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Abstract

Beam-type elements based on the theories of Euler-Bernoulli, Timoshenko,
and Vlasov are widely used in civil engineering. However, shell and solid fi-
nite elements are often used when the effects on normal stresses of either
shear deformation or distortion are considered important. Numerically vali-
dated in an earlier study with finite element models for shell-type structures,
the same one-dimensional finite element model is further developed in this
study with a low number of degrees of freedom per node that includes all the
structural mechanisms without using 3D finite element models. Laboratory
testing of an instrumented steel box girder is conducted, to improve valida-
tion of the goodness of fit of the finite element model with real structural
behavior.
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1. INTRODUCTION

In 2013, a unidimensional element [1] was developed that included all the
structural mechanisms of a thin-walled section, which was applicable to any
section profile without restrictions, whether open or closed. It was especially
developed for the analysis of road-bridge decks, to obtain better results than
those obtained with the classic Euler-Bernoulli beam, while circumventing
the lengthy calculation times of tridimensional shell and solid models.

The element can be used to model the following structural mechanisms:
bending, torsion, distortion, and shear lag. It was presented in a previous
article in 2017 [2], in which the theory was detailed and the results compared
with shell finite element models.

In this paper, the aim is to resolve an example with the element that has
been developed and to verify the results, principally through a comparison
with the measurements taken from laboratory tests. The aim is also to give
as much detailed information as possible, in relation to the equations used
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in the element, so that the reader can easily reproduce the numeric results
of the example.

The paper reports further development of an element that has previously
been presented [2], so it may at times be difficult to understand without a
previous reading of the earlier paper, although we have sought to cover the
most important points.

As various related articles have been published since the previous paper
in 2013, the most relevant will be reviewed, especially those on shear lag,
which is a recurrent topic in past publications, because it is the most difficult
structural mechanism to incorporate in a general way for any section profile.
The following review of past papers is presented in chronological order.

In 2018 and 2019, Lei Zhang et al. [17], [16], [18] presented an element
with various uncoupled deformation modes, but limited its use to a section
with double symmetry, for which reason it is not in general use.

The shear-lag effect has been considered in recent studies. Pan Dan-guang
et al., in 2018 [10], approached the solution with a semi-analytic method, for
a cantilever girder of variable height with a box section. In 2019, Zuolong
Luo et al. [9] developed a specialized finite element for a box girder. The
field of displacement of each section was interpolated with the displacements
of various nodes of the upper flange. In 2019, Guo Zengwei et al. [3] wrote
an article on a theoretical development for the study of the shear-lag effect
in cantilever box girders of variable depth.

In the interesting work of Minyao Tan and Wenming Cheng [11] in 2019,
flexural, torsional and distortional deformation modes were considered. The
study was centered on the non-lineal behavior of thin-walled box girders of
unequal thickness, although no consideration was given to the shear-lag effect,
which is one of the important points that is treated in the present study. In
their following work [12], the shear-lag effect was included, but a parabola
was adopted for the warping function, which was only valid for a single-cell
box girder.

Among recent articles closely related with the topic of the present paper
is one from 2020 by Ioannis N. Tsiptsis and Olga E. Sapountzaki [13], in
continuation of an earlier one of theirs [14]. The deformation modes of the
section were obtained with the eigenvalues of a discretization of the cross
section through the Boundary Element Method, and isogeometric tools inte-
grated in FEM were used in the longitudinal direction. By doing so, all the
deformation modes for an arbitrary cross section were included. The defor-
mation modes were obtained as eigenvalues, so that they could not be directly
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identified with classic deformation modes: bending, shear-lag effect, homo-
geneous and non-homogeneous torsion, homogeneous and non-homogeneous
distortion. This objective is one that we are seeking to achieve, because the
results, as a composition of all those values, are of immense assistance for un-
derstanding the structural behavior of girders and for applying the structural
norms that always refer to those modes.

In 2020, Wen Ying and Chen Ze-lin [15] defined a one-dimensional finite
element for the analysis of warping torsion, but without including either the
shear-lag effect or distortion.

In 2020 [7], Xiayuan Li et al. developed a formulation for a finite beam
element for torsional analysis in thin-walled single or multi-cell box girders
and, in 2021 [8], they developed another for considering shear-lag, and shear-
deformation effects. In both papers, one of the examples was taken from
[2]. However, the distortion resulting from only loading one of webs, taken
from the original example of a bridge deck with a three-cell section, was not
included in their study, so the authors were unable to reproduce the geometric
and load distribution plans of that example.

2. DESCRIPTION OF THE PROBLEM

As indicated in the introduction, the aim was to conduct laboratory tests
on a girder under two different loading states and to compare the measured
values with those obtained using the unidimensional finite element model
reported in this paper. The geometry of the chosen section shown in Figure
(1) consisted of a box section with a total width of b = 1.0(m), two flanges
of b/4 = 0.25(m) in length, with a distance of b/4 = 0.25(m) between the
midpoints of the top and the bottom flanges, built of S275JR steel plating
with a thickness of t = 8(mm). The girder with this section was placed
between the supporting points, L = 4.0(m). Steel diaphragms of the same
thickness were inserted to avoid distortion of the section due to supports, and
no diaphragm at intermediary points, so that the influence of any distortion
was as high as possible, and so that its effect could be measured in the tests.

The first load distribution, shown in Figure (2), was formed of 4 forces
with the following values, Fy = 20.0(kN), situated transversely across the
webs, to avoid transverse flexion of the section and longitudinally, Lc = 0.30
(m), in two pairs, so that there was no loading of the instrumentation for
the tests within the central section of the girder. With these loads, the aim
was to confirm a state in which there will be flexion without either torsion
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Figure 1: Geometry of box-shaped cross-section and Gravity center (G.C.) b = 1000 (mm),
t = 8 (mm).

or distortion, in which the distribution of stress at the girder center will be
greatly influenced by the shear-lag effect.

