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Abstract 

In this work, an unexpected enhancement of the Raman signal for uric acid during the 

electrochemical oxidation of a silver electrode is presented. This behavior cannot be 

easily explained using classical models of Surface Enhanced Raman Scattering (SERS). 

Time resolved Raman spectroelectrochemistry is used to study this interesting process 

strongly dependent on the experimental conditions. The new phenomenon was observed 

in different molecules and was found to be reproducible and robust, allowing us to use 

this methodology for the determination of citric acid. The enhancement of the Raman 

signal only takes place when a potential is applied to the electrode and therefore, this 

new phenomenon can be denoted as Electrochemical Surface Oxidation Enhanced 

Raman Scattering (EC-SOERS). In this work, EC-SOERS is presented not only as an 

alternative to SERS for detection of molecules but also as a reproducible process that 

can be used for quantitative analysis. 
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1. Introduction 

Silver roughened electrode [1] is one of the most used substrates in Surface 

Enhanced Raman Scattering (SERS), due to its plasmonic properties [2,3] and the 

ease of preparation. The roughening process is widely known in literature and 

implies the surface oxidation (Ag dissolution) and the subsequent Ag+ reduction 

on the electrode. During this process, formation of Ag nanoparticles (NPs) [4–6], 

responsible for the SERS electromagnetic effect, takes place. This deposition 

yields a much higher area and a nanostructured roughened surface, which 

modifies its optical properties, and ultimately, modulate the SERS behavior [7]. 

A number of works propose different ways to generate roughened silver 

substrates, from using cyclic voltammetry (CV) to applying a step potential 

program [8,9]. Most of the cases include the presence of chloride (Cl-) or other 

halide, which allows getting higher silver dissolution and promoting the 

nanostructuration after the reduction stage [8,9]. Despite this process has been 

widely characterized in literature [10,11], its dynamic evolution in presence of a 

Raman probe molecule has been scarcely studied.  

SERS has been widely used for analysis, not only by using Raman spectroscopic 

signal but also by combining this one with electrochemistry to quantify different 

analytes at a controlled potential [12,13]. In the present work, time-resolved 

Raman spectroelectrochemistry [14–17] (TR-Raman SEC) is used to follow the 

roughening process of silver with a Raman probe molecule in the electrolytic 

solution, being possible to detect transient processes [18–20]. Thus, SERS SEC 

system allows both, the electrochemical investigation and also the simultaneous 

SERS data, and therefore presents wide applicability in target molecules analysis 

with low detection limit. Interestingly, when using uric acid (UA) as a probe 
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molecule, it was found a special and unexpected enhancement of the Raman 

signal at the electrochemical oxidation stage of a silver substrate. Thus, an 

equivalent process to SERS is observed, that can be denoted as Surface Oxidation 

Enhanced Raman Scattering (SOERS). Unlike classical SERS, this effect was 

only observed during the electrochemical oxidation of the silver electrode 

surface. Therefore, it should be denoted as Electrochemical-SOERS (EC-

SOERS). This effect was potential dependent and exclusively observed for 

particular experimental conditions. To the best of our knowledge, this is the first 

time that such behavior is reported in the literature. This result, in principle, does 

not match any classical SERS result reported in bibliography, which suggests the 

loss of the Raman signal during silver oxidation [21–23].  

In order to illustrate the usefulness of EC-SOERS for analysis, citric acid was 

selected as target analyte. This compound is used extensively in the 

manufacturing of carbonated beverages, fruit and vegetable drinks, cheeses and 

other dairy products. It is also a natural component of many fruits and vegetables, 

and also an important component of certain corporal fluids. [24–26]. One of the 

main advantages of using TR-Raman SEC as analytical technique is the intrinsic 

trilinear character of the responses obtained by SEC that can be used for multi-

way data [27]. Thus, using PARAFAC as a chemometric tool, Raman SEC data 

could provide information about both the concentration of a test sample and the 

evolution of the spectra during a voltammetric experiment. 

This work is a first approach to this interesting enhancement of the Raman signal 

during the oxidation of the silver electrode that, as is demonstrated, can be used 

for analytical purposes. 
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2. Experimental 

2.1. Reagents and Materials  

Perchloric acid (HClO4, 60 %, reagent, Sigma-Aldrich), uric acid (UA, 99+%, 

reagent, ACROS Organics), potassium chloride (KCl, 99+%, reagent, ACROS 

Organics), pyridine (Py, 99.5%, analysis, Merck), benzoic acid (BzA, 99.5%, PA, 

Panreac) and potassium cyanide (KCN, 99%, PRS, Panreac) were used. All 

solutions were prepared using ultrapure water obtained from a Millipore DirectQ 

purification system provided by Millipore (18.2 MΩ cm resistivity at 25 °C). 

