
Moléculas poliatómicas (2)

Tema 3: Enlace Químico

3.3.- Moléculas poliatómicas

Profesor: Rafael Aguado Bernal

Principio Isoelectrónico

Moléculas con el mismo número de electrones y átomos pesados, tienen estructuras electrónicas similares, geometrías similares y propiedades químicas similares.

Moléculas e iones de 3 átomos pesados y 22 electrones totales:

H ₂ C=C=CH ₂	H ₂ C=C=O	HN=C=O
Aleno	Cetena	Ac. Isociánico
O=C=O	-N=N+=O	⁻N=N+=N⁻
Dióxido de carbono	Oxido nitroso	Ion azida
H ₂ C=N ⁺ =N ⁻	O=N+=O	F–C≡N
Diazometano	Ion nitrilo	Fluoruro de cianógeno
H ₃ B ⁻ –C≡N	H ₃ C−C≡N	-N=C=N-
Ion cianoborohidruro	Acetonitrilo	Ion cianamida
H ₃ B [−] –C≡O ⁺	O=B ⁻ =O	H ₃ C−C≡CH
Carbonilborano	Ion metaborato	Metilacetileno

^{*} Jolly, W. L., "Modern Inorganic Chemistry", 2a Ed., McGraw-Hill, 1991, pp 48.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 74.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", Traducción española de la 2ª Ed. "Química Inorgánica", Pearson Prentice Hall, 2006, pp 43.

Tema 3: Enlace Químico

3.3.- Moléculas poliatómicas

Profesor: Rafael Aguado Bernal

Principio Isoelectrónico

Moléculas con el mismo número de electrones y átomos pesados, tienen estructuras electrónicas similares, geometrías similares y propiedades químicas similares.

Moléculas e iones de 3 átomos pesados y 22 electrones totales, de los que 16 son de valencia:

HN=C=O Ac. Isociánico

O=C=O HN=C=S
Dióxido de carbono Ac. Tioisociánico

O=C=S
Sulfuro de dicarbonilo

N=C=S
Ion tioisocianato

S=C=S

Br-C≡N

Disulfuro de carbono

Bromuro de cianógeno

Todas estas especies tienen en común un esqueleto de átomos pesados lineal (180°) y valores similares de sus frecuencias vibracionales.

^{*} Jolly, W. L., "Modern Inorganic Chemistry", 2ª Ed., McGraw-Hill, 1991, pp 48.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 74.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", Traducción española de la 2ª Ed. "Química Inorgánica", Pearson Prentice Hall, 2006, pp 43.

Química Inorgánica

Principio Isoelectrónico

Moléculas con el mismo número de electrones y átomos pesados, tienen estructuras electrónicas similares, geometrías similares y propiedades químicas similares.

Muchas de estas especies sufren reacciones análogas frente a un mismo reactivo. Bases de Lewis como el (OH)⁻ o el H₂O atacan a la molécula en el átomo central:

$$H_2C = C = O$$
 $OH^ H_3C - C$
 $OH^ OH^ OH$

Br—C
$$\equiv$$
N \longrightarrow O=C \equiv N⁻ + Br⁻ + H₂O bromuro de cianógeno

H₂N—C \equiv N \longrightarrow H₂N— $\stackrel{O}{\leftarrow}$ NH₂ aminonitrilo

Se fragmentan de modo similar por irradiación UV:

$$H_{2}C \stackrel{!}{=} C = O \xrightarrow{hv} CH_{2} + CO$$

$$H_{2}C \stackrel{!}{=} N = N \xrightarrow{hv} CH_{2} + N_{2}$$

$$HN \stackrel{!}{=} N = N \xrightarrow{hv} NH + N_{2}$$

$$O \stackrel{!}{=} C = O \xrightarrow{hv} O + CO$$

$$S \stackrel{!}{=} C = O \xrightarrow{hv} S + CO$$

^{*} Jolly, W. L., "Modern Inorganic Chemistry", 2ª Ed., McGraw-Hill, 1991, pp 48.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 74.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", Traducción española de la 2ª Ed. "Química Inorgánica", Pearson Prentice Hall, 2006, pp 43.

Tema 3: Enlace Químico

3.3.- Moléculas poliatómicas

Profesor: Rafael Aguado Bernal

Principio Isoelectrónico

La existencia de análogos isoelectrónicos de un compuesto desconocido, puede servir de estímulo para su primera síntesis. En 1971 se conocen (CO - η^2) (NO - η^3)

$$s^{2} d^{8}$$
 Ni(CO)₄
 $s^{2} d^{7}$ Co(CO)₃(NO)
 $s^{2} d^{6}$ Fe(CO)₂(NO)₂
 $s^{2} d^{5}$ Mn(CO)(NO)₃
 $s^{1} d^{5}$ $\dot{\varsigma}$?
Cr(NO)₄

Cr(NO)₄ preparado por fotolisis de Cr(CO)₆ en presencia de NO

^{*} Jolly, W. L., "Modern Inorganic Chemistry", 2a Ed., McGraw-Hill, 1991, pp 48.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 74.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", Traducción española de la 2ª Ed. "Química Inorgánica", Pearson Prentice Hall, 2006, pp 43.

Principio Isoelectrónico

Química Inorgánica

Tiene sus limitaciones

^{*} Jolly, W. L., "Modern Inorganic Chemistry", 2a Ed., McGraw-Hill, 1991, pp 48.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 74.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", Traducción española de la 2ª Ed. "Química Inorgánica", Pearson Prentice Hall, 2006, pp 43.