L
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b/2b/4 b/4

b/4 x

y

Figure 2: Bending: single-cell simple-span. L = 4.0 (m) , Lc = 0.30 (m) , Fy = 20.0 (kN)
, b = 1.0 (m).

With the second load distribution depicted in Figure (3), the aim was
to confirm a loading state with torsion and distortion, which may appear in
combination with some measure of flexion. It is the same as the preceding
case, except that the loading on one of the webs reduced its value to 1/4 of the
other loading state. A loading pattern without any flexion was discounted, as
in reality it could hardly occur in a road bridge and because the performance
of the test was more difficult as it was statically more unstable, without
having to prevent the displacement of a support.

3. THEORETICAL RESULTS

The first step to complete the theoretical calculation was to define the
deformation modes that were subsequently combined to form the displace-
ment fields. The methodology developed by Jeppe Jönsson [4] was followed

5

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



L

y
z

2xFy 2xF/4y

a 

Fy

L c

+F/4yFy +F/4y

b 
b/2b/4 b/4

b/4 x

y

Figure 3: Torsion-distortion: Simple supported girder. L = 4.0 (m) , Lc = 0.30 (m) ,
Fy = 20.0 (kN) , b = 1.0 (m).

to define the displacement fields, through a finite element with two nodes,
each with a degree of freedom that represented the warp of the node, using
linear functions to interpolate within the finite element. It is a very sim-
ple methodology to apply and is valid for any form of thin-walled section,
whether open or closed. The exact solution can be obtained through the ap-
propriate choice of form functions, as shown in [1]. The deformation modes
that were obtained for the test section of the girder are shown in Appendix A.
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zN zM
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zsτ

zσ

s
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Figure 4: Notations: a) for stresses; b) for displacements and rotations; c) for internal
forces.

In Figure (4), the notation and the conventional signs used to denote
displacements, rotations, and forces are depicted. On these axes, the dis-
placement field is the sum of the fields corresponding to all of the resistance
modes under consideration and is given by Equation (1). The description of
each summand is the following:

• (ux, uy, uz) are the displacements of the girder axis, due to bending and
axial force.

• (−(y − ya) · θz,+(x − xa) · θz) displacements of a point (x, y), due to
the rotation, θz, of a rigid solid around the shear center, (xa, ya).
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• (udx · ψd, udy · ψd) displacements on the plane of the section, due to
distortion where ψd is the intensity of the distortion.

• (−y ·
duy

dz
− x ·

dux

dz
) is the longitudinal displacement due to flexural

rotation.

• (wy ·
Qy

Go

+wx ·
Qx

Go

) is warping, due to the shear-lag effect as a result of

shear forces.

• (+wa ·
dθz

dz
+ wat ·

d3θz

dz3
) is the warping, due to homogeneous and non-

homogeneous torsion.

• (−wd ·
dψd

dz
+ wdt ·

d3ψd

dz3
) is warping, due to homogeneous and non-

homogeneous distortion.

vx(x, y, z) = ux − (y − ya) · θz + udx · ψd

vy(x, y, z) = uy + (x− xa) · θz + udy · ψd

vz(x, y, z) = uz − y ·
duy

dz
+ wy ·

Qy

Go

− x ·
dux

dz
+ wx ·

Qx

Go

+wa ·
dθz

dz
+ wat ·

d3θz

dz3
− wd ·

dψd

dz
+ wdt ·

d3ψd

dz3































(1)

This displacement field presents the problem that the forces, Qx and Qy,
which are in principle unknown until the results are obtained, multiply the
warping due to shear forces. The most novel aspect of the unidimensional fi-
nite element that has been developed is its capability to eliminate these forces
from the displacement field. It is done by defining new warping functions that
are orthogonal to the flexural rotations of the section. For example, in the
case of shear stress, Qy, the new warping function, wy = Cyo ·y+wyo, was de-
fined and the constant, Cyo, of the orthogonality condition,

∫

A
wyo y dA = 0,

was obtained. This breakdown is represented in Figure (5), in which the orig-
inal warping function is broken down into a rotation of the whole section in
which it remains flat and then actual warping in the strict sense of the term,
meaning that the section is no longer flat. The method of performing this
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wy

wyo
C yyo

G.C.

Figure 5: Breakdown of shear-related warping, wy

breakdown is valid for any sectional form, unlike many other authors whose
use of predefined functions are only valid for specific sectional forms.

The displacement field is rewritten with warping functions according to
the equation (2). The shear forces, Qx and Qy, disappear and are substituted
by two intensities of shear-related warping, χx and χy, and two constants
are introduced, Ax and Ay, which although not strictly necessary represent
the areas of shearing, so that the intensities of shear-related warping have
no units. In Figure (6), the displacement field is shown on the plane that
contains the section and the displacement outside the plane of the section is
represented in Figure (7).

vx(x, y, z) = ux − (y − ya) · θz + udx · ψd

vy(x, y, z) = uy + (x− xa) · θz + udy · ψd

vz(x, y, z) = uz + y · θx + wyo · Ay · χy − x · θy + wxo · Ax · χx

+wa ·
dθz

dz
+ wat ·

d3θz

dz3
− wd ·

dψd

dz
+ wdt ·

d3ψd

dz3























(2)

The rigidity matrix of a finite element can be obtained from this displace-
ment field with the standard methodology. Full details may be found in [2],
while only a brief summary is given in the present article.