2.2. Instrumentation  

Raman spectroelectrochemistry. In situ time-resolved Raman spectroelectrochemistry 

(TR-Raman-SEC) was performed by using a SPELEC RAMAN instrument (DropSens), 

which integrates a laser source of 785 nm. Laser Power in all experiments was 80 mW 

(254 W·cm-2). This instrument was connected to a bifurcated reflection probe (DRP-

RAMANPROBE, Dropsens). Two Raman spectroelectrochemical cells were employed: 

a commercial cell for screen-printed electrodes (DRP-RAMANCELL, Dropsens) [12], 

and a home-made cell to carry out those experiments using a customized silver disk 

electrode. DropView SPELEC software (Dropsens) was used to control the instrument, 

which allows getting real-time and synchronized spectroelectrochemical data.  

A home-made customized silver disk electrode was used as a working electrode. This 

consisted in a silver disk inserted in Teflon. In this experimental set-up, a home-made 

Ag/AgCl electrode and a platinum wire were used as reference and counter electrodes, 

respectively. Screen-printed silver electrodes (DRP-C013, DropSens) were also used for 

some experiments. These devices consist of a flat ceramic card on which a three-
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electrode system comprising the electrochemical cell is screen-printed. The working 

silver electrode is circular with a diameter of 1.6 mm, the auxiliary electrode is made of 

carbon and a silver paint acts as a pseudoreference.  

UV-vis spectroscopy. UV-vis absorption experiments were carried out using an UV-vis 

spectrophotometer Cary 50 Conc (Viarian). Solutions were sampled using a standard 

quartz cuvette 10 x10 mm.  

SEM microscopy. A JEOL 6610LV scanning electron microscope (SEM) was used to 

characterize the working silver electrodes at various stages of the electrochemical 

activation. Images were recorded with the secondary electron detector and using an 

accelerated voltage of 20 kV.  

Electrochemical impedance spectroscopy (EIS). An Autolab PGSTAT 302N 

potentiostat equipped with a FRA module of impedance was used to carry out the EIS 

experiments. Differential capacitances were obtained by measuring the real (Z’) and 

imaginary (Z”) components of the impedance at 20 constant frequencies ranging from 

0.1 Hz to 1000 Hz, with the potential being stepped in a sequence of 0.025 V and 0.05 

V, from +0.10 V to -0.55 V vs Ag/AgCl.  

3. Results and discussion 

3.1. Electrochemical Surface Oxidation Enhanced Raman Scattering (EC-

SOERS)  

In an attempt to obtain suitable information about the appearance of an EC-SOERS 

signal during the electrochemical oxidation of a silver substrate, UA Raman response 

was evaluated in acidic media, using TR-Raman SEC. To achieve this, a linear sweep 

voltammetry (LSV) along a proper potential window was applied, recording 
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simultaneously the Raman response with a high time-resolution. Fig. 1 presents the 

Raman spectra for UA 0.2 mM recorded during a LSV experiment and the evolution of 

the Raman intensity at 641 cm-1 as a function of the applied potential for two different 

electrolytic media (HClO4 0.1 M and HClO4 0.1 M + KCl 5·10-3 M), scanning the 

potential from +0.1 V to +0.55 V. For simplicity in the terminology, this plot will be 

called voltaRamangram because it represents the evolution of the Raman intensity at a 

specific Raman shift as a function of the applied potential in a voltammetric experiment. 

As can be observed in Fig. 1a, when the LSV is carried out in HClO4 0.1 M (HClO4), 

there is no appreciable peaks in the Raman spectrum corresponding to UA in the whole 

potential window, fact corroborated in the voltaRamangram at 641 cm-1 for UA in this 

media (blue curve in Fig. 1d). However, when some small amount of Cl- is added (5·10-

3 M), unexpectedly, significant unusual Raman signal were observed (Fig. 1b) 

corresponding unmistakably to uric acid spectrum [28,29].  

