.

Por lo general, con los métodos tradicionales de separación (intercambio iónico, cromatografía, adsorción o evaporación) se obtienen aminoácidos en baja concentración, lo cual implica una serie de etapas posteriores de separación, concentración y purificación, que suelen resultar caros y complejos. Como alternativa, en los últimos años, se están desarrollando procesos híbridos de los convencionales como es el caso de la tecnología de extracción con resinas impregnadas de extractante (RIE), con el fin de disminuir los costes de operación y mejorar el rendimiento de separación de aminoácidos.

El interés del presente trabajo reside en las ventajas que aporta la tecnología híbrida de extracción con resinas impregnadas de extractante frente a los procesos convencionales de extracción con disolventes o el uso de resinas de intercambio iónico de alto precio. El estudio de esta tecnología de extracción con resinas impregnadas de extractante ha demostrado no solo la viabilidad técnica del proceso, sino que es capaz de reunir en un solo proceso las ventajas que ofrecen los procesos de adsorción sobre matrices poliméricas sólidas, aplicables a disoluciones muy diluidas, con la elevada capacidad y selectividad que ofrecen las técnicas de extracción con disolventes, utilizando además un equipo sencillo y barato propio de la tecnología de intercambio iónico con resinas sólidas. Esta tecnología híbrida tiene además consecuencias medioambientales favorables, en cuanto a su bajo consumo energético y de reactivos, con un alto grado de eficacia en la separación y de reutilización de todos los productos.

Además del interés de su aplicación, el trabajo de investigación cubre un amplio estudio fundamentado en los principios que gobiernan la transferencia de materia. Dicho estudio abarca los aspectos básicos relacionados con el equilibrio entre fases, el estudio de las etapas físicas que condicionan la operación, la velocidad de transferencia de materia y su modelización de cara al diseño del proceso integrado de extracción – re-extracción en lechos fijos y su posible cambio de escala para la aplicación industrial.

La finalidad del trabajo recogido en esta memoria ha sido la de avanzar en el estudio de esta tecnología aplicada al fraccionamiento de aminoácidos y otros biocompuestos de interés, que por su naturaleza puedan estar presentes en caldos de fermentación o en corrientes de determinados procesos industriales.

1.1 OBJETIVOS

El presente trabajo está enfocado al estudio de la separación de α -fenilglicina y ácido aspártico de disoluciones acuosas diluidas utilizando la tecnología híbrida de extracción reactiva con resinas impregnadas de extractante, tratando de cubrir el objetivo fundamental que se cita a continuación:

I. Estudiar la viabilidad técnica de la tecnología híbrida RIE de extracción con resinas impregnadas de extractante para separar / fraccionar y concentrar aminoácidos de disoluciones acuosas diluidas.

Este objetivo se alcanzará mediante la consecución de los siguientes objetivos parciales:

- I.1. Determinación experimental, selección de condiciones y desarrollo de un modelo de equilibrio de extracción de α-fenilglicina y ácido aspártico, separados y mezclados, con resina impregnada.
- I.2. Estudio cinético de extracción de α-fenilglicina y ácido aspártico, separados y mezclados, en tanques agitados con resina impregnada.
- I.3. Modelización de los resultados experimentales y obtención de los parámetros cinéticos de cara al diseño del proceso integrado de extracción – re-extracción en lechos fijos.

2. AMINOÁCIDOS

2.1 GENERALIDADES

Los aminoácidos son las unidades básicas que componen las proteínas. Las proteínas son macromoléculas que desempeñan un papel fundamental en la estructura y función de los sistemas biológicos, pudiendo constituir el 50% o más del peso seco de las células vivas *(Cheftel J. C et al., 1989).*

Desde el punto de vista de la química de los alimentos, los aminoácidos, péptidos y proteínas, son componentes importantes de los alimentos, proporcionan los elementos necesarios para la síntesis proteica y tienen una función muy importante en cuanto a la estructura y cualidades organolépticas de numerosos alimentos. Por un lado, tanto los aminoácidos como los péptidos contribuyen directamente al sabor de los alimentos y son precursores de los componentes aromáticos y de las sustancias coloreadas formadas por reacciones térmicas y enzimáticas que ocurren durante la obtención, preparación, maduración y almacenamiento de los mismos. Además, las proteínas tienen capacidad para formar o estabilizar geles, espumas, masas, emulsiones y estructuras fibrilares que son esenciales para dotar de buenas propiedades físicas de los alimentos. (*Belitz H.-D. et al., 1997; Linden G. et al., 1996*).

La hidrólisis completa (ácida, alcalina o enzimática) de las proteínas, libera αaminoácidos de configuración L que se diferencian entre sí por la naturaleza de su cadena lateral. Aproximadamente 20 aminoácidos denominados esenciales constituyen las proteínas. Los aminoácidos de las proteínas se unen vía enlaces amida sustituidos (enlaces covalentes), llamados enlaces peptídicos en un orden predeterminado genéticamente. Estos enlaces amida tienen parcialmente carácter de doble enlace, lo que incrementa la complejidad estructural de las proteínas, generando multitud de formas de estructura tridimensional, con diferentes funciones biológicas. *(Fennema O. R, 2000).* En 1806, fue descubierto el primer aminoácido, la L-asparagina, y cien años más tarde 1935 se aisló el vigésimo, la L-treonina.

Durante los últimos decenios, los conocimientos sobre las proteínas, principales constituyentes de las células y tejidos de la materia viva, se han incrementado de una manera prodigiosa. Las distintas funciones biológicas de las proteínas permiten clasificarlas en catalizadores enzimáticos, proteínas estructurales, proteínas contráctiles (miosina, actina, tubulina), hormonas (insulina, hormona del crecimiento), proteínas transportadoras (seroalbúmina, transferrina, hemoglobina), anticuerpos (inmunoglobulinas), proteínas de reserva (ovoalbúmina, proteínas de las semillas) y proteínas protectoras (toxinas y alergenos). Todas las proteínas sintetizadas biológicamente pueden usarse como proteínas alimentarías. En la práctica, las proteínas alimenticias se definen como aquellas que son fácilmente digestibles, no tóxicas, nutricionalmente adecuadas. funcionalmente útiles generalmente V abundantes para el consumo humano. (Cheftel J. C et al., 1989; Fennema O. R, 2000).

2.2 ESTRUCTURA Y CLASIFICACIÓN

Los aminoácidos contienen, por lo menos, un grupo amino primario (-NH₂) y un grupo carboxilo (-COOH). En los aminoácidos derivados de las proteínas el grupo amino primario ocupa una posición α con relación al grupo carboxilo. Los α - aminoácidos naturales tienen la estructura siguiente:

donde R es la cadena lateral de los aminoácidos, que puede ser desde un protón, como en el caso del aminoácido más sencillo la glicina, hasta un resto alifático, aromático o heterocíclico portador de otros grupos funcionales.

Los aminoácidos se diferencian sólo en la naturaleza química de la cadena lateral o grupo R, las propiedades físico-químicas, como la carga neta, la solubilidad, la reactividad química y las posibilidades de establecer puentes de hidrógeno de los aminoácidos dependen de la naturaleza química de la cadena lateral. Las proteínas naturales contienen hasta 20 aminoácidos primarios, unidos vía enlaces amida. Sin embargo, el número total de aminoácidos existente en la naturaleza es del orden de 200. (*Fennema O. R, 2000; Belitz H.-D. et al., 1997*).

Desde el punto de vista de la polaridad de la cadena lateral se puede realizar la siguiente clasificación de los aminoácidos (*Cheftel J. C et al., 1989*):

- *Aminoácidos con las cadenas laterales apolares o hidrófobos*: glicina, alanina, isoleucina, leucina, metionina, prolina, fenilalanina, triptófano, valina. Son menos solubles en el agua que los aminoácidos polares. La hidrofobicidad aumenta con la longitud de la cadena lateral.
- Aminoácidos con cadenas laterales polares y sin carga (hidrófilos): serina, treonina, cisteína, tirosina, asparagina, glutamina. Tienen grupos funcionales neutros y polares que son capaces de formar enlaces hidrógeno con algunas moléculas, tales como el agua, por ejemplo. La polaridad de la serina, treonina y tirosina depende de su grupo hidrófilo (-OH), la polaridad de la asparragina y glutamina de su grupo amida (-CO-NH₂) y la polaridad de la cisteína de su grupo tiol (-SH). La glicina se incluye, a veces, en este grupo; la cisteína y

tirosina poseen los grupos funcionales más polares de esta clase, porque los grupos tiol y fenol pueden sufrir una ionización parcial a pH próximos a la neutralidad. Además, se pueden oxidar dos grupos tiol de dos moléculas de cisteína y entonces se forma una molécula de cistina. Cuando en una proteína se produce este fenómeno, aparece entonces un enlace disulfuro.

La asparragina y la glutamina se hidrolizan fácilmente en presencia de un ácido o de una base para formar, respectivamente, los ácidos aspártico y glutámico.

- Aminoácidos con cadena lateral cargada negativamente (a pH próximo a 7): ácido aspártico, ácido glutámico.
- Aminoácidos con cadena lateral cargada positivamente (a pH próximo a 7): histidina, lisina, y arginina. El grupo ₆-NH₂ es el responsable de la carga de la lisina y el grupo guanadina en la argina. El 10% de los grupos amidazol de la histidina resultan protonizados a pH=7 y el 50% a pH=6.

Desde el punto de vista nutricional los aminoácidos se pueden clasificar:

- **Aminoácidos esenciales** para la vida humana y que deben ser ingeridos en la dieta: valina, leucina, isoleucina, fenilalanina, triptófano, metionina, treonina, histidina, lisina, arginina.
- **Aminoácidos no esenciales** pero sí necesarios para el buen funcionamiento del organismo: glicina, alanina, prolina, serina, cisteína, tirosina, asparagina, glutamina, ácido aspártico, ácido glutámico.

Los valores nutricionales de una proteína están controlados por el balance cuantitativo y cualitativo de cada aminoácido esencial, estos valores se mejoran agregando los aminoácidos que la proteína posea en baja concentración.

Todos los aminoácidos de las proteínas están disponibles comercialmente y su interés industrial es creciente principalmente debido a su uso como potenciadores del sabor y edulcorantes en la industria alimentaria. El desarrollo reciente de nuevos fármacos y antibióticos ha fomentado el consumo de aminoácidos tales como el ácido glutámico, ácido aspártico, fenilglicina, etc.

2.3 PROPIEDADES FÍSICAS Y QUÍMICAS

Los aminoácidos son sólidos, con estructuras cristalinas muy variadas, tienen puntos de fusión elevados entre 200 y 300 °C, y generalmente se descomponen antes de alcanzar el punto de fusión.

Estereoquímica de los aminoácidos. Con la excepción de la glicina, todos los α -aminoácidos contienen al menos un átomo de carbono asimétrico, lo que quiere decir que son distintos los cuatro grupos a él unidos y se les puede caracterizar por su capacidad para hacer girar la luz a la derecha (+) o a la izquierda (-), dependiendo del disolvente y del grado de ionización. Por lo tanto todos los aminoácidos, excepto la glicina, tienen dos isómeros enantiómeros ópticamente activos designados por D y L, esta denominación se refiere únicamente a la configuración absoluta del aminoácido y no tiene nada que ver con el sentido de giro del plano de la luz polarizada. (*Cheftel J. C et al., 1989*). Así, según la representación de Fisher y por analogía con el D y L-gliceraldehído, los esteroisómeros de los aminoácidos de forma general se pueden representar como:

Los aminoácidos de las proteínas son todos de la forma L, debido a que las células poseen enzimas estereoespecíficas que sintetizan únicamente estos esteroisómeros, eliminándose si existen los esteroisómeros D vía renal y evitando así una posible síntesis de péptidos tóxicos. A pesar de todo, en las células existe una cierta cantidad remanente de D-aminoácidos. (*Herrera E., 1993*).

Propiedades ácido-base. lonización. Los α-aminoácidos en disolución acuosa debido a su carácter anfotérico, sufren una disociación dependiente del pH como se muestra a continuación:

Las constantes de disociación de los aminoácidos se pueden obtener mediante las siguientes relaciones de equilibrio:

$$K_{a1} = \frac{\left[H^{+}\right] \left[H_{3}N^{+}CH(R)COO^{-}\right]}{\left[H_{3}N^{+}CH(R)COOH\right]}$$
(2.1)

$$K_{a2} = \frac{\left[H^{+}\right] \left[H_{2}NCH(R)COO^{-}\right]}{\left[H_{3}N^{+}CH(R)COO^{-}\right]}$$
(2.2)

Generalmente, se expresan en términos de pK, y pueden tener dos o más pKs dependiendo del número de grupos de disociación en la molécula.

Muchos aminoácidos en solución están presentes en su forma anfotérica, es decir con carga eléctrica neta cero. El *punto isoeléctrico* (pl) es el pH al cual la carga eléctrica neta de una molécula de aminoácido es cero. Para un aminoácido que no tenga grupos cargados en la cadena lateral, se puede calcular:

$$pI = \frac{pK_{a1} + pK_{a2}}{2}$$
(2.3)

Para los aminoácidos que contengan un grupo ácido en la cadena lateral, o un grupo básico en la cadena lateral, el pl se calcula según las expresiones (2.4) y (2.5), respectivamente:

$$pI = \frac{pK_{a1} + pK_{a3}}{2}$$
(2.4)

$$pI = \frac{pK_{a2} + pK_{a3}}{2}$$
(2.5)

donde los subíndices 1, 2 y 3 se refieren a los grupos carboxilo, amino, y los ionizables de la cadena lateral, respectivamente. (*Fennema O. R, 2000; Herrera E., 1993*).

La **solubilidad** de los aminoácidos en agua es muy variada, depende del pH de la disolución siendo mínima en su pl y aumenta al aumentar la temperatura. La adición de ácidos o álcalis por lo general, aumenta la solubilidad del aminoácido por formación de sales, al igual que también aumenta en presencia de otros aminoácidos. Los aminoácidos que tienen grupos polares adicionales, por ejemplo –OH, -SH, -COOH, -NH₂, son generalmente más solubles en agua.

Debido a su carácter anfótero, los aminoácidos tienen características tanto de ácidos como de bases orgánicas, dando las reacciones ordinarias de los ácidos carboxílicos y aminas. Desde el punto de vista de la preparación de alimentos mediante cocción, asado o fritura tienen gran importancia e interés para la química de los alimentos las reacciones que ocurren a temperaturas de 100-200°C, dónde se desarrollan aromas característicos vía reacción Maillard y que son compuestos derivados especialmente de cisteína, metionina, ornitina y prolina. (*Belitz H.-D. et al., 1997*). Así, los aminoácidos pueden proporcionar las siguientes aplicaciones y reacciones químicas:

- Por tratamiento con ácidos fuertes y calor se produce su esterificación. Los esteres de los aminoácidos se condensan con NH₃ o aminas formando amidas ácidas.
- Para eliminar aminoácidos indeseables selectivamente, se puede recurrir a la precipitación de sus sales estables.
- En disoluciones alcalinas reaccionan con cloruros o con anhídridos ácidos para formar compuestos acílicos.
- Los α-aminoácidos reaccionan en exceso de ácido nitroso para formar ácidos α-hidroxílicos (reacción de Van Slyke).
- Al calentar los aminoácidos en disolventes, como queroseno, se produce su descarboxilación, formando las correspondientes aminas.
- Con agentes oxidantes son fácilmente oxidados, formando los correspondientes ácidos con un átomo menos de carbono.
- Los aminoácidos en disolución neutra reaccionan con la ninhidrina (2,2dihidroxi-1,3-indanediona) causando su descarboxilación oxidativa, formando complejos de color rojo o violeta. Esta reacción permite su determinación colorimétrica.
- Reaccionan con los isocianatos dando carbamoilderivados que calentados en medio ácido se ciclan dando 2,4-dioxoimidazolidinas (hidantoínas), (*Belitz H-D. et al., 1997*).

2.4 FABRICACIÓN Y PROCESADO

La alimentación, en el mundo actual, plantea problemas tanto cuantitativos como cualitativos. Debido al creciente volumen de la población, la problemática del hambre es uno de los más graves. Esto ha obligado a desarrollar nuevas fuentes de proteínas (Ej; microorganismos), aminoácidos y péptidos que complementan las **fuentes tradicionales** de proteínas vegetales y animales (agricultura, ganadería o pesca).

La producción de aminoácidos se realiza mediante un amplio abanico de tecnologías que incluyen la extracción de hidrolizados de proteínas, la síntesis química, la biotransformación de precursores mediante células o enzimas y la fermentación directa *(Ward O.P., 1989).* Tradicionalmente, la mayoría de los aminoácidos se obtienen por extracción a partir de los hidrolizados de proteínas. El método de **extracción de aminoácidos** a partir de sustancias naturales generalmente desechos orgánicos (cabellos humanos, residuos del tratamiento de pieles, plumas de aves, etc), sigue siendo competitivo. Este es el caso de la L-cistina y la L-tirosina, aminoácidos poco solubles en agua, que pueden separarse de aminoácidos hidrosolubles durante el procesado de los hidrolizados de origen animal o vegetal *(Linden G. et al., 1996).* Sin embargo, todavía es dificil el aislamiento en su forma pura al estar en presencia de un gran número de compuestos orgánicos similares.

Para la **síntesis química** de α -aminoácidos se han establecido diversos métodos químicos, por ejemplo, la aminación de ácidos carboxílicos α -halogenados o de α -cetoácidos. De esta manera se han logrado sintetizar químicamente con éxito diversos aminoácidos como DL-alanina, glicina y DL-metionina. Sin embargo, en muchos casos, es preciso realizar la resolución óptica del α -aminoácido porque la síntesis química proporciona solamente la mezcla racémica DL. La resolución óptica es compleja y puede realizarse de por métodos físicos-químicos que aplican las propiedades de los estereoisómeros (métodos cromatográficos, cristalización, etc.) y por métodos biológicos (fermentación, enzimáticos, etc.) basados en el comportamiento característico de los aminoácidos en las células vivas en presencia de enzimas (*Kirk-Othmer, 1992*).

En la obtención de aminoácidos mediante los **procesos enzimáticos**, los substratos sintetizados químicamente se convierten en el aminoácido correspondiente por acción catalítica de un enzima. Se emplean enzimas microbianos libres o inmovilizados sobre un soporte. Esta técnica se ha empleado para obtener el ácido L-aspártico a partir del ácido fumárico, L-alanina a partir del ácido L-aspártico, etc. Este método es de gran potencial industrial por realizarse en una sola etapa. Su principal inconveniente es la pérdida progresiva de la actividad del enzima, resultando activa durante una semana, pierde más del 75 % de la actividad en periodos de 20-25 días. Además, los procesos enzimáticos no proporcionan elevados rendimientos y no siempre se obtienen aminoácidos de la pureza adecuada (*Linden G. et al., 1996*).

La producción de aminoácidos por **fermentación** se basa en el conocimiento de los circuitos metabólicos, la utilización de cepas eficaces y mutantes, y la existencia de reacciones de retro-inhibición. El principal inconveniente es que se requieren elevados tiempos de aislamiento.y la necesidad de técnicas de purificación para la obtención de los aminoácidos en forma pura, generándose además subproductos con elevados riesgos medioambientales. (*Linden G. et al., 1996; Brown C. M. et al., 1992*). En la actualidad gracias a los avances en genética microbiana y en ingeniería genética se pueden producir todos los aminoácidos microbiológicamente, en cantidades rentables, excepto para la glicina, L-cisteína y la L-cistina.

2.5 RECUPERACIÓN DE AMINOÁCIDOS

Los aminoácidos se encuentran presentes en caldos de fermentación o en corrientes de procesado, en baja concentración y en presencia de otros compuestos químicos similares. Su separación y purificación son etapas cruciales en la optimización del proceso productivo de las industrias biotecnológicas.

El número de etapas necesarias para la recuperación de aminoácidos y bioproductos depende de la materia prima utilizada, de la concentración, de las propiedades físico-químicas del producto y del grado de purificación necesario. Las operaciones unitarias de recuperación de aminoácidos pueden agruparse en las siguientes categorías (*Blanch H.W. et al., 1996; Liddell J.M., 1994*):

- **Etapas iniciales.** Se realiza la separación de materiales insolubles tales como la biomasa celular o las proteínas agregadas empleando como operaciones físicas de separación la sedimentación, centrifugación y filtración.
- Etapas intermedias. Consisten en el aislamiento del producto de interés, eliminando las impurezas. En esta categoría se emplean operaciones físicas de extracción, ultrafitración, intercambio iónico, adsorción, cromatografía, diálisis y electrodiálisis.
- Purificación final. Los productos farmacéuticos y alimentarios requieren una pureza elevada. En esta etapa se requieren operaciones químicas de cristalización y precipitación, llevadas a cabo por modificación del pH del medio, adición de sales o de disolventes orgánicos, que producen una variación drástica de la solubilidad del aminoácido. El proceso de purificación finaliza con el secado del producto.

A continuación se describen brevemente alguna de las técnicas más utilizadas para la separación y purificación de aminoácidos:

2.5.1 Extracción con Disolventes

Esta técnica, ampliamente utilizada para la separación de aminoácidos, se expone detalladamente en el apartado 3. Conlleva la transferencia desde los caldos de fermentación o procesado hacia una fase orgánica, que contiene generalmente un extractante selectivo, seguida de la reextracción y concentración del producto en una fase acuosa de reextracción, donde se obtiene el producto concentrado. La recuperación final normalmente se lleva a

cabo mediante precipitación, cristalización o evaporación. Algunos ejemplos de la utilización de esta tecnología para la recuperación de aminoácidos son: extracción de fenilglicina, utilizando TOMAC como agente extractante (*Ruiz M.O. et al., 2002-a*), extracción de L-fenilalanina con Aliquat 336 (*Haensel R. et al., 1986; Uddin M. S. et al., 1990; Calvario L. et al., 1992; Chan C.C. et al., 1993; Escalante H. et al., 1998; Nelly N. A. et al., 1998; Scarpello J.T. y Stuckey D.C., 2000)*

Otra aplicación de la extracción con disolventes es la extracción mediante micelas inversas. Las micelas inversas son microgotas de disolución acuosa, dispersas en una fase orgánica continua y estabilizada por un surfactante. Esta tecnología ha sido aplicada a la extracción de proteínas (*Goto M. et al., 1997*) y de aminoácidos (*Dzygiel P. y Wieczorek P., 2000; Nishiki T. et al., 2000*).

Las unidades de procesado donde se realiza convencionalmente la extracción son baterías de mezcladores-sedimentadores o torres de extracción. Uno de los requisitos necesarios en estos equipos es la existencia de una diferencia de densidades entre las fases de contacto para que se produzca la separación de las mismas.

La extracción con disolventes por contacto directo de las fases presenta la limitación de la formación de emulsiones estables que evitan la posterior separación de las fases, provocando la pérdida del producto de interés en la formación de terceras fases. En las torres de extracción, además, existen problemas relacionados con la inundación de la torre y la formación de caminos preferentes.

Como alternativa a este proceso convencional se pueden utilizar **procesos** *híbridos de extracción con resinas impregnadas.* Esta última técnica es utilizada en este estudio de investigación y está ampliamente detallada en el apartado 4.2.

2.5.2 Electrodiálisis

En este proceso se utilizan membranas intercambiadoras de iones para eliminar solutos cargados de disoluciones acuosas. Entre el ánodo y el cátodo se colocan de forma alterna un número determinado de membranas intercambiadoras de aniones y de cationes. Estos sistemas utilizan una corriente eléctrica para transportar los iones a través de la membrana.

La electrodiálisis se aplica a la separación de aminoácidos. Debido a su carácter anfotérico, a pH alto los aminoácidos tienen carga negativa y migrarán hacia el ánodo y a pH bajo los aminoácidos cargados positivamente migrarán hacia el cátodo. Si el pH es igual al punto isoeléctrico del aminoácido, el aminoácido no migrará. Así los diferentes aminoácidos pueden ser separados ajustando el pH de la disolución que los contiene (*Mulder M., 1991*).

Esta tecnología ha sido aplicada a la separación de ácido glutámico, metionina y L-lisina utilizando dos tipos de membranas cargadas iónicamente (*Kikuchi et al., 1995*).

El principal inconveniente de la electrodiálisis es que las membranas tienden a presentar problemas de hinchamiento permitiendo, así, el paso de solutos a través de las membranas por mecanismos de difusión. Otro problema habitual es el inherente a la electrolisis del agua, disminuyendo la eficacia de la separación. Además, las membranas deben tener elevada conductividad eléctrica junto con una buena resistencia mecánica, lo que eleva los costos del proceso.

2.5.3 Precipitación

La precipitación es una técnica comúnmente utilizada en la purificación de proteínas, aminoácidos, antibióticos y biopolímeros.

La tendencia de los aminoácidos y proteínas a precipitar depende de varios factores, como son el disolvente (concentración de sal, constante dieléctrica, pH, ...), la temperatura, la forma, tamaño y carga de la proteína (*Blanch H.W. y Clark D.S., 1996*).

Una de las estrategias más comunes de producir la precipitación de aminoácidos y proteínas es alterando las propiedades del disolvente. Los métodos de precipitación más comunes se describen a continuación:

a) Variación del pH del medio

El pH del medio es un factor decisivo en la solubilidad. Para valores de pH superiores o inferiores al punto isoeléctrico, la molécula de aminoácido se encuentra cargada y las moléculas de agua reaccionan con estas cargas favoreciendo la solubilización. Cuando el pH del medio se encuentra próximo al punto isoeléctrico las interacciones con el agua y sus cargas netas son mínimas, pudiendo conducir a su precipitación (*Cheftel J-C. et al., 1989*).

La etapa final de recuperación de aminoácidos puede llevarse a cabo por precipitación, llevando la disolución a pHs cercanos al punto isoeléctrico, donde la solubilidad es mínima, y el aminoácido precipita.

b) Salting-out

Foster P.R. (1994) estudió el efecto de la *adición de sales* a disoluciones de proteínas, comprobando que a bajas concentraciones la solubilidad de las proteínas en disoluciones acuosas aumentaba por efecto *salting-in* y disminuía para elevadas concentraciones, por efecto *salting-out*. Las sales neutras tienen, en general una doble influencia sobre la solubilidad. A concentraciones bajas actúan disminuyendo las interacciones electrostáticas aminoácido-aminoácido y aumentado la solubilidad. A concentraciones más altas, las sales neutras disminuyen la solubilidad de los aminoácidos y

proteínas como consecuencia de la tendencia de los iones salinos a la hidratación.

c) Reducción de la constante dieléctrica del medio

Uno de los métodos de precipitar aminoácidos y proteínas ha sido mediante *adición de disolventes orgánicos*, como etanol y acetona, los cuales disminuyen su solubilidad (*Foster P.R., 1994*).

La capacidad del etanol para precipitar aminoácidos y proteínas se debe a los cambios que produce en la constante dieléctrica del medio, aumentando las interacciones electrostáticas al disminuir la constante dieléctrica debido a la adición de etanol (*Cohn E.J., 1943*). Este aumento de las interacciones electrostáticas se ha relacionado con el aumento de las interacciones aminoácido-aminoácido, lo que conduce a su precipitación (*Foster P.R., 1994*).

Entre las principales *técnicas de análisis y separación* de mezclas de aminoácidos, se encuentran:

2.5.4 Cromatografía en capa fina y electroforesis

El uso de la cromatografía en capa fina o de la electroforesis son adecuados para averiguar el número y la cantidad relativa de los diferentes aminoácidos presentes en una muestra (análisis cualitativo), aunque para los análisis cuantitativos es necesaria la cromatografía o un analizador de aminoácidos.

Una importante aplicación de la cromatografía en capa fina es la de servir como guía para el desarrollo de las condiciones óptimas para realizar separaciones por cromatografía de líquidos en columna. Las ventajas de este procedimiento son la rapidez y el bajo coste de los ensayos experimentales.

La electroforesis es un proceso en el cual las especies cargadas (iones o partículas coloidales) se separan en función de su distinta velocidad de migración en un campo eléctrico. Desde los años cincuenta, las separaciones electroforéticas fueron la piedra angular de gran parte de la investigación de químicos y biólogos moleculares relacionada con la separación y análisis de proteínas, polinucleótidos y otros biopolímeros. Estas separaciones han sido (y continúan siendo) muy eficientes y de una extensa aplicación, pero por desgracia, son unas técnicas muy lentas y laboriosas que tienen tendencia a ser poco reproducibles. A mediados de los ochenta, esta situación cambió espectacularmente con la aparición de aparatos comerciales para realizar electroforesis analíticas a microescala en columnas capilares (electroforesis capilar). El hecho de que los distintos aminoácidos transporten diferentes cargas netas a un pH particular, permite separarlos de una mezcla mediante la electroforesis de alto o bajo voltaje.

2.5.5 Cromatografía de gases.

Se han hecho muchos ensayos para aprovechar la velocidad y sensibilidad que ofrece la cromatografía de gases, pero aunque se han realizado considerables progresos en el desarrollo de tales métodos, aún no se utiliza de forma rutinaria para el análisis de aminoácidos en muestras biológicas. La razón de esto radica en el hecho de que los aminoácidos, aunque similares, son compuestos químicamente heterogéneos y además no son suficientemente volátiles a menos que se conviertan en algún derivado apropiado.

2.5.6 Analizador automático de aminoácidos - HPLC.

Existen dos técnicas para la determinación de aminoácidos a través de cromatografía líquida: cromatografía de reparto en fase reversa y cromatografía de intercambio iónico.

La cromatografía de líquidos de alta resolución es la técnica de separación más ampliamente utilizada. Las razones más importantes son su sensibilidad, su fácil adaptación a las determinaciones cuantitativas exactas, su idoneidad para la separación de especies no volátiles o termolábiles y, sobre todo, su gran aplicabilidad a aminoácidos que son de primordial interés en la industria.

Cromatografía de reparto en fase reversa. La cromatografía en fase reversa consiste en un disolvente fundamentalmente polar como fase móvil y una cadena hidrocarbonada ligada como fase estacionaria. Algunas de las ventajas más sustanciales de esta alternativa son su gran reproducibilidad, tiempos de retención cortos, velocidad de muestreo alta, sistema cromatográfico simple y amplio campo de aplicación. Por todo ello, las aplicaciones son cada vez más numerosas.

Cromatografía de intercambio iónico. La cromatografía iónica está relacionada con los métodos modernos y eficaces para la determinación de iones que se basan en el uso de resinas de intercambio iónico. Existen métodos automatizados para la separación y detección de aminoácidos y otras especies iónicas en mezclas complejas. El analizador de aminoácidos, con el que se lleva a cabo la cuantización de los aminoácidos se basa en esta técnica.

Analizador automático de aminoácidos. La separación de aminoácidos fue el primer proceso cromatográfico automatizado con derivatización postcolumna. La separación fue llevada a cabo por Moore, Spackman y Stein (1958), mediante un intercambio iónico, seguido de su cuantización de cada componente eluido de la columna por reacción con ninhidrina y posterior detección en el visible. Este método se ha realizado durante más de treinta años, en cualquier laboratorio de proteínas. Las interacciones no iónicas entre los aminoácidos y la resina también influyen en la secuencia de elución, permitiendo que algunos aminoácidos que tienen un comportamiento similar se eluyan de forma separada.

2.6 APLICACIONES

Los aminoácidos se utilizan como materias primas en la industria alimentaría, farmacéutica, química.

En la industria alimentaría se han utilizado los aminoácidos y sus derivados para edulcorar, salar, modificar o aumentar el sabor de los alimentos. Cada aminoácido tiene un sabor característico: dulce, amargo, agrio, salado. El D-glutamato es insípido y los ésteres de metil o etil glicina poseen un sabor muy salado. La glicina y L-alanina son débilmente dulces pero el aspartamo (éster de metil L-aspartil-L-fenilalanina) es 200 veces más dulce que la sacarosa, utilizándose como edulcorante artificial. Recientemente ha aumentado el consumo de L-fenilalanina y ácido L-aspartico como materias primas para la síntesis de este éster. También la D-alanina junto con el ácido aspártico forman un edulcorante 12 veces más dulce que el aspartamo (*Kirk-Othmer, 1992*).

Otra aplicación muy frecuente de los aminoácidos, es su utilización en piensos como suplementos alimenticios en la dieta animal ya que estos piensos no contienen algunos de los aminoácidos esenciales necesarios para el crecimiento equilibrado de los animales. Los más frecuentes son: DL-metionina, L-lisina, L-treonina (*Kirk-Othmer, 1992*).

En medicina, en pre- y post-operatorios, se están utilizado transfusiones de aminoácidos para mantener el nivel de nitrógeno necesario para el funcionamiento metabólico. Además, se han desarrollado distintas mezclas de aminoácidos especiales para el tratamiento de muchas enfermedades (*Kirk-Othmer, 1992*).

En la industria farmacéutica se utilizan con distintos fines. La L-glutamina y sus derivados se utilizan como remedio en úlceras de estómago o duodenales, el L-DOPA (L-3-(3,4-dihidroxifenil)alanina) es una droga muy efectiva en el tratamiento del Parkinson, el L-triptófano y el 5-hidroxi-L-triptófano se emplean como antidepresivos, el aspartato de potasio se utiliza para mejorar el equilibrio salino del metabolismo y el aspartato de calcio para suplir las deficiencias de calcio en el organismo. La p-hidroxi-D-fenilglicina, D-fenilglicina, D-cisteina y el ácido D-aspártico son importantes como precursores de antibióticos de las familias de penicilinas o cefalosporinas (*Kirk-Othmer, 1992, 1995; Nitta H. et al., 1997; Youshko M. I., et al., 2001).* Además, el desarrollo reciente de nuevos fármacos y antibióticos ha fomentado el consumo de los aminoácidos.

En la industria de cosméticos, los aminoácidos y sus derivados se utilizan para controlar o neutralizar las variaciones de pH en la piel y los efectos bacterianos. Por ejemplo, la serina se utiliza en cremas o lociones faciales y el glutamato de glucosa se emplea en champús y cremas como compuesto humectante del pelo y de la piel (*Kirk-Othmer, 1992*).

En la industria química los aminoácidos se emplean en campos muy diversos. Actualmente en relación a la protección del medioambiente, se presta especial atención a los poli-aminoácidos, que son polímeros biodegradables. Entre otras utilidades estos polímeros se utilizan en la producción del cuero sintético y los polímeros biodegradables poli-(L-ácido aspártico-co-PEG) con aplicación en el campo de la biomedicina. Algunos derivados de aminoácidos se emplean como agentes de limpieza, por ejemplo en la eliminación de aceites de efluentes industriales se emplea un derivado del ácido glutámico. *(Kirk-Othmer, 1992).*

2.7 α -FENILGLICINA

 α -fenilglicina o ácido α -aminofenilácetico, es un aminoácido de fórmula molecular C₈H₉NO₂ y cuya fórmula estructural es:

A temperatura ambiente es un sólido de color blanco, de peso molecular 151,16 g/mol, que contiene un 63,56% de carbono, un 6,00% de hidrógeno, 9,27% de nitrógeno y un 21,17% de oxígeno.

En disolución acuosa el aminoácido α -fenilglicina, como todos los aminoácidos, sufre una disociación dependiente del pH que se puede representar por el siguiente equilibrio químico:

donde pK_{a1} = 1,71 y pK_{a2} = 9,00 (*Ruiz M. O., 2000*).

Así, la concentración total de α -fenilglicina, es suma de la concentración de las tres especies presentes en disolución acuosa. La contribución de la forma aniónica del aminoácido es despreciable en disoluciones acuosas con un pH mucho menor que el pK_{a1} y la catiónica es despreciable cuando el pH es mucho mayor que el pK_{a2}.

El aminoácido DL-fenilglicina sublima a 255 °C. Su miscibilidad en agua es limitada y depende de la temperatura de operación y del pH. Además, es levemente soluble en disolventes orgánicos comunes y solubles en álcalis.

Se dispone comercialmente de los isómeros D y L, así como de su mezcla racémica (DL).

El aminoácido α -fenilglicina es industrialmente producido por hidrólisis de α aminofenilacetonitrilo con ácido clorhídrico diluido o por fermentación. Además, con métodos de fermentación adecuados se obtiene el isómero D de α -fenilglicina a partir de la mezcla racémica (DL) (*Kirk-Othmer, 1992; Kim M.G. et al., 1996*). Por síntesis química enzimática se obtiene el esteroisómero D de α -fenilglicina a partir de D,L-fenilhidantoína (*Roche Molecular Biochemicals, 2000; Rai R. et al., 1998; Sudge S.S. et al., 1998*).

El principal consumo de α -fenilglicina y derivados se atribuye a la industria farmacéutica para la producción de antibióticos β -lactámicos tipo penicilinas o cefalosporinas (*Guijarro J. I. et al., 1995; Roche Molecular Biochemicals, 2000; Kende A. S. et al., 1995; Margreth A. W. et al., 2001*). Actualmente, se están empleando también en tratamientos odontológicos (*Kirk-Othmer, 1992; Kim M.G. et al., 1996; Tambe A.S., 1996; Youshko M.I. et al., 2001; Schroën C.G.P.H. et al., 2000*).

2.8 ÁCIDO ASPÁRTICO

El ácido aspártico, ácido asparaguínico o ácido aminosuccínico, es un aminoácido de fórmula molecular C₄H₇NO₄, cuya fórmula estructural es:

A temperatura ambiente es un sólido en forma de cristales incoloros, con un peso molecular de 133.11 g/mol, un punto de fusión de 280 °C, que contiene un 36.09 % de carbono, 5.30 % de hidrógeno 10.52 % de nitrógeno y 48.08 % de oxígeno.

En disolución acuosa el ácido aspártico, como todos los aminoácidos, sufre una disociación dependiente del pH que se puede representar por el siguiente equilibrio químico:

donde los valores de los pK son $pK_{a1} = 2,1$, un $pK_{a2} = 3.9$ y un $pK_{a3} = 9.8$. *(Cardoso M.M. et al., 1997)*.

Así, la concentración total de ácido aspártico, es suma de la concentración de las cuatro especies presentes en disolución acuosa. La contribución de la forma aniónica con dos cargas negativas es despreciable en disoluciones acuosas con un pH mucho menor que el pK_{a1} y la catiónica es despreciable cuando el pH es mucho mayor que el pK_{a2}.

El ácido aspártico presenta una elevada solubilidad en agua y es altamente insoluble en disolventes orgánicos comunes tales como alcohol y éter. La mezcla racémica DL del aminoácido presenta una densidad de 1,663 g/cm³ a 12 °C y un punto de fusión de 278-280 °C. El punto de fusión de la forma L del aminoácido es de 251 °C y de 269 °C el de la forma D.

Se dispone comercialmente de los isómeros D y L, así como de su mezcla racémica (DL).

Las fuentes naturales de producción del ácido aspártico, son la caña y remolacha azucarera y habitualmente se obtiene como isómero L (Hawley, 1993).

El ácido aspártico es industrialmente producido por vía química de la hidrólisis de asparagina con amoniaco y fumarato de dietilo y por vía enzimática a partir de fumarato de amonio utilizando aspartasa microbiana soportada sobre un gel de poliacrilamida que permite la producción del aminoácido en continuo *(Linden G. et al., 1996).*

Este aminoácido se utiliza en la preparación de medios de cultivo, en detergentes, fungicidas y germicidas (*Nath M. et al., 1998*). En el campo alimentario se emplea como materia prima junto con el aminoácido α-fenilalanina para la síntesis de aspartamo, edulcorante artificial ampliamente utilizado en la industria alimentaria y de bebidas refrescantes (*Linden G. t al., 1996*). En la industria farmacéutica el ácido aspártico se emplea principalmente en la producción de aspartato cálcico y de potasio (*Nitta H. et al., 1997*). El ácido aspártico también se utiliza en la síntesis de polímeros biodegradables para la producción de cuero sintético y los polímeros de la biomedicina (*Liu Z. H., et al., 1998; Won C. et al., 1998*).
3. EXTRACCIÓN LÍQUIDO-LÍQUIDO

3.1 CONCEPTOS GENERALES

La extracción líquido-líquido o también denominada extracción con disolventes, es una técnica de separación ampliamente utilizada, tanto a nivel de laboratorio como industrial, para la separación y concentración de productos y bioproductos de procesos de fermentación y corrientes residuales (Hanson C., 1979; Eyal A.M. et al., 1995; Kertes A.S. et al., 1986; Tamada J.A. et al., 1990 a-c). Las ventajas de utilizar un proceso de extracción con disolventes dependen de encontrar un disolvente selectivo para el producto de interés que implique, además, mínimas pérdidas del mismo en la fase de refinado, seguido de un proceso adecuado para su recuperación desde la fase de extracto, con el menor coste económico.

La extracción con disolventes se emplea en procesos industriales cuando es el único posible o bien resulta el más económico. Su uso queda restringido a las separaciones que no pueden llevarse a cabo de forma adecuada en una única etapa, ya que esta técnica precisa de una segunda etapa de separación para recuperar los componentes extraídos de la fase disolvente. (Hampe M. J., 1986; Kertes A. S. et al., 1986).

En este proceso de separación, una mezcla o disolución líquida denominada *alimentación* se pone en contacto con un segundo líquido inmiscible o parcialmente miscible denominado *disolvente*, provocando que él o los componentes deseados de la alimentación se transfieran preferentemente al disolvente. A continuación, ambas fases se decantan, el producto rico en disolvente se llama *extracto*, y el líquido residual de donde se separa el soluto es el *refinado*. Posteriormente los compuestos extraídos se separan del extracto mediante destilación, reextracción con otro disolvente u otras técnicas.

La distribución de un soluto A entre las dos fases líquidas, puede expresarse mediante el *coeficiente de reparto,* K, definido:

$$K = \frac{C_{A(o)}}{C_{A(w)}}$$
(3.1)

donde $C_{A(o)}$ es la concentración del soluto en el extracto o fase orgánica, $C_{A(w)}$ en el refinado o fase acuosa.

Al ser la actividad de cada componente la misma en ambas fases en el equilibrio, se cumple que:

$$\gamma_{A(o)}C_{A(o)} = \gamma_{A(w)}C_{A(w)}$$
(3.2)

siendo $\gamma_{A(o)}$ y $\gamma_{A(w)}$ los coeficientes de actividad en las fases extracto y refinado, respectivamente. Por tanto, el coeficiente de reparto se puede expresar como sigue:

$$K = \frac{\gamma_{A(w)}}{\gamma_{A(v)}}$$
(3.3)

Con aquellos disolventes que proporcionan coeficientes de distribución menores de la unidad, se precisan relaciones elevadas de disolvente / alimentación. Para alcanzar la separación, resulta por tanto más ventajoso que los valores de K sean razonablemente elevados, empleando una relación volumétrica disolvente / alimentación menor que la unidad y permitiendo simultáneamente la separación y concentración de los productos extraídos. (King C.J. et al., 1988; Cockrem M.C.M. et al., 1989).

El fundamento de la extracción con disolventes es la interacción, en mayor o menor grado, entre el soluto y el disolvente. La existencia de un coeficiente de actividad diferente en la fase extracto indica algún grado de interacción molecular entre ambos. Se pueden clasificar dichas interacciones en dos grandes categorías:

- <u>Interacciones físicas</u>, que implican puentes de hidrógeno o interacciones dipolo-dipolo. La recuperación del soluto del extracto se realiza generalmente por un método físico, destilación normalmente, modificándose la miscibilidad relativa de las dos fases en función de la concentración de soluto.
- <u>Interacciones químicas</u>, que suponen la formación de uno o más compuestos químicos de estequiometría definida. Hay una limitación en el grado de extracción (o cantidad máxima que puede ser extraída con una cantidad dada de disolvente) que corresponde al agotamiento del disolvente. La recuperación del soluto exige invertir la interacción o desplazar el equilibrio de reacción, lo que suele llevarse a cabo modificando las condiciones químicas, por ejemplo, poniendo en contacto el extracto con una fase acuosa de diferente pH o bien modificando la temperatura, siendo este último más económico.

3.2 CARACTERÍSTICAS DEL DISOLVENTE

Es difícil encontrar un disolvente puro que reúna la capacidad de extraer selectivamente al soluto de interés y con las propiedades físicas necesarias para producir una adecuada separación de las fases y la posterior reextracción del soluto (*Munson C.L. et al., 1984*). Por tanto, el disolvente a utilizar puede ser una especie química sencilla, pero no es el caso más frecuente en extracción líquido-líquido.

La especie activa normalmente se emplea disuelta en otro líquido, denominándose **extractante** al compuesto activo y **diluyente** a la sustancia que lo disuelve. La disolución de extractante en el diluyente es el disolvente y constituye la fase orgánica (*Tamada J.A. et al., 1990 c; Baldwin W.H. et al., 1974*).

El diluyente debe disolver selectivamente, no sólo al extractante, sino también a la especie soluto-extractante formada durante la extracción, evitando la aparición de una tercera fase. La formación de esta depende de las características del extractante, del diluyente y del soluto a extraer y, en cualquier caso, es más frecuente que se produzca a valores elevados de soluto en el disolvente. En el caso que este problema no pueda evitarse mediante la elección de otro diluyente, es posible adicionar un tercer componente que mejore la solubilidad y que se conoce con el nombre de *modificador (Hartl J. et al., 1990)*.

Un parámetro de gran importancia es la **selectividad** del extractante, de forma que no es suficiente un disolvente con elevada capacidad de extracción, sino que éste ha de proporcionar además cierto grado de separación o purificación del producto de interés con respecto a otros solutos presentes. La selectividad del extractante por un soluto A frente a otro B se mide mediante el factor de separación, β :

$$\beta = \frac{K_{A}}{K_{B}} = \frac{\gamma_{A(w)} \gamma_{B(o)}}{\gamma_{A(o)} \gamma_{B(w)}}$$
(3.4)

este factor de separación puede variar significativamente si se modifican las concentraciones de los solutos. Este es el caso de sistemas que implican interacciones químicas, cuando la cantidad total de solutos en el sistema es elevada y superior al extractante presente, entonces, se produce una competencia entre los solutos por el extractante disponible.

Algunos de los parámetros que deben considerarse en la *selección de disolvente* son los siguientes:

• <u>Coeficiente de reparto.</u> Definido en ec. (3.3), aunque no es necesario que tenga valores mayores de 1, cuanto más grande sea su valor, menos disolvente se necesita para la extracción.

Así, se suele seleccionar los disolventes que pueden cargar elevadas concentraciones de soluto.