Longitudinal strain, ǫz, is found with Equation (3), and multiplying by the
Young’s modulus yields the longitudinal stress, σz = E · ǫz. The transverse

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



u  (z)y

Bending displacement

u  = 1 x u  (z)x

= 1z

(x  ,y  )

Torsional rotation

θ
a a

v  (x,y,z) x

v  (x,y,z) y

(z)zθ

u    (i) = 1

Distortional displacement

dy

(z)d
ψ

i
u    (x,y)dx
u    (x,y)dy

11

Bending displacement

u  = 1 y

Figure 6: Displacement field: vx(x, y, z) , vy(x, y, z).

strain, γzs, given by equation (4) is multiplied by the elastic shear modulus
to obtain the shear stress, τzs = G · γzs. The terms that appear with a high
order of derivation are neglected.

ǫz =
∂vz

∂z
=

duz

dz
+ Axial Nz

+

(

+y ·
dθx

dz
+ wyo ·Ay ·

dχy

dz

)

Moment Mx

+

(

−x ·
dθy

dz
+ wxo ·Ax ·

dχx

dz

)

Moment My

+

(

+wa ·
d2θz

dz2
+

✟
✟
✟
✟✟❍

❍
❍
❍❍

wat ·
d4θz

dz4

)

Torsion

+

(

−wd ·
d2ψd

dz2
+

✟
✟
✟
✟
✟❍

❍
❍
❍
❍

wdt ·
d4ψd

dz4

)

Distortion

(3)
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u  (z)zu  = 1 z

Axial displacement

w   (x,y)yo

Shear warping

v  (x,y,z)z

(z)xθ
= 1xθ

(x  ,y  )c c
(z)yθ

= 1yθ

Ay (z)χ

Ax (z)χ
x

y

w   (x,y)xo

Shear warping

(z)zθ
w (x,y)a

Uniform torsional warping

(z)zθ
(Disregarded for      )zσ

(z)dψ
-w (x,y)d

(z)dψ
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Flexion rotation

Flexion rotation

Non-uniform torsional warping

Uniform distortional warping Non-uniform distortional warping

Figure 7: Displacement field: vz(x, y, z).

γzs =
∂vs

∂z
+
∂vz

∂s
= tx

∂vx

∂z
+ ty

∂vy

∂z
+
∂vz

∂s

=

(

tx

(

dux

dz
− θy

)

+
∂wxo

∂s
Ax χx

)

Shear Qx

+

(

ty

(

duy

dz
+ θx

)

+
∂wyo

∂s
Ay χy

)

Shear Qy

+

(

∂wa

∂s
− ha

)

dθz

dz
+

∂wat

∂s

d3θz

dz3
Torsion

+

(

uds −
∂wd

∂s

)

dψd

dz
+

∂wdt

∂s

d3ψd

dz3
Distortion

(4)10
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The strain energy was obtained through the sum of the following three
terms: strain energy density from longitudinal stress, dUǫ/dz = 1/2

∫

A
E ǫ2z dA;

strain energy density from shear stress, dUγ/dz = 1/2
∫

A
G γ2zs dA; and strain

energy density in terms of distortion displacement mode on the cross sectional
plane, dUKd

/dz = 1/2 Eo Kd ψ
2
d.

Displacement and its first derivative have their degrees of freedom in
relation to torsional rotations and distortional displacement. Only the value
of the displacement is necessary for the other unknown functions, so a total
of eleven degrees of freedom are needed for each node.

• Displacements: uxi, uyi, uzi

• Rotations: θxi, θyi, θzi

• Derivative of torsional rotation: θ
′

zi

• Warp intensities: χxi, χyi

• Distortional displacement: ψd

• Derivative of distortional displacement: ψ
′

d

Having selected a three-node element, two at each end and one in the
center, the shape functions are all second-degree polynomials, except for
the degrees of freedom in which their derivatives as such also appear where
third-degree polynomials are employed. Minimizing the total potential energy
yielded the stiffness matrix, whose equation may be found in Appendix B. In
the rigidity matrix, the terms that link bending with torsion and distortion,
and the terms that link bending on the z-x plane with bending on the z-y plane
were discarded.

Having set out the finite element problem in this way, the 4-meter long
girder was divided into 80 one-dimensional finite elements, which were nu-
merically resolved for the two proposed loading states. The results for stresses
are included in the tables in which they are compared with values measured
in the tests.

4. DESCRIPTION OF THE TESTS

Tests were performed on a box girder supported at both ends, by applying
four separate loads within the central zone of the girder, in order to contrast
the experimental with the theoretical results. The first test was completed
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with the application of four separate loads (Figure 2), up to a maximum
value of 20 kN. In the second test, four separate loads were also applied, but
of different values, two by two (Figure 3), on one side, two loads up to the
same maximum value of 20 kN , and, on the other, two loads to a value of
5 kN .

We will describe the test processes themselves. In the first place, the
box girder was placed upon two trestles at a distance of 4 meters from each
other, ensuring that the center of the girder coincided with the position of
the actuator, as shown in Figure 8.

Figure 8: General overview of test.

An MTS 244.41 dynamic actuator was used, with a capacity of 500 kN ;
a piston depth of 150 mm; two servovalves, each of 56 liters/min; a double-
effect actuator (Traction/Compression); and options for load control (MTS 6661.25
F.01 500 kN capacity cell and a non-linearity of 0.15%) and displacement.
The actuator was connected to a central hydraulic system (MTS) with a
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hydraulic fluid impulsion capacity of 200 liters per minute at a pressure of
20 MPa, and an integrated cooling system. FlextestGT actuator control
software (MTS brand) was used.