Fig. 1 

Fig. 1b shows the Raman spectra for UA 0.2 mM + HClO4 0.1 M + KCl 5·10-3 M 

(HClO4/KCl) recorded at different potentials during the LSV (Table S1 shows the band 

assignment, and Fig. S1 shows a comparison of UA Raman spectra under different 

experimental conditions). Interestingly, the enhancement of the Raman signal appeared 

at the oxidation stage of the silver roughening process (red curve in Fig. 1d), which does 

not match any previous SERS results during a spectroelectrochemical experiment. A 

closer look at Fig. 1d shows an increment of the Raman intensity above +0.20 V in the 

anodic direction, reaching a maximum around +0.50 V. Finally, red curve in Fig. 1c 

reveals that the increment of Raman signal is closely related with the LSV which 

support that oxidation products should be responsible for such singular effect.   
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More interesting results were obtained by recording the Raman spectra during a 

chronoamperometry (CA). Fig. 2 displays two SEC experiments at fixed potentials, 

collecting both Raman spectra and transient current responses simultaneously. In a first 

experiment, the potential was kept at +0.40 V for 60 s. In a second experiment, a 

potential of +0.40 V was applied for 30 s, time at which the electrode was left at open 

circuit potential (OCP) and the Raman spectra were recorded for other 30 s (Fig. 2b).  

Fig. 2 

The Raman intensity for UA at 641 cm-1 as a function of time (chronoRamangram) for 

the two experiments is represented in Fig. 2. As can be observed, the application of 

+0.40 V provoked the increase of the Raman intensity during the whole experiment. 

These CA experiments corroborate the responses observed in Fig. 1d, the anodic 

polarization (oxidation) of the electrode yields the increment of the UA Raman signal in 

these electrolytic conditions, in contrast to the typical SERS response that usually is 

observed at cathodic potentials [9,28–30]. It is noteworthy that Raman signal is lost at 

OCP (Fig. 2b), indicating that the phenomenon is potential dependent. 

Different experiments using commercial silver screen printed electrodes (Ag-SPEs) 

were also made, demonstrating that voltammetric features were fairly similar with those 

obtained for a silver disk electrode (Fig. S2). Additionally, comparable results were 

obtained in two independent laboratories, which demonstrate the robustness and 

reproducibility of the phenomenon (Fig. S3). 

It is noteworthy that the Raman signal is concentration dependent. A calibration curve 

was carried out using Ag-SPEs. Fig. S4a displays the voltaRamangrams at 641 cm-1 for 

different UA concentrations. The voltammetry features are fairly similar to that 

corresponding to a silver electrode, as was stated before in Fig. S2. Fig. S4b shows the 
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fitting between the Raman intensity at 641 cm-1 and the UA concentration. A good 

linear relationship (R2=0.99) was obtained, which means that the phenomenon is not 

due to a particular UA concentration. Furthermore, EC-SOERS is very reproducible and 

could be used for quantitative analysis. 

3.2. Microscopic characterization of the Silver disk roughened electrode 

To shed more light into the reason for this unusual SERS signal, SEM images were 

taken at different steps of the LSV (Fig. 3), using the same electrolytic media 

(HClO4/KCl) and a silver disk electrode. At the early oxidation stage (Fig. 3a), it could 

be distinguished the incipient formation of AgCl particles [31,32], which evolve in 

shape and size at more positive potential values to generate bigger cubic AgCl particles 

(Fig. 3b). EDX analysis confirmed the composition of the cubic particles (Fig. S5 and 

Table S2) and revealed a silver enrichment of the AgCl cubic particles [33,34] along the 

anodic process, where the Raman signal enhancement is observed. Additionally, the 

voltammetric profile (Fig. S6) is in agreement with the SEM images and some earlier 

studies about the electrochemistry of silver electrodes [35,36] in different electrolytic 

media. It is well known that AgCl does not present SERS effect, however an increment 

of Raman response for pyridine and other molecules adsorbed on Ag+/AgCl or Ag/AgCl 

complex have been reported [37–40]. Finally, it is worth noting that, despite SEM 

images help to explain the observed enhancement, the Raman increment is lost when 

the electrode is left at OCP (Fig. 2). Therefore, only SEM results are not sufficient to 

fully understand the phenomenon. 