- <u>Selectividad.</u> Definida en ec. (3.4). Si la selectividad es 1, la separación no es posible. Su valor debe ser mayor y cuanto más sea mejor. Para conseguir una buena extracción el disolvente debe ser selectivo para el soluto deseado, evitando la co-extracción de impurezas. Así se reduce o elimina la etapa de lavado de la fase extracto.
- <u>Insolubilidad.</u> El disolvente debe ser insoluble o poco soluble con la fase de refinado y debe formar un complejo con el soluto soluble en el diluyente y evitar la formación de terceras fases.
- <u>Recuperabilidad.</u> Debe ser posible invertir el proceso de extracción para recuperar el disolvente, bien sea por métodos físicos o químicos. Desde el punto de vista económico, este parámetro es importante.
- <u>Densidad.</u> Es necesaria una diferencia en las densidades de las fases líquidas saturadas o en el equilibrio de extracción. Cuanto mayor sea la diferencia tanto mejor.
- <u>Disponibilidad.</u> El disolvente debe estar disponible en cualquier momento y tener más de un suministrador.
- <u>Reactividad química.</u> El disolvente debe ser químicamente inerte a los materiales del sistema de operación y a los demás componentes del sistema.
- <u>Propiedades físicas.</u> Un valor razonablemente elevado de la tensión superficial mejora la separación de las fases. Por otro lado, una viscosidad baja proporciona mejor transferencia de materia y buena separación reduciendo, además, la energía requerida para el bombeo de las fases. La presión de vapor y punto de congelamiento deben ser bajos para facilitar el manejo y el almacenamiento.
- <u>Toxicidad, inflamabilidad y coste</u> son también parámetros a tener en cuenta.

3.3 PÉRDIDAS DE DISOLVENTE

Se requiere que el valor del disolvente perdido en la fase de refinado sea bastante inferior al valor del soluto. Cockrem *et al.* cuantifican este dato en un 5 % (*Cockrem M.C.M. et al., 1989*).

Para reducir las pérdidas de disolvente en la fase refinado es necesario que el disolvente sea poco soluble en agua. En general, la solubilidad de una sustancia orgánica en agua aumenta con al polaridad de la molécula. Hay que tener en cuenta que cuando existen fuertes interacciones entre un extractante y un soluto, la solubilidad del complejo puede ser mayor que la del disolvente puro en agua.

Según un estudio realizado por Cockrem *et al.* sobre la extracción de solutos de disoluciones acuosas, relaciona la miscibilidad de las fases con la solubilidad del disolvente en agua y con la selectividad, demostrando que cuando las pérdidas de disolvente son bajas, es decir para disolventes poco solubles en agua, la solubilidad del agua en el disolvente es también baja y por tanto el coeficiente de distribución para el agua será pequeño, y la selectividad elevada. También se considera que las pérdidas de disolvente y el coeficiente de distribución para el soluto son los dos principales factores a considerar en la selección del disolvente. Asimismo, contemplan que la selectividad es un parámetro importante en el diseño del equipo de secado del extracto *(Cockrem M. C.M. et al., 1989)*.

La recuperación del disolvente contenido en la fase de refinado se puede realizar por diversos métodos. Los más frecuentes se exponen a continuación brevemente:

- Desorción con vapor de agua a presión atmosférica. Se utiliza cuando el disolvente es suficientemente volátil, obteniéndose una corriente por cabezas que es una solución acuosa concentrada en el disolvente, apta para ser recirculada al proceso de extracción.
- Desorción con vapor de agua empleando vacío. El coste extra del proceso a vacío puede ser compensado por la economía que supone el no precalentar el refinado, como en el caso anterior. Su uso está justificado porque frecuentemente la volatilidad relativa de los disolventes respecto del agua, es mayor a baja temperatura.
- *Desorción con gas inerte*. Evita el consumo energético que supone el proceso con vapor.
- Reextracción con un disolvente no polar. Requiere un nuevo proceso de extracción con un nuevo disolvente que presente baja solubilidad con el agua, pero elevada capacidad por el primer disolvente.

3.4 EQUILIBRIOS DE EXTRACCIÓN DE AMINOÁCIDOS

La clasificación de los sistemas de extracción para la recuperación de aminoácidos de corrientes acuosas diluidas puede hacerse en función de la naturaleza del extractante y del tipo de interacciones que éste ocasiona:

- Extracción mediante solvatación con agentes hidrocarbonados que poseen átomos de oxígeno en su molécula. Se incluyen dentro de esta categoría los hidrocarburos alifáticos y aromáticos, dada la similitud de los procesos involucrados. Se dan enlaces donadores (por solvatación del soluto).
- Extracción mediante solvatación con extractantes organofosforados que poseen átomos de oxígeno en su molécula. Estos extractantes son óxidos de fosfina, fosfinatos, fosfonatos, fosfatos y ésteres fosfóricos, fosfónicos y fosfínicos. Producen enlaces solvatantes fuertes y específicos, pudiéndose considerar la existencia de una reacción química con el soluto de interés (Abbasian K. et al., 1989).
- Extracción mediante formación de pares iónicos o transferencia de protones. Los extractantes son aminas alifáticas de elevado peso molecular (aminas primarias, secundarias, terciarias de cadena larga, sales de amonio y compuestos azufrados). Existe reacción química debido a las interacciones iónicas entre el extractante y el soluto.

Algunos estudios publicados indican que los sistemas convencionales de extracción, que utilizan agentes hidrocarbonados como alcoholes, cetonas o ésteres inmiscibles en agua, son relativamente ineficaces para la recuperación de aminoácidos de disoluciones acuosas diluidas. Esto se debe a que los aminoácidos no pueden extraerse eficazmente con disolventes no polares o de baja polaridad, ya que en fase acuosa las especies de los aminoácidos presentan carga, positiva la especie catiónica, negativa la especie aniónica o ambas la especie anfótera, reduciéndose considerablemente la solubilización del aminoácido en el disolvente no polar (Kertes A.S. et al., 1986; Schügerl K. et al., 1992). Nuevos extractantes consistentes en macrociclos hidrocarbonados se están estudiando para la recuperación de aminoácidos, a estos extractantes se les introduce grupos funcionales para crear interacciones específicas con las moléculas que se van a extraer. El inconveniente es que es necesario crear el ester del aminoácido para su posterior complejación con el extractante. Ej: Oct[6]CH₂COOH para extraer ésteres de aminoácido. (Oshima T. et al., 2004)

Es de vital importancia en el desarrollo de nuevos procesos de extracción, la identificación de nuevos y más potentes extractantes. En este grupo se pueden incluir los *compuestos azufrados, compuestos organofosforados,* y las *aminas alifáticas de elevado peso molecular,* estos últimos desarrollados inicialmente para la separación de metales en la industria nuclear (*Baldwin W.H. et al., 1974*) y de uso reciente en la recuperación de ácidos carboxílicos (*Clark G.A. et al., 1987; Ruiz M.O., 2000; Qin W. et al., 2003),* en la eliminación de contaminantes de efluentes industriales y de alcantarillado (*Salazar E. et al., 1992*) y en la extracción de aminoácidos (*Ruiz M.O., 2002; Escalante H. et al., 2000; Schügerl K. et al., 1992*).

Las principales ventajas de utilizar compuestos organofosforados y aminas alifáticas de elevado peso molecular para la extracción reactiva, *(Schügerl K., 1987)* son:

- La capacidad de carga del disolvente puede incrementarse considerablemente permitiendo el uso de menores relaciones de flujo disolvente / agua.
- La selectividad de la recuperación puede aumentar.
- Las velocidades de extracción son elevadas, requiriéndose equipos de pequeño tamaño y obteniendo buenos rendimientos.
- Los productos de interés pueden concentrarse hasta un punto que haga más económicamente viable su purificación posterior.

Una ventaja adicional introducida por algunos extractantes (*Amberlita LA-2, Tomac, TBP, TOPO, Alamina 336, etc...*) es su baja solubilidad en agua, que evita un tratamiento térmico o químico adicional del refinado de extracción (*Golob J. et al., 1981*).

Por lo general los aminoácidos en disolución acuosa a pH menor o igual a pK_{a1} se pueden extraer con **extractantes catiónicos**, produciéndose en la interfase una reacción de intercambio iónico entre la forma catiónica del aminoácido y el protón del extractante catiónico. Entre estos extractantes catiónicos se encuentran:

- Extractantes organofosforados siempre que simultáneamente exista transferencia de protones como por ejemplo el ácido di-(2etilhexil)fosfórico (D2EHPA).
- *Extractantes azufrados* como el ácido dinonilnaftalensulfónico (DNNSA).
- *Extractantes organofosforados-azufrados* como por ejemplo el ácido di-(2-etilhexil)monotiofosfórico (D2EHPA(S)).

Según algunos estudios, los resultados de extracción de aminoácidos con extractantes catiónicos fue mayor con extractantes azufrados, después con compuestos organofosforados-azufrados y por último con extractantes organofosforados (*Itoh H. et al., 1990; Kelly N.A. et al., 1998; Cascaval D. et al., 2001).* A pHs intermedios, donde predomina la forma anfótera del aminoácido, se pueden extraer con extractantes básicos como los fosfatos (*Schügerl K. et al., 1992*), cumpliéndose la misma secuencia de extracción.

Los aminoácidos en disolución acuosa a pH mayor a su pK_{a2} se encuentran preferentemente en su forma aniónica. Por tanto, la extracción de aminoácidos se puede realizar mediante **extractantes aniónicos**, produciéndose en la interfase una reacción de intercambio iónico entre la forma aniónica del aminoácido y el catión correspondiente del extractante aniónico. Entre estos extractantes destacan las sales de amonio cuaternarias con buenos rendimientos de extracción para aminoácidos (Ruiz M. O. et. al., 2002).

3.4.1. Extracción por formación de pares iónicos

Suponen la formación de uno o más compuestos químicos de estequiometría definida. Por lo general, se obtienen isotermas de reparto del tipo que se representa en la Figura 1. La limitación en el grado de extracción (o cantidad máxima que puede ser extraída con una cantidad dada de disolvente) se corresponde con el agotamiento del disolvente.

Figura 1. Isoterma de extracción con disolventes

Los sistemas donde se produce una interacción entre especies neutras o aniónicas, en fase acuosa, y la sal de una base orgánica o su catión, en fase orgánica, se considera una extracción de asociados iónicos (*Marcus Y. et al., 1969; Marcus Y. et al., 1982*). Se pueden clasificar en dos grandes grupos:

a) Extracción con aminas alifáticas de cadena larga primarias, secundarias y terciarias

Los aminoácidos prácticamente no se extraen con *aminas alifáticas primarias, secundarias o terciarias,* ya que el mecanismo de extracción implica la transferencia previa del protón y posteriormente la extracción del anión del aminoácido, proceso imposibilitado por el carácter anfotérico de los aminoácidos en disolución acuosa. Así el único enlace de hidrógeno que puede formar el átomo de nitrógeno de la amina y el grupo ácido del aminoácido, sin previa transferencia del protón, es demasiado débil para producir la transferencia del aminoácido de la fase acuosa a la orgánica (*Schügerl K. et al., 1992*).

b) Extracción con sales de amonio cuaternarias

Las sales de amonio son extractantes aniónicos, altamente insolubles en agua, producen reacciones de intercambio iónico y son eficientes en la recuperación de especies aniónicas tales como Cl⁻, Br⁻, vanadio, iridio, sales de ácidos minerales, enzimas, hormonas. (Galan B. et al., 1994) y aminoácidos (Schügerl K. et al., 1992; Haensel R. et al., 1986; Thien M.P. et al., 1988; Chan C.C. et al., 1993, Escalante H. et al., 1998; Uddin M.S. et al., 1990; Uddin M S. et al., 1992, Ruiz M.O., 2002). Generalmente, poseen baja selectividad, ya que pueden producir varias reacciones de intercambio iónico simultaneas con diferentes especies aniónicas presentes en la fase acuosa (Salazar E. et al., 1992).

La extracción de especies aniónicas, con sales de amonio, depende de la concentración de extractante - diluyente, de la temperatura del proceso y especialmente del pH y de la concentración total de soluto en fase acuosa. Los aminoácidos en disolución acuosa sufren una disociación dependiente del pH y es la variable principal que permite dirigir, en función del pK del soluto, la afinidad del extractante por un soluto determinado (*Salazar E. et al., 1992*). Así, a pH menor o igual a su pK_{a1} los aminoácidos se encuentran preferentemente en forma catiónica y a pH mayor a su pK_{a2} preferentemente en su forma aniónica.

Es aconsejable, que el valor del pH de la fase acuosa, en todo el proceso de extracción, sea al menos dos unidades superior al pK_{a2} del aminoácido (*Schügerl K. et al., 1992*) para asegurarnos que la especie iónica predominante sea la aniónica. Por tanto, es necesario tamponar o basificar la disolución acuosa y obtener mayoritariamente la especie aniónica del aminoácido, para que la reacción de intercambio iónico tenga lugar con este tipo de extractantes aniónicos.

Algunos autores (Schügerl K. et al., 1992; Haensel R. et al., 1986; Galan B. et al., 1994; Ruiz M.O., 2002; Escalante H. et al., 1998) consideran que el proceso de extracción de un aminoácido HA, con una sal de amonio, R^+X^- , consta de las siguientes etapas:

i) Ionización del soluto en fase acuosa tamponada o basificada a pH superior al pK_{a2}:

$$\mathrm{HA}_{(\mathrm{w})} \leftrightarrow \mathrm{H}_{(\mathrm{w})}^{+} + \mathrm{A}_{(\mathrm{w})}^{-} \tag{3.5}$$

ii) Reacción de intercambio iónico del soluto con el extractante:

$$R^{+}X_{(o)}^{-} + A_{(w)}^{-} \leftrightarrow R^{+}A_{(o)}^{-} + X_{(w)}^{-}$$
(3.6)

iii) Co-extracción de los iones hidroxilo (OH⁻) o de otras especies aniónicas (P⁻) presentes en la fase acuosa:

$$R^{+}X_{(o)}^{-} + P_{(w)}^{-} \leftrightarrow R^{+}P_{(o)}^{-} + X_{(w)}^{-}$$
(3.7)

Las constantes de equilibrio de las Ecs. (3.6) y (3.7) se expresan en función de las actividades de las especies y son las siguientes:

$$K_{ep} = \frac{a_{R^{+}A_{(o)}^{-}}a_{X_{(w)}^{-}}}{a_{R^{+}X_{(o)}^{-}}a_{A_{(w)}^{-}}} = K_{p} K_{\gamma p}$$
(3.8)

$$K_{eh} = \frac{a_{R^+P_{(o)}^-} a_{X_{(w)}^-}}{a_{R^+X_{(o)}^-} a_{P_{(w)}^-}} = K_h K_{\gamma h}$$
(3.9)

donde K_p y K_h son las relaciones de equilibrio expresadas en términos de concentración definidas como:

$$K_{p} = \frac{\left[R^{+}A^{-}\right]_{(0)}\left[X^{-}\right]_{(w)}}{\left[R^{+}X^{-}\right]_{(0)}\left[A^{-}\right]_{(w)}}$$
(3.10)

$$K_{h} = \frac{\left[R^{+}P^{-}\right]_{(o)}\left[X^{-}\right]_{(w)}}{\left[R^{+}X^{-}\right]_{(o)}\left[P^{-}\right]_{(w)}}$$
(3.11)

y $K_{\gamma p}$ y $K_{\gamma h}$ son las relaciones de los coeficientes de actividad según se muestra a continuación:

$$K_{\gamma p} = \frac{\gamma_{R^{+}A_{(o)}^{-}} \gamma_{X_{(w)}^{-}}}{\gamma_{R^{+}X_{(o)}^{-}} \gamma_{A_{(w)}^{-}}}$$
(3.12)

$$K_{\gamma h} = \frac{\gamma_{R^+ P_{(o)}^-} \gamma_{X_{(w)}^-}}{\gamma_{R^+ X_{(o)}^-} \gamma_{P_{(w)}^-}}$$
(3.13)

Algunos trabajos recogidos en la bibliografía (Haensel R. et al., 1986; Calvarin L. et al., 1992; Ruiz M.O., 2002; Molinari R. et al., 1992; Yang S.T. et al., 1991) suponen que las actividades de las especies orgánicas son proporcionales a las concentraciones, por tanto, los coeficientes de actividad permanecen constantes y pueden englobarse en la constante de equilibrio. En este supuesto, las constantes de equilibrio aparentes para las reacciones globales de extracción pueden escribirse en términos de concentración como se muestra en las Ecs. (3.10) y (3.11).

3.5 ETAPA DE REEXTRACCIÓN

Un proceso práctico de recuperación de un soluto, empleando como técnica de separación la extracción con disolventes, se ha de realizar, al menos, en dos etapas. La primera corresponde a la extracción del soluto para obtener un extracto, cargado con el soluto, y un refinado acuoso relativamente libre de soluto. La segunda etapa es la reextracción y consiste en transferir el soluto desde el extracto a otra fase producto (stripping), regenerándose la fase disolvente que se recircula a la etapa anterior.

Cuando se utilizan como extractantes sales de amonio cuaternarias, el aminoácido se puede reextraer de la fase orgánica por reacción química. La sal de amonio del aminoácido (R^+A^-) presente en la fase orgánica puede sufrir una reacción de intercambio iónico con un ácido fuerte, según la reacción:

$$R^{+}A^{-} + B^{-} \leftrightarrow R^{+}B^{-} + A^{-}$$
(3.14)

donde B⁻ es la especie no protonada de un ácido fuerte. La reextracción del soluto de interés y la regeneración del extractante es simultánea, empleando ácidos fuertes que posean el contra-ion de la sal de amonio.

En trabajos anteriores realizados en nuestro laboratorio se ha estudiado la reextracción de α -fenilglicina y de ácido aspártico de disoluciones orgánicas, donde se encuentra en forma de sal de amonio, utilizando ácido clorhídrico como agente de reextracción (*Ruiz M.O., 2000; Burgos L., 2001; Sanchez P., 2006*). El proceso de reextracción tiene lugar mediante intercambio del anión cloruro por el aminoácido en forma aniónica según la siguiente reacción:

$$Q^{+}A_{(o)}^{-} + Cl_{(s)}^{-} \leftrightarrow A_{(s)}^{-} + Q^{+}Cl_{(o)}^{-}$$
(3.15)

Debido al pH ácido del medio, simultáneamente tiene lugar la protonación del aminoácido pasando este a su forma catiónica:

$$A_{(s)}^{-} \xrightarrow{H^{+}} HA^{+/-} \xrightarrow{H^{+}} A_{(s)}^{+}$$
 (3.16)

donde los subíndices s y o hacen referencia a la fase acuosa de reextracción y orgánica respectivamente.

La formación de la especie catiónica del aminoácido favorece el proceso de reextracción, ya que hace desaparecer la forma aniónica del medio, desplazando el equilibrio hacia la reextracción.

A su vez por contener la disolución de reextracción el contraión cloruro se regenera simultáneamente el agente de extracción Tomac.

4. SEPARACIÓN CON RESINAS

En este apartado se describe la técnica de separación empleando resinas macroporosas sobre las que se inmoviliza el extractante reactivo. Se han realizado también ensayos de recuperación de los aminoácidos con la resina sin impregnar. El proceso en este caso es más bien un proceso de adsorción. Es por ello, que a continuación, se indicarán los fundamentos de los equilibrios y cinéticas de adsorción necesarios para el tratamiento de los datos experimentales.

4.1 ADSORCIÓN

4.1.1 Conceptos generales.

La adsorción es una operación básica en Ingeniería Química, consistente en la retención en la superficie de un sólido, de moléculas contenidas en una mezcla líquida o gaseosa, como resultado de fuerzas atractivas en la superficie del sólido de mayor magnitud que la energía cinética de las moléculas de soluto (adsorbato) en la fase fluida. La adsorción ocurre en la interfase sólido - fluido. El soluto adsorbido puede formar una capa sobre la superficie del absorbente de una o varias moléculas de espesor (Gusler G.M., 1993; Treybal R.E., 1980; Coulson J.M. et al., 1988; McCabe W.L. et al., 1991). Los adsorbentes con carácter poroso, como las resinas sintéticas, producen adsorciones más complejas y no únicamente superficiales sino también de llenado de los poros con la fase fluida (Gusler G.M. et al., 1993).

Según la naturaleza de la interacción entre ambas fases se puede distinguir entre dos tipos de adsorción:

- Adsorción física, se da cuando la superficie es relativamente inerte. Las moléculas de adsorbato se fijan físicamente a las moléculas de adsorbente debido a diferencias de energía y/o a fuerzas atractivas eléctricas débiles de tipo Van der Waals. Este tipo de adsorción se caracteriza por la formación de capas moleculares superpuestas, siendo el número de capas proporcional a la concentración de soluto en la fase líquida (*Camporro A., 1991*). Por lo general, suelen ser procesos muy rápidos, excepto cuando el adsorbente presenta poros muy pequeños.
- Adsorción química o quimisorción, se produce una verdadera reacción o enlace químico entre las moléculas de adsorbente y adsorbato (Grant M.T. et al., 1990). Al contrario de lo que ocurre con la adsorción física, la quimisorción es específica, teniendo lugar solamente en determinadas zonas que se denominan centros activos formándose, en consecuencia, una única capa

de moléculas adsorbidas. Los calores de adsorción son del mismo orden de magnitud que los de reacción química.

En la práctica existen muchos casos de adsorción intermedia que no pueden ser incluidos en ninguno de los dos tipos anteriores (*Ruthven D.M., 1984*).

La adsorción puede ser reversible si las fuerzas atractivas entre el adsorbato y el adsorbente son débiles, como ocurre en el caso de la adsorción física. Esta propiedad puede ser muy importante en la práctica, ya que permite la recuperación del soluto y la purificación y reutilización del adsorbente. La quimisorción, sin embargo, en muchos casos es irreversible *(Cheremisnoff P.N. et al., 1978; Hasanain M.A. et al., 1981).*

Entre las características que diferencian los dos tipos de adsorción se encuentran:

1) <u>El calor de adsorción</u>, es bajo para la adsorción física, próximo a los calores de licuefacción (2-6 Kcal/mol), mientras que para la quimisorción alcanzan valores altos (>15 Kcal/mol) del orden de las reacciones químicas.

2) <u>Velocidad de adsorción</u>, es instantánea para la adsorción física, mientras que la quimisorción puede ser lenta, requiriendo una energía de activación, como ocurre en una reacción química.

3) <u>Temperatura</u>, la adsorción física va bien a temperaturas bajas o presiones relativamente altas, próximas al punto de ebullición del adsorbible. La quimisorción suele tener lugar a temperaturas más altas y puede actuar bien a P/Po muy bajas.

4) <u>Especificidad</u>, la adsorción física no es específica, la capa de adsorbato puede asimilarse a una película de líquido, con varias capas moleculares de espesor. Por el contrario, la quimisorción es específica, se da sólo en sistemas adsorbato/adsorbentes concretos, tiene lugar en centros concretos de la superficie, por lo que sólo puede formarse una monocapa.

4.1.2 Factores que influyen en la adsorción

En todo proceso de adsorción influyen numerosos factores entre ellos se encuentran:

- Características físicas y químicas del adsorbente: superficie específica, tamaño de poro, distribución de tamaños de poro, tamaño de las partículas, distribución de tamaños de partícula, composición química, etc. Todos estos factores físicos y químicos del adsorbente pueden influir drásticamente en la velocidad y capacidad de adsorción.
- Características físicas y químicas del adsorbato: peso molecular, polaridad, solubilidad, composición química, etc. Por lo general, el aumento del peso molecular disminuye la posibilidad de acceso del adsorbato al interior de la estructura porosa del adsorbente disminuyendo el grado de adsorción.
- Los estereoisómeros no muestran regla fija en cuanto a su diferente capacidad de adsorción, mientras que los isómeros ópticos presentan idénticas características. Los compuestos anfóteros que tienen la capacidad de actuar como ácido o bases presentan con resinas apolares una adsorción máxima en el punto isoelétrico o cuando su carga neta es cero, esto concuerda con la adsorción máxima de las especies neutras.
- La solubilidad del soluto en el disolvente es un factor determinante del grado de adsorción y generalmente se puede considerar inversamente proporcional a la solubilidad del adsorbato en el adsorbente. Por tanto, cuanto mayor sea la solubilidad del soluto en el disolvente, menor es el grado de adsorción.
- La concentración del adsorbato en la fase fluida y la interacción entre solutos presentes en la fase fluida pueden aumentar la adsorción, actuar como especies relativamente independientes o interferirse mutuamente. Generalmente, los diferentes adsorbatos compiten por los mismos lugares de la superficie, por lo que el grado de adsorción de un soluto disminuye en presencia de otros. Sin embargo, es necesario el estudio de cada sistema en concreto, ya que a veces se aumenta la adsorción de un soluto en presencia de otros.
- La naturaleza y características del disolvente: naturaleza química, tensión superficial, pH, temperatura, etc.

- Generalmente los procesos de adsorción suelen ser exotérmicos, por lo que el grado de adsorción suele aumentar al disminuir la temperatura.
- El tiempo de residencia del sistema.

El rendimiento de adsorción en una aplicación dada depende de cuatro factores principales:

- La capacidad máxima de adsorción del soluto por el adsorbente.
- El equilibrio entre fases.
- La velocidad efectiva de adsorción.
- El tipo de proceso elegido.

4.1.3 Principales adsorbentes sólidos.

Los adsorbentes sólidos por lo general se utilizan de forma granular, son materiales naturales o sintéticos de estructura microcristalina, caracterizados por su elevada superficie interna por unidad de peso, accesible a una combinación selectiva de compuestos, y por su elevada porosidad, por lo que la caracterización física es generalmente más importante que la química (*Parrish J.R., 1977*). Mediante técnicas estandarizadas se determinan el volumen de poros, distribución de tamaños de poros y el área superficial (*Parrish J.R., 1977; Browne T.E. et al., 1993*). Desde un punto de vista práctico se consideran otras propiedades como densidad, hidrofobicidad, resistencia a la abrasión, etc.

Los principales adsorbentes de uso general se enumeran a continuación:

- *Tierras de Fuller.* Son arcillas naturales, principalmente son silicatos de aluminio y magnesio. Se utilizan para decolorar, neutralizar y secar aceites vegetales y animales, lo mismo que productos del petróleo como aceites lubricantes, querosenos y gasolinas.
- Arcillas activadas (bentoina y otras arcillas) se activan por tratamiento químico con ácido sulfúrico o ácido clorhídrico. Se utilizan en la decoloración, de productos del petróleo.
- *Bauxita*, es una forma de alúmina hidratada natural que debe activarse por tratamiento térmico. Es utilizada en el secado de gases y para decolorar productos del petróleo.
- Alúmina activada, es un óxido de aluminio hidratado que se activa por calentamiento. Su gran afinidad por el agua permite una importante aplicación industrial en el secado de gases y líquidos y en la eliminación de HCI del hidrógeno.
- *Silica gel*, es una sílice amorfa sintética que como la alúmina activada se emplea en el secado de gases, refrigerantes, disolventes orgánicos, fraccionamiento de hidrocarburos, etc.
- *Zeolitas*, son aluminosilicatos metálicos altamente porosos y cristalinos aplicables sobre todo a la separación de gases.
- Resinas sintéticas son perlas esféricas porosas compuestas por microesferas. Fabricadas a partir de compuestos aromáticos insaturados como estireno o divinilbenceno. Son útiles para la adsorción de orgánicos no polares a partir de disoluciones acuosas. Comienzan a ser utilizadas a escala

industrial. Se emplean en la purificación de agua, incluyendo la eliminación de fenol, cetonas, alcoholes, antibióticos etc. En la recuperación y purificación de esteroides y aminoácidos, en la separación de ácidos grasos de agua y tolueno, etc.

- Carbones activos. El hecho de poseer una superficie no polar o débilmente polar como resultado de grupos funcionales superficiales con oxígeno e impurezas inorgánicas, le confiere al carbón activo ventajas frente a otros adsorbentes. Se utilizan en la separación de líquidos miscibles y sólidos disueltos en líquidos, particularmente a bajas concentraciones. Son útiles para el fraccionar compuestos acetilénicos, alcoholes, ácidos orgánicos, cetonas, aldehídos y muchos otros.
- Carbón de hueso. Se obtiene mediante la destilación destructiva de huesos pulverizados y secos a temperaturas de 600 a 900°C. Se utiliza principalmente en la refinación del azúcar.

4.1.4 Aplicaciones

Una de sus primeras aplicaciones de la adsorción fue en procesos de secado para la eliminación de trazas de humedad de corrientes gaseosas o líquidas utilizando columnas de relleno con una determinada cantidad de adsorbente hidrofílico (*Cheremisinoff P. N. et al., 1978*). A gran escala se emplea para la eliminación de impurezas, tales como H₂S y mercaptanos del gas natural y contaminantes orgánicos del agua (*Ruthven D.M., 1984*). Estos procesos se clasifican como procesos de purificación ya que los componentes que adsorbe el sólido poroso están presentes en baja concentración y frecuentemente no se recuperan.

La aplicación del proceso de adsorción como técnica de separación en mezclas de dos o más componentes, es reciente. En los años 50 se emplearon los procesos de adsorción para la recuperación de hidrocarburos, en los años 60 para la separación de parafinas lineales de isómeros ramificados y cíclicos. En los años 70, debido a la subida de los precios energéticos, se estudiaron nuevos procesos de adsorción, en sustitución de la destilación como técnica de separación, sus intervalos de aplicación en la separación de mezclas, cambio de escala y equipamiento necesarios para rentabilizar estos procesos. Para la separación de mezclas es posible encontrar un adsorbente cuyo factor de separación sea mayor que las volatilidades relativas, resultando los procesos de adsorción más económicos que los procesos de destilación. Sin embargo, para que un proceso de adsorción se pueda desarrollar a escala industrial, se requiere la disponibilidad de grandes cantidades de adsorbente de coste no elevado (Ruthven D.M., 1984).

La disponibilidad de adsorbentes se ha multiplicado ampliamente en la segunda mitad del siglo XX. Los adsorbentes tradicionales: carbón activo, arcillas, sílice y alúmina, se han extendido a una enorme variedad de materiales carbonosos y de silicoaluminatos sintéticos. Consiguiendo aumentar el potencial de la adsorción como técnica de separación.

La preparación de zeolitas sintéticas de tamaño de poro uniforme abrió la posibilidad de efectuar separaciones basadas en la geometría de los canales (esférica o por exclusión) y en la cinética de difusión. La mayor parte de las operaciones de separación comerciales por adsorción utilizan estas zeolitas, que podemos llamar convencionales. A partir de la década de los 70 se han desarrollado muchos materiales buscando tamaños de poro mayores, para permitir el acceso a moléculas de mayor tamaño. Así se han logrado múltiples materiales microporosos, mesoporosos y macroporosos, en general muy costosos de obtener. Esto hace que todavía la mayor parte de las aplicaciones utilicen adsorbentes convencionales (carbones activos y zeolitas clásicas).

El requisito principal para que un proceso de separación sea económicamente rentable es que el adsorbente posea una selectividad, capacidad y vida útil lo suficientemente alta. En la Ec. (4.1) se define la *selectividad (Ruthven D.M., 1984)*:

$$\beta_{AB} = \frac{X_A Y_B}{X_B Y_A}$$
(4.1)

donde X y Y son las composiciones de equilibrio del adsorbato en el adsorbente y en la fase fluida respectivamente, expresadas en fracción molar.

El diseño y aplicación de la adsorción a escala industrial abarca múltiples aspectos entre los que pueden señalarse:

- I. Elección y diseño del adsorbente.
- II. Elección y diseño del equipo para llevar a cabo la operación. Los más utilizados son: tanques agitados, lechos fijos o fluidizados, lechos móviles y lechos móviles simulados. Además de la etapa de adsorción es preciso considerar la regeneración del adsorbente para su posterior reutilización y la recuperación de los solutos adsorbidos.

La adsorción en la actualidad, se aplica para separar selectivamente componentes o impurezas de mezclas líquidas o gaseosas o para separar mezclas en otras fracciones de diferente composición. A continuación se citan las aplicaciones industriales más frecuentes:

- Separación de gases de mezclas gaseosas: se emplea en la eliminación de gases tóxicos.
- Separación de vapores de gases: se emplea en la recuperación de disolventes, en el secado de gases y en la deshumidificación del aire.
- Separación de solutos en disolución: se utiliza en la decoloración y clarificación de líquidos, de gran importancia en el tratamiento de vinos, vinagre, cervezas, aceites, etc.
- Fraccionamiento de mezclas de gases, de vapores, de sólidos disueltos o de líquidos: se suelen utilizar tamices moleculares por su alta selectividad. Una aplicación es la separación de parafinas lineales de queroseno, nafta y gasoil.
- Separación de iones de disoluciones: se emplea en la concentración de metales, en la eliminación de compuestos

inorgánicos, en la recuperación de residuos, en la desmineralización y ablandamiento de aguas.

- Separación de gases disueltos o sólidos suspendidos en líquidos: se emplea en el tratamiento de aguas residuales y potables para la eliminación de olor y sabor.
- *Catálisis química:* debido a la gran superficie específica que presentan los adsorbentes, pueden actuar como soporte de catalizadores impregnados o sin impregnar.
- Purificación de productos químicos y farmacéuticos: mejora la calidad del producto y disminuye el coste de fabricación. Se emplea en la obtención del ácido cítrico, ácido fosfórico, ácido glutámico, ácido láctico, cafeína, estreptomicina, glicerina, etc.

En todos los procesos industriales de adsorción hay que considerar: las propiedades del adsorbente, la disposición en partículas del adsorbente, la interacción adsorbente-adsorbato (equilibrio de adsorción), las propiedades cinéticas en los lechos de partículas y en el interior de las partículas, los sistemas de contacto entre adsorbente y adsorbible y los modos de deserción o regeneración del adsorbente, para obtener procesos económicamente rentables a nivel industrial y de alta efectividad.

4.1.5 Características de las resinas macroporosas XAD

Son polímeros sintéticos macroporosos. Su empleo como materiales adsorbentes, aunque es más reducido que el de los carbones activos, es cada vez mayor a escala industrial.

Las resinas Amberlita XAD se utilizan como adsorbentes para la recuperación de ácidos carboxílicos de disoluciones acuosas diluidas, presentando una disminución de la capacidad de adsorción con el aumento de la hidrofilidad del ácido, por ejemplo el ácido cítrico es adsorbido únicamente a altas concentraciones (Juang R.S. et al., 1995 a). Las resinas Amberlita XAD-2 y XAD-16 se emplean en la eliminación de detergentes de soluciones proteicas y la resina Amberlita XAD-16 en los procesos de separación de cefalosporina-C, antibiótico comúnmente utilizado en la industria farmacéutica. Las resinas Amberlita XAD-4 y XAD-2 se emplean en procesos de depuración de aguas (Gusler G.M. et al., 1993; Hasanain M.A. et al., 1981) y para la separación y concentración de aminoácidos de disoluciones acuosas, observándose un aumento de la capacidad de adsorción de la resina al aumentar la hidrofobicidad de la cadena hidrocarbonada del aminoácido (o la disminución de la hidrofilidad de la parte hidrofílica del aminoácido). Los procesos de adsorción de aminoácidos con resinas no iónicas, como las resinas Amberlita XAD, se ven afectados por el pH de la disolución acuosa, por la temperatura del proceso y por la presencia de otros aminoácidos en solución (Doulia D. et al., 2001).

Estas resinas se emplean generalmente en la adsorción de solutos orgánicos de disoluciones acuosas o de disolventes polares. La clasificación comercial específica muestra que la resina Amberlita XAD-2 proporciona elevadas capacidades de extracción para compuestos altamente hidrofóbicos. Para adsorciones de solutos de bajo peso molecular se aconseja el uso de la resina tipo XAD-4, para solutos de peso molecular medio la resina tipo XAD-16 y para solutos orgánicos de alto peso molecular la resina XAD-1180.

La única resina Amberlita XAD moderadamente polar es la XAD-7 empleada para la recuperación de compuestos no-aromáticos de disolventes polares.

Las resinas Amberlita XAD están formadas por una matriz polimérica aromática o alifática, diferenciándose de las resinas de intercambio iónico por la ausencia de grupos funcionales iónicos. La preparación de éstas resinas se realiza mediante polimerización de un monómero en suspensión (estireno o mezclas estireno-divinilbenzeno) y un agente reticulante en presencia de un disolvente y determinados catalizadores de la reacción. Se consiguen así partículas bastante homogéneas, con una elevada área superficial. Las características superficiales y la distribución de tamaños de poro son controlables durante el proceso de fabricación (Maity N. et al., 1991).

Por tanto, cada partícula de adsorbente polimérico XAD está formada por un conjunto de microesferas (idealmente esféricas) que pueden ser porosas o no según el tipo de resina y entre las microesferas aparecen unos macroporos intracristalinos tal como se indica en la Fig. 2.

Fig. 2: Esquema de una partícula de Amberita XAD.

Así, la superficie del sólido, el microporo de la microesfera y el macroporo de la partícula ofrecen resistencias específicas a la transferencia de materia. Estas resistencias pueden variar ampliamente y su importancia relativa en el proceso de adsorción debe evaluarse en cada caso en concreto, ya que dependen del sistema disolución - adsorbato y de las condiciones de operación (*Ruthven D.M., 1984*).

Las principales características de los adsorbentes poliméricos macroporosos son:

- Facilidad de regeneración mediante disolventes apropiados, recuperables posteriormente.
- No se producen adsorciones irreversibles.
- Elevada porosidad.
- Presentan una amplia variedad de polaridades, según el tipo, lo que implica una mayor selectividad en sus aplicaciones.
- Buena homogeneidad de su superficie adsorbente.

- Presentan excelentes características hidráulicas en sistemas de flujo ascendente y descendente convencionales.
- Operan en un amplio intervalo de pH de (1-14) debido a que son adsorbentes totalmente orgánicos con propiedades físicas y químicas estables.
- Gran estabilidad térmica, pudiendo utilizarse incluso a temperaturas de 250 °C.

Entre sus características estructurales destacan su elevada superficie específica, que oscila entre 100 y 800 m²/g, con diámetros de poro entre 5 y 50 nm y con distribuciones de los mismos mucho más estrechas que en el caso de los carbones activos.

Los parámetros, superficie específica y dimensiones de poro, afectan significativamente a la capacidad de adsorción de las resinas XAD. En adsorciones con adsorbentes de igual tamaño de poro, la capacidad de adsorción aumenta con la superficie específica de la partícula.

El principal inconveniente del empleo de adsorbentes sintéticos es su elevado precio, unas cinco veces superior que el carbón activo. Sin embargo, la clave de que puedan competir con éstos en determinadas aplicaciones reside en la facilidad de regeneración que presentan, evitándose el gran consumo energético y la pérdida de material que supone el mismo proceso con carbón activo.

4.1.6 Equilibrios: isotermas de adsorción

El fenómeno de adsorción se produce como consecuencia de la transferencia de materia desde la fase fluida hacia la superficie externa del adsorbente, donde las moléculas de adsorbato se distribuyen hasta que se alcanza el estado de equilibrio, esto es, cuando no se produce más acumulación de adsorbato sobre la superficie del adsorbente. La distribución del adsorbato entre ambas fases en condiciones de equilibrio representa el *equilibrio de adsorción*, que depende de la concentración del soluto en la fase fluida, de la concentración y naturaleza de los solutos competidores, de la naturaleza del disolvente y del adsorbente, del pH y temperatura del proceso.

A diferencia de lo que ocurre con la adsorción en fase sólido-gas, el conocimiento de los fundamentos teóricos en fase sólido-líquida es más limitado, debido a las interacciones en las que interviene el disolvente. Es interesante destacar que cuando un adsorbente sólido se pone en contacto con una disolución que contiene el disolvente y el adsorbato tiene lugar la adsorción de ambos componentes. No es posible medir la adsorción total ya que no se puede distinguir entre la fracción ocluida en los poros y la fracción adsorbida, pero se puede determinar la adsorción relativa o aparente del soluto (*Treybal R. E., 1980*).

Isoterma de adsorción es la relación de equilibrio entre la concentración en la fase fluida y la concentración en las partículas de adsorbente a una temperatura constante. La isoterma de adsorción se expresa mediante una ecuación y es característica de cada sistema. Para líquidos la concentración se expresa habitualmente en unidades de masa, tales como partes por millón; y para gases la concentración viene dada generalmente como fracción molar o presión parcial.

Desde el punto de vista práctico la isoterma de equilibrio se obtiene fácilmente poniendo en contacto el líquido, de concentración conocida en el soluto A, con una cantidad determinada de sólido, a temperatura constante. Transcurrido el tiempo suficiente para alcanzar el equilibrio, se mide la concentración de soluto en el fluido, C_A , y mediante un balance de materia se calcula la cantidad retenida por el sólido, q, expresada como cantidad de soluto A adsorbido por unidad de peso de adsorbente. La isoterma queda definida por la representación gráfica o analítica de los puntos obtenidos, tales como (C_{A1} , q_1).

En *adsorción física* (debida únicamente a la matriz sólida del adsorbente) la *isoterma de equilibrio*, se puede definir por la siguiente ecuación matemática general:

$$q = f(C_A) \tag{4.2}$$

donde se relaciona la concentración de soluto en el sólido y en el fluido en el equilibrio, mediante una función, f, más o menos compleja. Hay diversas clasificaciones de las isotermas de equilibrio atendiendo a la forma del tramo inicial y del tramo final de las curvas. La forma de la isoterma de adsorción aporta información sobre el mecanismo de la adsorción.

La *clasificación* de las isotermas de equilibrio con las formas más usuales, se simplifica dividiéndose en los cinco tipos siguientes que se representan en la Fig. 3 (*Treybal R.E., 1980; McCabe W.L. et al., 1991; Coulson J.M. et al., 1993; Ruthven D.M., 1984*):

- <u>Isoterma de equilibrio lineal.</u> Se caracteriza por presentar una relación constante entre la concentración en la fase adsorbida y líquida, hasta alcanzar un máximo a partir del cual se transforma en una línea horizontal. Las condiciones que favorecen este tipo de isotermas son un adsorbente poroso, con moléculas deformables y zonas con diferente grado de cristalización, y un adsorbato con mayor afinidad por el adsorbente que por el disolvente y que difunde más rápidamente hacia el interior del sólido que dicho disolvente. La linealidad indica que el número de centros activos de la superficie permanece constante, es decir, se crean centros a medida que se adsorbe soluto. Se debe de cumplir que la derivada segunda de la función f(C_A), definida en la Ec. (4.2), sea nula.
- Isoterma de equilibrio favorable. El adsorbente presenta una 0 capacidad adsorción elevada de incluso a baias concentraciones de soluto en la fase líquida. La curva es convexa hacia arriba como se muestra en la Fig. 3. Su forma indica que la adsorción se dificulta al aumentar la concentración de soluto en la fase líquida como consecuencia de la disminución de centros activos disponibles en la superficie del sólido. Esto implica una orientación horizontal de las moléculas adsorbidas, o bien, una competencia pequeña con el disolvente. Se debe de cumplir que la derivada segunda de la función $f(C_A)$, definida en la Ec. (4.2), sea menor de cero.
- <u>Isoterma de equilibrio desfavorable.</u> El adsorbente presenta una pequeña capacidad de adsorción a bajas concentraciones de soluto en la fase líquida. La curva es cóncava hacia arriba como se muestra en la Fig. 3. Su forma indica que la adsorción se facilita a medida que aumenta la concentración de soluto en la fase líquida. Se debe de cumplir que la derivada segunda de la función f(C_A), definida en la Ec. (4.2)), sea mayor de cero.
- <u>Isoterma de equilibrio con punto de inflexión</u>. El adsorbente presenta dos zonas de adsorción bien diferenciadas. La curva es convexa hasta que se alcanza una determinada concentración de soluto en la fase líquida a partir de la cual la curva se transforma en cóncava como se muestra en la Fig. 3.

El adsorbente presenta un comportamiento similar al de la isoterma favorable hasta el punto de inflexión y superado este el comportamiento es similar al de la isoterma desfavorable.

 <u>Isoterma de equilibrio irreversible.</u> La capacidad de adsorción no varía con la concentración. Así, en todo el intervalo de concentración en la fase fluida, C_A, la concentración en la fase sólida es igual a la capacidad máxima de adsorción del sólido expresada por Q_S (q = Q_S).

Fig. 3: Isotermas de adsorción

4.1.6.1 Modelos matemáticos de isotermas de adsorción.

Existen un gran número de modelos termodinámicos encaminados a representar el equilibrio de adsorción. Generalmente, estos modelos o ecuaciones desarrolladas teóricamente tales como isoterma de Langmuir, Freundlich o la isoterma de BET, se ajustan a alguno de los tipos de isotermas mostrados en la Fig. 3.

Las ecuaciones más utilizadas para ajustar las isotermas de adsorción son las siguientes (*Treybal R.E., 1980; Coulson J.M. et al., 1988; McCabe W.L. et al., 1991; Perry R.H., 1984*):

Isoterma de Langmuir. Definida en 1918 por Langmuir para adsorción en monocapa en superficies homogéneas, supone que las moléculas adsorbidas se mantienen en lugares localizados, siendo la energía de adsorción constante y sin existir interacción entre los adsorbatos vecinos.

$$q = Q_S \frac{KC_A}{1 + KC_A}$$
(4.3)

donde q y C_A son las concentraciones de soluto en el equilibrio en el sólido y en la disolución respectivamente, Q_S es la capacidad máxima de adsorción del sólido y K es una constante característica del sistema y de las condiciones de equilibrio.

Isoterma de Freundlich. Es una ecuación empírica que tiene en cuenta la heterogeneidad de la superficie. Supone que la energía de adsorción varía de forma exponencial con el recubrimiento y que existen fuerzas de interacción entre las moléculas de adsorbato.

$$q = k C_A^n \tag{4.4}$$

donde q y C_A son las concentraciones de soluto en el equilibrio en el sólido y en la disolución respectivamente y k y n son las constantes características del sistema y de las condiciones de equilibrio.

Isoterma de B.E.T. Desarrollada por Brunauer, Emmet y Teller para generalizar el tratamiento de Langmuir y tener en cuenta la posibilidad de adsorción en multicapa. Se emplea principalmente en adsorción gas-sólido y es uno de los métodos más utilizados para el cálculo de superficies específicas de adsorbente. Esta ecuación describe también la isoterma con punto de inflexión mostrada en la Fig. 3. Su expresión matemática es la siguiente:

$$y = \frac{x(1-a) \ (1-a+ka)}{(1-ax) \ (1-ax+kax)}$$
(4.5)

Esta ecuación está expresada en términos de concentraciones adimensionales,

$$y = \frac{q}{q_i} \tag{4.6}$$

$$x = \frac{C_A}{C_{Ai}}$$
(4.7)

$$a = \frac{C_{Ai}}{C_s}$$
(4.8)

donde C_{Ai} es la concentración del soluto en la alimentación, q_i la concentración de la fase sólida en equilibrio con C_{Ai} y C_s la concentración máxima de soluto en el líquido (solubilidad).