The next step was to position the four load cells, separated at intervals of
30 cm along the length of the girder, at intervals of 50 cm in the transverse
direction, so that they coincided with the webs of the box girder. To do so,
the load cells were bolted two by two to a profile, maintaining the distance
between them at 30 cm, and both profiles each with two load cells were subse-
quently positioned lengthwise on the box girder. Finally, another profile was
placed in a transverse direction to the direction of the actuator load (Figure
9). The four load cells were Sensocar brand-type CR−1 de 5000 kg (50 kN),
with a sensitivity of 2± 0.1% mv/V .

Figure 9: Detail of load cells.

The HBM brand Linear Variable Differential Transformers (LVDTs) with
a range of 50 mm and with a linear error of 0.1% at the bottom of the scale)
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were positioned midspan, at one third and at one quarter of the span, and
on the supports (Figure 10).

SECTION A-A

y
z

A

A

L/4 L/4

LVDT2 LVDT1

b/4 b/4

B

B

C

C

L/3 L/6

SECTION B-B -> LVDT3

SECTION C-C -> LVDT4

SUPPORT-> LVDT5/LVDT6

Figure 10: Instrumentation for measurement of displacements.

Prior to the whole process of preparing the test, the extensometric bands
had been adhered to the girder (FLA−6−11−1L, 120 Ω, and 6mm in length;
from Figure 11. All that remained to do was to connect the data-acquisition
module, an HBM brand QuantumX MX1615B, in other words the load
cells, LVDTs, extensometric bands and actuator. HBM brand Catman data-
acquisition software was used, with which we recorded the signals of all the
elements that were connected (using a recording frequency of 5 Hz, in other
words, 5 datums per second).

SECTION A-A

G07

L/2

y
z

A

A

L/4 L/4

G06 G05 G04 G03 G02 G01

G10 G09 G08

G11G12
b/16

b/8 b/8 b/8 b/8b/4 b/4

SECTION B-B

G16 G15 G14 G13

b/4 b/4

B

B

b/4 b/4

Figure 11: Instrumentation for measurement of deformations.

The process of carrying out the test relied on the load actuator control,
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with stepped increases, to verify the correct application of the four separate
loads according to the type of test. At all times, the data that the load cells,
LVDTs, extensometric bands and actuator were recording were displayed on
a screen. The load application graphs of each cell with which the exact
application of load was controlled are shown in Figures 12 and 13.

Whereas the girder geometry, the positions of the loads, and their values
were perfect in the numeric models, the reality was very different. The girder
geometry was not perfect and when supported on four points with loading
applied at another four, it is very difficult to situate the four points on the
same plane, for which reason it is impossible to achieve test loads that are
exactly as desired. However, as may be seen in the aforementioned graphs,
the loads were very close to the desired amounts.

Before starting to apply the load, all the instrumentation was initialized
with zero values, for which reason the own weight of the girder and the other
test accessories had no effect on the measured results, as they had previously
been applied. As the tensile tests were in an elastic regime, the average
deformations were converted into stress, multiplying them by the modulus of
elasticity of steel, for which a value of E = 210000 (N/mm2) was adopted.
As the measurement precision was 1 µm/m, the error in the measurement of
tensile stress was 1e−6

∗ 210000 = 0.21(N/mm2)
The test was repeated on various occasions with no significative differ-

ences between the values that were obtained.

5. TEST RESULTS
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Figure 12: Case 1 Pure Flexion. Load on each cell as a function of time.

Figure 13: Case 2 Flexion-torsion. Load on each cell as a function of time
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5.1. Load case 1. Pure flexion

As indicated, the load was arranged in the first test, so that no torsion
and only flexural stress was produced. In the following table, the stresses in
the midspan section in the tests are compared with those of the numerical
calculations, both at N/mm2. The rows of Table A correspond to the follow-
ing values obtained with: the unidimensional finite element proposed by the
authors (B3N); a layer-type Finite Element (FEM) Model; the (classic)Euler-
Bernoulli theory for reference purposes, in order to note the variation in
values, due to the shear-lag effect ; and the average test values.

z = L/2 Method −b/2 −b · 3/8 −b/4 0 +b/4 +b · 3/8 +b/2
Top flange B3N −34.6 −35.5 −38.4 −34.6 −38.4 −35.5 −34.6

FEM −32.9 −34.9 −36.8 −34.8 −36.8 −34.9 −32.9
Classic −37.2 −37.2 −37.2 −37.2 −37.2 −37.2 −37.2

Test −36.2 −37.4 −38.1 −35.8 −37.9 −36.4 −37.3
Bottom flange B3N 63.6 57.2 63.6

FEM 64.1 57.6 64.1
Classic 62.3 62.3 62.3

Test 65.9 54.6 67.4

The values of the table are drawn in Figure 14. There was a slight
anomaly in the top flange during the test, in which the value measured
at one end (37.3 N/mm2) was slightly higher than at the center of the
flange (36.4 N/mm2). This anomaly reoccurred in all repetitions of the
test, possibly due to the fact that the tests on the geometry of the girder and
the loads were never quite perfect. The average measured value in ±b/4 of
−38.1 N/mm2 coincided very closely with the one obtained with the unidi-
mensional finite element, −38.4 N/mm2, showing a difference of only 1.0%.

The value measured at the center of the bottom flange was lower than all
those obtained with numerical calculations, and in compensation the maxi-
mum measured value was greater than the other values. The average mea-
sured value, +66.7 N/mm2 at each end, was 4.8% higher than the value
obtained with the finite element, +63.6 N/mm2 (B3N), for which reason the
coincidence was very good for the maximum stress level in this loading state.