Fig. 3 
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3.3. Explanation for EC-SOERS phenomenon 

Rationalizing these results in terms of a SERS-like behavior, there are some possible 

reasons for the observed phenomenon. The first one is the formation of some silver 

nanoparticles as a result of the incident laser. The use of visible lasers to produce silver 

nanoparticles due to a photoreduction of Ag+ is well documented [41,42]. In order to 

demonstrate whether such effect is the responsible for the observed phenomenon, 

similar experiments using typical Raman probe molecules were performed. Fig. 4 shows 

the voltaRamangrams and the CVs for pyridine (Py), potassium cyanide (KCN), 

benzoic acid (BzA) and UA in the same experimental conditions than those used for UA 

(HClO4/KCl). 

 Fig. 4 

In order to have a proper comparison between the four mentioned molecules, the SEC 

study was conducted along a complete CV to reproduce a silver oxidation-reduction 

cycle (ORC). In this sense, according to the classical SERS effect model, Py and CN- 

Raman signals (Fig. 4a and 4b) increased just after the second silver reduction (for more 

details about the CVs see Fig. S6). However, at the oxidation stage, there was no 

appreciable Raman signal for these two probe molecules. On the contrary, the increment 

of SERS signal for BzA (Fig. 4c) and UA (Fig. 4d) exclusively appeared during the 

oxidation stage, even in the cathodic direction. In fact, the corresponding 

voltaRamangrams show the same shape along the whole potential window. Moreover, 

when the experiment was started with the laser switched off, a Raman response was 

obtained at anodic potentials when the laser was switched on (data not shown). 

Additionally, experiments at different laser powers were performed in order to discard a 

possible photoreduction by the incident laser. Fig. S7a shows the evolution of the 
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SOERS signal for UA at 641 cm-1 at the anodic vertex potential with the laser power. 

As expected, there is a decrease of the SOERS signal with the laser power, falling 

drastically from 0.29 to 0.13 mW. However, if SOERS signal is compared with the 

Raman signal obtained from a silicon test sample by applying the same laser power, a 

linear relationship between the two signals is observed (Fig. S7b). This relationship 

demonstrates that changes of SOERS intensity are only due to the laser power, and no 

other process such as photoreduction is taking place under these experimental 

conditions. Therefore, it can be concluded that the laser itself is not the responsible for 

such Raman signal enhancement.  

In the case of UA, SEM images and EDX analysis were also obtained at different 

potentials during the cathodic scan (Fig. S5 and Table S2). The images confirm the 

presence of cubic AgCl particles and EDX values corroborate the silver enrichment of 

these particles which is expected at these potentials because of the Ag+ reduction.  

Another explanation could be related with the possibility of having a chemical and/or 

electrochemical reaction produced by the presence of Ag+ species. However, if an 

oxidation and/or electrochemical reaction was occurring, the spectrum in the oxidation 

stage should be different from that recorded over cathodic potentials, that is to say, a 

shifting of the Raman peaks in the spectra related to UA should be observed during the 

voltammetric experiment [28,29]. Fig. S8a shows a regular Raman spectrum during the 

experiment, which discards any change in the molecule during the whole ORC. 

Moreover, UA bands do not show any shifting with potential, as can be observed Fig. 

S8b.  

A third possible explanation could be a SERS signal as a result of a Raman resonance 

effect. Nevertheless, this should be discarded due to the lack of formation of any Ag(I)-
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UA complex absorbing in the visible region. The latter has been demonstrated by 

collecting the UV-vis absorption spectra for a mixture of UA and AgClO4 (Fig. S9a). 

Moreover, EC-SOERS behavior can be observed using different laser wavelengths (Fig. 

S9b). UA spectra can be observed during silver oxidation in experiments performed 

with three different lasers, 532 nm, 638 nm and 785 nm. Therefore, EC-SOERS is not 

wavelength dependent. 

One more possibility could be the appearance of the SERS signal due to an 

electrochemical adsorption of UA or BzA at these potentials. It is well known that some 

compounds could adsorb on the electrode surface without any charge transfer [43–45]. 

For silver, the potential of zero charge (PZC) takes values closer to -0.70 V vs SCE 

[46,47], which implies that at potentials above +0.20 V is favored the adsorption of 

species that present affinity for silver surfaces. The pzc value is influenced by the 

electrolytic media and the presence of adsorbed species [48,49]. EIS experiments in our 

electrolytic solution (Fig. S10) could help to shed more light into the adsorption 

behavior of the species on the silver disk electrode. Fig. S10a and S10b represent the 

Z’-Z” curves at two potentials for the solution containing Cl-, while Fig. S10c displays 

the differential capacitance for a silver electrode in HClO4 0.1 M + KCl 5·10-3 M + UA 