4.1.7 Cinéticas de adsorcion en baños

La velocidad en adsorción depende de: la concentración de adsorbible, C_A; del recubrimiento superficial, θ ; de las características de la superficie, tales como tamaño de partícula, distribución de tamaño de poros, porosidad, etc...; de la temperatura (según la ec. de Arrhenius k=A exp(-E/RT); etc.

En el caso de adsorbentes porosos, la velocidad efectiva de adsorción está determinada por el mecanismo de transporte que actúa en varias etapas consecutivas (*Perry R.H., 1984; Ruthven, D.M., 1984*):

- I. Transferencia de materia desde el seno de la fase fluida hasta la superficie externa de las partículas de adsorbente (difusión de película).
- II. Transferencia de materia por el interior de las partículas de adsorbente (difusión intrapartícula: poro y superficie).
- III. La etapa de adsorción propiamente dicha.

Debido a la naturaleza porosa del adsorbente, el transporte hacia el interior de las partículas (intrapartícula) es tratado generalmente como un proceso de difusión en el poro y en la superficie del mismo (*Do D. D. et al., 1987; Do D. D. et al., 1991; Komiyama H. et al., 1974 a-b; Liapis A. I. et al., 1977; Ma Z. et al., 1996; Robinson S. M. et al., 1994; Ruthven D. M., 1984; Yoshida H. et al., 1985; Yoshida H.et al, 1984; Yoshida H. et al., 1999):*

- Difusión de poro. Difusión a través del fluido que llena los poros de las partículas.
- Difusión en la superficie. Migración de las moléculas previamente adsorbidas, a lo largo de las paredes del poro sin producirse una desorción completa.

La diferencia esencial entre las etapas de difusión de poro y difusión superficial es que están separadas por la etapa de adsorción propiamente dicha y por tanto ocurren en fases diferentes.

En el caso de adsorción física, la velocidad de la etapa de adsorción es muy rápida comparada con las etapas de transferencia de materia siendo estas etapas las que controlan el proceso. Las ecuaciones que se definen a continuación son aplicables al caso de la adsorción de un soluto en partículas esféricas de adsorbente de tamaño uniforme.

La contribución de la etapa de transferencia de materia desde el seno de la fase fluida hasta la superficie externa de las partículas de adsorbente depende del tipo de equipo seleccionado y de las condiciones de proceso. En general, se define una ecuación de velocidad caracterizada por un coeficiente global de transferencia de materia, K_f, que depende de las características del sistema:

$$N_{A} = K_{f} \left(C_{A} - C_{A}^{*} \right)$$
(4.9)

siendo N_A la densidad de flujo de adsorbato A desde el seno de la disolución a la superficie del sólido a través de la capa límite de fluido que rodea las partículas, C_A la concentración de adsorbato en el seno de la disolución y C_A* la concentración de adsorbato en la disolución en equilibrio con el sólido.

Las densidades de flujo de adsorbato debidas a la difusión de poro y a la difusión superficial, J_{Ap} y J_{As} , se caracterizan por los coeficientes de difusión D_p y D_s . Considerando a las partículas como esferas porosas, las densidades de flujo difusivo en el poro y en la superficie del poro en coordenadas esféricas quedan expresadas, para disoluciones diluídas mediante la primera ley de Fick: (*Barre R.M., 1987; Do D.D. et al., 1991*):

$$J_{Ap} = -\varepsilon_p D_p \frac{dC_{Ap}}{dr}$$
(4.10)

$$J_{As} = -(1 - \varepsilon_p) D_s \frac{dq_A}{dr}$$
(4.11)

donde C_{Ap} y q_A son las concentraciones del adsorbato A en la fase líquida que rellena los poros y en la superficie de los poros, respectivamente, ε_p es la porosidad de la partícula y r es la coordenada radial.

Los valores de los coeficientes de difusión son diferentes a los observados en difusión molecular libre, debido al menor volumen de los poros y a la tortuosidad de los mismos. (*Ruthven D.M., 1984, Camporro A., 1991*).

El análisis de la etapa de difusión macroporosa en *sistemas binarios* o multicomponentes no presenta problemas, debido a que las propiedades de transporte de uno de los componentes no se ven afectadas directamente por los cambios de concentración de los otros componentes. En el caso del análisis de la etapa de adsorción es más complejo, debido a posibles cambios en la movilidad, en el gradiente de potencial químico de cada componente, etc. (*Ruthven D.M., 1984*).

Para describir el proceso de adsorción de un sistema dado se supone que una o varias de las etapas descritas anteriormente son etapas controlantes del proceso de transferencia de materia. Se pueden hacer múltiples combinaciones de los mecanismos básicos de transporte, de modo que a cada una le corresponde un modelo. El desarrollo matemático de estos modelos considera balances de materia, relaciones de equilibrio, ecuaciones cinéticas y condiciones límite. (Do D. D. et al., 1987; Do D. D. et al., 1991; Komiyama H. et al., 1974 a-b; Liapis A. I. et al., 1977; Ma Z. et al., 1996; Robinson S. M. et al., 1994; Ruthven D. M., 1984; Yoshida H. et al., 1984; Yoshida H. et al., 1985; Yoshida H. et al., 1994;. Yang S. A. et al., 1999)

Los modelos matemáticos más utilizados aplicados a partículas esféricas de adsorbentes parten de las siguientes suposiciones: (Do D. D. et al., 1987; Do D. D. et al., 1991; Komiyama H. et al., 1974 a-b; Liapis A. I. et al., 1977; Ma Z. et al., 1996; Robinson S. M. et al., 1994; Ruthven D. M., 1984; Yoshida H. et al., 1985; Yoshida H. et al., 1994; Yang S. A. et al., 1999).

- a) La velocidad neta de adsorción en la superficie externa de la partícula, es más rápida que la difusión en el poro y en la superficie del poro,
- b) Se alcanza el equilibrio local de forma instantánea de tal forma que las concentraciones de adsorbato en el líquido que llena los poros y la adsorbida en la superficie de los mismos están en equilibrio y por tanto relacionadas por la isoterma de equilibrio q_A = f (C_A),
- c) La concentración de adsorbato en el adsorbente es función de la coordenada radial y del tiempo

Modelo homogéneo. La fase sólida se considera un medio homogéneo e isotrópico. Las moléculas de adsorbato se adsorben en la superficie externa de la partícula y difunden hacia el interior de la misma. No tiene en cuenta la estructura de la partícula. El balance de materia al soluto en estado no estacionario aplicado a la macropartícula esférica conduce a la ley de Fick expresada en coordenadas esféricas mediante la siguiente ecuación (*Costa C. et al., 1985 a*):

$$\frac{\partial q_{A}}{\partial t} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} D_{e} \frac{\partial q_{A}}{\partial r} \right)$$
(4.12)

Si la difusividad es constante la Ec. (4.12) se transforma en la siguiente expresión:

$$\frac{\partial q_{A}}{\partial t} = D_{e} \left(\frac{\partial^{2} q_{A}}{\partial r^{2}} + \frac{2}{r} \quad \frac{\partial q_{A}}{\partial r} \right)$$
(4.13)

donde D_e es la difusividad efectiva del soluto A dentro de la partícula, r es la posición radial en la partícula, t el tiempo y q_A la concentración de soluto en la fase resina a tiempo t.

Considerando las siguientes condiciones límites e inicial:

i) La partícula está inicialmente libre de adsorbato:

$$q_A = 0$$
 $t = 0$ (4.14)

ii) En el centro de la partícula:

$$\frac{\partial q_A}{\partial r} = 0 \qquad r = 0 \qquad t > 0 \qquad (4.15)$$

iii) En la superficie de la partícula se alcanza el equilibrio:

$$q_A = f(C_A)$$
 $r = a$ $t > 0$ (4.16)

donde C_A es la concentración de soluto en el seno de la fase fluida en equilibrio con q_A en función del tiempo y 'a' es el radio de la partícula de adsorbente. Esta condición límite supone despreciable la resistencia a la transferencia de materia en la película líquida externa.

La función f (C_A) debe ser conocida en cada caso con el estudio previo del equilibrio de adsorción.

Resolviendo conjuntamente las Ecs. (4.13)-(4.16) se puede obtener el valor del coeficiente de difusión efectiva D_e.

Modelos heterogéneos. Consideran independientemente la fase fluida que llena los poros y la adsorbida en la superficie de los mismos. Los más importantes son:

Modelo de difusión en los poros. El balance de materia al soluto, considerando la difusión en el poro como etapa controlante del transporte de materia, proporciona la siguiente ecuación en coordenadas esféricas (Costa C. et al., 1985 a; Komiyama H. et al., 1974 a; Liapis A. I. et al., 1977; Yang S. A. et al., 1999):

$$\varepsilon_{p} \frac{\partial C_{Ap}}{\partial t} + (1 - \varepsilon_{p}) \frac{\partial q_{A}}{\partial t} = \varepsilon_{p} D_{p} \left(\frac{\partial^{2} C_{Ap}}{\partial r^{2}} + \frac{2}{r} \frac{\partial C_{Ap}}{\partial r} \right)$$
(4.17)

donde D_p es el coeficiente de difusión del soluto en el poro, ε_p la porosidad de la partícula de adsorbente, q_A es la concentración de adsorbato adsorbida en el sólido y C_{Ap} la concentración de adsorbato en el fluido que llena los poros.

Resolviendo conjuntamente la Ec. (4.17) con las condiciones limites e inicial se obtiene el valor del coeficiente de difusión en el poro, D_p .

Modelo de difusión superficial. En este caso la etapa controlante de la transferencia de materia es la velocidad de difusión en la superficie de los poros. El balance de materia se representa mediante la siguiente ecuación (*Komiyama H. et al., 1974 b; Liapis A. I. et al., 1977; Yang S. A. et al., 1999*):

$$\varepsilon_{\rm p} \frac{\partial C_{\rm Ap}}{\partial t} + \left(1 - \varepsilon_{\rm p}\right) \frac{\partial q_{\rm A}}{\partial t} = D_{\rm s} \left(\frac{\partial^2 q_{\rm A}}{\partial r^2} + \frac{2}{r} \frac{\partial q_{\rm A}}{\partial r}\right)$$
(4.18)
siendo D_s el coeficiente de difusión del soluto A en fase sólida. Esta ecuación es equivalente a la descrita en el caso de modelo homogéneo considerando que la concentración de adsorbato en fase líquida es despreciable respecto a la concentración de soluto adsorbido.

Resolviendo conjuntamente la Ec. (4.18) con las condiciones limites e inicial se obtiene el valor del coeficiente de difusión en la superficie, D_s .

Modelo de difusión en paralelo. Considera que tanto la difusión en el poro como en la superficie son controlantes del proceso de difusión y ambos flujos difusionales suceden en paralelo. El balance de materia en estado no estacionario conduce a la siguiente ecuación (*Costa C. et al., 1985 a; Do D. D. et al., 1987; Do D. D. et al., 1991; Liapis A. I. et al., 1977; Ma Z. et al., 1996; Robinson S. M. et al., 1994; Ruthven D. M., 1984; Yoshida H. et al., 1985; Yoshida H. et al., 1984; Yoshida H. et al., 1999)*:

$$\varepsilon_{p} \frac{\partial C_{Ap}}{\partial t} + (1 - \varepsilon_{p}) \frac{\partial q_{A}}{\partial t} =$$

$$= \varepsilon_{p} D_{p} \left(\frac{\partial^{2} C_{Ap}}{\partial r^{2}} + \frac{2}{r} \frac{\partial C_{Ap}}{\partial r} \right) + (1 - \varepsilon_{p}) D_{s} \left(\frac{\partial^{2} q_{A}}{\partial r^{2}} + \frac{2}{r} \frac{\partial q_{A}}{\partial r} \right)$$
(4.19)

Resolviendo conjuntamente la Ec. (4.19) con las condiciones limites e inicial se obtienen los valores de los coeficientes de difusión en el poro, $D_p y$ de difusión en la superficie D_s .

Modelo de difusión en serie o de biporos. Considera la partícula de adsorbente macroporosa formada por esferas microporosas uniformes. Se considera un coeficiente de difusión superficial en los microporos, D_m además de los coeficientes de difusión en el macroporo (D_p) y en la superficie (D_s) (*Robinson S. M. et al., 1994*).

Modelo de difusión de partícula dual. Se suponen dos zonas diferenciadas de microporos en las partículas adsorbentes. La adsorción en las dos regiones es caracterizada por isotermas distintas. Se definen coeficientes de difusión superficial en ambas zonas, D_{s1} y D_{s2} (*Camporro A., 1991*).

4.1.8 Cinéticas de adsorcion en lecho fijo

Un lecho fijo o poroso es un dispositivo semicontinuo en el que se lleva a cabo el proceso de adsorción en régimen no estacionario, dicho dispositivo se muestra en la Figura 4.

Fig. 4: Adsorción en lecho fijo.

La velocidad de adsorción en un lecho fijo cuando una corriente de fluido lo atraviesa con una determinada velocidad, es función de la caída de presión del lecho y del tiempo de residencia necesario para que se produzca la saturación del lecho.

La adsorción en lecho fijo responde a una curva típica de adsorción dinámica en la que se representa la concentración del adsorbato en fase fluida frente al tiempo y se representa en la Figura 5.

Al principio, el adsorbato es extraído totalmente a lo largo de una longitud finita de columna de adsorbente (inicialmente libre de soluto) llamada zona de adsorción o de transferencia de materia, donde la concentración de adsorbato en fase fluida disminuye notablemente obteniéndose efluente prácticamente libre un de soluto. Posteriormente, cuando se llega a una determinada concentración en el adsorbente, la concentración de adsorbato en el efluente comienza a aumentar, alcanzándose el llamado punto de ruptura. A partir de este instante la concentración de soluto en el efluente aumenta con rapidez hasta que alcanza una concentración muy próxima a la de la alimentación, esta zona corresponde a la curva de inflexión. Por último la concentración de adsorbato se iguala a la existente en la corriente de entrada (punto S) alcanzándose la saturación del lecho ya que se supone que el lecho está en equilibrio con la disolución de alimentación (Treybal R. E., 1980).

Fig. 5: Curva de adsorción dinámica en lecho fijo.

Además, del estudio de la cantidad de soluto retenido en el sólido adsorbente (concentración en el adsorbente), hay que tener en cuenta la eficacia del lecho que se expresa como la relación AB/AC (Fig. 5) y representa en cada punto de la curva la relación entre la cantidad retenida y la de la corriente de alimentación. Hasta el punto de ruptura, la eficacia es próxima al 100% superado este la eficacia disminuye hasta hacerse cero en el punto S, debido a que en S prácticamente todo el lecho está en equilibrio con la corriente de alimentación.

Generalmente, la eficacia del lecho se expresa mediante la capacidad en el punto de ruptura, que se define mediante la relación existente entre la cantidad de sustancia adsorbida hasta dicho punto y la cantidad de adsorbente utilizado.

La forma de la curva varía según el tipo de sistema adsorbente adsorbato. Generalmente, estas curvas tienen forma de S como se muestra en la Fig. 5, pero pueden tener una gran pendiente o ser relativamente planas y, en algunos casos, considerablemente distorsionadas. Si el proceso de adsorción fuese infinitamente rápido, la zona de la curva de inflexión sería una línea vertical recta. La rapidez real y el mecanismo del proceso de adsorción, la naturaleza del equilibrio de adsorción, la velocidad del fluido, la concentración de soluto en la alimentación y la longitud del lecho adsorbedor, en particular si la concentración de soluto en la alimentación es elevada, determinan la forma de la curva (Treybal R.E:, 1980). Habitualmente, en las adsorciones en lecho fijo se suele representar la relación C_A/C_{Ao} frente al tiempo, siendo C_{Ao} y C_A la concentración de soluto a la entrada y a la salida del lecho respectivamente. De estas representaciones se obtiene una curva en forma de S denominada *curva de ruptura del lecho* que se muestra en la Fig. 6.

Fig. 6: Curva de ruptura en lechos fijos.

Los factores a controlar en el funcionamiento de las instalaciones de adsorción en lecho fijo son:

- La presión. La capacidad de adsorción aumenta con el aumento de la presión total del sistema debido a que también supone un aumento de la presión parcial del adsorbato.
- Temperatura. A presión constante, el grado de adsorción en un proceso de adsorción física disminuye cuando aumenta la temperatura. Este aumento de temperatura se producirá si el calor generado por la adsorción no es eliminado, repercutiendo negativamente sobre la eficacia del lecho.
- Tamaño de partícula. Debido a que la adsorción mejora al aumentar la superficie de contacto entre adsorbente y adsorbato, interesa trabajar con tamaños de partículas pequeños ya que proporcionan altas superficies de contacto pero evitando las elevadas caídas de presión a través del lecho que proporcionarían tamaños excesivamente pequeños.

Además, la forma esférica de las partículas hace posible el llenado del lecho regular y uniforme.

 Velocidad del fluido. Es una variable importante debido a su relación directa con el tiempo de contacto. Los valores de esta variable están comprendidos entre dos límites: el máximo que corresponde al límite de fluidización, en caso de flujo ascendente y el mínimo impuesto por la transición de flujo turbulento a laminar.

El diseño de un adsorbedor de lecho fijo se basa en el balance de materia a un elemento diferencial de volumen que debe ser integrado con las condiciones límites e iniciales establecidas en el proceso. Generalmente, se considera que:

- La fase fluida que atraviesa el lecho lleva flujo de pistón
- La operación es isotérmica
- Existe equilibrio instantáneo entre la fase fluida y la fase sólida, en cada punto del lecho
- La caída de presión es despreciable.

La expresión del balance de materia y la ecuación de equilibrio se reflejan en las siguientes ecuaciones (Ruthven D.M., 1984):

$$D \frac{\partial^2 C_A}{\partial z^2} = u \frac{\partial C_A}{\partial z} + \frac{\partial C_A}{\partial t} + \frac{1 - \varepsilon_L}{\varepsilon_L} \frac{\partial q}{\partial t}$$
(4.20)

$$q = f(C_A) \tag{4.21}$$

siendo *D* el coeficiente de dispersión axial (generalmente se considera cero debido a que se asume flujo de pistón), z la posición axial en el lecho, u la velocidad intersticial, t la variable tiempo, C_A la concentración de soluto en la fase fluida, q la concentración de soluto en la fase sólida referida a volumen de sólido y ε la porosidad del lecho.

De la combinación de las Ecs. (4.20) y (4.21) se obtiene la siguiente expresión:

$$u_{c} = \frac{\partial z}{\partial t} = \frac{u}{1 + \frac{1 - \varepsilon_{L}}{\varepsilon_{L}} \frac{dq}{dC_{A}}}$$
(4.22)

La Ec. (4.22) muestra la velocidad, u_c , con que se propaga la concentración C_A a través del lecho y refleja su dependencia con la pendiente puntual de la isoterma de equilibrio. Así para sistemas con isotermas de equilibrio lineales, y siempre que la velocidad instersticial (u) permanezca constante, u_c adquiere un valor constante (*Ruthven D.M., 1984*).

Con las condiciones límite e iniciales, que dependen de las resistencias controlantes del proceso de transferencia de materia, del equilibrio y de las condiciones de operación, se obtienen las distintas soluciones analíticas de la Ec. (4.20) (*Ruthven D M., 1984; Costa C. et al., 1985 b; Saunders M.S. et al., 1989; Yoshida H. et al., 1984*).

Estas soluciones analíticas de diseño y predicción de las curvas de ruptura, presentan gran complejidad de cálculo, además resulta necesario un estudio preliminar de equilibrio y cinético para determinar las resistencias de transferencia controlantes de materia, así como los parámetros de equilibrio que correlacionan las concentraciones en fase acuosa y en fase resina (*Costa C. et al., 1985 b; Neretnieks I. et al., 1976; Saunders M.S. et al., 1989; Yoshida H. et al., 1983*). En la Tabla 1 se muestra la combinación posible de etapas para la obtención de las distintas soluciones analíticas de diseño y predicción de las curvas de ruptura.

Tabla 1.	Combinación	de etapas	para la	obtención	de las	soluciones
	analíticas de	diseño y pre	dicción	de las curv	as de ru	uptura

MODELO DE FLUJO	Sin dispersión axial $0 = u \frac{\partial C_A}{\partial z} + \frac{\partial C_A}{\partial t} + \frac{1 - \varepsilon_L}{\varepsilon_L} \frac{\partial q}{\partial t}$		
	Con dispersión axial $D \frac{\partial^2 C_A}{\partial z^2} = u \frac{\partial C_A}{\partial z} + \frac{\partial C_A}{\partial t} + \frac{1 - \varepsilon_L}{\varepsilon_L} \frac{\partial q}{\partial t}$		
ISOTERMAS DE	Lineal		
EQUILIBRIO	No Lineal		
ETAPAS	Película líquida externa (k _f)		
CONTROLANTES	Difusión intrapartícula (D _e)		
DE LA	Película líquida externa y difusión intrapartícula (k _f , D _e)		
TRANFERENCIA	Película líquida externa, difusión superficial y en el poro		
DE MATERIA	(k _f , D _p , D _s)		

4.1.9 Desorción y regeneración del adsorbente

Una vez finalizada la operación de adsorción, el adsorbente se somete a **desorción** que consiste en la reextracción de las moléculas de soluto adsorbidas y en la regeneración del sólido con objeto de recuperar su capacidad de adsorción.

La etapa de regeneración requiere un cambio en las condiciones de operación que favorezca la desorción de las sustancias retenidas. Los procedimientos más habituales son:

- Regeneración por aporte de calor. La adsorción es un proceso exotérmico. Así, sometiendo al adsorbente a una temperatura suficientemente elevada, se produce la desorción de las moléculas adsorbidas, que pueden eliminarse pasando una corriente de gas. Permite obtener el producto desorbido con una concentración elevada.
- Regeneración por variación de presión. El método se basa en la disminución de la capacidad de adsorción al pasar un gas a través del lecho que origina una disminución de la presión parcial del adsorbato y éste es arrastrado por la corriente gaseosa. No es aplicable al caso de mezclas líquidas. Es adecuado si las sustancias se adsorben débilmente.
- Regeneración por desplazamiento. La regeneración se lleva a cabo mediante el lavado del adsorbente con un fluido que contiene moléculas de un soluto que compiten activamente con el adsorbato por los centros activos del adsorbente. Así, al pasar el fluido a través del adsorbente se producirá el desplazamiento del adsorbato por el soluto del fluido.
- *Regeneración química.* La regeneración se realiza haciendo pasar a través del lecho una disolución que contiene una sustancia regenerante que por reacción química elimina el soluto del adsorbente, como se explicó anteriormente en el apartado 3.5.
- Arrastre con un fluido inerte, no adsorbible. Sirve para arrastrar el adsorbato. Suele utilizarse en combinación con ciclo térmico.

4.2 TECNOLOGÍA RIE DE ADSORCIÓN-EXTRACCIÓN

4.2.1 Conceptos generales

La tecnología híbrida de adsorción-extracción reactiva con Resinas Impregnadas de Extractante (RIE) se está desarrollando como alternativa a los procesos convencionales de separación. Por lo general, los procesos de precipitación resultan poco eficaces en cuanto al grado de separación, en la extracción reactiva con disolventes se producen elevadas pérdidas del disolvente en el refinado además de la formación de emulsiones estables o terceras fases (*Rovira M. et al., 1999*), los procesos con resinas de intercambio iónico suelen presentar baja selectividad y las resinas quelantes producen procesos de extracción lentos, y debido a la dificultad de su fabricación son caras (*Akita S. et al., 1990*).

Como respuesta a estos inconvenientes se está desarrollando esta tecnología híbrida de extracción con resinas impregnadas de extractante (RIE) que es capaz de reunir en un solo proceso la elevada capacidad y selectividad que ofrecen las técnicas de extracción reactiva con disolventes, con las ventajas que ofrecen los procesos de separación con matrices sólidas, que permiten procesar grandes cantidades de muestra diluidas en sistemas cerrados, utilizando equipos sencillos y baratos, como son los tanques agitados y los lechos porosos y fluidizados (*Ruiz M.O et al., 2002; Ruiz M.O et al., 2006*), lo cuál es de gran importancia debido a que el coste final del producto reside en la facilidad para su separación, concentración y purificación.

Las principales ventajas que presenta frente a otras técnicas de separación convencionales son:

- No existe mezcla violenta de fases, ni formación de emulsiones, ni de terceras fases (*Juang R-S., y Chang H-L., 1995*).
- Se evita la pérdida de extractante ya que se inhibe el proceso de solubilización del mismo en la fase acuosa, aumentando la capacidad de extracción al emplear el extractante puro, sin disolver.
- Alto grado de eficacia en la separación y la reutilización de todos los productos, y por lo tanto, la obtención de menos residuos y menos contaminantes que con los procesos convencionales.
- Los equipos industriales son tanques agitados, lechos porosos y fluidizados, (*Bart H-J. y Schöneberger A., 2000*), que son equipos baratos y sencillos de diseñar y mantener.

La bibliografía especializada en esta tecnología, muestra que una característica fundamental de las resinas impregnadas es que el extractante está físicamente adsorbido en los poros o macroporos de la resina, presentando el mismo comportamiento de extracción libre en un disolvente orgánico inmovilizado, ocluido o impregnado en la resina, y por consiguiente, puede existir un doble mecanismo de separación, de adsorción debida al soporte polimérico y de extracción reactiva debida al extractante impregnado en los poros:

1) *Adsorción* del soluto debida al soporte polimérico de la resina impregnada de extractante, que cumple las leyes y principios fundamentales de la adsorción detallados en al capítulo 4.1 de esta memoria.

2) *Extracción reactiva* del soluto debida al extractante impregnado en la RIE, que cumple los principios básicos de la etracción líquido-líquido recogidos en el capítulo 3 de esta memoria.

Se puede concluir, por consiguiente, que las propiedades específicas de la RIE dependen del extractante y de la matriz polimérica utilizada *(Akita S. et al., 1990).*

En este trabajo se evaluará la extracción de aminoácidos empleando resinas poliméricas macroporosas sobre las que se inmoviliza el extractante reactivo, cloruro de tri-alquilmetilamonio. Este extractante es una sal de amonio cuaternaria de elevado peso molecular ampliamente utilizado en los procesos de extracción reactiva líquidoliquído.

La extracción con RIE se ha aplicado extensamente a la separación de metales de corrientes siderometalúrgicas utilizando como extractantes derivados del ácido fosfórico y aminas alifáticas de cadena larga (Akita S. et al., 1990; Akita S. et al., 1992; Juang R.S. et al., 1992 a-b; Juang R S. et al., 1995 b-c; Juang R S. et al., 1996 b). La aplicación de esta técnica a la recuperación de ácidos orgánicos es reciente (Akita S. et al., 1990; Jones I. et al., 1993 a-b; Juang R.S. et al., 1995 a; Juang R.S. et al., 1995 d; Juang R.S. et al., 1996 a; Ruiz M.O. et al., 2001; Ruiz M.O. et al., 2006).

Sin embargo, la extracción reactiva de aminoácidos es más compleja, conceptualmente hablando, que la extracción de metales porque los aminoácidos son moléculas más grandes, frágiles, con densidades de carga menos concentradas que en metales, con grupos funcionales menos accesibles y con la posibilidad, que tienen los aminoácidos, de existir en varias formas iónicas según el pH. (Nelly N. A. et al. 1998). Es por ello que hasta ahora, apenas hay aplicación práctica de esta tecnología con RIE para la recuperación de aminoácidos de corrientes residuales, ni se han realizados los estudios fundamentales de

equilibrio y cinéticas, ni la modelización de los mismo necesaria para llevar a cabo el cambio de escala y su aplicación a nivel industrial.

Se puede concluir que la tecnología de extracción con RIE se presenta como un novedoso proceso híbrido entre extracción reactiva con disolventes y adsorción. El grado de innovación se centra en los beneficios científico – técnicos y económicos que esta tecnología híbrida puede aportar a la industria.

- Puede solventar los problemas que plantean las técnicas convencionales para la separación de bioproductos, como son la extracción por contacto directo, la evaporación o el uso de resinas de intercambio iónico comerciales. La extracción con disolventes presenta la limitación de la formación de emulsiones o de terceras fases, la inundación de la torre bajo ciertas condiciones de operación y la necesidad de un proceso posterior de re-extracción, generalmente caro y con elevado consumo de reactivos. El uso de resinas de intercambio iónico, además del elevado precio, presenta la limitación de necesitar un excesivo pre-tratamiento de la resina y de la alimentación y la escasa capacidad de la operación.
- 2. Esta tecnología híbrida de adsorción-extracción es capaz de reunir en un sólo proceso las ventajas de su simplicidad de operación y su aplicación a corrientes altamente diluidas, con la elevada capacidad y selectividad que ofrecen las técnicas de extracción reactiva utilizando extractantes selectivos. Esta técnica de separación puede suponer un beneficio económico, ya que puede aumentar, bajo ciertas condiciones de operación, la eficacia de la separación, reduciendo los costes de producción, el coste de capital, el consumo energético y las pérdidas en el sobrante.
- 3. Es una tecnología limpia, que implica bajo consumo energético y de reactivos, lográndose un alto grado de eficacia en la separación y la reutilización de todos los productos, obteniéndose residuos menos contaminantes que con los procesos convencionales.
- 4. Su aplicación se orienta a la separación selectiva de aminoácidos o bioproductos de corrientes de procesado, caldos de fermentación, de licores enzimáticos o de corrientes residuales, donde se encuentran como subproductos en concentraciones muy bajas. Al ser productos de alto valor económicos añadido. los beneficios pueden cubrir inmediatamente los costes de instalación y operación. Su aplicación se dirige, fundamentalmente, al sector farmacéutico, alimentario (antibióticos, aminoácidos, péptidos, edulcorantes, saborizantes, preparados vitamínicos y digestivos, jabones terapéuticos, etc.), y de alimentación animal (piensos).

4.2.2 Resinas poliméricas modificadas

En procesos de separación, las partículas porosas son muy utilizadas como sólidos adsorbentes porque tienen una alta capacidad de adsorción al tener mayor superficie de sólido que una partícula no porosa. Sin embargo, la existencia de poros en las partículas da una serie de problemas en los procesos de separación (*Martín C. et al. 2004*):

- Son procesos lentos porque el movimiento del fluido dentro de la partícula es de difusión.
- Los poros de las partículas no son selectivos pudiéndose ensuciar con otras sustancias no deseadas presentes en el fluido a separar, disminuyendo su capacidad de adsorción en sucesivas aplicaciones del adsorbente. Además, este ensuciamiento puede provocar la desorción contaminación del producto final.
- Es más difícil la limpieza de poros que una limpieza superficial.

Durante las tres últimas décadas, el número posible de aplicaciones de las resinas poliméricas se ha incrementado constantemente debido al desarrollo de nuevas resinas modificadas que mejoran algunas de las propiedades de las resinas clásicas, entre los grupos más destacados se encuentran:

A) Resinas de intercambio iónico: la superficie del sólido adsorbente tiene ligandos consistentes en grupos funcionales de moléculas para conseguir separaciones más específicas del producto deseado. Pueden ser anfotéricas (ácido-base), catiónicas (ácidas) o aniónicas (básicas) fuertes ó débiles. Las resinas de intercambio iónico macroreticulares presentan varias ventajas con respecto a las de tipo gel: se contaminan menos con compuestos orgánicos, son menos frágiles físicamente, y se pueden usar en disoluciones no polares porque estas pueden penetrar en el interior de las resinas macroporosas. Por todo ello, las resinas de intercambio iónico macroreticulares son ampliamente utilizadas en la industria para separación de metales, vitaminas, aminoácidos, reacciones catalíticas, etc. (Yoshida H. et al., 1985; Gomes C. P. et al., 2001).

Uno de los inconvenientes que presenta esta técnica es la dificultad de acceso de los ligandos al interior de los poros, pudiendo no estar completamente saturada la superficie de la resina, favoreciendo que se dé una adsorción no selectiva, con el consiguiente ensuciamiento de la misma.

Estudios recientes, investigan la síntesis de nuevos tipos de resinas de intercambio catiónico de naturaleza magnética para conseguir mayores selectividades, estas resinas pueden ser de dos tipos:

-Resinas consistentes en pequeñas partículas poliméricas con un material magnético dispersado entre su estructura.

74

B) Resinas modificadas quelatantes. En los últimos años se ha comenzado el estudio de nuevas resinas consistentes en una matriz a la que se le une un ligando quelantante y son ampliamente utilizadas para la separación y concentración de metales (Gloe K. et al., 2003). Las matrices donde se adsorbe el ligando pueden ser resinas macroporosas tipo XAD (*Filik H. et al., 2003; Guo Y. et al., 2004; Prabhakaran D. et al., 2004*) o bien con adsorbentes de naturaleza inorgánica como silica, alúmina o celulosa (*Gomez-Salazar S. et al., 2003; Gurnani V. et al., 2003; Hoshi H. et al., 2004; Venkatesh G. et al., 2004*).

C) Resinas Levextrel. Son resinas poliméricas donde el extractante se agrega en el proceso de polimerización, en la mezcla de monómeros. Suele englobarse como un tipo especial de resinas intercambio iónico o quelantes. *(Chen J. H et al., 2003)* Los extractantes más utilizados son compuestos organofosforados (TBP, DEHPA, DTMPPA, etc...), debido a que generalmente las aminas de elevado peso molecular y las sales de amonio producen la inhibición del proceso de polimerización. *(Cortina J.L. et al., 1994)*. Entre sus aplicaciones principales están la recuperación de metales. Recientemente se ha hecho estudios con microcápsulas, la diferencia principal de las resinas Levextrel y las microcápsulas es que estas últimas contienen mezclas de extractante y diluyente, en este caso se pueden utilizar extractantes más selectivos y que producen mejores extracciones sin efectos de inhibición. *(Nishihama S. et al., 2004*).

D) Resinas impregnadas de extractante (RIE). Son resinas poliméricas modificadas donde el extractante por contacto físico penetra en los poros de la resina. La impregnación se suele realizar contacto directo de la resina con un disolvente formado por un extractante y un diluyente volátil que se elimina posteriormente por evaporación. Para evitar posibles pérdidas de extractante impregnado en los poros de la resina se puede operar de dos formas: con estabilización de la RIE con un fino recubrimiento por ejemplo de de polivinilalcohol, (*Trochimczuk A.W. et al., 2004; Trochimczuk A.W. et al., 2005*) o bien operando a concentraciones de extractante un 10% por debajo de la capacidad máxima de adsorción de la resina. (*Ruiz M. O. et al., 2002*). Las resinas que suelen emplearse para este fin son las resina macroporosas del tipo Amberlita XAD, que están formadas por una matriz polimérica aromática o alifática y sin grupos funcionales iónicos, cuyas características se han detallado en el apartado 4.1.5.

4.2.3 Impregnación de la resina

La obtención de soportes poliméricos impregnados consiste en la adsorción del extractante en el soporte sólido por contacto directo del adsorbente con el disolvente, generalmente, compuesto por el extractante y un diluyente altamente volátil. Se emplean adsorbentes de elevada superficie específica, hidrofóbicos y altamente porosos, características que reúnen las resinas Amberlita XAD. Este tipo de materiales son apropiados como soportes de extractantes líquidos ya que presentan gran afinidad por el extractante, es decir, pueden retener cantidades elevadas del mismo y además con la particularidad de que el extractante no está químicamente enlazado a la matriz polimérica, sino en estado líquido, rellenando gradualmente los poros del sólido. Así, como se ha detallado anteriormente, se puede considerar que el extractante presenta el mismo comportamiento de extracción libre en el disolvente (extracción reactiva líquido-líquido) o inmovilizado en el soporte polimérico (RIE) (Cortina J.L. et al., 1994; Juang R.S. et al., 1995 d; Juang R.S. et al., 1996; Warshawsky A., 1981; Ruiz M.O. et al., 2002).

En concreto, en nuestros laboratorios se ha estudiado el proceso impregnación de Amberlita XAD-4 con Tomac. Cantidades conocidas de Amberlita XAD-4 se pusieron en contacto con disoluciones Tomac+ n-hexano y se estudió el efecto de variables de proceso tales como presión y velocidad de agitación para producir la impregnación *(Santidrián E., 2001; Santidrián E.et al., 2002)*.

Al objeto de visualizar las posibles diferencias entre la resina impregnada con Tomac y sin impregnar se realizó un estudio microscópico con un microscopio óptico marca ZEISS Axioplan, modelo 308579, con lámpara HB050 dotado de un ocular de 10 aumentos y lentes de 2,5 y 5 aumentos.

No se apreciaron cambios significativos de tamaño, presentando la resina con y sin Tomac geometría esférica. En la Fig 7 se muestra la similitud de tamaño entre la resina impregnada con Tomac (b) y sin impregnar (a).

Con el objetivo de disminuir el tiempo del proceso de impregnación, facilitando la etapa de volatilización del diluyente, y producir un contacto más íntimo y homogéneo entre la resina y el disolvente, el contacto entre fases se realizó en un rotavapor (Heidolph, modelo WB2000) provisto de agitador rotatorio, baño termostático de agua y sistema de vació. Se realizaron experiencias con distinta velocidad de agitación y presión. Los resultados mostraron que la concentración de Tomac en la resina y el tiempo de impregnación no se vieron afectados por la presión.

Además, *no es adecuado el uso de agitación continua* en el proceso de impregnación, ya que se produce la rotura de las partículas de resina al colisionar unas con otras y con las paredes del recipiente que las contiene incluso a velocidades de agitación reducidas de 30 rpm, como puede observarse en la Fig. 8 que muestra la resina XAD-4 impregnada con Tomac a vacío (presión=37 kPa) con una velocidad de agitación reducida de 30 rpm y a temperatura constante de 25°C. Este resultado puede deberse a que el extractante rellena los poros del material adsorbente produciendo tensiones que aumentan su fragilidad y consecuentemente producen la rotura de las partículas. *(Cortina J.L. et al., 1994; Rovira M. et al., 1998; Strikovsky A.G. et al., 1998)*.

Fig. 7: Resina Amberlita XAD-4 (a) sin Tomac, (b) impregnada con Tomac.

Fig. 8: Resina Amberlita XAD-4 impregnada con Tomac a vacío (Presión = 37 kPa) con una velocidad de agitación de 30 rpm y a 25°C.

Con estos resultados, la impregnación de las resinas Amberlita XAD se realizó poniendo en contacto cantidades conocidas de resina, lavada y seca, con diferentes disoluciones de impregnación compuestas por Tomac disuelto en n-hexano a distinta concentración, hasta que toda la fase orgánica es completamente adsorbida por la resina. Este paso fue realizado en un horno a 60 °C durante 48 horas hasta completa evaporación del diluyente y con agitación manual cada 4 horas durante el día. (Akita S. et al., 1992; Juang Rs. S. et al., 1995 a; Juang R. S. et al., 1995 d). Para evitar pérdidas de extractante durante el proceso de extracción, se debe operar un 10% por debajo de la concentración máxima de extractante que admite la resina; en el caso de la resina Amberlita XAD-4 impregnada con Tomac fue de 1110 mol/ m³ Resina sin impregnar (RSI), por encima de esa concentración la resina tiene un aspecto húmedo y pegajoso. (Ruiz M. O. et al., 2002; Ruiz M. O. et al., 2004).

5. PARTE EXPERIMENTAL

El desarrollo del proyecto de investigación tiene como punto de partida los resultados alcanzados en nuestro laboratorio con la tecnología de extracción reactiva líquido-líquido con y sin membranas (*Burgos L. et al., 2001; Ruiz M. O. et al., 2002*) y de la tecnología de adsorción-extracción con RIE (*Ruiz M. O. et al., 2001*) aplicados a la separación y concentración del aminoácido α -fenilglicina, cuya recuperación es de interés en la industria farmacéutica.

Debido al carácter anfotérico de los aminoácidos, es posible aplicar técnicas de extracción reactiva que conllevan reacciones de intercambio iónico y que requieren trabajar bajo condiciones rigurosas de control de pH. En el caso del aminoácido α -fenilglicina, se calcularon experimentalmente los valores de las constantes de acidez a la temperatura de 30 °C y se seleccionó como agente de extracción el TOMAC y como soporte polimérico la resina Amberlita XAD-4. Se han estudiado las reacciones de competencia que intervienen en el equilibrio de extracción y se ha formulado un modelo matemático de equilibrio, que permite estimar el grado de extracción alcanzado bajo ciertas condiciones de operación. Se trata de un modelo mecanicista de utilidad en la optimización y control del proceso. Algunos de los resultados obtenidos fueron (*Ruiz M.O., 2002; Burgos L. et al., 2001*):

- La extracción de α-fenilglicina y la co-extracción de iones hidroxilo se produce simultáneamente mediante un mecanismo de intercambio iónico con el extractante TOMAC.
- El estudio de extracción líquido-líquido muestra una disminución del grado de extracción a concentraciones superiores a 327 mol/m³ de TOMAC en tolueno, queroseno o n-decanol, debido a posibles agregaciones. Los resultados mostraron la necesidad de trabajar con cantidades bajas de extractante disuelto en el disolvente en torno a 180 mol/m³ de TOMAC.
- Los estudios de impregnación de la resina demostraron que la concentración de Tomac en la fase resina crece al aumentar la concentración de Tomac en la disolución de impregnación (Tomac+n-hexano) hasta alcanzar un valor constante de saturación de 1110 mol Tomac / m³ resina sin impregnar, por encima de esta concentración, la resina no admite más extractante, presentando un aspecto húmedo y pegajoso después del proceso de impregnación.

- Estudios microcópicos revelaron que no hay cambios significativos de tamaño (diámetro medio) entre la resina XAD-4 impregnada con Tomac y sin impregnar.
- Experimentalmente se demostró que la carga de Tomac en la RIE debe ser un 10% inferior a la concentración máxima admitida por la resina para no apreciar efectos de des-impregnación del extractante.
- La adsorción física de aniones de α-fenilglicina e hidroxilo por la resina XAD-4 sin impregnar fue nula. Este hecho prueba que la extracción de los iones cuando se utiliza RIE se debe exclusivamente al Tomac impregnado en dicha resina.
- En el estudio de extracción de α-fenilglicina, la concentración de aminoácido en fase orgánica o en la resina aumentó al aumentar su concentración en fase acuosa y fue siempre mayor a pH =11. La co-extracción de iones hidroxilo en fase orgánica es mayor a pH = 12 que a pH = 11.

Partiendo de estos resultados, para el proceso híbrido de adsorción extracción reactiva de aminoácidos con RIE se eligió como soporte polimérico Amberlita XAD-4 y como agente extractante TOMAC con una concentración un 25% inferior a la concentración máxima admitida por la resina (790 \pm 10 mol Tomac / m³ resina sin impregnar). La temperatura de operación seleccionada en este trabajo fue de 30° C, ya que a esa temperatura, para las condiciones anteriormente señaladas, se conocen los mecanismos del modelo matemático de equilibrio. Además, se demuestra la necesidad de realizar un estudio fundamental del efecto del pH en la separación y concentración de aminoácidos debido a su carácter anfotérico y para conseguir que se produzca selectivamente la reacción de intercambio iónico con el extractante Tomac inmovilizado en la resina.

5.1 PRODUCTOS UTILIZADOS

En todos los ensayos se utilizó agua ultrapura Milli-Q, los productos fueron de grado reactivo y se emplearon sin purificación previa. Las características de los productos utilizados, así como su procedencia, se detallan a continuación:

DL - *α*-*Fenilglicina* o ácido α-amino-fenilacético es un aminoácido, suministrado por Sigma y Fluka con una pureza superior al 99,8%. A temperatura ambiente es un sólido blanco, altamente inmiscible en agua y soluble en álcalis. Sus propiedades físicas y químicas se detallan en el apartado 2.7.

DL - Ácido Aspartico o ácido aminosuccínico es un aminoácido, suministrado por Fluka con una pureza superior al 99%. A temperatura ambiente es un sólido blanco, soluble en agua, ácidos y álcalis e insoluble en alcoholes. Sus propiedades físicas y químicas se detallan en el apartado 2.8.

L – *Prolina* o ácido 2-pirrolidincarboxílico es un aminoácido de fórmula molecular $C_5H_9NO_2$ con una masa molecular de 115.13 g/mol, fue suministrado por Fluka con una pureza mayor del 99 %. A temperatura ambiente es un sólido blanco, que presenta una gran solubilidad en agua, y es insoluble en eter, butanol e isopropanol. Se empleó como patrón interno en el método de análisis de mezclas de ácido aspártico y α -fenilglicina.

Amberlita XAD-4 es una resina polimérica macroporosa hidrofóbica, de estructura altamente y aromática, formada por un copolímero de estireno - divinilbenceno, suministrada por Merck y Fluka. Es un sólido, con forma de grano tipo bolas, de color amarillo pálido, con una superficie específica de 750 – 780 m²/g, una porosidad de 0,51, un volumen medio de poro de 0,98 ml/g, un diámetro medio de poro de 5 nm, una densidad de partícula de 0,529 g/cm³ (seca) y una densidad de la fase sólida de 1,08 g/cm³ (densidad aparente). El diámetro de partícula seca es de 0,778 mm. Presenta estabilidad térmica de 1 a 120 °C y una estabilidad al pH comprendida entre 1 y 14. Antes de su utilización, para eliminar las impurezas de fabricación, se lavó sucesivamente con metanol, acetona y n-hexano y se secó a vacío a 50 °C. (Komiyama H. et al., 1974; Juang R.S. et al., 1995 a; Juang R.S. et al., 1995 b; Mijangos F. et al., 1998).

Tomac o cloruro de trialquilmetilamonio es una sal de amonio cuaternaria, mezcla de cloruros de trioctil y tridecilmetilamonio, con cloruro de trioctilmetilamonio dominante, con un peso molecular de 404 g/mol, suministrada por Fluka con una pureza mayor del 90%. Es un líquido de color amarillo pálido, con una densidad de 880 kg/m³ a 20 °C y con una viscosidad a 40 °C de 14.5 10^{-1} Pa s (*Chan C. C. et al.,*

1993; Escalante H. et al., 1998; Galan B. et al., 1994; Molinari R. et al., 1992; Yang S. T. et al., 1991).

n-Hexano, empleado para la eliminación de impurezas de la resina o como diluyente en la etapa de impregnación de la resina. De fórmula molecular CH_3 - $(CH_2)_4$ - CH_3 , con una masa molecular de 86.18 g/mol, fue suministrado por Merck con una pureza >99%. Es un líquido incoloro, presenta una densidad de 659,33 kg/m³ a 20 °C, un punto de ebullición de 69 °C, una viscosidad 0,3126 cp a 20 °C y un índice de refracción de 1,37486 a 20 °C. Posee una solubilidad en agua de 0,00123 a 25 °C y una solubilidad de agua en n-hexano de 0,0111 a 20 °C (*Riddick J. A.,1986; Weast R. C., 1994-1995*).