The following table lists the stress values at (N/mm2) for the section
within the first quarter of the span. As it is a section at some distance from
the load application point, the stress variations in the width of the section,
due to the shear-lag effect was small. It never happened in this section,
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B3N beam
Shell FEM

a  Center of first span

zσ
Classical bending
Laboratory testing

-37.2

+62.3

Figure 14: Case 1 Pure flexion. Stresses at midspan in (N/mm2)

because the maximum measured value was at one end of the top flange,
although it could be seen that the 2 values on one side were slightly higher
than the 2 values on the other side. In ±b/4, the average value of the
measurements, −20.8N/mm2, was 6.7% higher than the value obtained with
the unidimensional element, B3N .

z = L/4 Method −b/2 −b · 3/8 −b/4 0 +b/4 +b · 3/8 +b/2
Top flange B3N −19.5 −19.5 −19.5 −19.5 −19.5 −19.5 −19.5

FEM −19.5 −19.4 −19.5 −19.4 −19.5 −19.4 −19.5
Classic −20.1 −20.1 −20.1 −20.1 −20.1 −20.1 −20.1

Test −19.7 −− −21.2 −− −20.4 −− −18.0
Bottom flange B3N 32.4 32.4 32.4

FEM 32.4 32.4 32.4
Classic 33.7 33.7 33.7

Test −− −− −−

It may be seen from the values shown in figure 15 that in practice all the
values were superimposed on a constant distribution across the width of the
section.

A comparison of the average displacements at three points on the girder
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B3N beam
Shell FEM

b  A quarter from the span

zσ
Classical bending
Laboratory testing

+33.7

-20.1

Figure 15: Case 1 Pure flexion. Stresses at quarter span in (N/mm2).

is presented in the following table, in order to complete the analysis of mea-
surements resulting from this loading state.

The average center-span values, ±3.4%, coincided with the average mea-
surements. The measured displacement was somewhat higher than at other
points, but the difference was not sufficiently significative for the presence of
torsion generated by the applied loads to be noted. In the section within the
first quarter of the span, the average value was 5% higher than calculated.
The Bernoulli (Classic) theory yielded lower values, as shear deformation was
not considered.

z = L/2 L/2 L/4
x = −b/4 +b/4 0

B3N −2.9 −2.9 −2.0
FEM −2.9 −2.9 −2.0

Classic −2.4 −2.4 −1.7
Test −3.0 −2.8 −2.1

Displacement on the girder supports was also measured during the test.
The measured values shown in the above table were corrected, so that they
reflected the displacement from the line that joins the supporting points.
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5.2. Load case 2. Flexion-torsion

The second combination of loads used to test the girder generated both
flexion and torsion in equal quantities. A laboratory controlled application
of a state in which there is only torsion is difficult without a special custom-
built tool with which to apply the load and to adjust the supports. To do
so, some loads were applied to produce torsion, but that maintained all the
supporting points under compression.

The following table shows a comparison between the average values, both
measured and calculated, that are shown in Figure 16. The values with the
classic theory of beams include no warping torsion, nor shear-lag effect, for
which reason the stresses are considered constant throughout the width and
are included only as a reference. In the top flange, the maximum measured
stress, −31.1 N/mm2, was 1.0% higher than the value, −30.8 N/mm2, ob-
tained with the unidimensional element, B3N . The minimum calculated
value at the other end of the top flange was 12.9% lower than the average
value.

At the bottom flange, as in the case of the above load, the value measured
at the center of the girder was somewhat lower than the calculated values.
The maximum calculated value of +59.3 N/mm2 was 0.5% lower than the
average value of +59.6 N/mm2.

z = L/2 Method −b/2 −b · 3/8 −b/4 0 +b/4 +b · 3/8 +b/2
Top flange B3N −30.8 −29.7 −29.7 −21.6 −18.3 −14.7 −12.4

FEM −28.4 −28.4 −28.3 −21.8 −17.7 −15.2 −12.8
Classic −23.3 −23.3 −23.3 −23.3 −23.3 −23.3 −23.3

Test −31.1 −30.6 −29.4 −22.6 −18.5 −15.8 −14.0
Bottom flange B3N 59.3 35.7 20.3

FEM 59.0 36.0 21.0
Classic 39.0 39.0 39.0

Test 59.6 33.2 21.1

The stresses within the first quarter of the span followed a linear distri-
bution, as may be seen below in Figure 17. In the top flange, the maximum
average stress, −16.4N/mm2, was not towards the end, which was 4.3%
higher than the calculated value of −15.5N/mm2.
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B3N beam
Shell FEM

c  Center of first span

zσ
Classical bending
Laboratory testing

-23.3

+39.0

Figure 16: Case 2 Flexion - torsion. Stresses at midspan in (N/mm2).

z = L/4 Method −b/2 −b · 3/8 −b/4 0 +b/4 +b · 3/8 +b/2
Top flange B3N −15.5 −14.7 −13.9 −12.2 −10.5 −9.6 −8.8

FEM −15.1 −14.4 −13.5 −12.2 −10.8 −9.9 −9.2
Classic −12.6 −12.6 −12.6 −12.6 −12.6 −12.6 −12.6

Test −16.2 −− −16.4 −− −12.5 −− −10.8
Bottom flange B3N 26.7 20.3 13.9

FEM 25.7 20.3 14.9
Classic 21.1 21.1 21.1

Test −− −− −−

In this combination of loads with torsion, the maximum deflection mea-
sured in millimetres was 7% higher than the calculated amount. A similar
percentage to the result for the other combination of loads.
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B3N beam
Shell FEM

d  A quarter from the span

zσ
Classical bending
Laboratory testing

-12.6

+21.1

Figure 17: Case 2 Flexion - torsion. Stresses at a quarter span in (N/mm2).

z = L/2 L/2 L/4
x = −b/4 +b/4 0

B3N −2.40 −1.20 −1.20
FEM −2.40 −1.20 −1.20

Classic −1.60 −1.50 −1.00
Test −2.57 −1.06 −1.20

In addition to yielding total stress, the unidimensional element that was
proposed yielded a breakdown by modes that is shown in Figure 18. The flex-
ural mode contributed most to the maximum stress, followed by the distorion
mode. Torsion was the mode that contributed least to the total.