0.2 mM and in HClO4 0.1 M + UA 0.2 mM. The analysis of the data (Fig. S10c) reveals 

that the presence of species with a specific surface adsorption (such as Cl- or UA) could 

increase the differential capacitance as a consequence of the specific adsorption on the 

electrode surface. On the other hand, as has been demonstrated in previous works, the 

presence of an adsorbing species makes impossible to measure the pzc under these 

conditions [48]. EIS analysis indicates that an adsorption process is taking place in our 

electrolytic solution. Thus, at potentials above +0.20 V, the surface coverage of the 

analyte could be increased as a result of an electrochemical adsorption. Since SERS 
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phenomenon depends on the distance between the substrate and the molecule, it would 

be reasonable to think that, the more favored the molecular adsorption, the bigger 

should be the SERS response observed, provided that a SERS substrate is involved in 

the process. That is to say, two key processes are required to register a SERS increment 

at these potentials: 1) the electrochemical adsorption or electrostatic closeness of the 

molecule to the surface, and 2) the existence of a proper SERS substrate that promote 

the enhancement itself either, by an electromagnetic mechanism or by a chemical 

enhancement. 

In order to demonstrate whether the phenomenon is caused, mainly, by an 

electrochemical adsorption effect on a typical SERS substrate, an experiment using CN- 

as a probe molecule was performed (Fig. 4b). The evaluation of Fig. 4b reveals that 

SERS effect is exclusively observed in the reduction stage [50,51]. Therefore, despite 

this molecule is negatively charged and present high affinity for a silver substrate 

(which should promote its adsorption), the electrochemical adsorption itself does not 

promote the appearance of any SERS signal at anodic potentials. This suggests that, 

although the electrochemical adsorption could be playing an important role in the 

appearance of a SERS signal, is not the main responsible for the observation of a 

Raman enhancement for UA or BzA.  

Additionally, as was aforementioned, an increment of the Raman signal for some 

molecules adsorbed on Ag+/AgCl or Ag/AgCl complexes have been reported [37–39]. 

Thus, the interaction of the target molecule with this complex could be another reason 

for such enhancement observed in the case of UA or BzA. This interaction could be 

deduced from the voltaRamangram at 243 cm-1, where the Ag-Cl vibration takes place 

(Fig. S11a) [52,53]. As can be observed in Fig. S11b, when silver is oxidized, the 

intensity of Ag-Cl band increases up to +0.40 V. From this potential onwards, the 
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Raman intensity for this band decreases concomitantly with the growth of the UA band. 

In the backward scan, the opposite process is observed. The Ag-Cl band increases when 

the UA band decreases, demonstrating a clear interaction between Ag+/AgCl or 

Ag/AgCl particles and UA molecules.  

3.4. Quantitative determination using EC-SOERS  

Once described this interesting phenomenon, in this section, EC-SOERS was used for 

quantitative analysis. As a proof of concept, we have selected the determination of citric 

acid to show that different molecules can be detected using EC-SOERS. As was stated 

above, spectroelectrochemistry is an intrinsic trilinear technique. Therefore, PARAFAC 

[27,54] is a very suitable chemometric tool not only to assess the concentrations of 

unknown samples but also to understand the evolution of the signals related to the 

individual components of the sample. Actually, the determination of citric acid can be 

performed at a fixed Raman shift as is demonstrated in Fig. S12. However PARAFAC 

helps to deconvolve the Raman spectra and the evolution of the Raman signal with 

potential, which allows separating the contribution of the different components present 

in the spectroscopic response [27,54]. 

A calibration curve was performed using 6 citric acid concentrations in the range from 

25 µM to 250 µM. Two different test samples (0.125 mM and 0.223 mM) were 

measured for studying the capability of prediction of the method. Cyclic voltammetry 

was selected to carry out the calibration experiments by scanning the potential starting 

at 0.00 V in the anodic direction (CV vertex potentials: -0.40 V and +0.40 V) at 0.02 

V·s-1. A constrained PARAFAC model assuming the non-negativity of the 

concentrations was applied. Fig. S13 shows the deconvolution of the signals 

(concentration, spectra and its evolution with potential) of the samples. The main 
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advantage of the PARAFAC model is that the scores of the citric acid concentrations 

are easily resolved because of the trilinearity of the data (orange points in Fig. 5). Two 

components can be resolved by the PARAFAC model. These components are citric acid 

(orange curve in Fig. S13b and S13c) and perchlorate (blue curve in Fig. S13b and 

S13c), that shows a typical Raman band at 950 cm-1 and 937 cm-1 respectively. 