Acetona, utilizada en el lavado de la resina y suministrada por la casa comercial Fluka De formula molecular CH_3 -CO- CH_3 , con una masa molecular de 58,08 g/mol. Presenta una densidad de 0,79 kg/dm³ a temperatura ambiente, un punto de ebullición de 56,5 °C, un punto de fusión de –94 °C y un índice de refracción de 1.3591 a 20 °C.

Metanol, empleado en el lavado de resina. De fórmula molecular CH_3 -OH con una masa molecular de 32.04 g/mol, fue suministrado por Lab-Scan con una pureza del 99.9 %. Presenta una densidad de 791 kg/m³ a 20 °C, un punto de fusión de -97,8 °C y un punto de ebullición de 64,5 °C.

Hidróxido de sodio, sosa cáustica, de fórmula molecular NaOH y con peso molecular 40,01 g/mol. Está formada por un 2,52 % de hidrógeno, un 57,48 % de sodio y un 40 % de oxígeno. Es un sólido de color blanco, que presenta una densidad a 25 °C de 2130 kg/m³ y un punto de fusión de 328 °C. El hidróxido de sodio utilizado fue suministrado por Panreac (PACS-ISO) con una pureza del 97 %.

Ácido clorhídrico, es un líquido incoloro de fórmula HCI, suministrado por Panreac con una riqueza del 37 % (RFE, BP, Ph. Eur.)PRS-CODEX. Presenta una densidad a 15 °C mayor de 1190 kg/m³.

Ácido fosfórico. Ácido ortofosfórico, de fórmula molecular H_3PO_4 fue suministrado por Aldrich con una pureza del 85 % (A.C.S. Reagent). Es un sólido cristalino delicuescente, pero generalmente se le encuentra en disoluciones concentradas (hasta un 90 %) con aspecto líquido. Tiene un peso molecular de 98 g/mol. Está formado por un 3,09 % de hidrógeno, un 65,31 % de oxígeno y un 31,61 % de fósforo. Presenta una densidad a 25 °C de 1685 kg/m³.

5.2 DISPOSITIVOS EXPERIMENTALES

5.2.1 Ensayos de equilibrio

Para poner en contacto las fases acuosa y resina en la determinación de los datos de equilibrio, se emplearon erlenmeyers de 100 cm^3 de capacidad.

La agitación de las fases se realizó durante 24 horas con un agitador orbital (New Brunswick Scientific. modelo G25) con agitación suave de 150 rpm, para evitar la rotura de las partículas de resina por fuerzas mecánicas y a una temperatura de 30°C. El agitador orbital dispone de un sistema de termostatización con aire, que permite mantener constante la temperatura durante el proceso de extracción con una precisión de \pm 0,1 °C.

La separación de las fases una vez alcanzado el equilibrio, se realiza por filtración utilizando jeringuillas con filtros de celulosa regenerada con 0,45 μ m de diámetro de poro.

Fig. 9: Agitador orbital New Brunswick Scientific. Modelo G25

5.2.2 Ensayos cinéticos en tanques agitados

Los experimentos cinéticos se realizaron en tanques agitados de 0,5 litros de capacidad en cuyo interior se pusieron en contacto la fase acuosa y resina, y cuyo esquema se representa en la Fig. 10.

Para mantener la temperatura constante durante el proceso cinético, el tanque va provisto de un encamisado exterior por el que circula agua

procedente de un termostato. El tanque está cerrado al exterior con una tapa de base esmerilada. La tapa está provista de varios orificios por los que se introdujeron un termómetro, un agitador de hélice y una sonda de pH con el objeto de controlar las variables del proceso.

Fig. 10: Tanque utilizado en los estudios cinéticos.

La agitación de las fases se realizó con un agitador de hélice unido a un motor, modelo ALC quit-S Conelec HD-250 y se realizó suavemente a 200 rpm, con el fin de evitar la rotura de las bolas de resina y la desimpregnación de la RIE.

La temperatura del proceso se controló mediante un termómetro introducido en el tanque, fue constante de 30°C, con una precisión de \pm 0,1 °C.

El pH de la disolución acuosa a lo largo del ensayo se determinó con un pH-metro Crisol GLP 21 dotado de sonda de temperatura, con una precisión de $\pm 0,01$.

5.3 PROCEDIMIENTO EXPERIMENTAL

5.3.1 Lavado e impregnación de la resina

Antes de proceder al proceso de impregnación, se realiza una primera etapa de acondicionamiento de la resina para eliminar sus impurezas de fabricación y restos de monómeros de estireno no polimerizados, consistente en un lavado sucesivo con metanol, agua Milli-Q, acetona y n-hexano. El secado de la resina se realiza a vacío a una temperatura de 55°C en un rotavapor Heidolph modelo WB2000 (*Juang R. S. et al., 1995; Mijangos F. et al., 1998*).

Posteriormente, cantidades conocidas de Amberlita XAD-4 lavada y seca se pone en contacto con diferentes disoluciones de Tomac, disuelto n-hexano, hasta que toda la fase orgánica fue completamente adsorbida por la resina. Este paso se realizó en un horno a 60°C durante aproximadamente 48 horas y con agitación manual periódica, hasta conseguir la completa evaporación del diluyente (método de impregnación descrito en el apartado 4.2.3).

Un estudio microscópico ha demostrado que la RSI y la RIE tienen el mismo radio de 0,389 mm.

5.3.2 Datos de equilibrio

Los datos de equilibrio de extracción de ácido aspártico y α -fenilglicina de sus mezclas binarias se obtuvieron poniendo en contacto 0,5 g de Amberlita XAD-4 impregnada con Tomac (RIE) o sin impregnar (RSI) con 0,05 dm³ de fase acuosa a distintos pHs (pH= 5, 11 y 12), con concentración variable en ambos aminoácidos y a distintas proporciones (C_{A(asp)}/C_{A(pgly)}=1/1, 1/2, 1/3, 2/1, 3/1). La concentración de Tomac en la resina fue de 791,56 ± 6,99 mol/m³ de RSI (resina sin impregnar) en todos los experimentos realizados con RIE. El pH de las fases acuosas se modificó por adición de disoluciones de NaOH ó HCI.

La proporción masa de resina / volumen de disolución, expresada en kg/m³, es de 10/1. Las isotermas de equilibrio se obtuvieron bajo las condiciones iniciales reflejadas en las Tabla 2.

Experimento	рНі	$\frac{C_{A(asp)i}}{C_{A(pgly)i}}$	$\frac{\left[A_{asp}^{-}\right]_{i}}{\left[A_{pgly}^{-}\right]_{i}}$	$\frac{\left[A_{asp}^{2-}\right]_{i}}{\left[A_{pgly}^{-}\right]_{i}}$
Ι	5,03±0,06	1/1	1/1	0/1
		1/2	1/2	0/2
		1/3	1/3	0/3
		2/1	2/1	0/1
		3/1	3/1	0/1
II	11,06±0,04	1/1	0/1	1/1
		1/2	0/2	1/2
		1/3	0/3	1/3
		2/1	0,1/1	1,9/1
		3/1	0,2/1	2,8/1
III	12,02±0,06	1/1	0/1	1/1
		1/2	0/2	1/2
		1/3	0/3	1/3
		2/1	0/1	2/1
		3/1	0/1	3/1

Tabla 2. Condiciones iniciales para la obtención de las isotermas de equilibrio de extracción de ácido aspártico y α -fenilglicina en sus mezclas binarias con RIE a 30°C. $\left[\overline{Q^+Cl^-}\right]_i = 791,56\pm6,99 \text{ mol/m}^3 \text{ RSI}.$

La agitación de las fases se realizó durante 24 horas con el agitador orbital mostrado en la Fig. 9 a 150 rpm. Dicho agitador posee un sistema de termostatización de aire que permitió operar a una temperatura constante de $30,0 \pm 0,1$ °C. Una vez alcanzado el equilibrio las fases se separan por filtración y se determina el pH y la concentración de cada aminoácido en el equilibrio.

La concentración de α -fenilglicina y ácido aspártico en fase acuosa se determinó con el método descrito en el apartado 5.3.5 y en fase resina se calculó por balance de materia.

Los datos experimentales de los equilibrios de extracción individual de α -fenilglicina y ácido aspártico se determinaron en trabajos previos bajo las mismas condiciones de proceso (*Ruiz M. O. et al., 2002; Horta A. I. et al., 2005*).

5.3.3 Datos cinéticos en baños agitados

Los datos cinéticos de extracción de ácido aspártico y de las mezclas binarias de α -fenilglicina y ácido aspártico con resina Amberlita XAD-4 impregnada con Tomac, se obtuvieron a 30 °C, utilizando el dispositivo experimental mostrado en la Fig. 10. Se seleccionó como velocidad de agitación constante 220 rpm, ya que esta velocidad proporcionaba una dispersión homogénea de la RIE en la fase acuosa. Se comprobó experimentalmente que la pérdida de Tomac de la RIE a esta velocidad de agitación es despreciable. Sin embargo, con velocidades superiores a 350 rpm se observó la rotura de las partículas de RIE. Los datos experimentales de las cinéticas de extracción de α -fenilglicina se determinaron en un trabajo previo bajo las mismas condiciones del proceso. (*Ruiz M. O. et. al., 2002*).

Los experimentos cinéticos comienzan con la agregación de 5 g de RIE en 0,5 dm³ de disolución acuosa y finaliza cuando el sistema alcanza el equilibrio. Se tomaron muestras de fase acuosa a intervalos de tiempo adecuados durante todo el proceso cinético, analizándose las concentraciones de aminoácido y el pH.

Los datos cinéticos se obtuvieron a la temperatura de $30 \pm 0,1$ °C bajo las condiciones iniciales mostradas en las Tablas 3 y 4.

Experimento	pHi	$C_{A(asp)i}(mol/m^3)$
Ι	5,06±0,07	7,37
		11,11
		14,64
		21,86
II	8,96±0,02	15,29
III	11,04±0,06	7,45
		11,46
		18,94
		29,33
IV	12,02±0,07	9,58
		11,19
		14,64
		24,69

Tabla 3. Condiciones iniciales de los experimentos cinéticos de extracción de ácido aspártico con RIE a 30° C. $\left|\overline{Q^+Cl^-}\right|_i = 782,93\pm19,04 \text{ mol/m}^3$ RSI.

Tabla 4. Condiciones iniciales de los experimentos cinéticos de extracción de ácido aspártico y α -fenilglicina de sus mezclas con RIE a 30 °C. $\left|\overline{Q^+Cl^-}\right|_i = 765,07\pm10,24 \text{ mol/m}^3 \text{ RSI.}$

Experimento	pHi	C _{A(asp)i} (mol/m ³)	C _{A(pgly)i} (mol/m ³)
Ι	11,04±0,05	6,52	6,68
		13,11	6,74
		19,58	6,83
		6,31	12,38
II	12,02±0,02	7,65	8,10

La concentración de aminoácido en la fase acuosa inicial y en cada muestra del proceso cinético, se analizó por el procedimiento descrito en el apartado 5.3.4 para los experimentos de la Tabla 3, y en el apartado 5.3.5 para los experimentos de la Tabla 4.

Las experiencias se realizaron sólo con RIE ya que previamente se comprobó que bajo idénticas condiciones de pH y temperatura, la adsorción de ácido aspártico y de α -fenilglicina con la resina Amberlita XAD-4 sin impregnar es despreciable.

5.3.4 Determinación de la concentración de ácido aspártico

La concentración de ácido aspártico en fase acuosa, se determinó utilizando cromatografía líquida de alta resolución, con un HPLC Beckman, modelo System Gold, con detector UV-VIS. Se empleó una columna C-18 de fase reversa, Inertsil ODS-3V marca GL Sciences Inc, con partículas esféricas de sílice de 5 μ m y tamaño de poro de 101 Å, con un diámetro interno de 4,6 mm y longitud de 250 mm. Se seleccionó el detector de UV a la longitud de onda de 225 nm y una fase móvil consistente en una disolución 0,1 % en volumen de ácido fosfórico en agua milli-Q con un flujo de 1 ml/min.

La limpieza de la columna se realizó periódicamente con disoluciones de acetonitrilo:agua en proporción 65:35.

La concentración de aminoácido en fase resina se determinó por balance de materia. Todas las muestras se analizaron por triplicado, bajo condiciones idénticas. La precisión en la estimación de la composición en mol/m³ fue de \pm 0,001.

5.3.5 Determinación de la concentración de α -fenilglicina y ácido aspártico en sus mezclas binarias

La concentración de α -fenilglicina y ácido aspártico de sus mezclas binarias en fase acuosa, se determinó utilizando cromatografía líquida de alta resolución con el HPLC descrito en el apartado 5.3.4. Se empleó la misma columna y las mismas condiciones de análisis descritas anteriormente en el apartado 5.3.4. Para aumentar la precisión del método se utilizó como patrón interno una disolución de 347,43 mol/m³ de L-prolina en proporción muestra:prolina, 4:1.

La limpieza de la columna se realizó periódicamente con disoluciones de acetonitrilo:agua en proporción 65:35.

La concentración de los aminoácidos en fase resina se determinó por balance de materia. Todas las muestras se analizaron por triplicado, bajo idénticas condiciones. La precisión en la estimación de la composición en mol/m³ para cada aminoácido fue de \pm 0,001.

5.3.6 Determinación del pH

La medida del pH de las fases acuosas iniciales se realizó utilizando un pH-metro Crison GLP 21 de sobremesa con sonda de temperatura.

El electrodo de pH del tipo 52-02 se utiliza para medios acuosos en general, con medidas de pH entre 0 y 12, y temperaturas de operación entre 0 y 80°C. El sistema de referencia empleado por el electrodo es alambre de Ag/AgCl y el electrolito: Crisolyt-A (KCl 3M+AgCl). Algunas especificaciones técnicas del pH-metro son:

- Error de medida: ≤0,02 pH; ≤1mV; ≤0,3°C (±1 dígito)
- Reproducibilidad: ± 0,01 pH; ± 1mV; ±0,1°C
- Compensación automática de temperatura con sonda de temperatura
- Condiciones ambientales: T^a de 5 a 40°C, humedad relativa máxima: 95% no condensada.

6. RESULTADOS EXPERIMENTALES Y DISCUSIÓN

6.1 EQUILIBRIOS DE EXTRACCIÓN DE AMINOÁCIDOS DE SUS MEZCLAS BINARIAS CON RIE

6.1.1 Datos experimentales de las isotermas de equilibrio

La concentración total de ácido aspártico y de α -fenilglicina en la fase resina, expresada en mol/m³ resina sin impregnar, se puede calcular con el siguiente balance de materia:

$$\overline{C}_{A} = (C_{Ai} - C_{A})\frac{V}{\overline{V}}$$
(6.1)

donde C_A es la concentración total o analítica de aminoácido calculada por el método detallado en el apartado 5.3.5, V es el volumen de las fases. El subíndice i hace referencia a condición inicial y el superíndice — hace referencia a la fase resina.

La concentración de las especies iónicas de los aminoácidos presentes en la mezcla acuosa se puede determinar teniendo en cuenta las constantes de disociación del aminoácido en la fase acuosa (K_{a1}, K_{a2}, K_{a3}), la concentración analítica total de cada aminoácido y el pH. Así, las concentraciones de las especies iónicas del ácido aspártico se pueden calcular con las siguientes ecuaciones:

$$\left[A_{asp}^{+}\right] = \frac{C_{A(asp)}\left[H^{+}\right]^{3}}{\left[H^{+}\right]^{3} + K_{a1}\left[H^{+}\right]^{2} + K_{a1}K_{a2}\left[H^{+}\right] + K_{a1}Ka_{2}K_{a3}}$$
(6.2)

$$\left[A_{asp}^{+/-}\right] = \frac{C_{A(asp)}\left[H^{+}\right]^{2}K_{a1}}{\left[H^{+}\right]^{3} + K_{a1}\left[H^{+}\right]^{2} + K_{a1}K_{a2}\left[H^{+}\right] + K_{a1}Ka_{2}K_{a3}}$$
(6.3)

$$\left[A_{asp}^{-}\right] = \frac{C_{A(asp)}\left[H^{+}\right] K_{a1}K_{a2}}{\left[H^{+}\right]^{3} + K_{a1}\left[H^{+}\right]^{2} + K_{a1}K_{a2}\left[H^{+}\right] + K_{a1}Ka_{2}K_{a3}}$$
(6.4)

$$\left[A_{asp}^{2-}\right] = \frac{C_{A(asp)}K_{a1}K_{a2}K_{a3}}{\left[H^{+}\right]^{3} + K_{a1}\left[H^{+}\right]^{2} + K_{a1}K_{a2}\left[H^{+}\right] + K_{a1}Ka_{2}K_{a3}}$$
(6.5)

y la concentración de las especies iónicas de α -fenilglicina se determinan con las siguientes ecuaciones:

$$\left[A_{pgly}^{+}\right] = \frac{C_{A(pgly)}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2} + K_{a1}\left[H^{+}\right] + K_{a1}K_{a2}}$$
(6.6)

$$\left[A_{pgly}^{+/-}\right] = \frac{C_{A(pgly)}\left[H^{+}\right] K_{a1}}{\left[H^{+}\right] + K_{a1}\left[H^{+}\right] + K_{a1}K_{a2}}$$
(6.7)

$$\left[A_{pgly}^{-}\right] = \frac{C_{A(pgly)}K_{a1}K_{a2}}{\left[H^{+}\right]^{2} + K_{a1}\left[H^{+}\right] + K_{a1}K_{a2}}$$
(6.8)

Las isotermas de equilibrio, determinadas bajo las condiciones experimentales mencionadas en el apartado 5.3.2 y en la Tabla 2 $(\left[Q^+Cl^-\right]_i = 791,56\pm6,99 \text{ mol/m}^3 \text{ RSI}; \text{ temperatura constante de } 30^\circ\text{C}; \text{ pH}_i = 5, 11 \text{ y } 12; C_{A(asp)}/C_{A(pgly)}=1/1, 1/2, 1/3, 2/1, 3/1), se muestran en las Tablas A1-A15 y en las figuras 11-15.$

Asimismo, se determinaron las isotermas de equilibrio de reparto de ambos aminoácidos con RSI, bajo las mismas condiciones experimentales. Los resultados experimentales mostraron que la RSI no adsorbe aminoácido ni iones hidroxilo, así, se puede considerar que no hay interacción entre la cadena orgánica del aminoácido y la matriz sólida de la resina, lo cual puede deberse a efectos de repulsión entre la matriz polimérica y los radicales que presentan carga.

La extracción de α -fenilglicina resultó despreciable a pH_i=5, al no existir especie aniónica extraíble, A⁻, que pueda intercambiarse con los iones cloruro del extractante Tomac, y únicamente se observa extracción de ácido aspártico en los experimentos de extracción conjunta de ambos aminoácidos con RIE. Además, en la figura 11 se observa que a pH_i=5 las isotermas de extracción de ácido aspártico desde las mezclas binarias (experimento I de la Tabla 2), presentan el mismo grado de extracción de ácido aspártico y consecuentemente, su extracción no depende de la presencia de α -fenilglicina.

En las figuras 12 y 13 se representan las isotermas de equilibrio con RIE a pH=11 para la extracción conjunta de ácido aspártico y fenilglicina respectivamente, correspondiente al experimento II de la Tabla 2. En dichas figuras se observa que la extracción de cada aminoácido depende de su proporción en la mezcla, y más concretamente, al aumentar su proporción en la mezcla se consigue aumentar su grado de extracción.

Figura 11. Isotermas de equilibrio de extracción de ácido aspártico de mezclas de ácido aspártico y α -fenilglicina con RIE a 30°C para el experimento I (pHi = 5,03±0,06) de la Tabla 2. $\left[\overline{Q^+Cl^-}\right]_i = 791,56\pm6,99 \text{ mol/m}^3 \text{ RSI.}$

Figura 12. Isotermas de equilibrio de extracción de ácido aspártico de mezclas de ácido aspártico y α -fenilglicina con RIE a 30°C para el experimento II (pHi = 11,06±0,04) de la Tabla 2. $\left[\overline{Q^+Cl^-}\right]_i$ = 791,56±6,99 mol/m³ RSI.

Figura 13. Isotermas de equilibrio de extracción de α -fenilglicina de mezclas de ácido aspártico y α -fenilglicina con RIE a 30°C para el experimento II (pHi = 11,06±0,04) de la Tabla 2.; $\left[\overline{Q^+Cl^-}\right]_i = 791,56\pm6,99 \text{ mol/m}^3 \text{ RSI.}$

Al igual que a pH_i=11, a pH_i=12 se obtiene que la extracción de cada aminoácido depende de su proporción en la mezcla como puede observarse en las figuras 14 y 15 que muestran (isotermas de equilibrio a pH_i=12 para la extracción conjunta de ácido aspártico y fenilglicina respectivamente, del experimento III de la Tabla 2.

Figura 14. Isotermas de equilibrio de extracción de ácido aspártico de mezclas de ácido aspártico y α -fenilglicina con RIE a 30°C para el experimento III (pHi = 12,02±0,06) de la Tabla 2.; $\left|\overline{Q^+Cl^-}\right|_i = 791,56\pm6,99 \text{ mol/m}^3 \text{ RSI.}$

Figura 15. Isotermas de equilibrio de extracción α -fenilglicina de mezclas de ácido aspártico y α -fenilglicina con RIE a 30°C para el experimento III (pHi = 12,02±0,06) de la Tabla 2.; $\overline{Q^+Cl^-}_{i}$ = 791,56±6,99 mol/m³ RSI.

Una comparación de las figuras 11-15 demuestra que el mayor grado de extracción de los aminoácidos en estudio se obtiene a un pH \geq 11, seleccionándose pH_i= 11 y 12 para posteriores experimentos.

En la figura 16 se representa la suma de la concentración de ácido aspártico y fenilglicina en la resina frente a la suma concentración de ambos aminoácidos en la fase acuosa en el equilibrio, para los experimentos II y III de la Tabla 2. En esta figura se observa que la extracción total aminoácido es similar a pH_i=11 y 12 y crece al aumentar proporción de α -fenilglicina en la mezcla y al disminuir proporción de ácido aspártico.

Figura 16. Isotermas de equilibrio de extracción total de ácido aspártico y α-fenilglicina con RIE a 30°C para los experimentos II (pHi = 11,06±0,04) y III (pHi = 12,02±0,06) de la Tabla 2.

6.1.2 Modelo para la estimación de las isotermas de equilibrio a pH_i =5

Como se ha comentado anteriormente se puede considerar:

1) La extracción de α -fenilglicina resultó despreciable a pH_i=5<pK_{a2}=9,00, al no existir especie aniónica extraíble, A⁻, que pueda intercambiarse con los iones cloruro del extractante Tomac.

2) La resina Amberlita XAD-4 sin impregnar produce adsorciones despreciables de ácido aspártico y de α -fenilglicina, por tanto se puede suponer que la adsorción física de los aminoácidos debida a la matriz polimérica es despreciable frente a la extracción reactiva con el extractante.

3) A pH= 5, se puede suponer que la adsorción y la co-extracción de iones hidroxilo es despreciable.

Bajo estas consideraciones se puede considerar que la extracción del ácido aspártico de las mezclas binarias de ácido aspártico y fenilglicina con RIE, puede describirse como un mecanismo de extracción reactiva debida únicamente al Tomac impregnado en los poros de la resina y que se detalla con las siguientes ecuaciones de equilibrio:

i) Disociación de ácido aspártico en la disolución acuosa con $pK_{a2(asp)}=3,9< pH< pK_{a3(asp)}=9,8$:

$$A_{asp}^{+} + H_{2}O \leftrightarrow A_{asp}^{+/-} + H_{3}O^{+} \qquad K_{a1(asp)} = \frac{\left[A_{asp}^{+}\right] \left[H^{+}\right]}{\left[A_{asp}^{+}\right]} \qquad (6.9)$$
$$A_{asp}^{+/-} + H_{2}O \leftrightarrow A_{asp}^{-} + H_{3}O^{+} \qquad K_{a2(asp)} = \frac{\left[A_{asp}^{-}\right] \left[H^{+}\right]}{\left[A_{asp}^{+/-}\right]} \qquad (6.10)$$

ii) Reacción de intercambio iónico del ácido aspártico con el Tomac impregnado en la resina:

$$A_{asp}^{-} + \overline{Q^{+}Cl^{-}} \leftrightarrow \overline{Q^{+}A_{asp}^{-}} + Cl^{-} \qquad K_{p1(asp)} = \frac{\left[\overline{Q^{+}A_{asp}^{-}}\right] \left[Cl^{-}\right]}{\left[\overline{Q^{+}Cl^{-}}\right] \left[A_{asp}^{-}\right]} \qquad (6.11)$$

donde K_{p1} es la constante de equilibrio que rige el proceso de intercambio iónico del aminoácido con el Tomac inmovilizado en los poros de la resina, el subíndice *asp* hace referencia al ácido aspártico, y el superíndice — hace referencia a la fase resina.

Asumiendo que no hay agregación de las especies extraídas en fase resina y considerando que la solubilidad del Tomac en fase acuosa es despreciable, los balances de materia aplicados al Tomac y a los iones cloruro pueden expresarse mediante las siguientes ecuaciones:

$$\left[\overline{\mathbf{Q}^{+}\mathbf{C}\mathbf{I}^{-}}\right]_{\mathbf{i}} = \left[\overline{\mathbf{Q}^{+}\mathbf{C}\mathbf{I}^{-}}\right] + \left[\overline{\mathbf{Q}^{+}\mathbf{A}_{asp}^{-}}\right]$$
(6.12)

$$\left[\mathrm{Cl}^{-}\right] = \frac{\overline{\mathrm{V}}}{\mathrm{V}} \left\{ \left[\overline{\mathrm{Q}^{+}\mathrm{A}_{\mathrm{asp}}^{-}} \right] \right\}$$
(6.13)

donde, $\left[\overline{Q^+Cl^-}\right]$ es el agente extractante Tomac, $\left[\overline{Q^+A_{asp}^-}\right]$ es la sal de amónio del aminoácido. Las concentraciones de las especies que intervienen en el proceso de extracción para el experimento I de la Tabla 2 se muestran en las Tablas A1-A5 del apéndice A.

En la figura 17 se representa el producto $\left[\overline{Q^+A^-_{asp}}\right]$ [CI⁻] frente al producto $\left[\overline{Q^+CI^-}\right]$ [A^-_{asp}] para el experimento I de la Tabla 2. Mediante el ajuste de los resultados experimentales a una línea recta se obtiene del valor de la pendiente la constante de equilibrio K_{p1(asp)}=0,022±0,003 con una regresión lineal de 0,993.

Figura 17. Determinación de la constante de equilibrio Kp_{1(asp)} para el experimento I (pHi = 5,03±0,06) de la Tabla 2. Símbolos: datos experimentales. Línea sólida: datos estimados con la Ec. (6.11).

Combinando las Ecs. (6.11), (6.12) y (6.13) se obtiene el siguiente modelo de equilibrio:

$$\left[\overline{Q^{+}A_{asp}^{-}}\right] = \sqrt{\left(\frac{VK_{pl}\left[A_{asp}^{-}\right]}{2\overline{V}}\right)^{2} + \frac{VK_{pl}\left[A_{asp}^{-}\right]}{\overline{V}}\left[\overline{Q^{+}C\Gamma}\right]}{\overline{V}} - \frac{VK_{pl}\left[A_{asp}^{-}\right]}{2\overline{V}}}$$
(6.14)

En la figura 18 se muestra la buena concordancia existente entre los datos experimentales (símbolos), y los estimados con la Ec. (6.14) (curva sólida) para el experimento I de la Tabla 2. El error medio entre los datos experimentales y predichos calculado en la Ec. (6.15) fue inferior al 3% en todos los sistemas del experimento I.

% error promediado =
$$\frac{100}{j} \sum_{1}^{j} \frac{\left(\left(\overline{C}_{A_{Cal}} - \overline{C}_{A_{Exp}}\right)^{2}\right)^{1/2}}{\overline{C}_{A_{Exp}}}$$
 (6.15)

Figura 18. Isotermas de equilibrio de extracción de ácido aspártico de mezclas de ácido aspártico y α -fenilglicina con RIE a 30°C para el experimento I (pHi = 5,03±0,06) de la Tabla 2. $\left[\overline{Q^+Cl^-}\right]_i$ = 791,56±6,99 mol/m³ RSI. Símbolos: datos experimentales. Línea sólida: datos estimados con la Ec. (6.14).

6.1.3 Modelo para la estimación de las isotermas de equilibrio a $pH_i = 11 y 12$.

Experimentalmente se ha comprobado que no hay disminución del pH durante el proceso de extracción y por tanto la adsorción de los iones hidroxilo debida a la matriz polimérica y la co-extracción de los mismos debida a la reacción de intercambio iónico con el extractante Tomac es despreciable.

La extracción simultánea de ácido aspártico y α-fenilglicina de sus mezclas binarias con RIE, puede describirse como un mecanismo de extracción reactiva debida únicamente al Tomac impregnado en los poros de la resina, puesto que experimentalmente se demostró que la adsorción de los aminoácidos debida a la matriz polimérica es despreciable a todos los pH ensayados. Las ecuaciones de equilibrio que describen este mecanismo de extracción son:

i) Disociación de α -fenilglicina en la disolución acuosa con pH>pK_{a2(pgly)}=9:

1 11 1

$$A_{pgly}^{+} + H_{2}O \leftrightarrow A_{pgly}^{+/-} + H_{3}O^{+} \qquad K_{a1} = \frac{\left[A_{pgly}^{+/-}\right] \left[H^{+}\right]}{\left[A_{pgly}^{+}\right]} \qquad (6.16)$$
$$A_{pgly}^{+/-} + H_{2}O \leftrightarrow A_{pgly}^{-} + H_{3}O^{+} \qquad K_{a2} = \frac{\left[A_{pgly}^{-}\right] \left[H^{+}\right]}{\left[A_{pgly}^{+/-}\right]} \qquad (6.17)$$

ii) Disociación de ácido aspártico en la disolución acuosa con pH>pK_{a3(asp)}=9,8:

$$A_{asp}^{+} + H_{2}O \leftrightarrow A_{asp}^{+/-} + H_{3}O^{+} \qquad K_{a1(asp)} = \frac{\left[A_{asp}^{+/-}\right]\left[H^{+}\right]}{\left[A_{asp}^{+}\right]} \qquad (6.9)$$
$$A_{asp}^{+/-} + H_{2}O \leftrightarrow A_{asp}^{-} + H_{3}O^{+} \qquad K_{a2(asp)} = \frac{\left[A_{asp}^{-}\right]\left[H^{+}\right]}{\left[A_{asp}^{+/-}\right]} \qquad (6.10)$$

$$A_{asp}^{-} + H_2O \leftrightarrow A_{asp}^{2-} + H_3O^{+} \qquad K_{a3(asp)} = \frac{\left[A_{asp}^{2-}\right]\left[H^{+}\right]}{\left[A_{asp}^{-}\right]} \qquad (6.18)$$

iii) Reacción de intercambio iónico de α -fenilglicina con el Tomac impregnado en la resina:

$$A_{pgly}^{-} + \overline{Q^{+}Cl^{-}} \leftrightarrow \overline{Q^{+}A_{pgly}^{-}} + Cl^{-} \qquad K_{p1(pgly)} = \frac{\left[\overline{Q^{+}A_{pgly}^{-}}\right] \left[Cl^{-}\right]}{\left[\overline{Q^{+}Cl^{-}}\right] \left[A_{pgly}^{-}\right]} \quad (6.19)$$

iv) Reacción de intercambio iónico del ácido aspártico con el Tomac impregnado en la resina:

$$A_{asp}^{2-} + 2\overline{Q^{+}Cl^{-}} \leftrightarrow \overline{Q_{2}^{+}A_{asp}^{2-}} + 2Cl^{-} \qquad K_{p2(asp)} = \frac{\left[\overline{Q_{2}^{+}A_{asp}^{2-}}\right] \left[Cl^{-}\right]^{2}}{\left[\overline{Q^{+}Cl^{-}}\right]^{2} \left[A_{asp}^{2-}\right]} \qquad (6.20)$$

donde $K_{p1(pgly)}$ y $K_{p2(asp)}$ son las constantes de equilibrio que rigen el proceso de intercambio iónico, los subíndices *asp* y *pgly* hacen referencia al aminoácido fenilglicina y al ácido aspártico, respectivamente y el superíndice — hace referencia a la fase resina.

Asumiendo que no hay agregación de las especies extraídas en fase resina y considerando que la solubilidad del Tomac en fase acuosa es despreciable, los balances de materia aplicados al Tomac y a los iones cloruro pueden expresarse mediante las siguientes ecuaciones:

$$\left[\overline{\mathsf{Q}^{+}\mathsf{C}\mathsf{I}^{-}}\right] = \left[\overline{\mathsf{Q}^{+}\mathsf{C}\mathsf{I}^{-}}\right] + 2\left[\overline{\mathsf{Q}_{2}^{+}\mathsf{A}_{\mathsf{asp}}^{2^{-}}}\right] + \left[\overline{\mathsf{Q}^{+}\mathsf{A}_{\mathsf{pgly}}^{-}}\right]$$
(6.21)

$$\left[CI^{-}\right] = \frac{\overline{V}}{V} \left\{ \left[\overline{Q^{+}A_{pgly}^{-}} \right] - 2 \left[\overline{Q_{2}^{+}A_{asp}^{2-}} \right] \right\}$$
(6.22)

donde, $\left[\overline{Q^+Cl^-}\right]$, $\left[\overline{Q_2^+A_{asp}^{2-}}\right]$, $\left[\overline{Q^+A_{pgly}^-}\right]$ son las concentraciones de Tomac, de ácido aspártico y de α -fenilglicina en fase resina, respectivamente.

Las concentraciones de las especies que intervienen en el proceso de extracción para el experimento II y III de la Tabla 2 se muestran en la Tablas A6-A15 del apéndice A.

Las constantes de equilibrio $K_{p1(pgly)}$ y $K_{p2(asp)}$ se determinaron con la representación lineal de los datos de equilibrio de los experimentos II y III mostradas en las figuras 19 y 20. Los valores de $K_{p1(pgly)}$ y $K_{p2(asp)}$ se muestran en la Tabla 5.

Figura 19. Determinación de la constante de equilibrio $\text{Kp}_{1(\text{pgly})}$ para los experimentos II (pHi = 11,06±0,04) y III (pHi = 12,02±0,06) de la Tabla 2. $\overline{[Q^+Cl^-]}_i$ = 791,56±6,99 mol/m³ RSI. Símbolos: datos experimentales; línea sólida: datos estimados con la Ec.(6.19).

Figura 20. Determinación de la constante de equilibrio $Kp_{2(asp)}$ para los experimentos II (pHi = 11,06±0,04) y III (pHi = 12,02±0,06) de la Tabla 2. $\left[\overline{Q^+Cl^-}\right]_i =$ 791,56±6,99 mol/m³ RSI. Símbolos: datos experimentales; línea sólida: datos estimados con la Ec. (6.20).

Combinando las Ecs. (6.19)-(6.22) se obtiene el siguiente modelo de equilibrio para estimar la concentración total de cada uno de los aminoácidos presentes en la mezcla:

$$\left[\overline{Q_{2}^{+}A_{asp}^{2-}}\right] = G \frac{V}{2\overline{V}} \left\{ \frac{1}{6} i^{1/3} - \frac{2}{3} \frac{h - \left(\frac{V}{\overline{V}}\right)^{2} - h^{2}\left(\frac{\overline{V}}{V}\right)^{2}}{i^{1/3}} - \frac{1}{3}\left(\frac{V}{\overline{V}} + \frac{\overline{V}}{V}h\right) \right\}^{2}$$
(6.23)

$$\left[\overline{Q^{+}A_{pgly}^{-}}\right] = hG\left\{\frac{1}{6}i^{1/3} - \frac{2}{3}\frac{h - \left(\frac{V}{\overline{V}}\right)^{2} - h^{2}\left(\frac{\overline{V}}{V}\right)^{2}}{i^{1/3}} - \frac{1}{3}\left(\frac{V}{\overline{V}} + \frac{\overline{V}}{V}h\right)\right\}$$
(6.24)

donde los parámetros G, h, i se definen con las siguientes ecuaciones:

$$G = 2K_{p2(asp)} \left[A_{asp}^{2-} \right] \frac{\overline{V}}{V}$$
(6.25)

$$h = \frac{K_{p1(pgly)} \left[A_{pgly}^{-} \right]}{G}$$
(6.26)

$$i = \frac{12h\left(h\overline{v}^{2} + v^{2}\right)}{v\overline{v}} + \frac{108\left[Q^{+}Cl^{-}\right]_{i}}{G} - \frac{8(\overline{v}^{6}h^{3} + v^{6})}{(v\overline{v})^{3}} + \frac{12\sqrt{3}}{4h^{3} - \frac{h^{2}\left(\overline{v^{2}}h + v^{2}\right)^{2}}{(v\overline{v})^{2}} + \frac{\left[Q^{+}Cl^{-}\right]_{i}}{G} \left[\frac{27\left[Q^{+}Cl^{-}\right]_{i}}{G} + \frac{18h\left(\overline{v}^{2}h + v^{2}\right)}{v\overline{v}} - \frac{4\left(\overline{v}^{2}h + v^{2}\right)^{3}}{(v\overline{v})^{3}}\right]$$
(6.27)

En la figura 21 para el ácido aspártico y en la figura 22 para α -fenilglicina se muestra la buena concordancia entre las isotermas de equilibrio experimentales (símbolos) y estimadas con el modelo de equilibrio Ecs. (6.23)-(6.27) (líneas sólidas). El error medio calculado en la Ec. (6.15) fue inferior al 3,4 % para todos los sistemas de los experimentos II y III de la Tabla 2. Por otra parte, en estas figuras se observaron pequeñas diferencias de extracción de ambos aminoácidos en las proporciones $C_{A(asp)i}/C_{A(pgly)i} = 2/1$ y 3/1 debido a que a estos pHs las proporciones de especies extraíbles de aminoácido $(\left[A_{asp}^{2-}\right]_i/\left[A_{pgly}^{-}\right]_i)$ son distintas, resultando $\left[A_{asp}^{2-}\right]_i/\left[A_{pgly}^{-}\right]_i = 1,9/1, 2,8/1$

para pH = 11, y $\left[A_{asp}^{2-}\right]_{i}/\left[A_{pgly}^{-}\right]_{i}$ = 2/1, 3/1 para pH=12. Así, con estos resultados se puede concluir que a pHi=11 y 12 no existen grandes diferencias en el grado de extracción de ambos aminoácidos y únicamente se apreciaron diferencias cuando la proporción de ácido aspártico es elevada en la mezcla.

Tabla 5. Constantes de equilibrio y regresiones lineales de los experimentos de equilibrio de ácido aspártico y α-fenilglicina en mezclas binarias con RIE a 30°C, mostrados en la Tabla 2.

Experimentos	$K_{p1(asp)}$ Ec.(6.11)	r Ec.(6.11)	K _{p1(pgly)} Ec. (6.19)	r Ec.(6.19)	$K_{p2(asp)}$ Ec. (6.20) (m ³ RSI /m ³)	r Ec.(6.20)
Ι	0,022±0,003	0,993				
II			0,196±0,016	0,982	0,0019±0,0001	0,990
III			0,196±0,016	0,982	0,0019±0,0001	0,990

Figura 21. Ajuste de los datos experimentales (símbolos) con la Ec. (6.23), (6.25)-(6.27) (líneas sólidas) para los experimentos II (pHi = 11,06±0,04) y III (pHi = 12,02±0,06) de la Tabla 2. $\overline{Q^+Cl^-}\Big|_i$ = 791,56±6,99 mol/m³ RSI.

Figura 22. Ajuste de los datos experimentales (símbolos) con la Ec. (6.24), (6.25)-(6.27) (líneas sólidas) para los experimentos II (pHi = 11,06±0,04) y III (pHi = 12,02±0,06) de la Tabla 2. $\left[\overline{Q^+Cl^-}\right]_i$ = 791,56±6,99 mol/m³ RSI.

6.1.4 Comparación de los equilibrios de extracción individual y conjunta de ácido aspártico y afenilglicina

6.1.4.1 Comparación a pH_i=5

En estudios previos se determinaron experimentalmente las isotermas de extracción individual de ácido aspártico y α -fenilglicina con RIE a pH_i=5 y bajo las mismas condiciones de proceso. Los resultados indican que la extracción del aminoácido α -fenilglicina, solo y mezclado con ácido aspártico, es despreciable a pHi=5.

En la figura 23 se representan las isotermas de equilibrio para la extracción de ácido aspártico, solo o de las mezclas, con RIE a pHi=5 y a 30°C. En esta figura se observa que la extracción de ácido aspártico fue igual solo y en las mezclas, debido a que no hay extracción de α -fenilglicina a este pH, y consecuentemente, en la estimación de los datos de equilibrio se puede aplicar el mismo modelo en ambos casos.

Figura 23. Comparación de las isotermas de extracción de ácido aspártico, solo (rojo) y mezclado con α-fenilglicina (expt. I de la Tabla 2) con RIE a 30 °C. Símbolos: datos experimentales. Línea sólida: datos estimados con modelo Ec. (6.14).

6.1.4.2 Comparación a pH_i=11 y 12

Las isotermas de extracción individual de ácido aspártico y α -fenilglicina con RIE a pH_i=9, 11 y 12 y 30°C se determinaron previamente en nuestros laboratorios. Algunas de las conclusiones más relevantes que se obtuvieron en este trabajo se citan a continuación:

- La adsorción física de α-fenilglicina con resina XAD-4 sin impregnar es despreciable a todos los pHs ensayados, y solamente existe una pequeña adsorción de ácido aspártico a pH = 5, ajustándose los datos experimentales a una isoterma de adsorción de tipo Freundlich. Este hecho prueba que la extracción de ambos aminoácidos con RIE a pH básico (pH= 9, 11 y 12) se debe exclusivamente al Tomac inmovilizado en los poros de dicha resina.
- El grado de extracción de ácido aspártico con resina XAD-4 impregnada con Tomac aumenta con el pH y fue igual para pH = 11 y 12. Además, la igualdad entre las isotermas de extracción a pH = 5 y 9 demuestra que la adsorción física es despreciable en comparación con la extracción debida al Tomac incluso a pH = 5.
- El efecto de la co-extracción de iones hidroxilo es elevado en la extracción de α-fenilglicina a pH =11 y 12, y disminuye al aumentar la concentración de aminoácido extraído, sin embargo es despreciable en la extracción de ácido aspártico.
- El grado de extracción de α-fenilglicina con la resina impregnada fue superior a pH = 11 que a pH=12, y siempre mayor que el de ácido aspártico a pH básico.
- La separación de ácido aspártico o de α-fenilglicina de disoluciones acuosas diluidas con RIE, a distintos valores de pH, puede describirse adecuadamente mediante modelos de equilibrio que combinan la extracción del aminoácido y la coextracción de los iones hidroxilo con el Tomac inmovilizado en los poros de la resina. Los modelos propuestos ajustan satisfactoriamente los resultados experimentales.

Las isotermas de equilibrio de extracción individual y conjunta de ácido aspártico y α -fenilglicina a pH_i=12 con RIE y a 30°C se representan en las figuras 24 y 25, respectivamente. En la figura 24 se muestra que el grado de extracción de ácido aspártico se ve afectado por la presencia de α -fenilglicina y más concretamente, disminuye al aumentar la concentración relativa de fenilglicina en la mezcla. Este mismo efecto se observa en la figura 25 que muestra que el grado de extracción de α -fenilglicina es menor al encontrarse mezclado con el ácido aspártico y depende de la proporción relativa de ambos aminoácidos en la mezcla. Estos mismos resultados se obtuvieron al representar las isotermas de extracción individual y conjunta de ambos aminoácidos a pH_i=11 (no mostrado).

Figura 24. Comparación de las isotermas de equilibrio de extracción de ácido aspártico, solo y mezclado con α-fenilglicina, con RIE a pHi=12 y 30°C (experimento III de la Tabla 2).

Figura 25. Comparación de las isotermas de equilibrio de extracción de αfenilglicina, solo y mezclado con ácido aspártico, con RIE a pHi=12 y 30°C (experimento III de la Tabla 2).

Un análisis más detallado de estos resultados con los obtenidos en el apartado 6.1.3, correspondiente a los modelos de equilibrio, indican que a pHi= 11 y 12 existe una reacción simultánea de extracción de cada aminoácido con el Tomac impregnado en la resina y se puede concluir que estas reacciones de intercambio iónico son competitivas debido a que resulta distinto el grado de extracción de cada aminoácido solo o en las mezclas y al variar sus proporciones relativas en la mezcla.

6.2 CINÉTICAS DE EXTRACCIÓN DE AMINOÁCIDOS EN BAÑOS AGITADOS CON RIE

6.2.1 Cinéticas de extracción individual de ácido aspártico

Los estudios cinéticos de extracción de ácido aspártico con RIE a 30°C se determinaron empleando el dispositivo mostrado en el apartado 5.2.2 y con el procedimiento experimental detallado en el apartado 5.3.3 de esta memoria. Las condiciones iniciales de estos experimentos se muestran en la Tabla 3 del apartado 5.3.3 La carga de Tomac en la RIE fue la misma que se utilizó en los experimentos de equilibrio $(\overline{Q^+Cl^-})_i = 782,93\pm19,04 \text{ mol/m}^3 \text{ RSI}).$

El ácido aspártico como todos los aminoácidos es pH dependiente, para pK_{a2(asp)}=3,9<pH<pK_{a3(asp)}=9,8 predomina la especie A⁻_{asp}, mientras que a pH≥ pK_{a3(asp)}=9,8 el ácido aspártico se encuentra principalmente como especie A²⁻_{asp}. La evolución de las especies aniónicas de ácido aspártico en fase acuosa en el tiempo se puede calcular utilizando las siguientes ecuaciones:

$$\left[A_{asp}^{-}\right](t) = \frac{C_{A(asp)}(t)\left[H^{+}\right](t) K_{a1}K_{a2}}{\left[H^{+}\right]^{3}(t) + K_{a1}\left[H^{+}\right]^{2}(t) + K_{a1}K_{a2}\left[H^{+}\right](t) + K_{a1}Ka_{2}K_{a3}}$$
(6.28)

$$\left[A_{asp}^{2-}\right](t) = \frac{C_{A(asp)}(t)K_{a1}K_{a2}K_{a3}}{\left[H^{+}\right]^{3}(t) + K_{a1}\left[H^{+}\right]^{2}(t) + K_{a1}K_{a2}\left[H^{+}\right](t) + K_{a1}Ka_{2}K_{a3}}$$
(6.29)

donde $C_{A(asp)}(t)$, $[A_{asp}](t)$ y $[A^{2}_{asp}](t)$ representan la concentración total del aminoácido, la de la forma aniónica del aminoácido con una carga negativa y la de la forma aniónica del aminoácido con dos cargas negativas en función del tiempo, respectivamente, expresadas en mol/m³, cuyo pH también es función del tiempo.