Lower error values than the values obtained with the proposed element
may be obtained with the calculation models of other authors, for example
[8], for particular combinations of loads and section profiles, although those
calculation models cannot be used in a general way for any structure and
for any combination of loads. The main advantage of the unidimensional
element described in this paper is its validity for any section profile and for
any loading state, such that it can be used in a general way for design in civil
engineering.
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59.25

-30.84

39.77

-24.03

b  Bending

c  Torsion d  Distortion

6.83
-6.83

16.06

-16.06

a Total stresses

-29.72
-18.34-21.60

-12.37
-21.60 -21.60 -24.03 -21.60

-5.69 +5.69
-16.06

3.41 -3.41 16.06

20.29
35.74 39.77 35.77

Figure 18: Case 2 Flexion - torsion. Breakdown of cross-sectional stresses σz(N/mm
2)

at midspan. a) Total stresses; b) Bending stresses; c) Torsion Stresses; d) Distortion
stresses.

6. CONCLUSIONS

In an earlier study, a unidimensional finite element model had been devel-
oped that incorporates all structural mechanisms and that may be used for
the practical calculation of structures, especially bridge decks. The results
of the finite element model had been verified through a comparison with the
results of shell-type models. The objective of the present work has been to
improve the verification process through a comparison with the experimental
results of a real structure, fundamental for its implementation in calculation
programs.

A box girder has been tested in the laboratory under two loading states,
so that all failure modes intervene. It has been found that the stress values
obtained with the element had some differences in the order of ±5%, which
is a perfectly acceptable value in civil engineering calculations. We may
therefore conclude that the unidimensional finite element model has been
validated.

A second objective has been to improve the detail with which the rigidity
matrix of the element is formulated, and to provide the necessary properties
of a particular section, with the objective of offering results that authors with
an interest in the use of the finite element method can reproduce. With the
information included in the appendices, we believe that this objective has

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



been achieved.
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APPENDIX A. CROSS-SECTIONAL PROPERTIES

On the method of obtaining deformation modes, consult [4], [1], [2]. In
the previous article of the authors, [2], the equations were formulated so
that they were valid for sections made with different sorts of material. In the
present study, the equations were simplified by eliminating the quotients that
appeared between the Young’s modulus, E, and the elastic shear modulus,
G, in one part of the section, with respect to the values that are considered
reference values, respectively Eo and Go.

The cross-sectional properties for the section of the Figure (1) are the
following integrals (5) in relation to the area, A, of the section:

A =

∫

A

dA = 2 b t

Ix =

∫

A

y2 dA =
37

1536
b3 t

Iy =

∫

A

x2 dA =
1

8
b3 t

(5)

Axial warping displacements related to shear force Qy represent the lon-
gitudinal displacements due to warping, wy, which is proportional to the oc-
currence of shear force, Qy. Shear warping is used to calculate shear stresses
(τzs = (Qy ∂wy/∂s)). See the details in the paper from Jeppe Jönsson [4].
Unlike Jönsson, when the field of displacements is formed, the shear is divided
by the cross-section elastic shear modulus, G, so that the warping functions
only have dimensions of length.

In Figure (19), warping, wy, due to shear, Qy, appears, which in this case
is the variation in accordance with second-degree polynomials in the upper
and lower flange, and with third-degree polynomials in the webs.

As explained in the text, the warping function, wy, is orthogonalized with
regard to the rigid rotation of the section, in order to eliminate the variable,
Qy. To do so, the relation wy = Cyo · y+wyo is established and the condition
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∫

A
wyo y dA = 0 is imposed, which yields Cyo = 18912/(6845 b t), and finally,

the orthogonalized shear warping of the figure (20).

77
148 t

wy

47
148 t

45
148 t 27

148 t

45
148 t

Figure 19: warping wy due to shear force Qy

wyo
1233

23380 t

625
5476 t

485
5476 t

2097
27380 t

1233
27380 t

Figure 20: Orthogonalized warping wyo due to shear force Qy

With reference to shear force, Qy, the following integrals (6) are necessary,
to form the rigidity matrix, where the unitary vector of direction of each
section wall is (tx, ty) = (dx/ds, dy/ds) and the distance along the length of
a wall is s:
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Dyy =

∫

A

(ty)
2 dA =

1

2
b t

Iwyo.wyo
=

∫

A

(wyo)
2 dA =

341041

70914200

b

t

Dwyo.wyo
=

∫

A

(

∂wyo

∂s

)2

dA =
18912

6845 b t

(

18912

2 · 6845
− 1

)

Dwyo.y =

∫

A

∂wyo

∂s
ty dA =

− 2611

6845

(6)

The area of shear is obtained by matching the deformation energy with
the shear-force effort Qy, see [2]. In this case, the equation (7) is simplified
to obtain Ay, as there is an axis of symmetry.