As can be observed, the evolution of the concentrations/spectra profiles with the 

potential, resolved by the PARAFAC model, shows the enhancement of citric acid 

during the oxidation processes along the voltammetric cycle, orange curve in Fig. S13c, 

demonstrating the EC-SOERS behavior. More interestingly, the evolution of the 

concentration/spectra profiles with potential for the perchlorate anion, blue curve in Fig. 

S13c, indicate that a small enhancement of its Raman scattering is obtained not only 

during the reduction of the AgCl nanoparticles (below 0.00 V) but also during the 

beginning of the oxidation (around +0.20 V) which could explain the silver enrichment 

of the AgCl NPs observed by EDX.  

Fig. 5 

Using the calibration curves the concentration of two problem samples with 

concentration 0.125 mM and 0.223 mM of citric acid were predicted (green points in 

Fig. 5) by performing a linear regression with the scores of the first PARAFAC 

component with the concentration of the calibration samples. The corresponding values 

of 0.127 mM and 0.233 mM (recoveries of 101.8 % and 104.6 %, respectively) for the 

two test samples demonstrate that EC-SOERS can be accurately used for quantitative 

analysis. 
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4. Conclusions 

From the results discussed above it can be inferred that the chemical structure of the 

target molecule and its interaction with the substrate are dramatically important for the 

EC-SOERS signal observed during the anodic process. Taking into account that the 

AgCl nanostructures are enriched in silver at this stage, and the Raman enhancement at 

the oxidation process has been only observed in presence of Cl-, the most probable 

explanation lies in the formation of a nanostructure that yields a SERS behavior, just 

after the first silver oxidation. Since Raman enhancement is discarded in presence of 

Ag+ ion, the formation of Ag+/AgCl or Ag/AgCl surfaces [37,55,56] could be the 

nanostructure responsible for such observed phenomenon, whose formation is mainly 

favored at anodic potentials. Furthermore, this effect, together with the electrochemical 

induced surface coverage could create the perfect environment to promote the 

enhancement of the Raman signal at these potentials. However, more powerful in-situ 

techniques that provide complementary information should be used to support this last 

hypothesis, in order to unravel this unexpected enhancement of the Raman signal during 

the silver electrochemical oxidation. Finally, as was demonstrated before, EC-SOERS is 

a very interesting alternative to classic SERS for determination of some particular 

analytes, and should be studied in a deeper way to expand the application of the present 

phenomenon. 
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Figures caption 

Fig. 1. Raman spectra for UA 0.2 mM in (a) HClO4 0.1 M and (b) HClO4 0.1 M + KCl 

5·10-3 M at different electrode potentials during the oxidation of the silver disk 

electrode. (c) LSV and (d) voltaRamangram at 641 cm-1 as a function of the potential 

applied for UA 0.2 mM in HClO4 0.1 M (blue curve) and UA 0.2 mM in HClO4 0.1 M 

+ KCl 5·10-3 M (red curve). Initial potential: +0.10 V. Final potential: +0.55 V. Scan 

rate: 0.02 V·s-1.  

Fig. 2. ChronoRamangrams at 641 cm-1 (blue curves) and transient current (orange 

curves) for CA at (a) +0.40 V for 60 s and (b) +0.40 V for 30 s and measuring at OCP 

for 30 s. Solution: UA 0.2 mM + HClO4 0.1 M + KCl 5·10-3 M.  

Fig. 3. SEM images for the silver disk oxidation process in UA 0.2 mM + HClO4 0.1 M 

+ KCl 5.10-3 M. Images taken at: (a) +0.36 V and (b) +0.49 V. Potentials referred to the 

Ag/AgCl electrode. 

Fig. 4. VoltaRamangram (blue curves) for (a) Py 5·10-2 M, (b) KCN 1·10-2 M, (b) BzA 

1·10-2 M and (d) UA 2·10-4 M in comparison with the corresponding CV (orange 

curves) on a silver disk electrode. Solution: probe molecule + HClO4 0.1 M + KCl 5·10-

3 M. Scan rate 0.02 V·s-1.  

Fig. 5. Calibration curve for citric acid (orange points) using EC-SOERS. Treatment of 

the data performed using PARAFAC analysis. Solution: Citric acid X M + HClO4 0.1 

M + KCl 5·10-3 M. Scan rate 0.02 V·s-1.  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 