Tanto en los experimentos de equilibrio determinados anteriormente en nuestros laboratorios, como en estas cinéticas, se estudió la evolución del pH observándose que la co-extracción de iones hidroxilo puede considerarse despreciable. Por otra parte, los estudios de equilibrio de extracción individual de ácido aspártico a distintos pHs demostraron que a pH=5 y 9 (pK_{a2(asp)}=3,9<pH<pK_{a3(asp)}=9,8) la única especie de aminoácido en fase resina es $\left[\overline{Q^+A^-}\right]_{asp}$; mientras que a pH=11 y 12 (pH≥ pK_{a3(asp)}=9,8) es $\left[\overline{Q^+_2A^{2-}}\right]_{asp}$. Bajo estas consideraciones, la concentración de ácido aspártico en la fase resina en el tiempo se puede estimar con los balances de materia mostrados en la Ec. (6.30) para pH=5 y 9 y en la Ec. (6.31) para pH=11 y 12.

$$\overline{C}_{A(asp)}(t) = \left[\overline{Q^{+}A^{-}}\right]_{(asp)}(t) = \left(C_{A(asp)i} - C_{A(asp)}(t)\right)\frac{V}{\overline{V}}$$
(6.30)

$$\overline{C}_{A(asp)}(t) = \left[\overline{Q_2^+ A^{2-}}\right]_{(asp)}(t) = \left(C_{A(asp)i} - C_{A(asp)}(t)\right) \frac{V}{\overline{V}}$$
(6.31)

donde el superíndice - representa la fase resina, el subíndice i hace referencia a la condición inicial, $C_{A(asp)}$ concentración total de aminoácido en fase acuosa, V y \overline{V} son el volumen de la fase acuosa y el volumen de la fase resina, respectivamente. $\left[\overline{Q^+A^-}\right]_{asp}(t)$ y $\left[\overline{Q_2^+A^{2-}}\right]_{asp}(t)$ son las concentraciones molares de ácido aspártico en fase resina, dependientes del tiempo t y expresadas en mol/m³ RSI.

Los resultados experimentales de las cinéticas de extracción de ácido aspártico con RIE a pH=5, 9, 11 y 12 (expts. de la Tabla 3) se recogen en las Tablas B1-B13 del apéndice B.

En las figuras 26 -29 se representa la evolución de la concentración total de ácido aspártico $(C_{A(asp)}(t)/C_{A(asp)i)})$ frente al tiempo, para los experimentos de la Tabla 3.

Figura 26. Evolución de la concentración de ácido aspártico en la fase acuosa con el tiempo para el experimento I (pHi= 5,06±0,07; T= 30 °C) de la Tabla 3.

Figura 27. Evolución de la concentración de ácido aspártico en la fase acuosa con el tiempo para el experimento II (pHi= 8,96±0,07; T= 30 °C) de la Tabla 3.

Figura 28. Evolución de la concentración de ácido aspártico en la fase acuosa con el tiempo para el experimento III (pHi= 11,04±0,06; T= 30 °C) de la Tabla 3.

Figura 29. Evolución de la concentración de ácido aspártico en la fase acuosa con el tiempo el experimento IV (pHi= 12,02±0,07; T= 30 °C) de la Tabla 3.

En estas figuras se observa que los procesos cinéticos de extracción de ácido aspártico son rápidos y se alcanza el equilibrio a tiempos reducidos inferiores a 20 minutos para los experimentos a pH= 5 y 9 e inferiores a 40 minutos para pH=11 y 12. En cualquier caso, las curvas presentan una tendencia y forma similar, lo cual induce a pensar que el proceso cinético posee las mismas características y etapas controlantes en todos los sistemas estudiados.

Una evaluación detallada de los resultados obtenidos en los experimentos de equilibrios y cinéticas indica que los procesos de adsorción debidos a la matriz polimérica son despreciables, al igual que la co-extracción de los iones hidroxilo debida al extractante Tomac, por tanto el proceso de forma global se basa en la reacción de intercambio iónico del aminoácido con el Tomac impregnado en los poros de la resina. En este caso la velocidad del proceso de intercambio iónico puede estar controlada por la difusión del aminoácido en la película líquida externa, por la reacción química en la superficie con el Tomac impregnado en la resina o por la difusión intrapartícula del complejo Tomac-aminoácido, o bien por una combinación de dos o más de estas etapas limitantes del proceso cinético de extracción.

6.2.1.1 Determinación de la etapa controlante del proceso cinético

El modelo cinético propuesto por Bhandari *et al. (Bhandari V.M. et al., 1992)* es un modelo aproximado para correlacionar la dinámica de difusión intrapartícula en procesos de adsorción de ácidos orgánicos o inorgánicos con resinas básicas débiles de intercambio iónico, en medios agitados finitos y que considera la reversibilidad de los procesos de adsorción. Juang and Lin (*Juang R.S. et al., 1995 b; Juang R S. et al., 1995 c*) extendieron este modelo a cinéticas de adsorción donde la etapa controlante del proceso no es únicamente la difusión intrapartícula, sino también la difusión en la película líquida externa o incluso la reacción química. Este modelo se aplicó con éxito a procesos cinéticos de extracción de α -fenilglicna de disoluciones acuosas con resina macroporosa Amberlita XAD-4 impregnada con Tomac en tanques finitos (*Ruiz M. O. et al., 2002 b*).

Aunque es necesario un modelo más riguroso de correlación de los resultados cinéticos basado en las leyes de Fick o de Nerst-Planck, el modelo de Bhandari permite estimar de manera aproximada las resistencias implicadas en el transporte de materia y por tanto es útil como primer paso en el tratamiento de los datos cinéticos.

La evolución de la concentración de ácido aspártico extraída por la RIE expresada en fracción molar en función del tiempo durante el proceso de extracción, X, teniendo en cuenta la estequiometria de la reacción química, se define como:

$$X = \frac{bC_{A(asp)}(t)}{\left[\overline{Q^+Cl^-}\right]_i}$$
(6.32)

donde $\left[\overline{q^+c_1}\right]_i$ es la concentración de Tomac impregnado en la resina expresada en mol/m³ RSI; b es el coeficiente estequimétrico de las reacciones de intercambio iónico del aminoácido con el Tomac impregnado en la resina mostradas en las Ecs. (6.11) y (6.20), siendo b=1 en los experimentos a pH= 5 y 9, y b=2 en los experimentos a pH=11 y12; $\overline{C}_{A(asp)}(t)$ es la concentración de ácido aspártico en fase resina definida en las Ecs. (6.30) en los experimentos a pH= 5 y 9 y (6.31) en los experimentos a pH=11 y 12.

Para evaluar la evolución de la concentración del aminoácido extraído por la RIE en el tiempo, se emplearon las Ecs. (6.33)-(6.35) que fueron determinadas considerando que el proceso de extracción está controlado independientemente por difusión en la película líquida, en la partícula o por reacción química:

1- Controlado por difusión en la película líquida externa:

$$X = \frac{3 K_{f}}{a \delta \left[Q^{+}CI^{-}\right]} \int_{0}^{t} \left[A_{asp}^{d-}\right](t) dt$$
(6.33)

2- Controlado por difusión intrapartícula:

$$Y = \frac{X_{e}}{K} \left[1 - 3 \left(1 - \frac{X}{Xe} \right)^{\frac{2}{3}} + 2 \left(1 - \frac{X}{Xe} \right) \right] = \frac{12 \ D_{e}}{a^{2} \ \left[Q^{+}Cl^{-} \right]_{i}} \int_{0}^{t} \left[A_{asp}^{d-} \right](t) \ dt$$
(6.34)

3- Controlado por reacción química:

$$Z = \frac{1}{K} \left[1 - \left(1 - \frac{X}{Xe} \right)^{\frac{1}{3}} \right] = \frac{K_{C}}{a} \int_{0}^{t} \left[A_{asp}^{d} \right] (t) dt$$
 (6.35)

donde δ es el espesor de la película líquida estancada, K_f y D_e son el coeficiente de transferencia de materia en la película líquida y la difusividad efectiva en la fase resina, respectivamente; K_c es la constante de velocidad aparente de reacción química; X_e es la concentración instantánea de ácido aspártico extraida en la superficie externa de la RIE en función del tiempo, expresada en fracción molar; a es el radio de la partícula, siendo para la resina Amberlita-XAD4 a=0,000389 m, [A^{d-}_{asp}] es la forma aniónica del ácido aspártico, siendo d=1 para pH=5 y 9, y d=2 para pH=11 y 12; y K es el coeficiente de distribución de la forma aniónica [A^{d-}_{asp}] del aminoácido en el equilibrio expresada como:

$$K = \frac{\overline{C}_{A(asp)_{(r=a)}}}{\left[A_{asp}^{d}\right]}$$
(6.36)

donde $\overline{C}_{A(asp)_{(r=a)}}$ es la concentración de aminoácido en la superficie de la RIE en el equilibrio expresada en mol/m³ RSI y $\left[A_{asp}^{d-}\right]$ es la concentración de la forma aniónica del aminoácido en la fase acuosa en el equilibrio expresada en mol/m³.

Considerando que toda la superficie de la RIE está en equilibrio con la disolución acuosa extra-partícula y utilizando la Ec. (6.36) se puede definir X_e con la siguiente relación:

$$X_{e} = \frac{bK[A_{asp}^{d-}](t)}{\left[\overline{Q^{+}Cl^{-}}\right]_{i}}$$
(6.37)

Los valores obtenidos de X, Y, Z y $\int_{o}^{t} \left[A_{asp}^{d-}\right](t)dt$ para todos los experimentos de la Tabla 3, se muestran en la Tabla B14 del apéndice B.

Un análisis del modelo propuesto en las Ecs. (6.33)-(6.35) demuestra que para que el proceso esté controlado por difusión en la película líquida externa, difusión intrapartícula y/o reacción química al representar X, Y, Z frente a $\int_{0}^{t} [A_{asp}^{d-}](t)dt$ se deben obtener líneas rectas con ordenada en el origen cero y de cuya pendiente se puede evaluar K_{f} , D_{e} y K_{C} , respectivamente.

En la Fig. 30 se representa X, Y, Z frente a $\int_{0}^{t} [A_{asp}^{d-}](t)dt$ para el experimento I, (C_{Ai}= **14,64** mol/m³; pHi= 5,06±0,07; T= 30 °C) de la Tabla 3.

En esta figura se observa que los datos experimentales de X, Z frente a $\int_{0}^{t} [A_{asp}^{d-}](t)dt$ no tienen tendencia lineal, así se puede suponer que la difusión en la película líquida externa y la reacción química no son etapas limitantes de la velocidad de los procesos cinéticos de extracción de ácido aspártico. Sin embargo, la Ec. (6.34) proporciona un buen ajuste de los datos experimentales, indicando que el proceso está controlado por difusión intrapartícula. La desviación de la linealidad observada en los puntos finales en alguno de los sistemas estudiados, puede deberse a la acumulación de errores cometidos en el cálculo de Y.

Resultados similares se obtuvieron para todos los experimentos de la Tabla 3 del apartado 5.3.3 (no mostrados). Así, se puede concluir que el proceso cinético de extracción de ácido aspártico está controlado por la difusión intrapartícula a todos los pHs ensayados.

Los valores de la difusividad efectiva, $D_{e(asp)}$, estimados con la Ec. (6.34) se muestran en la Tabla 6 a), junto con sus regresiones lineales. En estudios anteriores realizados en nuestro laboratorio (*Ruiz M. O. et al., 2002 b*), se obtuvieron de forma análoga, los valores de la difusividad efectiva de α -fenilglicina, $D_{e(pgly)}$, bajo las mismas condiciones de proceso, mostrados en la Tabla 6 b).

Figura 30. Determinación de las etapas controlantes de la velocidad de extracción de ácido aspártico con resina impregnada con Tomac para el experimento I (C_{Ai}= 14,64 mol/m³; pHi= 5,06±0,07; T= 30 ⁰C) de la Tabla 3.

Tabla 6.	Valores de	e difusividad	efectiva, D _e	, evaluados	con la Ec.	(6.34).
----------	------------	---------------	--------------------------	-------------	------------	---------

Experimento	pHi	$C_{A(asp)i}(mol/m^3)$	$\begin{array}{c} D_{e(asp)}x10^{11}(m^2\!/\!s) \\ Ec(6.34) \end{array}$	r
Ι	5,06±0,07	7,37	3,98	0,991
		11,11	3,98	0,984
		14,64	3,98	0,986
		21,86	4,98	0,995
II	8,96±0,02	15,29	6,89	0,994
III	11,04±0,06	7,45	1,38	0,986
		11,46	1,39	0,988
		18,94	1,76	0,991
		29,33	1,80	0,998
IV	12,02±0,07	9,58	4,52	0,992
		11,19	4,97	0,993
		14,64	4,97	0,986
		24,69	4,95	0,994

a) Ácido aspártico

pHi	$C_{A(pgly)i} (mol/m^3)$	$\begin{array}{c} D_{e(pgly)} x 10^{12} (m^2 / s) \\ Ec. (6.34) \end{array}$	r
11,07	7,26	7,25	0,996
11,09	13,23	9,49	0,994
12,06	7,26	5,84	0,996

b) α-Fenilglicina (*Ruiz M. O. et al., 2002 b*)

Una comparación de los valores de la difusividad efectiva de α -fenilglicina y ácido aspártico muestra que la velocidad de extracción de ambos aminoácidos crece al aumentar su concentración inicial, produciendo comparativamente procesos de extracción más rápidos. Además, en todos los casos, la difusividad efectiva del ácido aspártico es un orden de magnitud mayor que la de α -fenilglicina, y por tanto, la velocidad del proceso de extracción del ácido aspártico es más rápida que la velocidad de extracción de la α -fenilglicina. Este efecto puede deberse a que la α -fenilglicina es un aminoácido de mayor tamaño con un grupo fenilo en su cadena radical, mientras que el ácido aspártico presenta una cadena radical alifática.

6.2.1.2 Modelo cinético basado en la ley de Fick

Los procesos de intercambio iónico se describen de forma rigurosa mediante las ecuaciones de Nerst-Planck que consideran los procesos de contra-difusión de iones de diferente movilidad causada por gradientes de concentración y de potencial electrostático (*Helfferich F. Et al., 1958*). El modelo más sencillo de **difusión de partícula** (intrapartícula) es el descrito por la segunda ley de Fick y debido a su simplicidad y rigor es el que se adopta en el estudio de los datos cinéticos experimentales.

El modelo considera una reacción de intercambio iónico heterogénea entre las partículas esféricas de la RIE y la disolución acuosa agitada de volumen finito en la cual están inmersas. La resistencia a la difusión en la película líquida externa se puede considerar despreciable, por efecto de la agitación. En la interfase líquido-sólido se mantiene un equilibrio instantáneo y K es el coeficiente de distribución de la especie que difunde entre ambas fases, definido en la Ec. (6.36). Posteriormente la especie extraída en la superficie de la RIE difunde lentamente al interior de la fase resina. Además, se asume que la concentración de aniones de aminoácido en el seno de la fase acuosa varía con el tiempo y que la difusividad en la fase resina es constante.

Bajo estas condiciones el balance de materia en coordenadas esféricas, aplicado a la especie aniónica del aminoácido A^{d-} en fase resina puede ser expresado por la siguiente ecuación:

$$\frac{\partial \overline{C}_{A(asp)}(\mathbf{r},t)}{\partial t} = D_{e} \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \overline{C}_{A(asp)}(\mathbf{r},t)}{\partial r} \right); 0 \le r \le a; t > 0$$
(6.38)

con las condiciones límite e iniciales que se citan a continuación:

$$\overline{C}_{A(asp)}(r,t) = K[A^{d-}](t)$$
 $r = a$ $t > 0$ (6.39)

$$\overline{C}_{A(asp)}(r,t) = 0 \qquad \qquad 0 \le r \le a \qquad t = 0 \qquad (6.40)$$

$$\overline{C}_{A(asp)}(r,t) = finito$$
 $r = 0$ $t \ge 0$ (6.41)

La cantidad de aminoácido extraído en la RIE en función del tiempo expresado en unidades de mol, M(t), se puede determinar conociendo la cantidad de aminoácido transferida de la disolución acuosa, utilizando la siguiente igualdad:

$$M(t) = V(C_{A(asp)i} - C_{A(asp)}(t)) = 4\pi N \int_{0}^{a} r^{2} \overline{C}_{A(asp)}(r, t) dr$$
(6.42)

donde a es el radio de la partícula de resina y N es el número de partículas de resina en la suspensión.

La fracción final de aminoácido extraido en la RIE en un volumen de disolución finito se expresa en términos del parámetro α con la siguiente ecuación:

$$\frac{M(\infty)}{V\left[A^{d-}\right]_{(asp)i}} = \frac{1}{1 + \alpha}$$
(6.43)

La solución del modelo propuesto, Ec. (6.44) representa la fracción de aminoácido extraida por la RIE en función del tiempo *(Crank J., 1975; Ruiz M.O., 2002)*.

$$\frac{M(t)}{M(\infty)} = 1 - \sum_{n=1}^{\infty} \frac{6\alpha(1+\alpha) \exp(-g_n \frac{Det}{a^2})}{9 + 9\alpha + \alpha^2 g_n^2}$$
(6.44)

donde g_n son las raíces distintas de cero de la ecuación (6.45) y α es un número adimensional definido en la Ec. (6.46).

$$\frac{g_{n}}{\tan g_{n}} = 1 + \frac{\alpha \ g_{n}^{2}}{3}$$
(6.45)

$$\alpha = \frac{3V}{4\pi a^3 NK} = \frac{V}{\overline{V}K}$$
(6.46)

La Ec. (6.44) muestra que $M(t)/M(\infty)$ es función de α cuyo valor depende del pH inicial, de la concentración inicial de aminoácido en la fase acuosa y de la concentración de Tomac en la RIE, tal como se muestra en la Ec. (6.43).

La fracción de aminoácido extraída por la RIE, $M(t)/M(\infty)$, y los valores D_e se estimaron de dos formas distintas, una empleando el valor de K experimental, y otra calculando K con el modelo de equilibrio desarrollado en trabajos previos. En este segundo caso, se emplearon las siguientes ecuaciones para el cálculo de K:

$$K = \frac{\left[\overline{Q^{+}A_{asp}^{-}}\right]}{\left[A_{asp}^{-}\right]} = \sqrt{\left(\frac{VK_{p1}}{2\overline{V}}\right)^{2} + \frac{VK_{p1}\left[\overline{Q^{+}C\Gamma}\right]_{i}}{\overline{V}[A_{asp}^{-}]} - \frac{VK_{p1}}{2\overline{V}[A_{asp}^{-}]}}$$
(6.47)

b) pH_i=11 y 12:

$$K = \frac{\left[\frac{Q_2^+ A_{asp}^2}{A_{asp}^2}\right]}{\left[\frac{A_{asp}^2}{A_{asp}^2}\right]}$$
(6.48)

donde $\left[\overline{Q_2^+A_{asp}^{2-}}\right]$ calculada se obtiene resolviendo la siguiente ecuación de tercer orden:

$$\left[\overline{Q_{2}^{+}A^{2-}}\right]^{3} - \frac{V^{2}}{\overline{V}^{2}}K_{p2}\left[A^{2-}\right]\left\{\left[\overline{Q_{2}^{+}A^{2-}}\right]^{2} - \left[\overline{Q^{+}CI^{-}}\right]\left[\overline{Q_{2}^{+}A^{2-}}\right] + \frac{\left[\overline{Q^{+}CI^{-}}\right]^{2}}{4}\right\} = 0$$
(6.49)

El porcentaje de error se estimó con la Ec. (6.50) como el cociente de la desviación estándar (σ) y el valor de D_e estimado con K experimental:

%Error =
$$\frac{\sigma \times 100}{D_{e}(K_{experimental})}$$
 (6.50)

En las Figs. 31 y 32 se representan $log(1 - M(t)/M(\infty))$ frente al tiempo. El valor de la difusividad efectiva, D_e, se obtiene de la resolución conjunta de las Ecs. (6.44)-(6.46). En la Tabla 7 se presentan los valores de D_e evaluados con K experimental y con K calculada con las Ecs. (6.47) o (6.48)-(6.49) para los experimentos de ácido aspártico y para los experimentos de α -fenilglicina (*Ruiz M. O. et al., 2002 b*) de la Tabla 3.

En las Figs. 31 y 32 se observa la buena concordancia existente entre las velocidades medidas experimentalmente (símbolos) y las calculadas con las Ecs. (6.44)-(6.46) (líneas).

Figura 31. Efecto de la concentración inicial de ácido aspártico en la fase acuosa sobre la velocidad de extracción de ácido aspártico a 30 °C para los experimentos I (pH=5,06±0,07) y II (pH=8,96±0,02), de la Tabla 3. Líneas sólidas calculadas con la Ec. (6.44)-(6.46).

Figura 32. Efecto de la concentración inicial de ácido aspártico en la fase acuosa sobre la velocidad de extracción de ácido aspártico a 30 °C para los experimentos III (pH=11,04± 0,06) y IV (pH=12,02±0,07) de la Tabla 3. Líneas sólidas calculadas con la Ec. (6.44)-(6.46).

Tabla 7. Parámetros cinéticos evaluados con la segunda ley de Fick para los experimentos de la Tabla 3 y para los experimentos de α-fenilglicina.

Experimento	рНі	$C_{A(asp)i} \ (mol/m^3)$	$\begin{array}{c} D_{e(asp)} x10^{11} (m^2\!/\!s) \\ Ec(6.44) (K \\ {}_{experimental}) \end{array}$	$\begin{array}{c} D_{e(asp)} x 10^{11} (m^2\!/\!s) \\ Ec(6.44) (K \\ calculada) \end{array}$	% Error Ec(6.50)
Ι	5,06±0,07	7,37	43,00	43,20	0,66
		11,11	50,00	50,20	0,28
		14,64	52,00	52,10	0,14
		21,86	54,00	54,00	0,00
II	8,96±0,02	15,29	52,00	52,50	0,68
III	11,04±0,06	7,45	8,50	8,70	1,66
		11,46	9,20	9,67	3,61
		18,94	11,00	10,50	3,21
		29,33	12,00	12,10	0,59
IV	12,02±0,07	9,58	32,60	33,80	2,60
		11,19	32,40	32,30	0,22
		14,64	33,00	32,30	1,61
		24,69	37,20	36,20	1,90

a) ácido aspártico

b) α-fenilglicina (*Ruiz M. O. et al., 2002 b*)

pHi	$C_{A(pgly)i}(mol/m^3)$	$\begin{array}{c} D_{e(pgly)} x10^{11} \\ (m^2/s) & Ec(6.44) \\ (K \ experimental) \end{array}$
11,07	7,26	1,47
11,09	13,23	1,85
12,06	7,26	1,13

Los valores de D_e fueron similares al estimarlos empleando K experimental y K calculada con los modelos de equilibrio, con errores inferiores al 3,6 %. Este resultado indica que el modelo de equilibrio describe perfectamente a los sistemas de extracción de los aminoácidos con RIE a 30°C.

El valor de la difusividad efectiva aumenta ligeramente al aumentar la concentración de ácido aspártico en la fase acuosa a todos los pHs ensayados, como se muestra en la Tabla 7 y en las figuras 33 y 34.

Los valores de la difusividad efectiva obtenidos con la segunda ley de Fick (Ecs. (6.44)-(6.46)) son mayores que los obtenidos con el modelo cinético propuesto por Bhandari (Ec. 6.34). Estos resultados pueden ser debidos a que este modelo considera el llenado parcial de los huecos reactivos de la RIE, y consecuentemente, predice un camino de difusión más corto que el modelo de Fick, el cual al considerar que el camino de difusión es el espesor total de la partícula, ajusta los datos de velocidad de extracción con un valor más grande de la difusividad. En cualquier caso, ambos modelos proporcionan una tendencia ascendente de D_e con la concentración inicial de ácido aspártico.

En la figura 33 se observa que los valores de las difusividades efectivas varían con el pH y resultan mayores a pH=5 y 9. Este resultado puede deberse a que a pH=5 y 9 la única especie de aminoácido que difunde por los poros de la resina es $Q^+A^-_{asp}$, la cuál es más pequeña que la especie $Q_2^+A_{asp}^{2-}$ que es la que difunde a pH=12.

Además, en la Fig. 33 se observa que el proceso de extracción de ácido aspártico es comparativamente más rápido a pH=12 que a pH=11 debido, tal vez, a que a pH=11 existen pequeñas cantidades de especie A_{asp}^{-} , mientras que a pH=12 todo el aminoácido está como especie A_{asp}^{2-} .

En la Tabla 7 y en la Fig. 34 se observa que los valores de las difusividades efectivas del ácido aspártico son siempre mayores que las de α -fenilglicina, indicando por tanto que la velocidad del proceso de extracción del ácido aspártico es más rápida que la velocidad de extracción de α -fenilglicina. Este efecto puede deberse a que el aminoácido α -fenilglicina es un aminoácido de mayor tamaño, con un grupo fenilo en su cadena radical, mientras que el ácido aspártico presenta una cadena radical alifática.

Además, en la Fig. 34 se observa que la velocidad de extracción de ambos aminoácidos, α -fenilglicina y ácido aspártico, crece ligeramente al aumentar su concentración inicial, produciendo comparativamente procesos de extracción más rápidos.

Figura 33. Efecto de la concentración inicial de ácido aspártico y del pH sobre el valor de la difusividad efectiva evaluada conlas Ecs. (6.44)-(6.46) para los experimentos de la Tabla 3.

Figura 34. Valores de la difusividad efectiva para la extracción individual de αfenilglicina y ácido aspártico, evaluada con las Ecs. (6.44)-(6.46) para los experimentos III (pH=11) y IV (pH=12) de la Tabla 7.

En las Figs. 35-38 se observa la buena concordancia existente entre los datos cinéticos experimentales (símbolos) y los calculados con el modelo Ecs. (6.42), (6.44-6.46) (líneas sólidas). El error estimado con la Ec. (6.51) fue inferior al 7,78 % para todos los experimentos de la Tabla 3.

% error promediado =
$$\frac{100}{j} \sum_{1}^{j} \frac{\left(\left(C_{A_{Cal}} - C_{A_{Exp}} \right)^{2} \right)^{1/2}}{C_{A_{Exp}}}$$
 (6.51)

Figura 35. Ajuste de los datos cinéticos experimentales (símbolos) con las Ecs. (6.42), (6.44-6.46) (líneas sólidas) para el experimento I(pHi= 5,06±0,07; T= 30 °C) de la Tabla 3.

Figura 36. Ajuste de los datos cinéticos experimentales (símbolos) con las Ecs. (6.42), (6.44-6.46) (línea sólida) para el experimento II (pHi= 8,96±0,07; T= 30 °C) de la Tabla 3.

Figura 37. Ajuste de los datos cinéticos experimentales (símbolos) con las Ecs. (6.42), (6.44-6.46) (líneas sólidas) para el experimento III (pHi= 11,04±0,06; T= 30 °C) de la Tabla 3.

Figura 38. Ajuste de los datos cinéticos experimentales (símbolos) con las Ecs. (6.42), (6.44-6.46) (líneas sólidas) para el experimento IV (pHi= 12,02±0,07; T= 30 °C) de la Tabla 3.

6.2.2 Cinéticas de extracción de ácido aspártico y afenilglicina de sus mezclas binarias a $pH_i=11$ y 12

Los estudios cinéticos de extracción de mezclas de ácido aspártico y α -fenilglicina se determinaron a la temperatura de 30 °C, bajo las condiciones experimentales indicadas en la Tabla 4 del apartado 5.3.3 La carga de Tomac en la RIE fue la misma que se utilizó en los experimentos de equilibrio.

Se puede suponer que a pH≥11 la especie predominante del ácido aspártico es A_{asn}^{2-} , y de la α-fenilglicina es A_{pelv}^{-} .

La evolución de la concentración de ácido aspártico y α -fenilglicina con el tiempo en sus formas aniónicas en fase acuosa a pH=11 y 12 se puede calcular utilizando las siguientes ecuaciones:

$$\left[A_{asp}^{2-}\right](t) = \frac{C_{A(asp)}(t)K_{a1}K_{a2}K_{a3}}{\left[H^{+}\right]^{3}(t) + K_{a1}\left[H^{+}\right]^{2}(t) + K_{a1}K_{a2}\left[H^{+}\right](t) + K_{a1}Ka_{2}K_{a3}}$$
(6.29)

$$\left[A_{pgly}^{-}\right](t) = \frac{C_{A(pgly)}(t) K_{a1}K_{a2}}{\left[H^{+}\right]^{2}(t) + K_{a1}\left[H^{+}\right](t) + K_{a1}Ka_{2}}$$
(6.52)

donde $C_{A(asp)}(t)$, $C_{A(pgly)}(t)$ representan la concentración total de cada uno de los aminoácidos, $[A_{asp}^{2-}](t)$ y $[A_{pgly}^{-}](t)$ son las concentraciones de las formas aniónicas del ácido aspártico y α -fenilglicina, respectivamente y en función del tiempo, expresadas en mol/m³, cuyo pH también es función del tiempo.

Se midió experimentalmente la evolución del pH en estos experimentos cinéticos, ratificando de nuevo que la co-extracción de OH^- es despreciable. La concentración de ácido aspártico y α -fenilglicina en fase resina en el tiempo se obtienen a partir de los siguientes balances de materia:

$$\overline{C}_{A(asp)}(t) = \left[\overline{Q_2^+ A^{2-}}\right]_{(asp)}(t) = \left(C_{A(asp)i} - C_{A(asp)}(t)\right) \frac{V}{\overline{V}}$$
(6.31)

$$\overline{C}_{A(pgly)}(t) = \left[\overline{Q^{+}A^{-}}\right]_{(pgly)}(t) = \left(C_{A(pgly)i} - C_{A(pgly)}(t)\right)\frac{V}{\overline{V}}$$
(6.53)

donde el superíndice – representa la fase resina, el subíndice i hace referencia a la condición inicial, $C_{A(asp)}$ y $C_{A(pgly)}$ son las concentraciones totales de ácido aspártico y α -fenilglicina en fase acuosa, V y \overline{V} son el volumen de la fase acuosa y de la fase resina, respectivamente, y $\left[\overline{Q_2^*A^{2-}}\right]_{asp}(t)$ y $\left[\overline{Q^*A^{-}}\right]_{pgly}(t)$ son las especies de ácido aspártico y α -fenilglicina presentes en la fase resina.

Los resultados obtenidos para las cinéticas de extracción de ácido aspártico y α -fenilglicina de sus mezclas binarias a pH≥11 con RIE se muestran en las Tablas C1-C5 del apéndice C y en las Figs. 39-41.

En las figuras 39 y 40 se muestra la evolución temporal de la concentración total de ácido aspártico y de α -fenilglicina de sus mezclas binarias, respectivamente, para los experimentos de la Tabla 4. Los procesos de extracción de ácido aspártico son rápidos, alcanzándose el equilibrio a tiempos reducidos inferiores a 20 min, mientras que la extracción de α -fenilglicina es más lenta, aunque a pesar de todo, el equilibrio se alcanza a tiempos reducidos inferiores a 45 min para los experimentos de mezclas realizados a pH=11 y 12.

Figura 39. Evolución de la concentración de ácido aspártico en la fase acuosa con el tiempo para los experimentos cinéticos I (pHi= 11,04±0,05) y II (pHi=12,02±0,02) de la Tabla 4.

Figura 40. Evolución de la concentración de α-fenilglicina en la fase acuosa con el tiempo para los experimentos cinéticos I (pHi= 11,04±0,05) y II (pHi=12,02±0,02) de la Tabla 4.

En todos los experimentos cinéticos individuales y de extracción conjunta de ambos aminoácidos, se obtienen curvas que presentan una forma y evolución similar, lo cual induce a pensar que el proceso cinético posee las mismas características y etapas controlantes en todos los sistemas estudiados.

Con los resultados obtenidos de los experimentos de equilibrio y cinéticas, se puede suponer que el proceso se basa en la reacción de intercambio iónico de los aminoácidos con el Tomac retenido en la resina. La velocidad del proceso de intercambio iónico puede estar controlada por la difusión de cada aminoácido en la película líquida externa, por la reacción química en la superficie con el Tomac impregnado en la resina o por la difusión intrapartícula del complejo Tomac-aminoácido, o bien por una combinación de dos o más de estas etapas limitantes del proceso.

6.2.2.1 Determinación de la etapa controlante del proceso

La estimación de la etapa controlante del proceso se realizó utilizando el modelo cinético expuesto en el apartado 6.2.1.1.

La evolución de la concentración de ácido aspártico y α -fenilglicina extraída por la RIE a pH=11 y 12 expresadas en fracción molar, en función del tiempo durante el proceso de extracción, X, teniendo en cuenta la estequiometria de la reacción química se definen como:

$$X_{(asp)} = \frac{2C_{A(asp)}(t)}{\left[\overline{Q^{+}Cl^{-}}\right]_{i}}$$
(6.54)

$$X_{(pgly)} = \frac{\overline{C}_{A(pgly)}(t)}{\left[\overline{Q^{+}Cl^{-}}\right]_{i}}$$
(6.55)

donde $\left[\overline{Q^+Cl^-}\right]_i$ es la concentración de Tomac impregnado en la resina expresada en mol/m³ RSI; $\overline{C}_{A(asp)}(t)$ es la concentración de ácido aspártico en fase resina definida en la Ec. (6.31); y $\overline{C}_{A(pgly)}(t)$ es la concentración de α -fenilglicina en fase resina definida en la Ec. (6.53).

Para estimar la evolución de las concentraciones de ácido aspártico y α -fenilglicina extraídas por la RIE en función del tiempo, este modelo propone las Ecs. (6.56)-(6.61). Estas ecuaciones fueron determinadas considerando que el proceso de extracción está controlado independientemente por difusión en la película líquida, en la partícula o por reacción química:

1- Controlado por difusión en la película líquida externa:

$$X_{(asp)} = \frac{3 K_{f(asp)}}{a \delta \left[\overline{Q^{+}CI^{-}} \right]} \int_{0}^{t} \left[A_{asp}^{2-} \right](t) dt$$
(6.56)

$$X_{(pgly)} = \frac{3 K_{f(pgly)}}{a \delta \left[Q^{+}CI^{-} \right]} \int_{0}^{t} \left[A_{pgly} \right](t) dt$$
(6.57)

2- Controlado por difusión intrapartícula:

$$Y_{(asp)} = \frac{X_{e(asp)}}{K_{(asp)}} \left[1 - 3 \left(1 - \frac{X_{(asp)}}{Xe_{(asp)}} \right)^{\frac{2}{3}} + 2 \left(1 - \frac{X_{(asp)}}{Xe_{(asp)}} \right) \right] = \frac{12 \ D_{e(asp)}}{a^2 \ \overline{[Q^+ Cl^-]_i}} \int_0^t \left[A_{asp}^{2-} \right](t) \ dt \ (6.58)$$
$$Y_{(pgly)} = \frac{X_{e(pgly)}}{K_{(pgly)}} \left[1 - 3 \left(1 - \frac{X_{(pgly)}}{Xe_{(pgly)}} \right)^{\frac{2}{3}} + 2 \left(1 - \frac{X_{(pgly)}}{Xe_{(pgly)}} \right) \right] = \frac{12 \ D_{e(asp)}}{a^2 \ \overline{[Q^+ Cl^-]_i}} \int_0^t \left[A_{pgly}^{2-} \right](t) \ dt \ (6.59)$$

3- Controlado por reacción química:

$$Z_{(asp)} = \frac{1}{K_{(asp)}} \left[1 - \left(1 - \frac{X_{(asp)}}{Xe_{(asp)}} \right)^{\frac{1}{3}} \right] = \frac{K_{C(asp)}}{a} \int_{0}^{t} \left[A_{asp}^{2-} \right](t) dt$$
(6.60)

$$Z_{(pgly)} = \frac{1}{K_{(pgly)}} \left[1 - \left(1 - \frac{X_{(pgly)}}{Xe_{(pgly)}} \right)^{\frac{1}{3}} \right] = \frac{K_{C(pgly)}}{a} \int_{0}^{t} \left[A_{pgly}^{-} \right](t) dt$$
(6.61)

donde δ es el espesor de la película líquida estancada, K_f y D_e son el coeficiente de transferencia de materia en la película líquida y la difusividad efectiva en la fase resina respectivamente; K_c es la constante de velocidad aparente de reacción química; X_e es la concentración instantánea de ácido aspártico extraida en la superficie externa de la RIE en función del tiempo, expresada en fracción molar; a es el radio de la partícula, siendo para la resina Amberlita-XAD4 a=0,000389 m, $[A_{asp}^{2-}]$ y $[A_{pgly}^{-}]$ son las formas aniónicas del ácido aspártico y α-fenilglicina a pH=11 y 12; y K son los coeficientes de distribución de las formas aniónicas de cada uno de los aminoácidos en el equilibrio expresadas como:

$$K_{(asp)} = \frac{\overline{C}_{A(asp)(r=a)}}{\left[A_{asp}^{2^{-}}\right]}$$
(6.62)

$$K_{(pgly)} = \frac{C_{A(pgly)}(r=a)}{\left[A_{pgly}^{-}\right]}$$
(6.63)

donde $\overline{C}_{A_{(r=a)}}$ es la concentración de equilibrio de aminoácido en la superficie de la RIE expresada en mol/m³ RSI y $\left[A_{asp}^{2^-}\right]$ y $\left[A_{pgly}^{-}\right]$ son las concentraciones de equilibrio de las formas aniónicas de los aminoácidos en la fase acuosa expresada en mol/m³.

Considerando que todos los puntos de la superficie de la RIE están en equilibrio con la disolución acuosa extra-partícula se puede definir X_e para cada uno de los aminoácidos utilizando las Ecs. (6.62) y (6.63) como las siguientes relaciones:

$$X_{e(asp)} = \frac{2K[A_{asp}^{2-}](t)}{\left[Q^{+}Cl^{-}\right]_{i}}$$
(6.64)

$$X_{e(pgly)} = \frac{K\left[A_{pgly}^{-}\right](t)}{\left[Q^{+}Cl^{-}\right]_{i}}$$
(6.65)

Los valores obtenidos de X, Y, Z, $\int_{o}^{t} [A_{asp}^{2-}](t)dt y \int_{o}^{t} [A_{pgly}^{-}](t)dt$ para los experimentos de la Tabla 4, que se muestran en la Tabla C6 del apéndice C.

El sistema estará controlado por difusión en la película líquida externa, difusión intrapartícula y/o reacción química, si al representar X, Y, Z frente a $\int_{o}^{t} \left[A_{asp}^{2-}\right](t)dt$ o $\int_{o}^{t} \left[A_{pgly}^{-}\right](t)dt$ se obtienen líneas rectas con ordenada en el origen cero y de cuya pendiente se podrán evaluar los parámetros cinéticos K_f, D_e y K_C respectivamente.

En las Figs. 41 y 42 se representa X, Y, Z frente a $\int_{0}^{t} [A_{asp}^{2-}](t)dt$ y $\int_{0}^{t} [A_{pgly}^{-}](t)dt$ respectivamente, para el experimento I, de la Tabla 4. ($C_{A(asp)i}=6,52 \text{ mol/m}^{3}$; $C_{A(pgly)i}=6,68 \text{ mol/m}^{3}$ pHi= 11,04±0,05; T= 30 °C).

Las Figs. 41 y 42 muestran que las Ecs (6.56), (6.57), (6.60) y (6.61) no ajustan los datos cinéticos experimentales, así se puede suponer que la difusión en la película líquida externa y la reacción química no son etapas controlantes de la velocidad de los procesos cinéticos de extracción de ácido aspártico y α -fenilglicina de sus mezclas. Sin embargo, las Ecs. (6.58) y (6.59) proporcionan un buen ajuste de los

datos cinéticos experimentales indicando que el proceso está controlado por difusión intrapartícula.

Resultados similares se obtuvieron para todos los experimentos cinéticos de la Tabla 4 (no mostrados). Esto indica que el proceso de extracción del ácido aspartico y α-fenilglicina en sus mezclas a los pH ensayados se puede suponer que está únicamente controlado por la difusión intrapartícula.

Los valores de las difusividades efectivas, $D_{e(asp)}$ y $D_{e(pgly)}$, evaluados desde las pendientes de Y frente a $\int_{0}^{t} \left[A_{asp}^{2-}\right](t) dt y$ $\int_{0}^{t} \left[A_{pgly}^{-}\right](t) dt$ respectivamente, se muestran en la Tabla 8, junto con sus regresiones lineales para los experimentos de la Tabla 4.

Figura 41. Determinación de la etapa controlante de la velocidad de extracción de ácido aspártico en mezclas de ácido aspártico y α-fenilglicina con RIE correspondiente al experimento I (C_{A(asp)} /C_{A(paly)i} =1/1) de la Tabla 4.

- Figura 42. Determinación de la etapa controlante de la velocidad de extracción de αfenilglicina en mezclas de ácido aspártico α-fenilglicina con RIE correspondiente al experimento I (C_{A(asp)} /C_{A(pgly)i} =1/1) de la Tabla 4.
 - Tabla 8. Valores de difusividades efectivas, D_e , evaluados con las Ecs. (6.58) y (6.59)

Experimento	pHi	C _{A(asp)i} (mol/m ³)	$C_{A(pgly)i}(mol/m^3)$	$D_{e(asp)}x10^{11}$ (m ² /s) Ec(6.58)	r
Ι	$11,04\pm0,05$	6,52	6,68	2,87	0,987
		13,11	6,74	1,92	0,998
		19,58	6,83	3,83	0,995
		6,31	12,38	2,87	0,997
II	12,02±0,02	7,65	8,10	4,92	0,990

a) ácido aspártico

b) α-fenilglicina

Experimento	pHi	$C_{A(asp)i}(mol/m^3)$	$C_{A(pgly)i}(mol/m^3)$	$\begin{array}{c} D_{e(pgly)} x 10^{12} \\ (m^2/s) \ Ec(6.59) \end{array}$	r
Ι	11,04±0,05	6,52	6,68	2,87	0,993
		13,11	6,74	3,83	0,987
		19,58	6,83	4,79	0,999
		6,31	12,38	5,75	0,991
II	12,02±0,02	7,65	8,10	9,89	0,998

Al igual que en los procesos cinéticos de extracción individual de ácido aspártico, como el proceso cinético está controlado únicamente por difusión intrapartícula, se puede aplicar para el ajuste de los datos experimentales un modelo basado en la segunda ley de Fick para cada uno de los aminoácidos que intervienen en la mezcla.

El modelo considera una reacción de intercambio iónico heterogénea entre las partículas esféricas de la RIE y los aminoácidos de la disolución acuosa agitada de volumen finito en la cual están inmersas. La resistencia a la difusión en la película líquida externa se puede considerar despreciable, por efecto de la agitación. En la interfase líquido-sólido se mantiene un equilibrio instantáneo y K es el coeficiente de distribución de las especies que difunden entre ambas fases, definido en la Ec. (6.62) para el ácido aspártico y en la Ec. (6.63) para α -fenilglicina. Posteriormente, las especies extraídas en la superficie ($Q_2^+A^-_{asp}$, $Q^+A^-_{pgly}$) de la RIE difunden lentamente al interior de la fase resina. Además, se asume que la concentración de aniones de aminoácido en la fase resina es constante.

Bajo estas condiciones los balances de materia en coordenadas esféricas, de cada uno de los aminoácidos presentes en la mezcla en fase resina pueden ser expresados por las siguientes ecuaciones:

$$\frac{\partial \overline{C}_{A(asp)}(\mathbf{r},t)}{\partial t} = D_{e} \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \overline{C}_{A(asp)}(\mathbf{r},t)}{\partial r} \right); 0 \le r \le a; t > 0$$
(6.66)

$$\frac{\partial \overline{C}_{A(pgly)}(\mathbf{r}, t)}{\partial t} = D_e \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \overline{C}_{A(pgly)}(\mathbf{r}, t)}{\partial r} \right); 0 \le r \le a; t > 0$$
(6.67)

con las condiciones límite e iniciales que se citan a continuación:

$$\overline{C}_{A(asp)}(r,t) = K_{(asp)}[A_{asp}^{2-}](t)$$
 $r = a$ $t > 0$ (6.68)

$$\overline{C}_{A(pgly)}(r,t) = K_{(pgly)} \left[\overline{A_{pgly}} \right] (t) \qquad r = a \qquad t > 0$$
(6.69)

$$\overline{C}_{A(asp)}(r,t) = 0, \overline{C}_{A(pgly)}(r,t) = 0$$
 $0 \le r \le a \ t = 0$ (6.70)

$$\overline{C}_{A(asp)}(r,t) = \text{finito}, \overline{C}_{A(asp)}(r,t) = \text{finito} \quad r = 0 \quad t \ge 0$$
 (6.71)

La cantidad de ácido aspártico y α-fenilglicina extraídos en la RIE en función del tiempo expresado en unidades de mol, M(t), se puede determinar conociendo la cantidad de cada uno de los aminoácidos transferida de la disolución acuosa utilizando los balances de materia de las Ecs. (6.31) y (6.53); así se obtienen las siguientes igualdades:

$$M(t)_{(asp)} = V(C_{A(asp)i} - C_{A(asp)}(t)) = 4\pi N \int_0^a r^2 \overline{C}_{A(asp)}(r, t) dr$$
(6.72)

$$M(t)_{(pgly)} = V(C_{A(pgly)i} - C_{A(pgly)}(t)) = 4\pi N \int_{0}^{a} r^{2} \overline{C}_{A(pgly)}(r, t) dr$$
(6.73)

donde a es el radio de la partícula de resina y N es el número de partículas de resina en la suspensión.