Dwy .wy
=

∫

A

(w′

y)
2 dA =

18912

6845 b t

Ay = 1/Dwy .wy
=

6845

18912
b t

(7)

Axial warping displacement related to shear force, Qx, is the longitudi-
nal displacement of the warping, wx, which is proportional to the occurrence
of shear force, Qx. The calculation is similar to the shear in the other direc-
tion. In Figure 21, the warping function, wx that appears is orthogonalized
with respect to the flexural rotation, through the expression wx = Cxo·x+wxo,
imposing the condition

∫

A
wxo y dA = 0, which yields wxo in Figure 22. The

necessary properties to form the rigidity matrix are as follows (8):

Dxx =

∫

A

(tx)
2 dA =

3

2
b t

Iwxo.wxo
=

∫

A

(wxo)
2 dA =

1

1050

b

t

Dwxo.wxo
=

∫

A

(

∂wxo

∂s

)2

dA =
4

25 b t

Dwxo.x =

∫

A

∂wxo

∂s
tx dA =

− 1

5

(8)

And the shear area, Ax, according to Equation (9).
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wx

-1
3 t -11

48 t

-1
6 t

Figure 21: Warping wx by shear force Qx

wxo1
15 t

-7
240 t

1
30 t

Figure 22: Orthogonalized warping wxo due to shear force Qx

Dwx.wx
=

∫

A

(w′

x)
2 dA =

4

5 b t

Ax = 1/Dwx.wx
=

5

4
b t

(9)

Torsion mode, in which the cross-section is not transversally deformed.
Where, wa represents homogeneous torsional warping shown in Figure (23),
which is related to normal stresses due to non-homogeneous torsion, σz =
E wa d

2θz/dz
2.

And, wat is the warping due to shear stress as a result of non-homogeneous
torsion, which is related to the following expression: τsz = G ∂wat/∂s d

3θz/dz
3 =

−(Sa/t) · E · d3θz/dz
3, see figure (24) where G is the elastic shear modulus.

The following integrals are necessary to include the torsion deformation
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S.C.

wa

-5b
384

11b
96

13b
96

3b
192

3b
384

2

2

2

Figure 23: Torsion warping wa and Shear-Center (S.C.)

-b
1536

3

S a

t

-b
3072

3 t

Figure 24: Sa = −
G

E

∂wat

∂s
· t tangential stress due to non-homogeneous torsion.

mode (10) where ha = (y − ya) · tx − (x − xa) · ty is the distance from one
point to the shear center (xa, ya) and ta is an auxiliary variable defined as
ta = (∂wa/∂s− ha):

It =

∫

A

(ta)
2 dA =

b3 t

24

Ia =

∫

A

(wa)
2 dA =

7 b5 t

73728

(10)

Distortion mode. The papers of [5, 6] on obtaining the distortion modes
are very interesting, the explanations of which are more detailed than in this
paper, due to restrictions on space. In Figure (25),transversal distortional
displacement (udx, udy) is represented, from which the tangential distortional
displacement given by equation uds = udx ·tx+udy ·ty is shown where (tx, ty) is
the unit tangent vector of the direction of each wall. And in the same way, the
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displacement of the wall in a perpendicular direction, udn = −udx ·ty+udy ·tx.
In the same figure, the scheme of self-balancing forces is shown that the
distortion of the section produces.

u dx ,udy

1.0

0.5

Figure 25: Transversal distortional displacement: (udx, udy)

The corresponding warping function, wd, can be seen in Figure (26).
Torsion and distortion were very similar and, in the case of distortion, a
transversal displacement mode occurred on the cross-sectional plane (udx, udy),
according to whether the warping is free or not free, homogeneous and non-
homogeneous distortion is obtained.

wd b
12

b
12

Figure 26: Distortion-related warping wd

In a similar way to the non-homogeneous torision, tangential stress ap-
pears due to distortion that are represented in Figure (27), which can be
obtained with equation τsz = G ∂wdt/∂s d

3ψd/dz
3 = (Sd/t) ·E · d3ψd/dz

3, in
which ψd is the intensity of the distortion throughout the girder.
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S d

-b
64

2 t

b
64

2 t

Figure 27: Sd =
G

E

∂wdt

∂s
· t tangential stress due to non-homogeneous distortion.

The necessary constants for the distortion mode are as follows (11).

Kd =

∫

t3

12
·

(

dudn

ds

)2

ds = 96
t3

b3

Id =

∫

A

(wd)
2 dA =

b3 t

128

(11)

When obtaining the deformation modes, some are orthogonalized with
others to remove any coupling between them. Despite this process, the tor-
sion and distortion modes were coupled by the tangential stresses that ap-
peared in closed parts of the sections, in which (12) details the constants
that coupled those modes. In them, td = (uds − ∂wd/∂s).

Dtd.td =

∫

A

(td)
2 dA =

3

8
b t

Dtd.ta =

∫

A

ta td dA =
− b t

8

(12)

APPENDIX B. ELEMENT STIFFNESS MATRIX

In this appendice, the definition of the rigidity matrix is shown for the
finite unidimensional element with three nodes from Figure (28), in which
the shape functions are from Figure (29).

Denoting with the following sign, (′), the derivatives of the form func-
tions with respect to the z coordinate, and striking out the terms that are
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3
z

y x

2
z

x

1
z

x
y

y

L

Figure 28: Geometric definition of the element.