La fracción final de cada aminoácido extraido en la RIE en un volumen de disolución finito se expresa en términos del parámetro α con las siguientes ecuaciones:

$$\frac{M(\infty)_{(asp)}}{V\left[A_{asp}^{2^{-}}\right]_{i}} = \frac{1}{1 + \alpha_{(asp)}}$$
(6.74)

$$\frac{M(\infty)_{(pgly)}}{V\left[A_{pgly}^{-}\right]_{i}} = \frac{1}{1 + \alpha_{(pgly)}}$$
(6.75)

Las soluciones del modelo propuesto, Ecs. (6.76) y (6.77) representan la fracción de cada uno de los aminoácidos extraidos por la RIE en función del tiempo (*Crank J., 1975; Ruiz M.O., 2002*).

$$\frac{M(t)_{(asp)}}{M(\infty)_{(asp)}} = 1 - \sum_{n=1}^{\infty} \frac{6\alpha_{(asp)}(1 + \alpha_{(asp)}) \exp(-g_{n(asp)} \frac{De_{(asp)}t}{a^2})}{9 + 9\alpha_{(asp)} + \alpha_{(asp)}^2 g_{n(asp)}^2}$$
(6.76)

$$\frac{M(t)_{(pgly)}}{M(\infty)_{(pgly)}} = 1 - \sum_{n=1}^{\infty} \frac{6\alpha_{(pgly)}(1 + \alpha_{(pgly)})\exp(-g_{n(pgly)}\frac{De(pgly)t}{a^2})}{9 + 9\alpha_{(pgly)} + \alpha_{(pgly)}^2g_{n(pgly)}^2}$$
(6.77)

donde g_n son las raíces distintas de cero de cada aminoácido definidas en las ecuaciones (6.78) y (6.79); α es un número adimensional definido en las Ecs. (6.80) y (6.81).

$$\frac{g_{n(asp)}}{\tan g_{n(asp)}} = 1 + \frac{\alpha_{(asp)}g_{n(asp)}^{2}}{3}$$
(6.78)

$$\frac{g_{n(pgly)}}{\tan g_{n(pgly)}} = 1 + \frac{\alpha_{(pgly)}g_{n(pgly)}^2}{3}$$
(6.79)

$$\alpha_{(asp)} = \frac{3V}{4\pi a^3 N K_{(asp)}} = \frac{V}{\overline{V} K_{(asp)}}$$
(6.80)

$$\alpha_{(\text{pgly})} = \frac{3V}{4\pi a^3 N K_{(\text{pgly})}} = \frac{V}{\overline{V} K_{(\text{pgly})}}$$
(6.81)

En las Figs. 43 y 44 se representa $log(1 - M(t)/M(\infty))$ frente al tiempo para los experimentos de la Tabla 4. Los valores de las difusividades efectivas de cada aminoácido, D_e, se obtienen de la resolución conjunta de las Ecs. (6.76), (6.78) y (6.80) para ácido aspártico y de las Ecs. (6.77), (6.79) y (6.81) para la α-fenilglicina con el coeficiente de distribución (K) experimental y con el calculado con el modelo de equilibrio anteriormente desarrollado en el apartado 6.1.3. En este segúndo caso, K calculada para los dos aminoácidos de la mezcla se estimó con las siguientes ecuaciones:

$$K_{(asp)} = \frac{\left[\overline{Q_{2}^{+}A_{asp}^{2^{-}}}\right]}{\left[A_{asp}^{2^{-}}\right]} = K_{p2(asp)} \frac{\left[\overline{Q^{+}Cl^{-}}\right]^{2}}{\left[Cl^{-}\right]^{2}}$$
(6.82)

$$K_{(pgly)} = \frac{\overline{\left[Q^{+}A_{pgly}^{-}\right]}}{\left[A_{pgly}^{-}\right]} = K_{pl(pgly)} \frac{\overline{\left[Q^{+}Cl^{-}\right]}}{\left[Cl^{-}\right]}$$
(6.83)

donde $\overline{[Q^+Cl^-]}/[Cl^-]$ se obtiene resolviendo la siguiente ecuación de tercer orden:

$$2K_{p2(asp)}\left[A_{asp}^{2-}\right]\left(\boxed{\boxed{Q^+Cl^-}}\right)^3 + \left(K_{p1(pgly)}\left[A_{pgly}^-\right] + 2\frac{V}{\overline{V}}K_{p2(asp)}\left[A_{asp}^{2-}\right]\right)\left(\boxed{\boxed{Q^+Cl^-}}\right)^2 + \frac{V}{\overline{V}}K_{p2(asp)}\left[A_{asp}^{2-}\right]\left(\frac{V}{\overline{V}}\right)^2 + \frac{V}{\overline{V}}K_{p2(asp)}\left[A_{asp}^{2-}\right]^2 + \frac{V}{\overline{V}}K_{p2(asp)}\left[A_{asp}^{2-}\right]^2$$

$$+\frac{V}{\overline{V}}K_{pl(pgly)}\left[A_{pgly}^{-}\left(\frac{Q^{+}Cl^{-}}{Cl^{-}}\right)-\frac{V}{\overline{V}}\left[\overline{Q^{+}Cl^{-}}\right]\right]=0$$
(6.84)

En la Tabla 9 se presentan los resultados obtenidos de D_e para mezclas de ácido aspártico y α -fenilglicina a pH_i=11 y 12 de los experimentos de la Tabla 4.

Figura 43. Velocidad de extracción de **ácido aspártico** a 30 °C para los experimentos I (pH=11,04±0,05) y II (pH=12,02±0,02), de la Tabla 4. Símbolos: datos experimentales. Líneas sólidas: datos calculados con el valor de K experimental y con las Ecs. (6.76), (6.78) y (6.80).

Figura 44. Velocidad de extracción de α-fenilglicina a 30 °C para los experimentos I (pH=11,04±0,05) y II (pH=12,02±0,02), de la Tabla 4. Símbolos: datos experimentales. Líneas sólidas: datos calculados con el valor de K experimental y con las Ecs. (6.77), (6.79) y (6.81).

En las Figs. 43 y 44 se observa la buena concordancia existente entre las velocidades medidas experimentalmente (símbolos) y las calculadas (líneas sólidas).

Tabla 9. Valores de difusividad efectiva, D_e, calculadas con las Ecs. (6.76-6.81) para los experimentos cinéticos de la Tabla 4.

a) ácido aspártico

Experimento	pHi	$\begin{array}{c} C_{A(asp)i} \\ (mol/m^3) \end{array}$	$\begin{array}{c} C_{A(pgly)i} \\ (mol/m^3 \end{array}$	$\begin{array}{c} D_{e(asp)}x10^{11}(m^2\!/\!s)\\ Ec(6.76)(K\\ experimental) \end{array}$	$\begin{array}{c} D_{e(asp)}x10^{11} \\ (m^2/s) \ Ec(6.76) \\ (K_{\ calculada} \ con \\ Ec.6.82) \end{array}$	% Error Ec(6.50)
Ι	11,04±0,05	6,52	6,68	13,80	14,40	2,95
		13,11	6,74	13,90	14,32	2,07
		19,58	6,83	18,00	18,50	1,91
		6,31	12,38	14,20	14,90	3,32
II	12,02±0,02	7,65	8,10	32,60	32,60	0,00

b) α-fenilglicina

Experimento	рНі	$\begin{array}{c} C_{A(asp)i} \\ (mol/m^3) \end{array}$	C _{A(pgly)i} (mol/m ³	$\begin{array}{c} D_{e(pgly)}x10^{11}\\ (m^2/s)\ Ec(6.77)\\ (K\ _{experimental})\end{array}$	$\begin{array}{c} D_{e(pgly)}x10^{11}\\ (m^2/s)\ Ec(6.77)\\ (K\ _{calculada}\ con\\ Ec.6.83)\end{array}$	% Error Ec(6.50)
Ι	11,04±0,05	6,52	6,68	3,70	3,77	1,34
		13,11	6,74	3,80	3,95	2,79
		19,58	6,83	4,70	4,99	4,36
		6,31	12,38	6,00	6,15	1,77
II	12,02±0,02	7,65	8,10	11,00	10,79	1,35

El % de error que se muestra en la Tabla 9 definido en la Ec. (6.50) se estimó a partir de la desviación estándar de D_e calculada con el valor de K experimental y de K calculada con la Ec. (6.82) para el ácido aspártico y con la Ec. (6.83) para la α -fenilglicina. Los valores de De fueron similares al estimarlos empleando K experimental y K calculada con los modelos de equilibrio, con errores inferiores al 4,36 %. Este resultado indica que el modelo de equilibrio describe perfectamente a los sistemas de extracción de los aminoácidos con RIE a 30°C.

En la Tabla 9 y en las figuras 45 y 46 se muestran los resultados de las D_e para distintas concentraciones iniciales de ácido aspártico y α -

fenilglicina en las mezclas, respectivamente. Los resultados indican que los valores de las difusividades efectivas aumentan ligeramente al aumentar la concentración de aminoácido en la fase acuosa, produciendo comparativamente procesos de extracción más rápidos.

Los valores de las difusividades efectivas de ácido aspártico y α -fenilglicina obtenidos con las Ecs. (6.76)-(6.81) son mayores que los obtenidos con el modelo cinético propuesto por Bhandari con las Ecs. (6.58) y (6.59). Estos resultados pueden ser debidos a que este modelo considera el llenado parcial de los huecos reactivos de la RIE y consecuentemente predice un camino de difusión más corto que el modelo de Fick, el cual al considerar que el camino de difusión es el espesor total de la partícula, y ajusta los datos de velocidad de extracción con un valor más grande de la difusividad. En cualquier caso, ambos modelos proporcionan una tendencia ascendente de D_e con la concentración inicial de aminoácido.

En las figuras 45 y 46 se observa que las difusividades efectivas son mayores a pH=12 que a pH= 11, tanto para ácido aspártico como para fenilglicina proporcionando comparativamente procesos cinéticos de extracción más rápidos. Además en la figura 45 se observa que la presencia de α -fenilglicina no afecta a los valores de difusividad efectiva de ácido aspártico, sin embargo, la presencia de ácido aspártico afecta y provoca que la difusividad efectiva de la α -fenilglicina aumente su valor ligeramente, proporcionando comparativamente procesos cinéticos de extracción más rápidos, como se observa en la Fig.46.

Figura 45. Efecto de la concentración inicial de ácido aspártico y del pH sobre la **difusividad efectiva de ácido aspártico** evaluada con las Ecs. (6.76), (6.78) y (6.80) para los experimentos de la Tabla 4.

Figura 46. Efecto de la concentración inicial de α-fenilglicina y del pH sobre la difusividad efectiva de α-fenilglicina evaluada con las Ecs. (6.77), (6.79) y (6.81) para los experimentos de la Tabla 4.

En la Tabla 9 y comparando las figuras 45 y 46 se observa que los valores de las difusividades efectivas del ácido aspártico son siempre mayores que las de α -fenilglicina. Este resultado pone de manifiesto que la velocidad del proceso de extracción del ácido aspártico es más rápida que la velocidad de extracción de α -fenilglicina. Este efecto también se observó en los procesos cinéticos de extracción individual de ácido aspártico y α -fenilglicina y puede deberse a que el aminoácido α -fenilglicina es un aminoácido de mayor tamaño, con un grupo fenilo en su cadena radical, mientras que el ácido aspártico es más pequeño y presenta una cadena radical alifática.

En las figuras 47 y 48 se representa el ajuste de los resultados experimentales cinéticos de mezclas de ácido aspártico y α -fenilglicina al modelo mostrado en las Ecs. (6.76)-(6.81). En estas figuras se observa que existe una buena concordancia entre los datos experimentales (símbolos) y los calculados con el modelo (líneas sólidas). El error estimado con la Ec. (6.50) para cada uno de los aminoácidos fue inferior a 3,25 % para todos los experimentos de la Tabla 4.

Figura 47. Cinéticas de extracción de ácido aspártico de mezclas binarias de ácido aspártico y α-fenilglicina para los experimentos I (pHi=11,04±0,05) y II (pHi=12,02±0,02) de la Tabla 4. Símbolos: datos experimentales. Línea sólida: datos estimados con las Ecs. (6.72), (6.76), (6.78) y (6.80).

Figura 48. Cinéticas de extracción de α-fenilglicina en mezclas de ácido aspártico y α-fenilglicina para los experimentos I (pHi=11,04±0,05) y II (pHi=12,02±0,02) de la Tabla 4. Símbolos: datos experimentales. Línea sólida: datos estimados con las Ecs. (6.73), (6.77), (6.79) y (6.81).

6.2.3 Comparación de los resultados cinéticos de la extracción individual y conjunta de ácido aspártico y a-fenilglicina

Al objeto de comparar la velocidad de la extracción individual de ácido aspártico y α -fenilglicina y de sus mezclas binarias, se representa en las figuras 49 y 50 los valores de las difusividades estimadas con la segunda ley de Fick para la extracción individual y conjunta de ácido aspártico y α -fenilglicina, respectivamente.

Figura 49.Comparación de los valores de D_e estimados con la segunda ley de Fick para la extracción de ácido aspártico sólo y mezclado con α-fenilglicina.

En la figura 49 se observa que la difusividad efectiva del ácido aspártico aumenta ligeramente al aumentar la concentración de aminoácido, y por tanto proporciona procesos de extracción más rápidos. Por otra parte, la difusividad efectiva del ácido aspártico en todos los casos es mayor a pH=12 que a pH=11, esto puede deberse a que a pH=11 todavía existe una pequeña cantidad de especie A⁻ que dificulta o inhibe la extracción de la especie A²⁻. A pH=12, se puede suponer que la presencia de α-fenilglicina no influye en el proceso cinético de extracción de ácido aspártico debido a que se obtiene el mismo valor de D_e sólo que mezclado, como puede observarse en la Fig. 49. Sin embargo, a pH=11 el valor de la difusividad efectiva es ligeramente superior en las mezclas binarias que en el proceso individual.

Figura 50. Comparación de los valores de D_e estimados con la segunda ley de Fick para la extracción de α-fenilglicina sóla y mezclada con ácido aspártico.

En la figura 50 se observa que la difusividad efectiva de α -fenilglicina aumenta al aumentar la concentración de aminoácido en la disolución acuosa, provocando comparativamente procesos cinéticos de extracción más rápidos. Además, se observa que a pH=11 y 12 el comportamiento cinético en la extracción de α - fenilglicina varía al estar sólo o mezclado con ácido aspártico, obteniéndose un valor de D_e mayor a pH=11 en el primer caso y mayor a pH=12 en el segundo caso. Esta diferencia en el comportamiento cinético puede estar relacionada con el efecto de co-extracción de los iones hidroxilo presentes en el medio básico y que sólo existe en los procesos de extracción individual de α - fenilglicina.

Por otra parte, tanto en los procesos de extracción individual de ácido aspártico y α - fenilglicina como de sus mezclas, se obtuvieron valores de la difusividad efectiva mayores para el ácido aspártico que para la α -fenilglicina, siendo por tanto el proceso de extracción del ácido aspártico más rápido que el de α -fenilglicina. Este efecto puede deberse a que el aminoácido α -fenilglicina es un aminoácido de mayor tamaño que el ácido aspártico.

7. CONCLUSIONES

A continuación se detallan las conclusiones más relevantes alcanzadas en este estudio.

I. EQUILIBRIOS DE EXTRACCIÓN DE AMINOÁCIDOS DE SUS MEZCLAS BINARIAS CON RIE

- La adsorción física de ácido aspártico y α-fenilglicina debida a la matriz polimérica de la resina y la co-extracción de iones hidroxilo debida al Tomac inmovilizado en los poros de la resina fue despreciable en los experimentos de extracción conjunta de ambos aminoácidos.
- El grado de extracción de ácido aspártico y α-fenilglicina con Amberlita XAD-4 impregnada con Tomac fue superior a pH ≥ 11, y aumenta al aumentar la concentración de cada aminoácido en fase acuosa y su proporción en la mezcla, resultando en todos los casos inferior al obtenido en la extracción individual de cada aminoácido.
- No hay extracción de α-fenilglicina a pH = 5, y consecuentemente, el grado de extracción de ácido aspártico fue igual solo y mezclado, en el intervalo de concentración estudiado.
- Los resultados obtenidos en la extracción conjunta de ácido aspártico y α-fenilglicina con RIE presentan tendencias análogas a los de la extracción individual, lo que induce a presuponer que el mecanismo de extracción es el mismo, y tendrán lugar por reacciones de intercambio iónico, de las especies aniónicas de los dos aminoácidos con los iones cloruro del Tomac inmovilizado en los poros de la resina.
- En disolución acuosa el ácido aspártico, como todos los aminoácidos, sufre una disociación dependiente del pH. Para disoluciones acuosas con pH comprendido entre el pK_{a2} y el pK_{a3} (pH= 5) predomina la forma aniónica del aminoácido A⁻, mientras que a pH superior al pK_{a3} (pH =11 y 12) predomina la forma aniónica del aminoácido A²⁻. Así, la extracción de ácido aspártico con RIE tiene lugar por reacciones de intercambio iónico con el Tomac formando distintos complejos ácido aspártico – Tomac (Q⁺A⁻, Q⁺₂A²⁻) dependiendo del pH del medio.
- Para disoluciones acuosas con un pH mayor que el pK_{a2} predomina la forma aniónica de de α-fenilglicina A⁻, y consecuentemente la extracción de α-fenilglicina con RIE forma únicamente el complejo α-fenilglicina – Tomac (Q⁺A⁻).

La separación de ácido aspártico y α-fenilglicina, solos o de mezclas, con Amberlita XAD-4 impregnada con Tomac puede describirse adecuadamente mediante un modelo de equilibrio diferente para cada valor del pH y que combina la extracción reactiva de cada aminoácido y la posible co-extracción de los iones hidroxilo con el Tomac inmovilizado en los poros de la resina. Los modelos propuestos ajusta satisfactoriamente los resultados experimentales, obteniéndose igual valor para la constante de equilibrio en la extracción individual y conjunta.

II. CINÉTICAS DE EXTRACCIÓN DE ÁCIDO ASPÁRTICO EN BAÑOS AGITADOS CON RIE

- La forma y evolución de las curvas cinéticas es similar en todas las experiencias realizadas, por tanto el proceso cinético debe poseer las mismas características y estar controlado por los mismos mecanismos de transferencia de materia.
- Los procesos cinéticos de separación de ácido aspártico de disoluciones acuosas diluidas son rápidos y se alcanza el equilibrio a tiempos reducidos, inferiores a 1 hora, pero varían con el pH y con la concentración de aminoácido en la fase acuosa.
- En los procesos cinéticos de separación de ácido aspártico no existe co-extracción de iones hidroxilo.
- Los resultados de las cinéticas de separación de ácido aspártico en tanques agitados se correlacionaron adecuadamente mediante un modelo cinético basado en la segunda ley de Fick, considerando que el proceso de transferencia de materia está controlado por la difusión intrapartícula del complejo ácido aspártico-Tomac y que existe un equilibrio instantáneo en la interfase sólido-líquido. Los valores de las difusividades efectivas se estimaron a partir del modelo resultando del orden de $D_e = 10^{-10}$ m²/s. Un análisis más detallado mostró que la difusividad crece ligeramente, y consecuentemente, la velocidad del proceso de transferencia de materia es más rápido al aumentar la concentración de aminoácido, y a pH = 5 y 9.
- La difusividad efectiva del ácido aspártico es un orden de magnitud mayor que el de α-fenilglicina. Este resultado es consecuencia del mayor tamaño del aminoácido α-fenilglicina que contiene un grupo fenilo en su cadena radical.
- Por otra parte se pone de manifiesto la dependencia existente entre la concentración de aminoácido y el coeficiente de

distribución, apreciándose que son inversamente proporcionales, de consecuentemente, al aumentar la concentración ۷ aminoácido el coeficiente de distribución disminuve drásticamente. Estos resultados demuestran que la difusividad efectiva y por tanto la velocidad del proceso de extracción de ambos aminoácidos crece al disminuir el coeficiente de distribución.

- III. CINÉTICAS DE EXTRACCIÓN DE AMINOÁCIDOS DE SUS MEZCLAS CON RIE
 - No hay cambios significativos en las cinéticas de extracción individual y conjunta del ácido aspártico a pH = 5, este resultado puede ser debido a que el aminoácido α-fenilglicina no se extrae a este pH.
 - La co-extracción de los iones hidroxilo es despreciable frente a la extracción conjunta de α-fenilglicina y ácido aspártico.
 - Los procesos cinéticos de fraccionamiento de mezclas de αfenilglicina y ácido aspártico a pH =11 y 12 son rápidos, y se alcanza el equilibrio a tiempos reducidos, resultando comparativamente más rápida la extracción del ácido aspártico. Estos resultados son análogos a los obtenidos en las cinéticas de extracción de cada aminoácido por separado.
 - La velocidad de separación de los aminoácidos desde la mezcla binaria depende de la concentración relativa en que se encuentran presentes.
 - Los resultados de las cinéticas de separación de mezclas de ácido aspártico y α -fenilglicina en tanques agitados se correlacionaron adecuadamente mediante un modelo cinético basado en la segunda ley de Fick, considerando que el proceso de transferencia de materia está controlado por la difusión intrapartícula del complejo ácido aspártico-Tomac y del complejo α -fenilglicina-Tomac y que existe un equilibrio instantáneo en la interfase sólido-líquido. Los valores de las difusividades efectivas se estimaron a partir del modelo resultando del orden de D_e =10⁻¹⁰ m²/s para el ácido aspártico y de de D_e =10⁻¹¹ m²/s para α -fenilglicina. Este resultado pone de manifiesto que la velocidad de extracción del ácido aspártico es más rápida que la de α -fenilglicina como consecuencia de su mayor tamaño, ya que contiene un grupo fenilo en su cadena radical.
 - La difusividad para ambos aminoácidos crece ligeramente, y consecuentemente, la velocidad del proceso de transferencia de materia es más rápido, al aumentar su concentración relativa en la mezcla y a pH=12.

8. BIBLIOGRAFÍA

Abbasian K., Degener W. and Schügerl K., Chances of Reactive Extraction of Primary and Secondary Metabolites: Ber. Bunsenges. *Phys. Chem.* 93 (1989) 976 – 980.

Akita S. and Takeuchi H., Sorption and Separation of Metals from Aqueous Solutions by a Macroporous Resin Containing Tri-n-octylamine: *J. Chem. Eng. Japan* 23 (4) (1990) 439 - 443.

Akita S. and Takeuchi H., Sorption of Divalent Metals by a Macromolecular Resin Containing Organophosporus Acids: *J Chem Eng Data*, 37 (1992) 303-306.

Akita S. and Takeuchi H., 1993, Column Sorption and Separation of Divalent Metals by a Macroporous Resin Containing Organophosphorus Acids: *J Chem Eng Japan*, 26 (1993) 442-444.

Akita S., Hirano K. and Ohashi Y., Equilibrium Distribution of Palladium (II) between Hydrochloric Acid Solution and Macromolecular Resin Containing Trin-octylamine: *Solv. Extr. Ion Exch.* 11 (5) (1993 a) 797 - 810.

Baldwin W. H. and Higgins C. E., Liquid-Liquid Distribution, Tributyl Phosphate between Immiscible Solvents: *J. Chem. Eng. Data* 19 (2) (1974) 152 – 154.

Bhandari V. M., Juvekar V. A. and Patwardhan S. R., Modified Shrinking Core Model for Reversible Sorption on Ion-Exchange Resins: *Sep. Sci. Technol.* 27 (8-9) (1992) 1043 -1064.

Barre R. M., Flow into and Through Zeolite Beds and Compacts: *Langmuir* 3 (1987) 309 – 315.

Bart H-J., Schöneberger A., Reactive Proceses for Recovery of Heavy Metals in Miniplants: Chem. Eng. Technol. (23) (2000) 653-660.

Belitz H.-D. and Grosch W., "Química de los alimentos", 2^a ed., Editorial Acribia, Zaragoza, (1997).

Blanch H. W. And Clark D. S., Product Recovery, en Biochemical Engineering, Marcel Dekker In., New York, 1996..

Burgos L., Desarrollo de un Proceso de Separación de α -fenilglicina Utilizando Contactores de Membranas de Fibras Huecos; Tesis de Licenciatura , directores Ruiz M. O.; Escudero I. (2001).

Brown C. M., Campell I., Priest F. G., *"Introducción a la biotecnología".* Editorial Acribia, S.A. Zaragoza, 1989

Browne T. E. and Cohen Y., Polymer-Grafted Silica: A Screening System for Polymeric Adsorption Resin Development: *Ing. Eng. Chem. Res.* 32 (1993) 716 – 725.

Calvarin L., Roche B. and Renon H., Anion Exchange and Aggregation of Dicyanocobalamin with Quaternary Ammonium Salts in Apolar Environment: *Ind. Eng. Chem. Res.* 31 (1992) 1705 - 1709.

Camporro A., Eliminación/Recuperación de Fenol y Derivados de Efluentes Industriales Mediante Procesos de Sorción. Tesis Doctoral, (1991), Universidad de Oviedo.

Cardoso M. M., Mendes C. M., Carrondo M. J. T., Kroner K. H., Deckwer W. D. And Crespo J. P. S. G., Extraction of Amino Acids By Ion-Pairing And Reversed Micellar Transport, *in Separation for Biotechnology 3, D. L. Pyle. (Ed). SCI,* London (1994), 93-99.

Cascaval D.,Oniscu C. and, Galaction I., Selective separation of amino acids by reactive extraction: Biochemical Engineerin Journal, Vol 7 (3) (2001) 171-176.

Chan C. C. and Wang S. S., Kinetics of the Extraction of Phenylalanine and Glutamic Acid by Ion - Exchange Carriers: *J. Membrane Sci.* 76 (1993) 219 - 232.

Cheftel J.C, CUQ J.L, Lorient D., "Proteinas alimentarias", Editorial Acribia, Zaragoza, 1989

Chen J. H., Chen W. R., Gau Y. Y. and Lin C. H., The preparation of di(2ethylhexyl)phosphoric acid modified Amberlite 200 and its application in the separation of metal ions from sulfuric acid solution: *Reactive & Functional Polymers* (56) (2003) 175-188.

Cheremisinoff P. N. and Morresi A. C., Carbon Adsorption Applications. In Carbon Adsorption Handbook, P. Cheremisinoff and F. Ellerbusch (Eds.), Ann Arbor Science Publishers Inc., Michigan, 1978.

Clark G. A., Gastrone R. C. and Horwitz E. P., The Extraction of Carboxylic Acids by O\phiD(iB)CMPO: Solv. Ext. Ion Exch. 5 (3) (1987) 471 – 491.

Cockrem M. C. M., Flatt J. H. and Lightfoot E. N., Solvent Selection for Extraction from Dilute Solution: *Sep. Sci. Technol.* 24 (11) (1989) 769 – 807.

Costa C. and Rodrigues A., Intraparticle Diffusion of Phenol in Macroreticular Adsorbents: Modelling and Experimental Study of Barth and CSTR Adsorbers: *Chem. Eng. Sci.* 40 (6) (1985 a) 983 – 993.

Coulson J. M. and Richardson J.F., Chemical Engineering. Particle Technology and Separation Processes. 4^a ed., vol 2, Pergamon Press, Oxfor,d, 1993.

Cortina J. L., Miralles N., Sastre A. M., Aguilar M., Profumo A. and Pesavento Μ., Solvent Impregnated Resins Containing Di(2,4,4-Comparative trimethylpentyl)phosphinic Acid. Ι. Study of Di(2,4,4trimethylpentyl)phosphinic acid adsorbed into Amberlite XAD-2 and Dissolved in Toluene: React Polym, 21 (1993a) 89-101.

Cortina J. L., Miralles N., Sastre A. M., Aguilar M., Profumo A. and Pesavento M., Solvent Impregnated Resins Containing Di(2,4,4-trimethylpentyl)phosphinic Acid. II. Study of the Distribution Equilibria of Zn, Cu and Cd: *React Polym*, 21 (1993b) 103-116.

Cortina J. L., Miralles N., Aguilar M. and Sastre A. M., Extraction studies of Zn (II), Cu (II) and Cd (II) with impregnated and Levextrel resins containing di(2-ethylhexyl)phosphoric acid (Lewatit 1026 Oc): *Hydrometallurgy* 36 (1994) 131-142.

Cortina J. L., Miralles N., Sastre A. M., Aguilar M., Profumo A. and Pesavento M., Solvent Impregnated Resin Containing Di(2-ethylhexyl)phosphoric Acid. I Preparation and Study of the Retention and Distribution of the Extractant on the Resin: *Solvent Extr Ion Exch*, 12(2) (1994a) 349-369.

Cortina J. L., Miralles N., Aguilar M. and Sastre A. M., Solvent Impregnated Resins Containing Di(2-ethyl-hexyl)phosphoric Acid. II. Study of The Distribution Equilibria of Zinc(II), Cu(II) and Cd(II): *Solvent Extr Ion Exch*, 12(2) (1994b) 371-391.

Crank J., The Mathematics of Diffusion, 2nd edn., Oxford University Press, London, 1975.

Do D. D. and Rice R. G., On the Relative Importance of Pore and Surface Diffusion in Non-Equilibrium Adsorption Rate Processes: *Chem. Eng. Sci.* 42 (10) (1987) 2269 – 2284.

Do D. D. and Rice R. G., A Simple Method of Determining Pore and Surface Diffusivities in Adsorption Studies. *Chem. Eng. Comm.* 107 (1991) 151 – 161.

Doulia D.,Rigas F., Gimouhopoulos C., Removal of amino acids from water by adsorption on polystyrene resins: J. Chem. Technol. Biotechnol (76) (2001) 83-89.

Escalante H., Alonso A. I., Ortiz I. and Irabien A., Separation of L-Phenylalanine by nondispersive Extraction and Backextraction. Equilibrium and Kinetics: *Sep. Sci. Technol.* 33 (1) (1998) 119 - 139.

Eyal A. M. and Canari R., pH Dependence of Carboxylic and Mineral Acid Extraction by Amine-Based Extractants: Effects of pKa, Amine Basicity, and Diluent Properties: *Ind. Eng. Chem. Res.* 34 (5) (1995) 1789 – 1798.

Fennema O. R., "Química de los alimentos", 2ª ed., Editorial Acribia, S.A, Zaragoza, 2000.

Filik H., Dogutan M. and Apak R., Speciation analysis of chromium by separation on a 5-palmitoyl oxine-functionalysed XAD-2 resin and spectrophotometric determination with diphenylcarbazide: *Anal. Bioanal. Chem* 376 (2003) 928-933.

Galan B., Urtiaga A. M., Alonso A. I., Irabien J. A. and Ortiz M. I., Extraction of Anions with Aliquat 336: Chemical Equilibrium Modeling: *Ind. Eng. Chem. Res.* 33 (1994) 1765 - 1770.

García R., Martínez C., *"Residuos en la industria farmaceútica",* Ingeniería Química, Nº409, enero 2004

Gloe K., Stephan H. and Grotjahn M., Where is the Anion Extraction Going? Review: *Chemical Engineering*& *Technology* 26 (2003) 1107-1117

Golob J., Grilc V. and Zadnik B., Extraction of Acetic Acid from Dilute Aqueous Solutions with Trioctylphosphine Oxide: *Ind. Eng. Chem. Process Des. Dev.* 20 (1981) 433 – 435.

Gomez-Salazar S., Lee J. S., Heydweiller J. C. and Tavlarides L. L., Analysis of Cadmium Adsorption on Novel Organo-Ceramic Adsorbents with a Thiol Functionality: *Ind. Eng. Chem. Res.* 42 (2003), 3403-3412.

Gomes C. P., Almeida M. F., Loureiro J. M., Gold recovery with ion exchange used resins: Separation and Purification Technology 24 (2001) 35-57.

Grant T. M. and King C. J., Mechanism of Irreversible Adsorption of Phenolic Compounds by Activated Carbons: *Ind. Eng. Chem. Res.* 29 (1990) 264 – 271.

Gurnani V., Singh A. K. and Venkataramani B., Cellulose based macromolecular chelator having pyrocatechol as an anchored ligand: syntesis and applications as metal extractant prior to their determination by flame atomic absorption spectrometry: *Talanta* 61 (2003) 889-903.

Gurnani V. and Singh A. K., Equilibrium Studies on the Optimazation of Solid-Phase Extraction of Metal Ions with Pyrogallol-Anchored Cellulose Synthesized by a New Method and Applications of the Extraction in Metal Enrichment, Removal, and Determination: *Ind. Eng. Chem. Res.* 43 (2004) 2302-2309.

Guijarro J. I., Gonzalez Pastor J. E., Baleux F. and Millan. J. L. S., Chemical-structure and translation Inhibition studies of the antibiotic microcin C7: *Journal of Biological Chemistry*, Vol 270 (40) (1995) 23520-23532.

Guo Y., Din B., Liu Y., Chang X., Meng S., Tian M., Preconcentration of trace metals with 2-(methylthio)aniline-functionalized XAD-2 and their determination by flame atomic absorption spectrometry: Analytica Chimica Acta 504 (2004) 319-324.

Guo Y., Din B., Liu Y., Chang X., Meng S., Liu J., Preconcentration and determination of trace metals with 2-aminoacetylthiophenol functionalized Amberlite XAD-2 by inductively coupled plasma-atomic emission spectrometry: Talanta 62 (2004) 209-215.

Gusler G. M., Browne T. E. and Cohen Y., Sorption of Organics from Aqueous Solution onto Polymeric Resins: *Ind. Eng. Chem. Res.* 32 (1993) 2727 – 2735.

Haensel R., Halwachs W. and Schügerl K., Reactive Extraction of D,L - Phenylalanine with Trioctil - methyl - ammonium Chloride (Tomac) as a Carrier. III. Equilibrium and Mass Transfer Investigations: *J. Chem. Eng. Sci.* 41 (7) (1986) 1811 - 1815.

Hampe M. J., Selection of Solvents in Liquid – Liquid Extraction According to Physico – Chemical Aspects: *Ger. Chem. Eng.* 9 (1986) 251 – 263.

Hanson C., Basic Principles of Solvent Extraction: Advanced Solvent Extraction Technology, University of Bradford, 1979.

Hartl J. and Marr R., Utilization of Third-Phase Formation in Solvent Extraction Systems Employing Amine Extractant: Solvent Extraction, Elsevier (Eds.), New York, 1990.

Hasanain M. A. and Hines A. L., Application of the Adsorption Potencial Theory to Adsorption of Carboxylic Acids from Aqueous Solutions onto a Macroreticular: *Ind. Eng. Chem. Process Des. Dev.* 20 (1981) 621 – 625.

Hawley G. Gessuer, Irvingsax N., Richard J. and Lewis S. R. "Diccionario de química y de productos químicos.", *Editorial Omega S. A.*, Barcelona (1993).

Helfferich F. and Plesset M. S., Ion Exchange Kinetics. A Nonlinear Diffusion Problem: *J. Chem. Phys.* 28 (1958) 418 – 424.

Herrera E., "Elementos de Bioquímica": 1ª Ed., *Editorial Interamericana McGrwaw-Hill,*México, (1993).

Horta A. I., Santridian E., Ruiz M. O., Cabezas J. L., Escudero I., Equilibrium studies on amino acids separation by macroporous resin impregnated with trialkyl-methyl-ammonium chloride. Congress manuscripts C32-006. 7th World Congress of Chemical Engineering, Glasgow- Scotland (2005).

Hoshi H., Wei Y.-Z., Kumagai M., Asakura T., Morita Y., Group separation of trivalent minor actinidides and lanthanides by TODGA extraction chromatography for radioctive waste management. *Journal of Alloys and Compounds* 374 (2004) 451-455.

Itoh H., Thien M. P., Hatton T. A. and Wang D. I. C., Liquid Emulsion Membrane Process for Separation of Amino Acids: *Biotechnol. Bioeng.* 35 (1990) 853 - 860.

Jones I. and Carta G., Ion Exchange of Amino Acid and Dipeptides on Cation Resins with Varying Degree of Cross-Linking. 1. Equilibrium: *Ind. Eng. Chem. Res.* 32 (1993a) 107 - 117.

Jones I. and Carta G., Ion Exchange of Amino Acid and Dipeptides on Cation Resins with Varying Degree of Cross-Linking. 2. Intraparticle Transport: *Ind. Eng. Chem. Res.* 32 (1993b) 117 - 125.

Juang R. S. and Chou T. C., Sorption Kinetics of Citric Acid from Aqueous Solutions by Macroporous Resins Containing a Tertiary Amine: *J. Chem. Eng. Japan* 29 (1996 a) 146 - 151.

Juang R. S. and Lee S. H., Column Sorption of Divalent Metals from Sulfate Solutions by Extractant-Impregnated Macroporous Resins: *J Chem Tech Biotechnol*, 66 (1996b) 153-159.

Juang R. S. and Chang H-L., Distribution Equilibrium of Citric Acid between Aqueous Solutions and Tri-n-octylamine-Impregnated Macroporous Resins: Ind. Eng. Chem. Res. (34) (1995) 1294-1301.

Juang R. S. and Lin H. C., Metal Sorption with Extractant-Impregnated Macroporous Resins. 1. Particle Diffusion Kinetics: *J Chem Tech Biotecnol*, 62 (1995a) 132-140.

Juang R. S. and Lin H. C., Metal Sorption with Extractant-Impregnated Macroporous Resins. 2. Chemical Reaction and Particle Diffusion Kinetics: *J Chem Tech Biotecnol*, 62 (1995b) 141-147.

Juang R. S. and Lin H. C., Metal Sorption with Extractant-Impregnated Macroporous Resins. 2. Chemical Reaction and Particle Diffusion Kinetics: *J. Chem. Tech. Biotechnol.* 62 (1995 c) 141 - 147.

Juang, R. S. and Chang H. L., Column Sorption of Citric Acid from Aqueous Solutions Using Tri-n-octylamine-Impregnated Macroporous Resins: *Sep. Sci. Technol.* 30 (6) (1995 d) 917 - 931.

Juang R. S. and Su J. Y., Sorption of Copper and Zinc from Aqueous Sulfate Solutions with Bis(2-ethylhexyl)phosphoric Acid-Impregnated Macroporous Resin: *Ind Eng Chem Res*, 31(12) (1992a) 2774-2779.

Juang R. S. and Su J. Y., Separation of Zinc and Copper from Aqueous Sulfate Solutions with Bis(2-ethylhexyl)phosphoric Acid-Impregnated Macroporous Resin: *Ind Eng Chem Res*, 31(12) (1992b) 2779-2783.

Kelly N. A., Lukhezo M., Reuben B. G., Dunne L. J. and Verrall S., Reactive Solvent Extraction of Amino Acids with Cationic Extractants: *J. Chem. Tecnol. Biotechnol.* 72 (1998) 347 –355.

Kende A. S., Liu K., Kaldor I., Dorey-G. and Koch K..., Total synthesis of the macrolide antitumor antibiotic lankacidin-C: *Journal of the American Chemical Society*, Vol 117 (31) (1995) 8258-8270.

Kertes A. S. and King C. J., Extraction Chemistry of Fermentation Product Carboxylic Acids: *Biotechnol. Bioeng.* 28 (1986) 269 - 282.

Kim M. G. and Lee S. B., Penicillin Acylase Catalyzed Synthesis of Beta Lactam Antibiotics in Water Methanol Mixtures: Effect of Cosolvent Content and Chemical Nature of Substrate on Reaction Rates and Yields: *J. Molecular Catalysis B-enzymatic.* 1 (3-6) (1996) 201 - 211.

King C. J., Acetic Acid Extraction, Handbook of Solvent Extraction, John Wiley & Sons, New York, 1983.

King C. J. and Senetar J. L., Solvent Extraction of Industrial Organic Substances from Aqueous Streams: *Solv. Ext. Ion Exch.* 10 (1) (1988) 1 – 61.

Kirk-Othmer., "*Encyclopedia of Chemical Technology*", 4^a ed., Vol. 2, pp 504-579 M. Howe-Grant (Ed.) John Wiley & Sons, New York, (1992).

Komiyama H. and Smith J. M., Surface Diffusion in Liquid-Filled Pores: *AIChE J.* 20 (6) (1974 b) 1110 – 1117.

Komiyama H. and Smith J. M., Intraparticle Mass Transport in Liquid-Filled Pores: *AIChE J.* 20 (4) (1974 a) 728 – 734.

Liapis A. L. and Rippin W. T., A General Model for the Simulation of Multi-Component Adsorption from a Finite Bath: *Chem. Eng. Sci.* 32 (1977) 619 – 627.

Liddell J. M., Introduction to Downstream Processing, en Engineering Processes for Bioseparations, Ed. Weatherley L. R., The Queen's University of Belfast, Northen Ireland, UK, 1994, pp. 5-34.

Linden G. and Lorient D., "Bioquímica agroindustrial. Revalorización alimentaria de la producción agrícola.", Editorial Acribia, Zaragoza, (1996).

Liu Z. H., Wang J., Fan C.L. and Zhou R. X., Synthesis and swelling characterizations of alpha, beta-poly-DL-asparamide derivative hidrogel: *Acta Polimerica Sinica*, (5) (1998) 562-566.

Ma Z., Whitley R. D. and Wang N. H. L., Pore and Surface Diffusion in Multicomponet Adsorption and Liquid Chromatography Systems: *AIChE J.* 42 (5) (1996) 1244 – 1262.

Maity N., Payne G. F. and Chipchosky J. L., Adsorptive Separations Bases on the Differences in Solute-Sorbent Hydrogen-Bonding Strengths: *Ind. Eng. Chem. Res.* 30 (1991) 2456 – 2463.

Marcus Y. and Kertes A. S., Ion Exchange and Solvent Extraction of Metal Complexes: Wiley-Interscience, Bristol, 1969.

Marcus Y., Solvent Extraction by Selective Ion Solvatation: *Pure & Appl. Chem.* 54 (1982) 2237 - 2334.

Margreth A., Wegman A., Michiel H. A., Fred V. R. and Roger A. S., Towards Biocatalytic Synthesis of B-Lactam Antibiotics: Review, *Adv. Synth. Catal.* (2001), 343, 559-576.

Martín C. and Cuellar J., Synthesis of a Novel Magnetic Resin and the Study of Equilibrium in Cation Exchange with Amino Acids: *Ind. Eng. Chem. Res.* (43) (2004) 475-485.

Martín C. and Cuellar J., Synthesis of Poly(styrene-co-divinylbenzene)stainless Steel Beads through a factorial design of Experiments: *Ind. Eng. Chem. Res.* (43) (2004) 2093-2103

McCabe W. L., Smith J. C. and Harriot P., Operaciones Básicas de Ingeniería Química. 4^a ed., McGraw-Hill, Madrid, 1991.

Mijangos F., González C. And Varona F., Envenenamiento Inducido y Regeneración Química con Disolventes de Resinas Adsorbentes Apolares: *Afinidad LV 477* (1998) 369 – 376.

Molinari R., Bartolo D. L. and Drioli E., Coupled Transport of Amino Acid Through a Supported Liquid Membrane. I. Experimental Optimization: *J. Membrane Sci.* 73 (1992) 203 - 215.

Munson C. L. and King C. J., Factors Influencing Solvent Selection for Extraction of Ethanol from Aqueous Solutions: *Ind. Eng. Chem. Process Des. Dev.* 23 (1) (1984) 115 – 121.

Nath M., Yadav R., Eng G., and Musingarimi P., Synthesis, Spectral Studies, In Vitro Antimicrobial and In Vivo Multi-infection Antifungal Activities in Mice of New Organotin (IV) Derivatives of Amino Acids: *J. Chem. Research* (8) (1998) 409.

Nitta H., Ueda I. and Hatanaka M., Enantioselective synthesis of 2-isocephem and 2-isooxacephem antibiotics: *J. Chem. Soc., Perkin Trans.*, (1) (1997) 1793-1796.

Nishihama S., Nishimura G., Hirai T. and Komasawa, Separation and Recovery of Cr(VI) from Simulated Plating Waste Using Microcapsules Containing Quaternary Ammonium Salt Extractant and Phosphoric Acid Extractant: Ind. Eng. Chem. Res. (43) (2004) 751-757

Oshima T., Inoue K., Uezu K.Goto M., Dominant factors affecting extraction behaviour of amino compounds by a calix[6]arene carboxilic acid derivate. *Analytica Acta* 509 (2004) 137-144

Parrish J. R., Macroporous Resins as Supports for a Chelating Liquid ionexchanger in Extraction Chromatography. *Analytical Chemistry* 49 (8) (1977) 1189 – 1192.

Perry R. H. and Chilton C. H., Chemical Engineer's Handbook, 6 th ed., McGraw-Hill, Co., New York, 1984.

Prabhakaran D. and Subramaniam M. S., Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin: Analytical and Bioanalytical Chemistry (2004).

Qin W., Zhang Y., Li Z. and Dai Y., Extraction Equilibria of Glycolic and Glyoxylic Acids with Tryalkylphosphine Oxide and Trioctylamine as Extractant: *J. Chem. Eng. Data,* 48 (2003), 430-434.

Rai R. and Taneja V., Production of D-Amino Acids Using Immobilized D-Hydantoinase from Lentil, *Lens Esculenta*, Seeds, *Appl. Microbiol. Biotechnol.*, 50 (1998) 658-662.

Riddick J. A., Bunger W. B. and Sakano T. K., Techniques of Chemistry, O.S.F.E.A. Wilssberg II. Organic Solvent, 4 th. Arnold Wilssberg, John Wiley and Sons (Eds.), New York, 1986.

Robinson S. M., Arnold W. D. and Byers C. H., Mass-Transfer Mechanisms for Zeolite Ion Exchange in Wastewater Treatment: *AIChE J.* 40 (12) (1994) 2045 – 2054.

Roche Molecular Biochemicals, Biocatalysis Products for de Synthesis of β-Lactam Antibiotics, <u>http://www.roche.com</u>. 2000.

Rovira M., Hurtado L., Cortina J.L., Arnaldos JI, and Sastre A. M., Recovery of palladium (II) form hydrochloric acid solutions using impregnated resins containing Alamine 336: *Reactive & Functional Polymers* (38) (1998) 279-287.

Rovira M., Cortina J. L., Arnaldos J. And Sastre A. M., Impregnated Resins Containing Di-(2ethylhexyl) thiophosphoric acid for the extraction of palladium (II). II. Selective palladium (II) recovery from hydrochloric acid solutions: *Solv. Extr. Ion Exch.*, 17 (2) (1999) 351-366.

Ruiz M. O., Cabezas J. L., Escudero I., Álvarez J. R. And Coca J., Extraction of Valeric Acid from Aqueous Solutions Using Tri-n-butylphosphate, *in Separation for Biotechnology 3, D. L. Pyle (Ed), SCI*, London, (1994) 447-453.

Ruiz M. O., Cabezas J. L. Escudero I., Alvarez J. R. and Coca J., , α -Phenylglycine Extraction with Trialkylmethylammonium Chloride free and immobilized in a macroporous resin. 1. Equilibria: *Trans IChemE*, (80), Part A, (2002) 529-535.

Ruiz M. O., Escudero I., Cabezas J. L. and Coca J., , α-Phenylglycine Extraction with Trialkylmethylammonium Chloride-Impregnated Macroporous resin. 2. Kinetics: *Trans IchemE*, (80), Part A, (2002) 537-542.

Ruiz M. O., Cabezas J. L. Escudero I. and Coca J., Valeric Acid Extraction with Tri-N-butyl Phosphate Impregnated in a Macroporous Resin. I.Equilibrium and Mass Transfer Rates: *Separation Science and Technology*, 39, No. 1, (2004) 77-95.

Ruiz M. O., Cabezas J. L. Escudero I. and Coca J., Valeric Acid Extraction with Tri-N-butyl Phosphate Impregnated in a Macroporous Resin. II.Studies in fixed bed columns: Journal of Chemical Technology and Biotechnology, 81, No. 1, (2006) 275-281.

Ruthven D. M., Principles of Adsorption and Adsorption Processes. Wiley-Interscience, John Wiley and Sons (Eds.), New York, 1984. Salazar E., Ortiz M. I., Urtiaga A. M. and Irabien J. A., Equilibrium and Kinetics of Cr (VI) Extraction with Aliquat 336: *Ind. Eng. Chem. Res.* 31 (6) (1992) 1516 – 1522.

Sanchez P., Recuperación de aminoácidos de corrientes acuosas diluidas empleando contactores de membranas de fibras huecas; Proyecto de investigación para optar al Diploma de Estudios Avanzados. Director: Ruiz M. O. (2006).

Santidrián E., Estudio de la Separación de Aminoácidos con el Extractante Inmobilizado en Resinas Macroporosas. Equilibrios y Cinéticas de Extracción Aplicadas al Ácido Aspártico y α -fenilglicina; Tesis de Licenciatura, directores: Ruiz M. O.; Escudero I. (2001).

Santidrián E., Ruiz M. O., Cabezas J. L., and Escudero I., α-phenylglycine Equilibrium Extraction with Tri-alkylmethylammonium Chloride Immobilized in Several Macroporous Resins. "*Libro de resúmenes*", p2-21, pp 163 (Ed.) Fira del 9° Congreso del Mediterráneo de IQ de Barcelona, (2002).

Scarpello J. T. and Stuckey D. C., 2000, The Reactive Extraction of Phenylalanine with Aliquat 336: Buffer Co-Extraction Equilibrium and Mass Transfer Kinetics, *Biotechnol Bioeng*, 69(5): 469-477.

Schügerl K. and Degener W., Recovery of Low - Molecular - Weight Compounds from Complex Aqueous Mixtures by Extraction: *Int. Chem. Eng.* 32 (1) (1992) 29 - 40.

Strikovsky A. G., Jerabek K., Cortina A. M., Sastre A. M. and Warshawsky A., Solvent impregnated resin (SIR) containing dialkyl dithiophosphoric acid on Amberlite XAD-2: extraction of copper and comparison to the liquid-liquid extraction: *React Funct Polym*, 28(2) (1996) 149-158.

Strikovsky A. G., Warshawsky A., Hanková L. and Jerábek K., Morphology of solvent-impregnated resins bases on reactive supports: *Acta Polym. (49)* (1998) 600 – 605.

Sudge S.S., Bastawde K.B., Gokhale D. V., Kalkote U.R. and Ravindranathan T., Production of D-Hydantoinase by Halophilic *Pseudomonas* sp. NCIM 5109: *Appl. Microbiol. Biotechnol.*, 49 (1998) 594-599.

Tamada J. A., Kertes A. S. and King C. J., Extraction of Carboxylic Acids with Extractants. 1. Equilibria and Law of Mass Action Modelling: *Ind. Eng. Chem. Res.* 29 (7) (1990 a) 1319 – 1326.

Tamada J. A., Kertes A. S. and King C. J., Extraction of Carboxylic Acids with Extractants. 3. Effect of Temperature, Water Coextraction and Process Considerations: *Ind. Eng. Chem. Res.* 29 (7) (1990 c) 1333 – 1338.

Tambe A. S., High Performance Liquid Chromatographic of Cyclohexylhydantoin and Cyclohexylidenehydantoin Formed During the Synthesis of Phenyldantoin from Hydantoin and Cyclohexanone: *J. Chromatogr. A.* 740 (2) (1996) 284 - 288.

Thien M. P., Hatton T. A. and Wang D. I. C., Separation and Concentration of Amino Acid Using Liquid Emulsion Membranes: *Biotechnol. Bioeng.* 32 (1988) 604 - 615.

Traving M. and Bart H-J., Recovery of Organic Acids Using Ion-Exchanger-Impregnated Resins, *Chem. Eng. Technol.*, 25 (2002) 997-1003.

Treybal R. E., Ingeniería Química II. Operaciones Básicas, McGraw-Hill, Mexico, 1980.

Trochimczuk A. W., Kabay N., Arda M., Streat M., Stabilization of solvent impregnated resins (SIRs) by coating with water soluble polymes and chemical crosslinking: Reactive & Functional Polymers, 59 (2004) 1-7.

Uddin M. S., Hidajat K., Lim B. G. and Ching C. B., Interfacial Mass Transfer in Extraction of Amino Acid: *J. Chem. Tech. Biotechnol.* 48 (1990) 415 - 426.

Uddin M. S., Hidajat K., Lim B. G and Ching C. B., Interfacial Mass Transfer in Stripping of Phenylalanine in a Liquid - Liquid Extraction Process: *J. Chem. Tech. Biotechnol.* 53 (1992) 353 - 357.

Venkatesh G., Singh A. K. and Venkataramani B., Silica Gel Loaded with o-Dihydroxybenzene: Design, Metal Sorption Equilibrium Studies and Aplication to Metal Enrichment Prior to Determination by Flame Atomic Spectrometry: *Microchim. Acta* 144 (2004) 233-241.

Villaescusa I., Salvadó V. and De Pablo J., Liquid-liquid and Solid-liquid Extraction of Gold by Trioctylmethylammonium Chloride (TOMACI) Dissolved in Toluene and Impregnated on Amberlite XAD-2 Resin: *Hydrometallurgy*, 41 (1996) 303-311.

Ward O.P., Biotecnología de la Fermentación. Principios, Procesos y Productos, Ed. Zaragoza, 1989.

Warshawsky A., Extraction with Solvent-Impregnated Resins. In Ion Exchange and Solvent Extraction. vol. 8, pp 229 – 310, J. A. Marinsky and Y. Marcus (Eds), Marcel-Dekker, New York, 1981.

Weast R. C., CRC Handbook of Chemistry and Physics. 75 th CRC, D. R. Lide, H. P. R. Frederikse (Eds.), Press Inc. Boca Ratón, Florida, 1994 - 1995.

Won C.Y., Chu C.C. and Lee J. D., Synthesis and Characterization of Biodegradable poly(L-Aspartic-Acid-Co-Peg): *Journal of Polymer Science Part A-Polymer Chemistry*, Vol. 36 (16) (1998) 2949-2959.

Yang R. T., Gas Separation by Adsorption Processes, Butterworth Publishers, 1987.

Yang S. T., White S. A.and Hsu S. T., Extraction of Carboxylic Acids with Tertiary and Quaternary Amines; Effect of pH: *Ind. Eng. Chem. Res.* 30 (6) (1991) 1335 – 1342.

Yang S. A., Pyle D. L., The Adsorption Kinetics of Cephalosphrin-c on Nonionic Polymeric Macropore Amberlite XAD-16 Resin.: *J Chem. Tech. Biotechnol.* 74 (1999) 216-220.

Yoshida H., Kataoka T. and Ruthven D. M., Analytical Solution of the Breakthrough Curva for Rectangular Isotherm Systems: *Chem. Eng. Sci.* 19 (10) (1984) 1489 – 1497.

Yoshida H., Yoshikawa M. and Kataoka T., Parallel Transport of BSA by Surface and Pore Diffusion in Strongly Basic Chitosan: *AIChE J.* 40 (12) (1994) 2034 – 2044.

Yoshida H., Kataoka T. and Ikeda S., Intraparticle Mass Transfer in Bidispersed Porous Ion Exchanger. Part I: Isotopic Ion Exchange: *Can. J. Chem. Eng.* 63 (6) (1985) 422 – 435.

Youshko M. I., van Langen L.M., de Vroom E., van Rantwijk F., Sheldon R. A. and Svedas V. K., Highly Efficient Synthesis of Ampicillin in an "Aqueous Solution-Precipitate" System: Repetitive Addition of Substrates in a Semicontinuous Process: *Biotechnol. Bioeng.*, Communication to the Editor, 73 (5), 2001.
9. NOMENCLATURA

LISTA DE SÍMBOLOS

а	actividad de las especies, y radio de la resina sin impregnar expresada en m
b	coeficiente estequiométrico de la reacción de intercambio iónico del aminoácido
A ⁺	forma catiónica del aminoácido
A+/-	forma anfótera del aminoácido
A	forma aniónica del aminoácido con una carga
A ²⁻	forma aniónica del aminoácido con dos cargas
A ^{d-}	forma aniónica del aminoácido con <i>d</i> cargas
Cl	iones cloruro
H⁺	protones
OH-	iones hidroxilo
Q ⁺ Cl ⁻	Tomac
Q ⁺ A ⁻	complejo aminoácido -Tomac
Q ⁺ ₂ A ²⁻	complejo aminoácido -Tomac
С	concentración total de soluto
C _A	concentración total de aminoácido en mol/m ³
C _{Ap}	concentración de soluto en el fluido que llena los poros de la resina definida en la Ec. (4.17)
D	coeficiente de dispersión axial definido en la Ec. (4.20)
D _e	coeficiente de difusión efectivo definido en la Ec. (4.13)
D _p	coeficiente de difusión en el poro definido en la Ec. (4.10)
Ds	coeficiente de difusión en la superficie definido en la Ec. (4.11)

174	NOMENCLATURA
D _m	coeficiente de difusión en la superficie del microporo
g n	número adimensional definido en Ec. (6.45), (6.78) y (6.79)
G	parámetro de las Ecs. (6.23) y (6.24) definido en la Ec. (6.25)
h	parámetro de las Ecs. (6.23) y (6.24) definido en la Ec. (6.26)
i	parámetro de las Ecs. (6.23) y (6.24) definido en la Ec. (6.27)
j	número de puntos experimentales de la Ec. (6.15)
J_Ap	densidad de flujo difusivo en el poro de la especie A definido en la Ec. (4.10)
J _{As}	densidad de flujo difusivo en la superficie de la especie A definido en la Ec. (4.11)
k	constante de la ecuación de Freundlich definida en la Ec. (4.4)
К	coeficiente de distribución de la forma aniónica de aminoácido
K_{a1},K_{a2},K_{a3}	constantes de disociación del aminoácido
κ _f	coeficiente de transferencia de masa de la película líquida externa definido en la Ec. (4.9)
K _h	constante de equilibrio expresada en términos de concentración de la Ecs. (3.11)
K _p	constante de equilibrio expresada en términos de concentración de la en las Ec. (3.10)
K _{p1}	constante de equilibrio expresada en términos de concentración de la Ec. (6.11) y (6.19)
K _{p2}	constante de equilibrio expresada en términos de concentración de la Ec. (6.20)
K _{ep}	constante de equilibrio definida en la Ec. (3.8)
K _{eh}	constante de equilibrio definida en la Ec (3.9)
K _w	constante de disociación del agua (mol ² /l ²)
m	masa de resina expresada en kg

M(t)	cantidad total de aminoácido extraído en la RIE en función del tiempo, expresado en mol y definido en las Ec. (6.42), (6.72) y (6.73)
M(∞)	cantidad total de soluto extraido en la RIE en el equilibrio, expresado en mol y definido en la Ec. (6.43), (6.74) y (6.75)
n	constante de la ec. de Freundlich definida en la Ec. (4.4)
Ν	número de partículas de resina
q	concentración de aminoácido adsorbido en el sólido definida en la Ec. (4.3)
q _A	concentración total de soluto en la fase resina expresada en mol/m ³
Q	caudal de circulación de la fase alimentación en los lechos de RIE, expresado en m ³ /s
Qs	capacidad de saturación de los lechos de RIE definida en la Ec. (4.3) y expresada en mol/kg RIE
r	coordenada radial y regresión lineal
RIE	resina impregnada
RSI	resina sin impregnar
t	tiempo
ts	tiempo de saturación
u	velocidad intersticial del fluido en el lecho fijo expresada en m/s
Uc	velocidad de propagación de la concentración de soluto en el lecho definida en la Ec. (4.22)
V	volumen de las fases
х	variable definida en la Ec. (6.33), (6.56) y (6.57)
Xe	variable definida en la Ec. (6.37), (6.64) y (6.65)
Y	variable definida en la Ec. (6.34), (6.58) y (6.59)
Z	variable definida en la Ec. (6.35), (6.60) y (6.61)
Z	posición axial en el lecho expresada en m

Otros

[]	concentración molar
α	constante definida en la Ec. (6.46), (6.80) y (6.81)
β	selectividad del disolvente definida en la Ec. (3.4)
γ	coeficiente de actividad
ε _p	porosidad de la partícula
εL	porosidad del lecho fijo
ρ	densidad de la disolución
Subíndices	
asp	ácido aspártico
pgly	α-fenilglicina
i	condiciones iniciales
calc	calculada
exp	experimental
0	fase orgánica
р	en el poro de la resina
S	muestra sacada
w	fase acuosa

Superíndices

fase resina

APÉNDICE A. Isotermas de equilibrio de extracción de ácido aspártico y α -fenilglicina de sus mezclas binarias con RIE. $\left[\overline{Q^+Cl^-}\right]_i = 791,56 \pm 6,99 \text{ mol/m}^3 \text{ RSI}; 30^{\circ}\text{C}.$ (*Apartado 6.1*).

C _{A(asp)} (mol/m ³)	рН	$[A^{+}_{asp}]$ (mol/m ³) Ec. (6.2)	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$ \begin{array}{c} \overline{C}_{A(asp)} \\ (mol/m^3 \ RSI) \\ Ec. \ (6.1) \end{array} $	$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{asp}^{-}\right]\left[CI^{-}\right]}{(mol^{3}/m^{3} m^{3}}$ RSI)	$\begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{asp}^{-} \end{bmatrix}$ (mol ³ /m ³ m ³ RSI)
1,405	4,95	0,000	0,115	1,290	42,242	0,000	0,000
2,854	4,92	0,000	0,249	2,605	69,958	21,084	958,341
4,819	4,78	0,001	0,561	4,257	82,695	57,830	1863,760
6,600	4,88	0,001	0,625	5,973	92,897	80,803	2991,099
8,516	4,93	0,001	0,727	7,788	102,813	101,970	4136,224

Tabla A1. Datos de equilibrio de extracción de ácido aspártico para el
experimento I de la Tabla 2. (pHi = $5,03\pm0,06$; $C_{A(asp)i}/C_{A(pgly)i}=1/1$).

Tabla A2. Datos de equilibrio de extracción de ácido aspártico para el
experimento I de la Tabla 2. (pHi = $5,03\pm0,06$; $C_{A(asp)i}/C_{A(pgly)i}=1/2$).

C _{A(asp)} (mol/m ³)	рН	$[A^{+}_{asp}]$ (mol/m ³) Ec. (6.2)	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{asp}^{-}\right]\left[\mathbf{C}\mathbf{I}^{-}\right]}{(mol^{3}/m^{3}\;m^{3})}$ RSI)	$\begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{asp}^{-} \end{bmatrix}$ (mol ³ /m ³ m ³ RSI)
1,086 1.691	5,06 5.20	0,000	0,070 0.081	1,016	39,025 50,908	0,000 17.995	0,000 758.326
2,335	4,93	0,000	0,199	2,135	59,989	30,623	1182,848
3,032	4,91	0,000	0,270	2,762	66,458	42,522	1548,652
3,688	4,86	0,001	0,364	3,323	74,336	52,187	1985,356
4,346	4,94	0,001	0,363	3,982	79,591	65,294	2362,546
4,997	4,99	0,000	0,376	4,621	82,534	74,852	2810,357
5,584	5,01	0,000	0,402	5,182	86,297	80,489	3247,681

Tabla A3. Datos de equilibrio de extracción de ácido aspártico para el
experimento I de la Tabla 2. (pHi = $5,03\pm0,06$; $C_{A(asp)i}/C_{A(pgly)i}=1/3$).

C _{A(asp)} (mol/m ³)	pН	[A ⁺ _{asp}] (mol/m ³) Ec. (6.2)	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{asp}^{-}\right] \left[\mathbf{C}\mathbf{I}^{-}\right]}{(mol^{3}/m^{3} m^{3} m^{3} RSI)}$	$\begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{C}\mathbf{I}^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{asp}^{-} \\ (mol^{3}/m^{3} m^{3} \\ RSI) \end{bmatrix}$
0,650	5,09	0,000	0,039	0,610	19,301	4,402	467,661
1,248	4,96	0,000	0,100	1,148	36,955	16,137	859,131
1,827	5,02	0,000	0,129	1,698	51,417	31,238	1246,113
2,527	5,27	0,000	0,103	2,423	56,861	38,204	1765,315
2,851	4,97	0,000	0,224	2,627	63,082	47,019	1897,467
3,253	4,91	0,000	0,290	2,963	65,303	50,389	2133,544
3,816	4,93	0,000	0,326	3,489	71,437	60,300	2491,099
4,261	4,94	0,001	0,356	3,904	73,318	63,517	2779,971

C _{A(asp)} (mol/m ³)	рН	$[A^{+}_{asp}]$ (mol/m ³) Ec. (6.2)	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)		$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{asp}^{-}\right]\left[\mathbf{C}\mathbf{I}^{-}\right]}{(mol^{3}/m^{3} m^{3}}$ RSI)	$\begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{asp}^{-} \end{bmatrix}$ (mol ³ /m ³ m ³ RSI)
3,202	5,04	0,000	0,216	2,985	51,741	31,633	2190,037
6,674	4,88	0,001	0,633	6,041	89,604	94,869	4202,731
10,013	4,90	0,001	0,910	9,101	106,120	133,065	6181,957
13,909	4,89	0,002	1,291	12,616	131,229	203,484	8252,221
17,655	4,92	0,002	1,539	16,114	135,155	215,843	10477,274
23,150	5,02	0,002	1,632	21,516	159,553	300,803	13464,384
25,344	4,99	0,002	1,905	23,436	168,607	335,907	14454,283

Tabla A4. Datos de equilibrio de extracción de ácido aspártico para el experimento I de la Tabla 2. (pHi = **5,03**±0,06; C_{A(asp)i}/C_{A(pgly)i} =**2/1**).

Tabla A5. Datos de equilibrio de extracción de ácido aspártico para el
experimento I de la Tabla 2. (pHi = $5,03\pm0,06$; $C_{A(asp)i}/C_{A(pgly)i}=3/1$).

C _{A(asp)} (mol/m ³)	рН	[A ⁺ _{asp}] (mol/m ³) Ec. (6.2)	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$ \begin{array}{c} \overline{C}_{A(asp)} \\ (mol/m^3 \text{ RSI}) \\ \text{ Ec. (6.1)} \end{array} $	$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{asp}^{-}\right]\left[\mathbf{C}\mathbf{I}^{-}\right]}{(mol^{3}/m^{3} m^{3}}$ RSI)	$\begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{asp}^{-} \end{bmatrix}$ $(mol^{3}/m^{3} m^{3}$ $RSI)$
1,835	5,00	0,000	0,135	1,700	35,380	14,791	1275,030
3,630	4,85	0,001	0,366	3,263	61,958	45,359	2360,566
5,837	4,86	0,001	0,577	5,259	73,701	64,183	3742,532
9,759	4,90	0,001	0,887	8,870	109,697	142,187	5993,150
15,246	4,85	0,003	1,538	13,705	130,330	200,707	8977,167
21,294	4,86	0,004	2,104	19,187	148,198	259,510	12224,890
25,023	4,89	0,004	2,322	22,696	157,277	292,282	14254,773
26,925	4,88	0,004	2,552	24,369	162,017	310,166	15190,031

Tabla A6. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento II de la Tabla 2. (pHi=11,06 ± 0,04; $C_{A(asp)i}/C_{A(pgly)i}$ =1/1).

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$ \frac{\left[\overline{Q_{2}^{+}A_{asp}^{2\text{-}}}\right]\left[CI^{-}\right]^{2}}{\left(mol^{3}\!/m^{6}\;m^{3}\right.} \\ \mathrm{RSI} $	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2\text{-}} \\ (mol^{3}/m^{3} m^{6} \\ RSI) \end{bmatrix} $
0,965	10,67	0,000	0,115	0,850	90,251	715,916	256733,795
2,685	10,53	0,000	0,421	2,263	106,520	1320,150	543296,593
6,285	10,64	0,000	0,794	5,492	117,977	2053,198	1037855,001
7,939	10,60	0,000	1,086	6,853	125,759	2555,363	1130997,364
9,865	10,63	0,000	1,271	8,593	126,765	2755,075	1328434,532
12,006	10,65	0,000	1,486	10,520	134,737	3412,275	1376842,071
17,594	10,81	0,000	1,566	16,028	135,600	3750,141	1880944,780

C _{A(plgly)} (mol/m ³)	рН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$ \frac{\left[\mathbf{Q}^{+} \mathbf{A}_{pgly}^{-} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]}{(mol^{3}/m^{3} m^{3} m^{3} RSI)} $	$ \begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{C}\mathbf{I}^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{pgly}^{-} \end{bmatrix} \\ (mol^3/m^3 \ m^3 \\ RSI) $
1,285	10,67	0,027	1,258	58,263	176,684	668,272
2,819	10,53	0,081	2,738	85,402	331,703	1257,279
5,744	10,64	0,129	5,615	117,702	533,589	2268,957
7,166	10,60	0,176	6,991	130,620	557,596	2981,565
8,631	10,63	0,198	8,433	141,685	660,740	3314,698
10,218	10,65	0,224	9,994	157,149	720,039	3997,232
14,189	10.81	0.216	13,973	174,618	881.854	5033,889

b) α-Fenilglicina

Tabla A7. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento II de la Tabla 2. (pHi=11,06 ± 0,04; $C_{A(asp)i}/C_{A(pgly)i}$ =1/2).

a) Ácido aspártico

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$ \frac{\left[\mathbf{Q}_{2}^{+} \mathbf{A}_{asp}^{2^{-}} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]^{2} }{(mol^{3}/m^{6} m^{3} RSI)} $	$ \begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{C}\mathbf{I}^{-}} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2-} \\ Max_{asp}^{2-} \end{bmatrix} $ (mol ³ /m ³ m ⁶ RSI)
2,716	10,93	0,000	0,187	2,528	83,316	1063,227	596016,767
4,504	11,08	0,000	0,225	4,280	97,895	1742,732	793887,425
5,226	10,92	0,000	0,368	4,857	95,720	1849,674	839474,267
6,470	10,89	0,000	0,486	5,984	100,000	2126,844	945131,346
7,070	10,89	0,000	0,532	6,539	98,556	2091,126	1035251,203
8,277	10,95	0,000	0,547	7,730	99,286	2318,929	1108478,760

$C_{A(plgly)}$ (mol/m ³)	pH	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$ \frac{\left[\mathbf{Q}^{+} \mathbf{A}_{pgly}^{-} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]}{(mol^{3} / m^{3} m^{3} RSI)} $	$\begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{pgly}^{-} \end{bmatrix}$ (mol ³ /m ³ m ³ RSI)
5,493	10,93	0,064	5,429	136,209	486,580	2636,051
8,384	11,08	0,069	8,315	161,896	678,963	3599,333
9,458	10,92	0,113	9,345	181,218	818,426	3789,841
11,200	10,89	0,141	11,058	190,962	888,811	4354,625
12,118	10,89	0,155	11,964	193,381	867,796	4881,029
13,790	10,95	0,153	13,637	211,126	1000,585	5272,436

Tabla A8. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento II de la Tabla 2. (pHi=**11,06** ± 0,04; $C_{A(asp)i}/C_{A(pgly)i}$ =**1/3**).

$C_{A(asp)} \ (mol/m^3)$	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\left[\overline{Q_{2}^{+}A_{asp}^{2-}}\right]\left[CI^{-}\right]^{2}}{\left(\mathrm{mol}^{3}/\mathrm{m}^{6}\;\mathrm{m}^{3}\right.}$ RSI)	$ \begin{bmatrix} \overline{Q^{+}C\Gamma} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2} \end{bmatrix} \\ (mol^{3}/m^{3} m^{6} \\ RSI) $
1,395	10,50	0,000	0,232	1,163	62,650	615,670	317654,933
3,174	10,74	0,000	0,327	2,847	75,981	1230,151	569508,403
3,914	10,94	0,000	0,264	3,650	76,691	1356,306	680761,987
4,614	10,72	0,000	0,495	4,118	82,741	1718,219	665789,096
6,279	11,09	0,000	0,306	5,972	82,833	1953,781	847368,065

a) Ácido aspártico

b) α-Fenilglicina

$C_{A(plgly)}$ (mol/m ³)	рН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)	$\begin{array}{c} \overline{C}_{A(pgly)} \\ (mol/m^3 \text{ RSI}) \text{ Ec.} \\ (6.1) \end{array}$	$ \frac{\left[\mathbf{Q}^{+}\mathbf{A}_{pgly}^{-} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]}{(mol^{3}/m^{3} m^{3} m^{3} RSI)} $	$ \begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{CI}^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{pgly}^{-} \end{bmatrix} $ $ (mol^{3}/m^{3} m^{3} m^{3} $ $ RSI) $
4,138	10,50	0,127	4,012	140,455	526,219	1888,562
8,595	10,74	0,154	8,441	189,148	801,156	3623,910
10,398	10,94	0,118	10,280	203,128	849,716	4458,965
11,977	10,72	0,224	11,753	220,836	1018,426	4671,169
15,387	11,09	0,124	15,263	246,053	1207,201	5684,915

Tabla A9. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento II de la Tabla 2. (pHi=**11,06** ± 0,04; $C_{A(asp)i}/C_{A(pgly)i}$;=**2/1**).

C _{A(asp)} (mol/m ³)	pН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\left[\overline{Q_{2}^{+}A_{asp}^{2^{-}}}\right]\left[CI^{-}\right]^{2}}{\left(mol^{3}/m^{6}\;m^{3}\right.}$ RSI)	$ \begin{bmatrix} \overline{Q^{+}C\Gamma^{-}} \end{bmatrix}^{2} \begin{bmatrix} A^{2\text{-}}_{asp} \end{bmatrix} \\ (\text{mol}^{3}/\text{m}^{3} \text{ m}^{6} \\ \text{RSI}) $
2,313	10,56	0,000	0,342	1,971	112,940	1195,483	517800,702
5,983	10,82	0,000	0,522	5,462	132,197	2098,550	1109077,606
9,348	10,72	0,000	1,003	8,345	143,793	2786,283	1438657,087
13,127	10,80	0,000	1,193	11,933	149,837	3356,890	1788426,586
20,624	10,85	0,000	1,688	18,936	154,363	4095,189	2342824,864
24,231	10,85	0,000	1,983	22,248	157,180	4544,062	2460802,381
27,820	10,94	0,000	1,879	25,941	162,005	4934,010	2665407,951

C _{A(plgly)} (mol/m ³)	рН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)	$ \frac{\overline{C}_{A(pgly)}}{(mol/m^3 RSI) Ec.} $ (6.1)	$ \frac{\left[\mathbf{Q}^{+} \mathbf{A}_{pgly}^{-} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]}{(mol^{3}/m^{3} m^{3} m^{3} RSI)} $	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{pgly}^{-} \end{bmatrix} \\ (mol^{3}/m^{3} m^{3} \\ RSI) $
1,390	10,56	0,037	1,353	49,932	178,114	657,393
3,000	10,82	0,045	2,955	73,371	292,328	1331,772
4,400	10,72	0,082	4,318	85,586	383,234	1765,101
5,958	10,80	0,093	5,865	101,585	531,355	2023,209
8,944	10,85	0,125	8,819	127,922	640,539	3209,364
10,249	10,85	0,143	10,106	141,455	817,484	3016,293
11.739	10.94	0.133	11.605	143.834	844.648	3372,061

b) α-Fenilglicina

Tabla A10. Datos de equilibrio de extracción de ácido aspártico y α-
fenilglicina para el experimento II de la Tabla 2. (pHi = 11,06 ±
 $0,04; C_{A(asp)i}/C_{A(pgly)i}=3/1)$.

a) Ácido aspártico

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\overline{Q_2^+ A_{asp}^{2\text{-}}}}{(mol^3/m^6 \ m^3 \ RSI)}$	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2\text{-}} \end{bmatrix} $ (mol ³ /m ³ m ⁶ RSI)
2,082	10,52	0,000	0,333	1,749	109,599	978,412	500692,728
5,056	10,61	0,000	0,678	4,378	138,621	2066,922	930588,536
9,454	10,84	0,000	0,790	8,664	154,314	2996,161	1491039,685
11,509	10,83	0,000	0,982	10,526	157,963	3271,721	1706005,007
14,711	10,80	0,000	1,337	13,374	159,521	3518,502	2036713,576
20,068	10,79	0,000	1,863	18,205	168,634	4243,089	2400890,224
23,497	10,91	0,000	1,693	21,805	171,782	4643,717	2634882,884
27,091	10,86	0,000	2,171	24,921	174,586	4945,725	2833282,198

$C_{A(plgly)} \ (mol/m^3)$	pН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$ \frac{\left[\mathbf{Q}^{+} \mathbf{A}_{pgly}^{-} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]}{(mol^{3}/m^{3} m^{3} m^{3} RSI)} $	$ \begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{CI}^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{pgly}^{-} \end{bmatrix} $ (mol ³ /m ³ m ³ RSI)
0,838	10,52	0,025	0,813	34,094	108,495	421,802
1,753	10,61	0,042	1,711	50,107	207,822	747,130
2,989	10,84	0,043	2,946	64,918	282,047	1237,567
3,654	10,83	0,053	3,601	69,886	295,051	1550,061
4,539	10,80	0,071	4,468	79,098	334,476	1920,751
6,050	10,79	0,097	5,954	87,970	376,709	2532,535
6,985	10,91	0,085	6,900	97,203	443,873	2768,695
7,979	10,86	0,109	7,870	102,036	629,966	2085,494

Tabla A11. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento III de la Tabla 2. (pHi = 12,02±0,06; C_{A(asp)i}/C_{A(pgly)i}=1/1).

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	[A ²⁻ _{asp}] (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$ \frac{\left[\overline{Q_{2}^{+}A_{asp}^{2\text{-}}} \right] \left[CI^{-} \right]^{2} }{\left(\underset{RSI}{\operatorname{mol}^{3}/\operatorname{m}^{6}} \operatorname{m}^{3} \right] } $	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2\text{-}} \\ (mol^{3}/m^{3} \ m^{6} \\ RSI) \end{bmatrix} $
0,911	11,90	0,000	0,007	0,904	87,471	665,919	289747,145
6,324	11,97	0,000	0,042	6,281	126,527	2384,248	1170909,450
10,377	11,95	0,000	0,073	10,304	133,062	3122,814	1558768,578
14,185	11,95	0,000	0,100	14,085	137,083	3581,034	1889513,230
18,001	12,01	0,000	0,110	17,891	136,319	3970,582	2091953,487
21,796	12,02	0,000	0,131	21,666	138,222	4317,529	2297171,373
25,629	12,01	0,000	0,157	25,472	143,003	4860,830	2371158,860

a) Ácido aspártico

b) α-Fenilglicina

C _{A(plgly)} (mol/m ³)	рН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$ \frac{\left[\mathbf{Q}^{+}\mathbf{A}_{pgly}^{-} \right] \left[CI^{-} \right]}{(mol^{3}/m^{3} m^{3}} \\ RSI) $	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{pgly}^{-} \end{bmatrix} \\ (\text{mol}^{3}/\text{m}^{3} \text{ m}^{3} \\ \text{RSI}) $
1,336	11,90	0,002	1,334	59,720	164,778	755,467
5,923	11,97	0,006	5,917	116,137	540,461	2397,273
8,997	11,95	0,010	8,987	145,890	706,759	3495,191
11,888	11,95	0,013	11,874	160,522	813,635	4391,981
14,743	12,01	0,014	14,729	186,365	1000,040	5075,219
17,506	12,02	0,017	17,490	198,885	1111,552	5694,955
20,161	12,01	0,020	20,142	209,841	1209,340	6260,096

Tabla	A12.	Datos	de	equilibrio	de	extracción	de	ácido	aspártic	о у	α-
	fe	enilglicir	na p	ara el exp	erim	ento III de	la T	abla 2.	(pHi = '	12,02	2 ±
	0	,06; C _{A(}	_{asp)i} /(C _{A(pgly)i} =1/2	2).						

C _{A(asp)} (mol/m ³)	рН	$[A^{+/_{asp}}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\left[\overline{Q_2^+A_{asp}^{2^-}}\right]\left[CI^-\right]^2}{(mol^3/m^6\ m^3}$ RSI)	$ \begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{C}\boldsymbol{\Gamma}^{-}} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2\text{-}} \\ (mol^{3}/m^{3} m^{6} \\ RSI \end{bmatrix} $
2,886	11,80	0,000	0,029	2,858	97,310	1488,048	626924,647
4,776	11,83	0,000	0,044	4,732	102,795	2027,764	847602,699
5,754	11,84	0,000	0,052	5,702	104,748	2253,951	941817,337
6,751	11,98	0,000	0,044	6,707	101,614	2210,122	1096348,844
7,459	11,92	0,000	0,056	7,403	102,493	2401,861	1121612,763
8,815	11,90	0,000	0,069	8,746	101,200	2418,017	1297891,397
10,895	11,91	0,000	0,084	10,811	100,883	2674,020	1425286,346
12,546	11,93	0,000	0,092	12,453	102,553	2901,934	1512798,875

C _{A(plgly)} (mol/m ³)	рН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{pgly}^{-}\right]\left[\mathbf{C}\mathbf{I}^{-}\right]}{(mol^{3}/m^{3} m^{3}}$ RSI)	$ \begin{bmatrix} \overline{\mathbf{Q}^{+}\mathbf{CI}^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{pgly}^{\cdot} \end{bmatrix} $ (mol ³ /m ³ m ³ RSI)
5 780	11.80	0.000	5 771	137 062	564 048	2615 600
5,700	11,00	0,009	5,771	137,902	304,040	2013,009
8,618	11,83	0,013	8,605	172,146	781,069	3571,571
10,028	11,84	0,014	10,014	185,023	881,185	3964,502
11,567	11,98	0,012	11,555	193,413	927,800	4540,734
12,509	11,92	0,015	12,494	206,726	1032,467	4700,203
14,380	11,90	0,018	14,362	213,323	1033,872	5583,320
17,185	11,91	0,021	17,164	236,098	1215,526	6231,865
19,522	11,93	0,023	19,499	247,306	1315,539	6796,117

b) α-Fenilglicina

Tabla A13. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento III de la Tabla 2. (pHi = **12,02** ± 0,06; C_{A(asp)i}/C_{A(pgly)i} =**1/3**).

a) Ácido aspártico

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	[A ⁻ _{asp}] (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$\frac{\left \overline{Q_{2}^{+}A_{asp}^{2^{-}}}\right \left[CI^{-}\right]^{2}}{\left(mol^{3}/m^{6}\;m^{3}\right.}$ RSI)	$ \begin{bmatrix} \overline{Q^{*}CI^{-}} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2\text{-}} \\ (mol^{3}/m^{3} \ m^{6} \\ RSI) \end{bmatrix} $
1,160	11,94	0,000	0,008	1,151	69,276	769,790	308230,243
2,925	11,94	0,000	0,021	2,904	71,228	1151,228	611933,544
3,933	11,98	0,000	0,026	3,907	77,776	1438,993	739762,576
4,641	11,93	0,000	0,034	4,607	78,754	1608,593	799541,339
5,478	11,99	0,000	0,035	5,442	80,706	1762,443	886132,086
6,247	11,96	0,000	0,043	6,204	74,847	1643,308	1004865,232
7,109	12,01	0,000	0,044	7,066	73,797	1680,551	1102962,675
7,871	11,92	0,000	0,059	7,812	80,476	2060,417	1073002,714

C _{A(plgly)} (mol/m ³)	pH	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$\frac{\left[\mathbf{Q}^{+}\mathbf{A}_{pgly}^{-}\right]\left[\mathbf{C}\mathbf{I}^{-}\right]}{(mol^{3}/m^{3} m^{3}}$ RSI)	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{pgly}^{-} \end{bmatrix} \\ (mol^{3}/m^{3} m^{3} \\ RSI) $
4,071	11,94	0,005	4,066	144,954	488,200	2091,908
8,368	11,94	0,010	8,359	199,461	833,575	3723,973
10,333	11,98	0,011	10,322	210,274	898,353	4517,096
11,973	11,93	0,014	11,959	226,864	1025,301	4981,657
13,818	11,99	0,014	13,803	236,028	1102,985	5569,815
15,342	11,96	0,017	15,325	248,814	1140,282	6301,313
17,158	12,01	0,017	17,141	258,261	1214,126	6875,837
18,853	11,92	0,023	18,830	269,387	1340,961	7110,075

Tabla A14. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento III de la Tabla 2. (pHi = **12,02** ± 0,06; C_{A(asp)i}/C_{A(pgly)i} =**2/1**).

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	$[A^{-}_{asp}]$ (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$ \frac{\left[\overline{Q_2^+A_{asp}^{2-}}\right]\left[CI^-\right]^2}{(mol^3/m^6\;m^3)} \\ \mathrm{RSI}) $	$ \begin{bmatrix} \overline{Q^{+}C\Gamma^{-}} \end{bmatrix}^{2} \begin{bmatrix} A^{2\text{-}}_{asp} \end{bmatrix} \\ (\text{mol}^{3}/\text{m}^{3} \text{ m}^{6} \\ \text{RSI}) $
6,147	12,00	0,000	0,039	6,109	142,435	2494,006	1210076,197
9,871	12,00	0,000	0,062	9,809	152,550	3202,830	1658937,575
13,365	11,99	0,000	0,086	13,280	158,791	3731,116	2006274,243
17,726	12,07	0,000	0,095	17,631	161,386	4209,013	2369721,976
21,321	12,12	0,000	0,102	21,219	170,515	5055,724	2421961,766
25,290	12,06	0,000	0,138	25,151	170,899	5273,161	2714564,692

a) Ácido aspártico

b) α-Fenilglicina

$C_{A(plgly)}$ (mol/m ³)	pН	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)		$ \frac{\left[\mathbf{Q}^{+}\mathbf{A}_{pgly}^{-} \right] \left[CI^{-} \right] }{(mol^{3}/m^{3} m^{3} RSI)} $	$ \begin{bmatrix} \overline{Q^{+}CI^{-}} \end{bmatrix} \begin{bmatrix} A_{pgly}^{-} \end{bmatrix} \\ (mol^{3}/m^{3} m^{3} \\ RSI) $
3,002	12,00	0,003	2,999	71,012	306,413	1274,528
4,537	12,00	0,004	4,533	84,598	387,635	1782,327
5,979	11,99	0,006	5,973	94,680	444,808	2383,336
7,814	12,07	0,007	7,807	111,562	522,201	3174,278
9,205	12,12	0,007	9,198	122,071	625,607	3358,107
10,691	12,06	0,009	10,682	130,626	674,371	3966,590

Tabla A15. Datos de equilibrio de extracción de ácido aspártico y α -fenilglicina para el experimento III de la Tabla 2. (pHi = **12,02** ± 0,06; $C_{A(asp)i}/C_{A(pgly)i}$ =**3/1**).

C _{A(asp)} (mol/m ³)	рН	$[A^{+/-}_{asp}]$ (mol/m ³) Ec. (6.3)	$[A^{-}_{asp}]$ (mol/m ³) Ec. (6.4)	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.5)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.1)	$ \frac{\left[\overline{Q_{2}^{+}A_{asp}^{2\text{-}}}\right]\left[CI^{-}\right]^{2}}{\left(mol^{3}/m^{6}\;m^{3}\right.} \\ \mathrm{RSI} $	$ \begin{bmatrix} \overline{Q^{+}C\Gamma} \end{bmatrix}^{2} \begin{bmatrix} A_{asp}^{2\text{-}} \\ (mol^{3}/m^{3} \ m^{6} \\ RSI) \end{bmatrix} $
2,052	12,05	0,000	0,011	2,040	128,120	1489,669	532645,616
5,449	12,07	0,000	0,029	5,420	149,570	2524,003	1105334,891
9,929	12,10	0,000	0,050	9,879	163,557	3447,994	1664410,905
11,961	12,16	0,000	0,052	11,909	168,680	3825,122	1867109,153
15,889	12,14	0,000	0,072	15,816	175,291	4403,896	2220126,297
21,374	12,08	0,000	0,112	21,262	183,933	5223,774	2570641,633
25,073	12,12	0,000	0,119	24,954	181,496	5210,490	2974537,213

C _{A(plgly)} (mol/m ³)	pH	$[A^{+/-}_{pgly}]$ (mol/m ³) Ec. (6.7)	[A ⁻ _{pgly}] (mol/m ³) Ec. (6.8)	$ \begin{matrix} \overline{C}_{A(pgly)} \\ (mol/m^3 RSI) \ Ec. \\ (6.1) \end{matrix} $	$ \frac{\left[\mathbf{Q}^{+} \mathbf{A}_{pgly}^{-} \right] \left[\mathbf{C} \mathbf{I}^{-} \right]}{(mol^{3}/m^{3} m^{3} m^{3} RSI)} $	$ \begin{bmatrix} \overline{\mathbf{Q}^{*}\mathbf{CI}^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{pgly}^{\cdot} \end{bmatrix} \\ (mol^{3}/m^{3} m^{3} m^{3} \\ RSI) $
0,875	12,05	0,001	0,874	33,763	124,521	425,791
1,806	12,07	0,002	1,805	50,231	226,699	752,773
3,063	12,10	0,002	3,061	63,379	316,795	1150,399
3,621	12,16	0,003	3,618	67,641	343,973	1333,242
4,797	12,14	0,003	4,793	75,708	388,932	1744,836
6,293	12,08	0,005	6,288	85,373	429,573	2345,506
7,249	12,12	0,005	7,244	92,700	480,241	2610,307

APÉNDICE B. Resultados experimentales de las cinéticas de extracción individual de ácido aspártico con RIE en baños agitados. $\left[\overline{Q^+Cl^-}\right]_i = 782,93\pm19,04 \text{ mol/m}^3 \text{ RSI}; \text{ T} = 30^{\circ}\text{C}.$ (*Apartado 6.2.1*).

Tabla B1. Datos cinéticos de extracción de ácido aspártico con RIE en baños agitados para el experimento I (pH_i = 5,06±0,07; C_{A(asp)i}=7,37 mol/m³) de la Tabla 3.

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}\left(t\right)\\ (mol/m^3) \end{array}$	C _{A(asp)} /C _{A(asp)i}	$[A^{-}_{asp}] (mol/m3) Ec. (6.28)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.30)
0	5,15	7,370	1,000	6,977	0,000
31	5,08	6,923	0,939	6,493	40,881
72	5,07	6,614	0,897	6,195	66,077
107	5,07	6,514	0,884	6,101	74,042
150	5,06	6,386	0,866	5,972	84,899
243	5,07	6,217	0,844	5,823	97,499
361	5,07	6,216	0,843	5,822	97,563
540	5,1	6,221	0,844	5,851	95,104
785	5,16	6,217	0,844	5,893	91,614
1048	5,25	6,265	0,850	5,996	82,852
1202	5,28	6,285	0,853	6,033	79,724
1501	5,35	6,256	0,849	6,041	79,078
1800	5,43	6,254	0,849	6,074	76,255
2106	5,49	6,262	0,850	6,105	73,700
2416	5,56	6,268	0,850	6,133	71,270
2910	5,66	6,280	0,852	6,172	67,994
3619	5,72	6,308	0,856	6,214	64,499
5254	5,84	6,301	0,855	6,229	63,235

Tabla	B2. Datos	cinéticos	de ex	tracción	de á	cido	as	pártico	con	RIE en	baños
	agitad	los para	el ex	perimen	to I	(pH _i	=	5,06± 0	,07;	C _{A(asp)i} =	=11,11
	mol/m	^ı 3) de la T	abla 3.								

t (s)	pH(t)	C _{A(asp)} (t) (mol/m ³)	C _{A(asp)} /C _{A(asp)i}	[A ⁻ _{asp}] (mol/m ³) Ec. (6.28)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.30)
0	5,03	11,114	1,000	10,346	0,000
34	4,99	10,607	0,954	9,808	45,375
62	4,98	10,243	0,922	9,455	75,200
92	4,98	10,051	0,904	9,278	90,170
151	4,97	9,892	0,890	9,115	103,964
240	4,97	9,753	0,878	8,987	114,786
362	4,99	9,701	0,873	8,970	116,169
547	5,03	9,737	0,876	9,064	108,260
787	5,09	9,750	0,877	9,158	100,331
1022	5,17	9,714	0,874	9,218	95,239
1201	5,24	9,718	0,874	9,293	88,915
1500	5,34	9,751	0,877	9,409	79,157
1803	5,43	9,766	0,879	9,485	72,664
2100	5,50	9,753	0,878	9,514	70,262
2403	5,54	9,740	0,876	9,521	69,647
3608	5,60	9,840	0,885	9,647	59,025

Tabla B	3. Datos cin	éticos de	e extracción de	e ácido	aspártic	o con	RIE en ba	iños
	agitados	para el	experimento	I (pH	i = 5,06 ±	0,07;	C _{A(asp)i} =14	4,64
	moi/m²) a	e la Tab	ia 3.					

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t) \\ (mol/m^3) \end{array}$	C _{A(asp)} /C _{A(asp)i}	$[A^{-}_{asp}] (mol/m3) Ec. (6.28)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.30)
0	4,99	14.636	1.000	13.534	0.000
31	4.96	13.976	0.955	12.855	57.388
62	4,94	13,615	0,930	12,475	89,461
96	4,93	13,374	0,914	12,231	110,130
153	4,93	13,261	0,906	12,128	118,850
240	4,92	13,119	0,896	11,974	131,836
366	4,93	13,080	0,894	11,962	132,826
541	4,95	13,075	0,893	12,004	129,303
795	4,99	13,076	0,893	12,092	121,846
1030	5,04	13,088	0,894	12,203	112,475
1200	5,06	13,039	0,891	12,194	113,216
1505	5,11	13,006	0,889	12,249	108,560
1800	5,17	13,107	0,895	12,438	92,642
2146	5,21	13,057	0,892	12,447	91,905
2400	5,25	13,101	0,895	12,540	84,039
3604	5,36	13,208	0,902	12,765	65,038

Tabla B4. Datos cinéticos de extracción de ácido aspártico con RIE en baños
agitados para el experimento I (pHi = $5,06\pm0,07$; C_{A(asp)i}=21,85
mol/m³) de la Tabla 3.

t (s)	pH(t)	$C_{A(asp)}(t)$ (mol/m ³)	$C_{A(asp)}\!/C_{A(asp)i}$	[A ⁻ _{asp}] (mol/m ³) Ec. (6.28)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.30)
0	5,11	21,856	1,000	20,585	0,000
45	5,07	20,840	0,954	19,519	90,057
88	5,06	20,522	0,939	19,193	117,601
120	5,06	20,413	0,934	19,091	126,199
160	5,06	20,143	0,922	18,838	147,569
240	5,06	20,106	0,920	18,804	150,460
360	5,08	20,121	0,921	18,872	144,666
550	5,11	20,057	0,918	18,890	143,145
798	5,17	20,077	0,919	19,052	129,475
1024	5,2	20,046	0,917	19,088	126,422
1205	5,24	20,120	0,921	19,239	113,651
1504	5,27	20,082	0,919	19,260	111,944
2101	5,39	20,134	0,921	19,502	91,456
2400	5,4	20,225	0,925	19,604	82,830
3602	5,43	20,285	0,928	19,703	74,520

t (s)	pH(t)	C _{A(asp)} (t) (mol/m ³)	$C_{A(asp)}/C_{A(asp)i}$	$[A_{asp}] (mol/m3) Ec. (6.28)$	$[A^{2-}_{asp}] (mol/m^3) Ec. (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.30)
0	8.96	15.289	1.000	13.358	1.931	0.000
30	8,85	14,183	0,928	12,752	1,431	93,368
60	8,78	13,854	0,906	12,646	1,208	121,164
90	8,72	13,663	0,894	12,613	1,049	137,309
150	8,63	13,454	0,880	12,602	0,852	154,956
240	8,54	13,169	0,861	12,482	0,686	179,043
360	8,48	13,176	0,862	12,574	0,602	178,412
540	8,48	13,197	0,863	12,594	0,603	176,668
785	8,52	13,193	0,863	12,535	0,658	176,984
1023	8,58	13,143	0,860	12,396	0,747	181,186
1200	8,62	13,233	0,866	12,412	0,820	173,644
1520	8,66	13,131	0,859	12,244	0,887	182,196
1802	8,69	13,232	0,866	12,279	0,953	173,658
2102	8,70	13,248	0,867	12,273	0,975	172,367
2400	8,76	13,205	0,864	12,101	1,104	175,996
3730	8,83	13,231	0,865	11,950	1,280	173,810

Tabla B5. Datos cinéticos de extracción de ácido aspártico con RIE en baños agitados para el experimento II (pH_i = 8,96±0,02; C_{A(asp)i}=15,29 mol/m³) de la Tabla 3.

Tabla B6. Datos cinéticos de extracción de ácido aspártico con RIE en baños agitados para el experimento III (pH_i = 11,04±0,06; C_{A(asp)i}=7,45 mol/m³) de la Tabla 3.

t (s)	pH(t)	$C_{A(asp)}(t)$ (mol/m ³)	C _{A(asp)} /C _{A(asp)i}	$ \begin{array}{c} \hline [A^{2-}_{asp}] \\ (mol/m^{3}) Ec. \\ (6.29) \end{array} $	$\overline{\overline{C}}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	11,05	7,449	1,000	7,053	0,000
30	11,02	7,274	0,977	6,861	19,355
70	11,00	6,894	0,926	6,485	50,370
130	10,97	6,575	0,883	6,159	76,239
219	10,95	6,397	0,859	5,974	90,555
317	10,97	6,166	0,828	5,776	108,911
470	10,98	5,849	0,785	5,486	134,035
720	10,97	5,616	0,754	5,261	152,215
916	10,95	5,632	0,756	5,260	150,987
1163	11,03	5,597	0,751	5,286	153,675
1380	11,04	5,604	0,752	5,299	153,167
1665	11,04	5,563	0,747	5,260	156,265
1860	10,99	5,611	0,753	5,271	152,653
2065	11,05	5,569	0,748	5,272	155,799
2405	11,01	5,596	0,751	5,271	153,784
2656	10,96	5,573	0,748	5,213	160,302
2656	10,96	5,593	0,751	5,254	163,428

11		2012 0.			
t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t)\\ (mol/m^3) \end{array}$	$C_{A(asp)}/C_{A(asp)i}$	$[A^{2-}_{asp}] (mol/m^3) \text{ Ec.} (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	11,14	11,459	1,000	10,958	0,000
21	11,11	11,197	0,977	10,675	29,849
50	11,11	10,805	0,943	10,301	62,671
80	11,08	10,611	0,926	10,082	78,813
143	11,09	10,377	0,906	9,871	98,027
245	11,14	9,846	0,859	9,416	141,370
385	11,1	9,617	0,839	9,158	159,937
604	11,18	9,458	0,825	9,079	172,751
854	11,15	9,293	0,811	8,895	185,873
1096	11,13	9,118	0,796	8,711	199,654
1344	11,1	9,041	0,789	8,610	205,674
1574	11,09	9,081	0,793	8,638	202,551
1821	11,12	9,012	0,786	8,600	207,883
2058	11,12	9,065	0,791	8,651	203,853
2406	11,04	8,858	0,773	8,376	219,500
2652	11,05	8,952	0,781	8,475	220,094
3613	11,08	9,116	0,796	8,662	215,238

Tabla B7. Datos cinéticos de extracción de ácido aspártico con RIE en baños
agitados para el experimento III (pHi = 11,04±0,06; $C_{A(asp)i}$ =11,46
mol/m³) de la Tabla 3.

Tabla B8. Datos cinéticos de extracción de ácido aspártico con RIE en baños
agitados para el experimento III (pHi = 11,04±0,06; $C_{A(asp)i}$ =18,94
mol/m³) de la Tabla 3.

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t) \\ (mol/m^3) \end{array}$	$C_{A(asp)}/C_{A(asp)i}$	$[A^{2-}_{asp}] (mol/m^3) \text{ Ec.} (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	11,01	18,939	1,000	17,839	0,000
55	10,99	18,080	0,955	16,983	77,700
135	10,98	17,805	0,940	16,701	100,452
247	10,97	17,522	0,925	16,388	123,744
357	10,96	17,375	0,917	16,201	135,818
530	10,95	17,122	0,904	15,941	156,479
878	10,94	16,950	0,895	15,754	170,560
1230	10,93	16,788	0,886	15,579	183,644
1850	10,93	17,051	0,900	15,797	162,386
2693	10,93	16,820	0,888	15,501	181,011
3598	10,92	16,7946	0,887	16,795	189,074
5455	10,91	17,2094	0,909	17,209	161,924
7240	10,91	16,8415	0,889	16,841	196,998
9044	10,9	16,7479	0,884	16,748	210,196
10815	10,88	16,5827	0,876	16,583	228,927
12664	10,88	16,9518	0,895	16,952	205,635
14375	10,87	16,7454	0,884	16,745	227,351

3422

	,				
t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t)\\ (mol/m^3) \end{array}$	$C_{A(asp)}/C_{A(asp)i}$	$[A^{2-}_{asp}] (mol/m^{3}) \text{ Ec.} (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	11	29,331	1,000	27,590	0,000
26	10,96	28,808	0,982	26,944	64,093
64	10,95	28,376	0,967	26,500	100,210
114	10,97	28,096	0,958	26,317	123,477
172	10,97	27,927	0,952	26,159	137,391
291	10,95	27,495	0,937	25,677	172,725
411	10,94	27,136	0,925	25,303	201,739
605	10,94	26,883	0,917	25,067	222,133
810	10,94	26,787	0,913	24,978	229,729
1044	10,95	26,715	0,911	24,948	235,456
1274	10,93	26,639	0,908	24,801	241,370
1510	10,91	26,497	0,903	24,588	252,403
1750	10,93	26,510	0,904	24,681	251,368
2009	10,93	26,454	0,902	24,628	255,692
2352	10,93	26,361	0,899	24,541	262,709
2578	10,91	26,274	0,896	24,381	269,216

Tabla B9.Datos cinéticos de extracción de ácido aspártico con RIE en baños
agitados para el experimento III (pHi = 11,04±0,06; $C_{A(asp)i}$ =29,33
mol/m³) de la Tabla 3.

Tabla B10.Datos cinéticos de extracción de ácido aspártico con RIE en
baños agitados para el experimento IV (pHi = 12,02±0,07;
 $C_{A(asp)i}=9,58 \text{ mol/m}^3$) de la Tabla 3.

0,902

24,499

256,508

26,445

10,90

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t) \\ (mol/m^3) \end{array}$	C _{A(asp)} /C _{A(asp)i}	$[A^{2-}_{asp}] (mol/m3) Ec. (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	12,05	9,578	1,000	9,524	0,000
30	11,73	8,552	0,893	8,453	88,570
60	11,75	8,129	0,849	8,038	125,165
95	11,71	7,813	0,816	7,718	152,396
140	11,76	7,437	0,776	7,356	184,901
290	11,91	7,105	0,742	7,051	213,527
320	11,95	7,113	0,743	7,063	212,856
371	11,86	7,011	0,732	6,950	221,691
563	11,84	7,036	0,735	6,972	219,521
860	11,82	7,017	0,733	6,950	221,173
1250	11,88	6,879	0,718	6,822	233,069
1354	11,85	6,965	0,727	6,903	225,677
1600	11,83	6,919	0,722	6,855	229,625
1815	11,89	6,851	0,715	6,796	235,449
2109	11,83	6,865	0,717	6,802	234,235
2405	11,79	6,885	0,719	6,815	232,582
2900	11,79	6,998	0,731	6,927	222,787
3640	11,79	6,961	0,727	6,890	225,995
7000	11,79	6,927	0,723	6,857	228,896

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t) \\ (mol/m^3) \end{array}$	$C_{A(asp)}/C_{A(asp)i}$	$[A^{2-}_{asp}] (mol/m^3) Ec. (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	11.94	11,198	1.000	11,117	0.000
33	11.7	10.393	0.928	10.264	68.000
80	11,7	10,001	0,893	9,876	101,133
145	11,69	9,613	0,858	9,491	133,899
200	11,74	9,438	0,843	9,331	148,695
260	11,76	9,376	0,837	9,274	153,933
360	11,73	9,268	0,828	9,160	163,062
550	11,69	9,232	0,824	9,114	166,078
788	11,7	9,130	0,815	9,016	174,718
1023	11,77	9,155	0,818	9,058	172,602
1202	11,79	9,171	0,819	9,078	171,236
1500	11,75	9,172	0,819	9,070	171,120
1802	11,75	9,180	0,820	9,078	170,490
2102	11,76	9,193	0,821	9,094	169,334
2400	11,75	9,191	0,821	9,089	169,515
3610	11,74	9,202	0,822	9,098	168,579
0	11,94	11,198	1,000	11,117	0,000

Tabla	B11.Datos	cinéticos	de ext	trac	ción (de	ácido	as	pártico	con	RIE	en
	baños	agitados	para	el	expe	rim	ento	IV	(pH _i =	12,0)2± 0,	07;
	C _{A(asp)i} =	= 11,19 mo	l/m³) de	e la	Tabla	a 3.						

Tabla B12.Datos cinéticos de extracción de ácido aspártico con RIE en
baños agitados para el experimento IV (pHi = 12,02±0,07;
 $C_{A(asp)i}$ =14,64 mol/m³) de la Tabla 3.

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t) \\ (mol/m^3) \end{array}$	$C_{A(asp)}/C_{A(asp)i}$	$[A^{2-}_{asp}] (mol/m^3) \text{ Ec.} (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	12,03	14,639	1,000	14,553	0,000
30	11,99	14,121	0,965	14,030	43,750
67	11,99	13,580	0,928	13,493	89,403
104	11,99	13,450	0,919	13,364	100,370
150	11,99	13,285	0,908	13,200	114,355
251	11,99	12,982	0,887	12,898	139,974
360	11,99	12,847	0,878	12,765	151,336
545	12	12,894	0,881	12,813	147,367
790	12,01	12,779	0,873	12,700	157,108
1053	12,02	12,880	0,880	12,803	148,548
1200	12,03	12,899	0,881	12,823	146,958
1500	12,04	12,878	0,880	12,804	148,758
1800	12,04	12,867	0,879	12,793	149,691
2101	12,05	12,832	0,877	12,760	152,624
2460	12,05	12,827	0,876	12,756	153,011
3604	12,06	12,857	0,878	12,786	150,534

t(s)	$\mathbf{n}\mathbf{H}(\mathbf{t})$	$C_{-}(t)$	<i>a</i> /a	$[A^{2-}_{asp}]$	$\overline{C}_{A(asp)}$
t (s)	pri(t)	(mol/m^3)	$C_{A(asp)}/C_{A(asp)i}$	(1101/111) EC. (6.29)	(mol/m ³ RSI)
		()		(0)	Ec. (6.31)
0	11,95	24,692	1,000	24,518	0,000
30	11,92	23,521	0,953	23,344	99,058
60	11,92	23,314	0,944	23,139	116,585
94	11,92	23,134	0,937	22,959	131,878
152	11,93	22,906	0,928	22,737	151,148
241	11,93	22,550	0,913	22,384	181,284
386	11,93	22,290	0,903	22,126	203,246
540	11,92	22,185	0,898	22,018	212,141
780	11,92	22,261	0,902	22,093	205,722
1023	11,92	22,258	0,901	22,091	205,944
1200	11,92	22,214	0,900	22,047	209,694
1505	11,92	22,192	0,899	22,025	211,568
1801	11,92	22,317	0,904	22,149	200,951
2106	11,91	22,419	0,908	22,247	192,313
2401	11,91	22,285	0,903	22,114	203,636
3610	11,9	22,568	0,914	22,390	179,707

Tabla B13.Datos cinéticos de extracción de ácido aspártico con RIE en
baños agitados para el experimento IV (pHi = 12,02±0,07;
 $C_{A(asp)i}$ =24,69 mol/m³) de la Tabla 3.

Tabla B14.Datos cinéticos de extracción de **ácido aspártico** con RIE en baños agitados de los experimentos de la Tabla 3 para la determinación de la etapa controlante del proceso. Apartado (6.2.1)

Х	Y	Z	ſ ^t [ʌ‐]dt
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,052	0,000	0,009	208,789
0,084	0,002	0,018	468,895
0,094	0,002	0,021	684,066
0,108	0,004	0,029	943,629
0,124	0,007	0,060	1492,097

a) Experimento I (pH_i = **5,06**±0,07; C_{A(asp)i}=**7,37** mol/m³)

b) Experimento I (pH_i = **5,06**±0,07; C_{A(asp)i}=**11,11** mol/m³)

Х	Y	Ζ	ſ ^t [ʌ-]dt
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,058	0,001	0,011	342,620
0,095	0,002	0,023	612,315
0,114	0,004	0,031	893,320
0,132	0,007	0,044	1435,917
0,146	0,011	0,080	2241,444

c) Experimento I (pH_i = **5,06**±0,07; C_{A(asp)i}=**14,64** mol/m³)

-			
Х	Y	Z	$\int_{0}^{t} \left[A - \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,073	0,001	0,015	409,039
0,113	0,003	0,027	801,663
0,140	0,006	0,040	1221,668
0,151	0,008	0,048	1915,880
0,167	0,015	0,091	2964,288

d) Experimento I (pH_i = **5,06**±0,07; C_{A(asp)i}=**21,85** mol/m³)

Х	Y	Z	$\int_{0}^{t} \left[A - \right]_{dt}$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,114	0,004	0,033	902,330
0,149	0,009	0,051	1734,625
0,160	0,011	0,060	2347,162
0,187	0,024	0,128	3105,738

	Х	Y	Z	$\int_{0}^{t} \left[A - \right] dt$
	Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
_	0,000	0,000	0,000	0,000
	0,120	0,002	0,021	391,647
	0,155	0,005	0,032	772,620
	0,176	0,007	0,042	1151,513
	0,199	0,014	0,081	1907,967
	0,229	0,016	0,081	3036,751

e) Experimento II (pH_i = **8,96**±0,02; $C_{A(asp)i}$ =**15,29** mol/m³)

f) Experimento III (pHi = **11,04**±0,06; C_{A(asp)i}=**7,45** mol/m³)

Х	Y	Z	$\int_{0}^{t} \left[A^{2-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,052	0,000	0,001	208,699
0,136	0,000	0,003	475,618
0,206	0,001	0,006	854,933
0,245	0,002	0,007	1394,833
0,295	0,003	0,010	1970,577
0,000	0,000	0,000	0,000

g) Experimento III (pH_i = **11,04**±0,06; C_{A(asp)i}=**11,46** mol/m³)

Х	Y	Z	$\int_{0}^{t} \left[A^{2-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,076	0,000	0,002	227,141
0,159	0,001	0,004	531,281
0,200	0,001	0,005	837,016
0,249	0,002	0,007	1465,525
0,359	0,004	0,011	2449,167
0,406	0,006	0,014	3749,359
0,438	0,008	0,016	5746,327
0,471	0,011	0,020	7993,121

h) Experimento III (pH_i = **11,04**±0,06; C_{A(asp)i}=**18,94** mol/m³)

Х	Y	Z	$\int_{0}^{t} \left[A^{2-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,206	0,003	0,013	957,603
0,266	0,005	0,018	2304,985
0,327	0,009	0,024	4158,014
0,359	0,011	0,029	5950,460
0,414	0,018	0,038	8730,767
0,451	0,025	0,048	14245,741
0,486	0,039	0,073	19760,418

Х	Y	Z	$\int_{0}^{t} \left[A^{2-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,163	0,001	0,008	708,937
0,254	0,003	0,013	1724,373
0,313	0,006	0,017	3044,804
0,348	0,007	0,020	4566,597
0,438	0,013	0,027	7650,812
0,512	0,021	0,036	10709,625
0,563	0,028	0,044	15595,510

h) Experimento III (pH_i = **11,04**±0,06; C_{A(asp)i}=**29,33** mol/m³)

i) Experimento IV (pH_i = **12,02**±0,07; C_{A(asp)i}=**9,58** mol/m³)

Х	Y	Ζ	$\int_{a}^{t} \left[A 2^{-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,215	0,001	0,004	0,215
0,303	0,002	0,006	0,303
0,369	0,003	0,008	0,369
0,448	0,006	0,011	0,448
0,517	0,010	0,017	0,517
0,516	0,010	0,017	0,516
0,537	0,013	0,020	0,537

j) Experimento IV (pH_i = **12,02**±0,07; C_{A(asp)i}=**11,19** mol/m³)

Х	Y	Z	$\int_{0}^{t} \left[A^{2-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,172	0,001	0,007	352,789
0,256	0,003	0,012	826,081
0,339	0,007	0,020	1455,507
0,377	0,011	0,025	1973,088
0,390	0,012	0,027	2531,223
0,413	0,016	0,033	3452,921
0,421	0,018	0,037	5188,995

k) Experimento IV (pH_i = **12,02**±0,07; C_{A(asp)i}=**14,64** mol/m³)

X Ec. (6.33)	Y Ec. (6.34)	Z Ec. (6.35)	$\int_{0}^{t} \left[A_{asp}^{2-} \right] dt$
0,000	0,000	0,000	0,000
0,111	0,001	0,008	428,746
0,227	0,005	0,020	937,927
0,254	0,007	0,024	1434,787
0,290	0,010	0,030	2045,755
0,355	0,020	0,049	3363,705
0,384	0,032	0,085	4762,340

Х	Y	Z	$\int_{0}^{t} \left[A^{2-} \right] dt$
Ec. (6.33)	Ec. (6.34)	Ec. (6.35)	$\int_{0} [A_{asp}] dt$
0,000	0,000	0,000	0,000
0,252	0,005	0,020	717,941
0,297	0,008	0,025	1415,186
0,336	0,011	0,030	2198,852
0,385	0,016	0,037	3524,053
0,462	0,028	0,053	5531,934
0,518	0,049	0,084	8758,893
0,540	0,056	0,108	12157,983

I) Experimento IV (pH_i = **12,02**±0,07; C_{A(asp)i}=**24,69** mol/m³).

APÉNDICE C. Resultados experimentales de las cinéticas de extracción de mezclas de ácido aspártico y α -fenilglicina con RIE en baños agitados. $\left[\overline{Q^+Cl^-}\right]_i = 765,07\pm10,24 \text{ mol/m}^3 \text{ RSI}; 30^{\circ}\text{C}.$ (*Apartado 6.2.2*).

Tabla C1. Datos cinéticos de extracción de **mezclas** de ácido aspártico y α -fenilglicina con RIE para el experimento I de la Tabla 4. (pH_i = **11,04±**0,05; C_{A(asp)i}=**6,52** mol/m³; C_{A(pgly)i}=**6,68** mol/m³).

	opunioo				
	TT()			$[A^{2-}_{asp}]$	$\overline{C}_{A(asp)}$
t (s)	pH(t)	$C_{A(asp)}(t)$	CA(asp)/CA(asp)i	(mol/m^3) Ec.	$(mol/m^3 RSI)$
		(1101/111.)		(0.29)	Ec. (6.31)
0	11,01	6,522	1,000	6,144	0,000
30	10,98	6,288	0,964	5,898	23,800
72	11,97	6,035	0,925	5,995	48,791
187	10,96	5,460	0,837	5,107	101,544
250	10,91	5,339	0,819	4,955	114,954
374	10,89	5,235	0,803	4,841	126,888
612	10,8	5,048	0,774	4,589	145,178
864	10,83	4,944	0,758	4,522	156,746
1098	10,83	4,940	0,757	4,519	160,309
1341	10,84	4,902	0,751	4,492	166,591
1577	10,84	4,893	0,750	4,484	170,510
1786	10,85	4,921	0,754	4,518	171,706
2060	10,91	4,952	0,759	4,595	172,650
2415	10,87	4,893	0,750	4,509	180,337
2682	10,86	4,856	0,745	4,467	186,327
3577	10,88	4,953	0,759	4,573	182,474
5401	10,87	4,972	0,762	4,582	184,458
7227	10,84	4,996	0,766	4,578	186,057
b) α-Fenilg	licina				
				[A ⁻]	\overline{C} (relation
t (s)	pH(t)	$C_{\Lambda(naly)}(t)$	C _{A(pgly)} /	(mol/m^3) Ec.	C A(pgly)
	r ()	(mol/m^3)	C _{A(pgly)i}	(6.52)	(mol/m ³ RSI)
		()		· · · ·	Ec. (6.53)
0	11,01	6,685	1,000	6,620	0,000
30	10,98	6,488	0,971	6,421	20,777
72	11,97	6,327	0,946	6,320	38,384
187	10,96	6,057	0,906	5,991	66,626
250	10,91	5,944	0,889	5,872	79,764
374	10,89	5,898	0,882	5,823	87,415
612	10,8	5,741	0,859	5,651	103,812
864	10,83	5,575	0,834	5,494	120,690
1098	10,83	5,506	0,824	5,426	129,757
1341	10,84	5,435	0,813	5,357	138,972
1577	10,84	5,387	0,806	5,310	146,252
1786	10,85	5,355	0,801	5,280	152,312
2060	10,91	5,332	0,798	5,267	157,623
2415	10,87	5,260	0,787	5,190	166,547
2682	10,86	5,221	0,781	5,150	1/2,941
3577	10,88	5,214	0,780	5,146	176,938
5401	10,87	5,214	0,780	5,145	180,385
1221	10,84	5,121	0,766	5,048	190,604

Tabla C2. Datos cinéticos de extracción de **mezclas** de ácido aspártico y α -fenilglicina con RIE para el experimento I de la Tabla 4. (pH_i = **11,04**±0,05; C_{A(asp)i}=**13,11** mol/m³; C_{A(pgly)i}=**6,74** mol/m³).

	t (a)	mII(4)			$[A^{2-}_{asp}]$	C _{A(asp)}
t (s)		pH(t)	$C_{A(asp)}(t)$	CA(asp)/CA(asp)i	(mol/m^2) Ec.	$(mol/m^3 RSI)$
			(mol/m)		(6.29)	Ec. (6.31)
	0	11,01	13,108	1,000	12,346	0,000
	20	10,99	12,799	0,976	12,023	34,302
	76	10,94	12,520	0,955	11,674	65,875
	129	10,95	12,267	0,936	11,456	94,878
	192	10,94	12,062	0,920	11,247	119,647
	264	10,95	11,919	0,909	11,131	139,174
	369	10,94	11,812	0,901	11,014	155,636
	612	10,94	11,593	0,884	10,810	180,840
	856	10,92	11,504	0,878	10,693	195,520
	1098	10,92	11,426	0,872	10,621	209,243
	1342	10,92	11,494	0,877	10,684	211,678
	1569	10,91	11,376	0,868	10,556	228,390
	1825	10,93	11,471	0,875	10,679	228,805
	2080	10,96	11,414	0,871	10,675	240,747
	2424	10,93	11,438	0,873	10,649	246,563
	2674	10,94	11,465	0,875	10,690	252,270
	3596	10,92	11,443	0,873	10,636	261,483
	7241	10,89	11,400	0,870	10,543	272,284
	10805	10,9	11,423	0,872	10,583	278,204
	14366	10,86	11,414	0,871	10,499	286,537
	b) α-Fenilg	licina				
					$[A_{nglv}]$	$\overline{C}_{A(ngly)}$
	t (s)	pH(t)	$C_{A(pgly)}(t)$	C _{A(pgly)} /	(mol/m^3) Ec.	(pg.))
			(mol/m^3)	C _{A(pgly)i}	(6.52)	(mol/m ³ RSI)
						Ec. (6.53)
	0	11,01	6,736	1,000	6,671	0,0000
	20	10,99	6,588	0,978	6,521	16,7724
	76	10,94	6,513	0,967	6,439	27,3712
	129	10,95	6,344	0,942	6,274	45,4919
	192	10,94	6,309	0,937	6,237	52,5573
	264	10,95	6,255	0,929	6,185	61,1359
	369	10,94	6,160	0,914	6,090	72,8818
	612	10,94	6,098	0,905	6,029	81,8839
	856	10,92	5,950	0,883	5,879	97,5290
	1098	10,92	5 888	08/4	5.818	106,2947
		40.00	5,000	0,070	5,000	444 0404
	1342	10,92	5,878	0,873	5,808	111,0424
	1569	10,92 10,91	5,878 5,795	0,873 0,860	5,808 5,725 5,727	111,0424 121,2366
	1569 1825	10,92 10,91 10,93	5,878 5,795 5,804	0,873 0,860 0,862	5,808 5,725 5,737	111,0424 121,2366 124,4635
	1342 1569 1825 2080 2424	10,92 10,91 10,93 10,96	5,878 5,795 5,804 5,730	0,873 0,860 0,862 0,851 0,845	5,808 5,725 5,737 5,668	111,0424 121,2366 124,4635 133,8821
	1342 1569 1825 2080 2424 2674	10,92 10,91 10,93 10,96 10,93	5,878 5,795 5,804 5,730 5,692 5,692	0,873 0,860 0,862 0,851 0,845 0,842	5,808 5,725 5,737 5,668 5,626 5,620	111,0424 121,2366 124,4635 133,8821 140,5074
	1342 1569 1825 2080 2424 2674 3596	10,92 10,91 10,93 10,96 10,93 10,94	5,878 5,795 5,804 5,730 5,692 5,674 5,612	0,873 0,860 0,862 0,851 0,845 0,842 0,842	5,808 5,725 5,737 5,668 5,626 5,609	111,0424 121,2366 124,4635 133,8821 140,5074 145,6872 153,0100
	1342 1569 1825 2080 2424 2674 3596 7241	10,92 10,91 10,93 10,96 10,93 10,94 10,92 10,89	5,878 5,795 5,804 5,730 5,692 5,674 5,613 5,540	0,873 0,860 0,862 0,851 0,845 0,842 0,833 0,822	5,808 5,725 5,737 5,668 5,626 5,609 5,546 5,546	111,0424 121,2366 124,4635 133,8821 140,5074 145,6872 153,9109 162,8934
	1342 1569 1825 2080 2424 2674 3596 7241 10805	10,92 10,91 10,93 10,96 10,93 10,94 10,92 10,89 10,9	5,878 5,795 5,804 5,730 5,692 5,674 5,613 5,540 5,524	0,873 0,860 0,862 0,851 0,845 0,842 0,833 0,822 0,820	5,808 5,725 5,737 5,668 5,626 5,609 5,546 5,470 5,470 5,455	111,0424 121,2366 124,4635 133,8821 140,5074 145,6872 153,9109 162,8934 167,7617
	1342 1569 1825 2080 2424 2674 3596 7241 10805 14366	10,92 10,91 10,93 10,96 10,93 10,94 10,92 10,89 10,9 10,86	5,878 5,795 5,804 5,730 5,692 5,674 5,613 5,540 5,524 5,524 5,502	0,873 0,860 0,862 0,851 0,845 0,842 0,833 0,822 0,820 0,817	5,808 5,725 5,737 5,668 5,626 5,609 5,546 5,470 5,455 5,428	111,0424 121,2366 124,4635 133,8821 140,5074 145,6872 153,9109 162,8934 167,7617 172,9890

Tabla C3. Datos cinéticos de extracción de **mezclas** de ácido aspártico y α -fenilglicina con RIE para el experimento I de la Tabla 4. (pH_i = **11,04**±0,05; C_{A(asp)i}=**19,58** mol/m³; C_{A(pgly)i}=**6,83** mol/m³).

t (s)	pH(t)	$C_{A(asp)}(t)$	$C_{\Lambda(acn)}/C_{\Lambda(acn)}$	$[A^{2-}_{asp}]$ (mol/m ³) Ec.	C _{A(asp)}
		(mol/m^3)	~ A(asp) ~ A(asp)	(6.29)	(mol/m ³ RSI) Ec. (6.31)
0	11,01	19,584	1,000	18,447	0,000
17	10,95	19,321	0,987	18,043	34,957
56	10,95	18,898	0,965	17,648	82,650
90	10,96	18,688	0,954	17,479	112,378
139	10,99	18,292	0,934	17,182	156,947
281	10,98	17,887	0,913	16,779	201,650
382	10,97	17,732	0,905	16,609	225,956
618	10,96	17,571	0,897	16,434	250,535
871	10,98	17,363	0,887	16,287	278,508
1107	10,97	17,374	0,887	16,274	289,291
1339	10,95	17,360	0,886	16,212	301,958
1559	10,93	17,414	0,889	16,212	309,458
1816	10,94	17,421	0,890	16,245	320,541
2068	10,93	17,392	0,888	16,192	334,371
2428	10,93	17,479	0,893	16,273	339,548
2668	10,92	17,417	0,889	16,189	355,804
3598	10,93	17,526	0,895	16,317	359,498
7224	10,90	17,566	0,897	16,273	368,341
10835	10,88	17,646	0,901	16,291	374,344
14367	10,85	17,662	0,902	16,217	385,008
b) α-Fenilg	llicina				
t(a)	n [](t)	C (i)	CA(maha)/	$[A_{pgly}]$	$\overline{C}_{A(pgly)}$
t (S)	pri(t)	$C_{A(pgly)}(l)$ (mol/m ³)	C _{A(pgly)} i	(mol/m) Ec. (6.52)	(mol/m ³ RSI)
-					Ec. (6.53)
0	11,01	6,830	1,000	6,764	0,000
17	10,95	6,715	0,983	6,640	14,086
56	10,95	6,580	0,963	6,507	29,638
90	10,96	6,512	0,954	6,442	39,583
139	10,99	6,367	0,932	6,303	55,682
281	10,98	6,252	0,915	6,187	69,193
382	10,97	6,149	0,900	6,084	81,525
618	10,96	6,050	0,886	5,984	93,501
871	10,98	5,917	0,866	5,855	107,934
1107	10,97	5,880	0,861	5,818	114,748
1339	10,95	5,833	0,854	5,768	122,280
1559	10,93	5,814	0,851	5,747	127,597
1816	10,94	5,779	0,846	5,714	134,145
2068	10,93	5,735	0,840	5,668	141,328
2428	10,93	5,716	0,837	5,650	146,543
2668	10,92	5,676	0,831	5,608	153,350
3598	10,93	5,649	0,827	5,583	159,111
1.7.7/	100	5,005	0.001		404 500
1224	10,9	5,625	0,824	5,556	164,569
10835	10,9 10,88	5,625 5,604	0,824 0,821	5,556 5,531	164,569 169,885

Tabla C4. Datos cinéticos de extracción de **mezclas** de ácido aspártico y α -fenilglicina con RIE para el experimento I de la Tabla 4. (pH_i = **11,04±**0,05; C_{A(asp)i}=**6,31** mol/m³; C_{A(pgly)i}=**12,38** mol/m³).

t (s)	pH(t)	$C_{A(asp)}(t)$ (mol/m ³)	C _{A(asp)} /C _{A(asp)i}	$[A^{2-}_{asp}]$ (mol/m ³) Ec. (6.29)	$\overline{C}_{A(asp)}$ (mol/m ³ RSI)
				()	Ec. (6.31)
0	11.09	6.306	1.000	5.998	0.000
20	11,04	6,167	0,978	5,832	15,699
58	11,03	5,801	0,920	5,478	49,975
109	11,03	5,640	0,894	5,326	66,987
149	10,99	5,620	0,891	5,279	72,382
267	11,01	5,459	0,866	5,142	88,991
409	11,00	5,234	0,830	4,924	110,555
641	10,99	5,153	0,817	4,840	120,495
905	10,97	5,083	0,806	4,761	129,365
1125	10,94	5,051	0,801	4,710	135,300
1363	10,88	5,060	0,802	4,671	137,990
1598	10,90	5,128	0,813	4,750	136,187
1823	10,91	5,118	0,812	4,749	140,364
2070	10,90	5,135	0,814	4,757	142,495
2460	10,89	5,154	0,817	4,766	144,540
2676	10,91	5,121	0,812	4,752	150,413
3620	10,89	5,157	0,818	4,769	151,189
7216	10,86	5,213	0,827	4,795	150,611
10910	10,88	5,272	0,836	4,868	149,836
14475	10,86	5,248	0,832	4,827	155,121
b) a-Fenilg	licina				
				[A _{pgly}]	$\overline{\mathbf{C}}_{\mathbf{A}(\mathbf{pgly})}$
t (s)	pH(t)	$C_{A(ngly)}(t)$	C _{A(pgly)} /	(mol/m^3) Ec.	- ((pB))
	1 ()	(mol/m^3)	C _{A(pgly)i}	(6.52)	$(mol/m^3 RSI)$
				~ /	Ec. (6.53)
0	11,09	12,379	1,000	12,279	0,000
20	11,04	12,267	0,991	12,156	17,621
58	11,03	11,819	0,955	11,709	62,675
109	11,03	11,658	0,942	11,550	83,711
149	10,99	11,664	0,942	11,546	91,015
267	11,01	11,437	0,924	11,326	117,028
409	11,00	11,030	0,891	10,920	157,079
641	10,99	10,870	0,878	10,760	177,060
905	10,97	10,674	0,862	10,561	199,625
1125	10,94	10,607	0,857	10,487	211,988
1363	10,88	10,554	0,853	10,417	223,165
1598	10,90	10,622	0,858	10,490	225,046
1823	10,91	10,511	0,849	10,383	240,547
2070	10,90	10,393	0,840	10,264	256,393
2460	10,89	10,368	0,838	10,236	265,192
2676	10,91	10,256	0,828	10,131	280,371
3620	10,89	10,226	0,826	10,096	289,377
7216	10,86	10,279	0,830	10,139	292,435
10910	10,88	10,237	0,827	10,104	302,271
14475	10.86	10 142	0.819	10 004	315 844

Tabla C5. Datos cinéticos de extracción de **mezclas** de ácido aspártico y α -fenilglicina con RIE para el experimento II de la Tabla 4. (pH_i = **12,02**±0,02; C_{A(asp)i}=**7,65** mol/m³; C_{A(pgly)i}=**8,10** mol/m³).

a) Ácido aspártico

t (s)	pH(t)	$\begin{array}{c} C_{A(asp)}(t) \\ (mol/m^3) \end{array}$	$C_{A(asp)}/C_{A(asp)i}$	$[A^{2-}_{asp}] (mol/m^{3}) Ec. (6.29)$	$\overline{C}_{A(asp)}$ (mol/m ³ RSI) Ec. (6.31)
0	12,02	7,655	1	7,609	0.000
60	11,99	6,821	0,891	6,778	70,371
120	12,00	6,549	0,856	6,508	93,371
180	12,01	6,476	0,846	6,436	99,569
300	12,02	6,174	0,807	6,137	125,060
600	12,05	6,128	0,801	6,094	128,916
900	12,08	6,162	0,805	6,130	126,078
1200	12,12	6,203	0,810	6,174	122,560
1800	12,18	6,203	0,810	6,177	122,620
2713	12,23	6,287	0,821	6,263	115,521
3602	12,27	6,239	0,815	6,218	119,543
7215	12,26	6,195	0,809	6,173	123,302
14419	12,18	6,170	0,806	6,144	125,396
21847	12,08	6,259	0,818	6,226	117,892
28800	12,00	6,276	0,820	6,237	116,422
83155	12,01	6,271	0,819	6,233	116,830

t (s)	pH(t)	$\begin{array}{c} C_{A(pgly)}(t) \\ (mol/m^3) \end{array}$	$\begin{array}{c} C_{A(pgly)} / \\ C_{A(pgly)i} \end{array}$	[A-pgly](mol/m3) Ec.(6.52)	$\overline{C}_{A(pgly)}$ (mol/m ³ RSI)
0	12.02	9 101	1	8 00 /	<u> </u>
0	12,02	0,101	1	0,094	0,000
60	11,99	7,382	0,911	7,374	60,790
120	12,00	7,279	0,898	7,271	69,479
180	12,01	7,267	0,897	7,260	70,470
300	12,02	6,907	0,853	6,900	100,881
600	12,05	6,644	0,820	6,638	123,051
900	12,08	6,583	0,813	6,578	128,205
1200	12,12	6,477	0,799	6,472	137,215
1800	12,18	6,460	0,797	6,455	138,662
2713	12,23	6,489	0,801	6,485	136,185
3602	12,27	6,479	0,800	6,475	137,048
7215	12,26	6,390	0,789	6,387	144,525
14419	12,18	6,316	0,780	6,311	150,815
21847	12,08	6,435	0,794	6,429	140,750
28800	12,00	6,378	0,787	6,372	145,545
83155	12,01	6,347	0,783	6,340	148,194

- **Tabla C6**. Datos cinéticos para la determinación de la etapa controlante del proceso de extracción conjunta de ácido aspártico y α-fenilglicina con RIE para los experimentos I y II de la Tabla 4.
- a) Experimento I (pH_i = **11,04**±0,05; C_{A(asp)i}=**6,52** mol/m³; C_{A(pgly)i}=**6,68** mol/m³)

a1) Ácido aspártico						
Х	Y	Z	[^t [_A 2-] _d			
Ec. (6.56)	Ec. (6.58)	Ec. (6.60)	J _o [A _{asp}] di			
0,000	0,000	0,000	0,000			
0,063	0,000	0,001	180,630			
0,128	0,000	0,003	430,384			
0,267	0,002	0,008	1068,734			
0,303	0,003	0,010	1385,675			
0,334	0,005	0,012	1993,002			
0,3821	0,009	0,019	3115,164			
o2) a Fonilalia	vine					
	v v	7				
Λ	I	L	$\int_{0}^{t} \left[A_{paly}^{-} \right] dt$			
Ec. (6.57)	Ec. (6.59)	Ec. (6.61)	Jor Pana			
0,000	0,000	0,000	0,000			
0,027	0,000	0,001	195,608			
0,051	0,000	0,002	463,157			
0,088	0,000	0,004	1171,041			
0,105	0,001	0,005	1544,731			
0,115	0,001	0,006	2269,823			
0,137	0,001	0,007	3635,287			
0,159	0,002	0,009	5039,563			
0,171	0,002	0,011	6317,182			
0,183	0,002	0,012	7627,368			
0,192	0,003	0,014	8886,149			
0,200	0,003	0,015	9992,852			
0,207	0,004	0,017	11437,793			
0,219	0,005	0,020	13293,854			

b) Experimento I (pH_i=11,04±0,05; C_{A(asp)i}=13,11 mol/m³; C_{A(pgly)i}=6,74 mol/m³)

b1) Ácido aspártico						
Х	$\int_{0}^{t} \left[\Delta^{2-} \right] dt$					
Ec. (6.56)	Ec. (6.58)	Ec. (6.60)	J _o [Aasp] dt			
0,000	0,000	0,000	0,000			
0,090	0,000	0,003	243,695			
0,173	0,001	0,005	907,213			
0,250	0,002	0,008	1520,144			
0,315	0,004	0,011	2235,276			
0,366	0,006	0,014	3040,880			
0,410	0,008	0,017	4203,497			
0,476	0,013	0,024	6855,095			
0,515	0,017	0,029	9478,415			
0,551	0,026	0,043	12057,369			
b2) α-Fenilglia	ina					
-----------------	------------	------------	--------------------------			
Х	Y	Z	[^t [a =]			
Ec. (6.57)	Ec. (6.59)	Ec. (6.61)	$\int_{o} [A_{pgly}] dt$			
0,000	0,000	0,000	0,000			
0,022	0,000	0,001	131,923			
0,036	0,000	0,003	494,811			
0,060	0,000	0,004	831,691			
0,069	0,000	0,005	1225,791			
0,080	0,001	0,007	1673,012			
0,096	0,001	0,008	2317,453			
0,108	0,001	0,010	3789,820			
0,128	0,002	0,013	5242,557			
0,140	0,002	0,015	6657,931			
0,146	0,003	0,017	8076,286			
0,160	0,004	0,020	9385,240			
0,164	0,004	0,022	10852,302			
0,176	0,006	0,027	12306,352			

c) Experimento I (pH_i=**11,04**±0,05; C_{A(asp)i}=**19,58** mol/m³; C_{A(pgly)i}=**6,83** mol/m³)

Х	Y	Z	$\int_{0}^{t} \left[\Lambda^{2-} \right] dt$
Ec. (6.56)	Ec. (6.58)	Ec. (6.60)	J _o [A _{asp}] ut
0,000	0,000	0,000	0,000
0,092	0,000	0,003	310,168
0,218	0,002	0,008	1006,158
0,296	0,003	0,011	1603,325
0,413	0,008	0,017	2452,531
0,531	0,016	0,027	4863,756
0,595	0,023	0,034	6549,822
0,659	0,043	0,066	10448,847
c2) α-Fenilglic	ina		
Х	Y	Z	ſ ^t [Δ-]dt
Ec. (6.57)	Ec. (6.59)	Ec. (6.61)	
0,000	0,000	0,000	0,000
0,019	0,000	0,001	113,932
0,039	0,000	0,003	370,309
0,052	0,000	0,004	590,439
0,073	0.000	0.006	902 673
	0,000	0,000	002,010
0,091	0,001	0,008	1789,429
0,091 0,107	0,001 0,001	0,008 0,010	1789,429 2409,116
0,091 0,107 0,123	0,001 0,001 0,002	0,008 0,010 0,012	1789,429 2409,116 3833,145
0,091 0,107 0,123 0,142	0,001 0,001 0,002 0,002	0,008 0,010 0,012 0,015	1789,429 2409,116 3833,145 5330,831
0,091 0,107 0,123 0,142 0,151	0,001 0,001 0,002 0,002 0,003	0,008 0,010 0,012 0,015 0,018	1789,429 2409,116 3833,145 5330,831 6708,249
0,091 0,107 0,123 0,142 0,151 0,161	0,001 0,001 0,002 0,002 0,003 0,004	0,008 0,010 0,012 0,015 0,018 0,020	1789,429 2409,116 3833,145 5330,831 6708,249 8052,218
0,091 0,107 0,123 0,142 0,151 0,161 0,168	0,001 0,001 0,002 0,002 0,003 0,004 0,004	0,008 0,010 0,012 0,015 0,018 0,020 0,023	1789,429 2409,116 3833,145 5330,831 6708,249 8052,218 9318,903

c1) Ácido aspártico

d1) Ácido asp	ártico		
X	Y	Z	[^t [_A 2-] dt
Ec. (6.56)	Ec. (6.58)	Ec. (6.60)	J _o [A _{asp}] di
0,000	0,000	0,000	0,000
0,041	0,000	0,002	118,297
0,132	0,001	0,006	333,180
0,176	0,002	0,008	608,683
0,190	0,002	0,009	820,779
0,234	0,003	0,013	1435,624
0,291	0,007	0,022	2150,311
0,317	0,013	0,040	3282,920
d2) α-Fenilglia	ina		
Х	Y	Z	∫ ^t [∆-]dt
Ec. (6.57)	Ec. (6.59)	Ec. (6.61)	J _o [^r 'pgly] dr
0,000	0,000	0,000	0,000
0,023	0,000	0,001	244,352
0,082	0,000	0,004	697,788
0,110	0,001	0,005	1290,896
0,120	0,001	0,006	1752,804
0,154	0,001	0,008	3102,227
0,207	0,003	0,012	4681,720
0,233	0,004	0,015	7196,602
0,263	0,006	0,019	10010,951
0,279	0,007	0,022	12326,194
0,294	0,009	0,026	14813,656
0.296	0.009	0.027	17270.133

d) Experimento I (pH_i=11,04±0,05; C_{A(asp)i}=6,31 mol/m³; C_{A(pgly)i}=12,38 mol/m³)

e) Experimento II (pH_i=12,02±0,02; $C_{A(asp)i}$ =7,65 mol/m³; $C_{A(pgly)i}$ =8,10 mol/m³)

e1) Ácido aspa	ártico		
Х	Y	Z	$\int_{0}^{t} \left[\Lambda^{2-} \right] dt$
Ec. (6.56)	Ec. (6.58)	Ec. (6.60)	J _o [A _{asp}] ut
0,000	0,000	0,000	0,000
0,180	0,002	0,011	431,587
0,239	0,005	0,018	830,153
0,255	0,006	0,020	1218,470
e2) α-Fenilglic	ina		
Х	Y	Z	$\int_{o}^{t} \! \left[A^{-}_{pgly} \right] dt$
Ec. (6.57)	Ec. (6.59)	Ec. (6.61)	
0,000	0,000	0,000	0,000
0,078	0,001	0,009	464,026
0,089	0,001	0,010	903,386
0,090	0,001	0,011	1339,322
0,129	0,003	0,019	2188,927
0,158	0,006	0,033	4219,733
0,164	0,008	0,051	6202,177