1.0 N1

s s

1.0N3

s
1.0 N2

1.0 P11

s s

1.0P31

s
1.0

P21

1.0
P12 s s

P32

s

P22 1.0 1.0

CONTINUITY C0

CONTINUITY C1

DOF: ux y z θu u, , , x θ, y ,

DOF: ψ, , d
ψ, dθz

,χx χy

θz

=+1=-1 = 0ξ ξ ξ =+1=-1 = 0ξ ξ ξ =+1=-1 = 0ξ ξ ξ

=+1=-1 = 0ξ ξ ξ=+1=-1 = 0ξ ξ ξ=+1=-1 = 0ξ ξ ξ

=+1=-1 = 0ξ ξ ξ =+1=-1 = 0ξ ξ ξ =+1=-1 = 0ξ ξ ξ

Figure 29: Shape Functions.

discounted, the rigidity submatrix, [kij ], is as follows:

[kij ] =

∫ L

0





































K0.0 ✟
✟✟❍
❍❍K0.1 0 ✟

✟✟❍
❍❍K0.3 K0.4 0 0 K0.7 ✟

✟✟❍
❍❍K0.8 0 0

✟
✟✟❍
❍❍K1.0 K1.1 0 K1.3 ✟

✟✟❍
❍❍K1.4 0 0 ✟

✟✟❍
❍❍K1.7 K1.8 0 0

0 0 K2.2 0 0 0 0 0 0 0 0

✟
✟✟❍
❍❍K3.0 K3.1 0 K3.3 ✟

✟✟❍
❍❍K3.4 0 0 ✟

✟✟❍
❍❍K3.7 K3.8 0 0

K4.0 ✟
✟✟❍
❍❍K4.1 0 ✟

✟✟❍
❍❍K4.3 K4.4 0 0 K4.7 ✟

✟✟❍
❍❍K4.8 0 0

0 0 0 0 0 K5.5 K5.6 0 0 K5.9 K5.10

0 0 0 0 0 K6.5 K6.6 0 0 K6.9 K6.10

K7.0 ✟
✟✟❍
❍❍K7.1 0 ✟

✟✟❍
❍❍K7.3 K7.4 0 0 K7.7 ✟

✟✟❍
❍❍K7.8 0 0

✟
✟✟❍
❍❍K8.0 K8.1 0 K8.3 ✟

✟✟❍
❍❍K8.4 0 0 ✟

✟✟❍
❍❍K8.7 K8.8 0 0

0 0 0 0 0 K9.5 K9.6 0 0 K9.9 K9.10

0 0 0 0 0 K10.5 K10.6 0 0 K10.9 K10.10





































dz
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Axial force.

K2.2 = N ′

i Eo A N ′

j

Flexion on the x-z plane. The orthogonalization of shear warping with
regard to rotation means that Iwxo.x = 0, for which reason it is discounted.

K4.4 = N ′

i Eo Iy N
′

j + Ni Go Dxx Nj

K4.7 = −
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ax Iwxo.x N
′

j − Ni Go Ax Dwxo.x Nj

K7.4 = −
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ax Iwxo.x N
′

j − Ni Go Ax Dwxo.x Nj

K7.7 = N ′

i Eo A
2

x Iwxo.wxo
N ′

j + Ni Go A
2

x Dwxo.wxo
Nj

K0.0 = N ′

i Go Dxx N
′

j

K0.4 = − N ′

i Go Dxx Nj

K4.0 = − Ni Go Dxx N
′

j

K0.7 = N ′

i Go Ax Dwxo.x Nj

K7.0 = Ni Go Ax Dwxo.x N
′

j

Flexion on the y-z plane. The orthogonaliation of shear warping with
regard to rotation means that Iwyo.y = 0, for which reason it is discounted.

K3.3 = N ′

i Eo Ix N
′

j + Ni Go Dyy Nj

K3.8 =
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ay Iwyo.y N
′

j + Ni Go Ay Dwyo.y Nj

K8.3 =
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ay Iwyo.y N
′

j + Ni Go Ay Dwyo.y Nj

K8.8 = N ′

i Eo A
2

y Iwyo.wyo
N ′

j + Ni Go A
2

y Dwyo.wyo
Nj

K1.1 = N ′

i Go Dyy N
′

j

K1.3 = N ′

i Go Dyy Nj

K3.1 = Ni Go Dyy N
′

j

K1.8 = N ′

i Go Ay Dwyo.y Nj

K8.1 = Ni Go Ay Dwyo.y N
′

j

Couping between flexions. The following are all discounted, because their
inclusion in no provides better results.

K3.7 =
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ax Iwxo.y N
′

j +
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
Ni Go Ax Dwxo.y Nj

K4.8 = −
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ay Iwyo.x N
′

j −
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
Ni Go Ay Dwyo.x Nj

K7.3 =
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ax Iwxo.y N
′

j +
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
Ni Go Ax Dwxo.y Nj

K8.4 = −
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
N ′

i Eo Ay Iwyo.x N
′

j −
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
Ni Go Ay Dwyo.x Nj

K7.8 =
✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤

N ′

i Eo Ax Ay Iwyo.wxo
N ′

j +
✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤

Ni Go Ax Ay Dwyo.wxo
Nj

K8.7 =
✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤

N ′

i Eo Ax Ay Iwyo.wxo
N ′

j +
✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤

Ni Go Ax Ay Dwyo.wxo
Nj
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K0.1 =
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
N ′

i Go Dxy N
′

j

K1.0 =
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
N ′

i Go Dxy N
′

j

K3.4 = −
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
Ni Go Dxy Nj

K4.3 = −
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
Ni Go Dxy Nj

K0.3 =
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
N ′

i Go Dxy Nj

K1.4 = −
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
N ′

i Go Dxy Nj

K3.0 =
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
Ni Go Dxy N

′

j

K4.1 = −
✭✭✭✭✭✭✭❤❤❤❤❤❤❤
Ni Go Dxy N

′

j

K0.8 =
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
N ′

i Go Ay Dwyo.x Nj

K1.7 =
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
N ′

i Go Ax Dwxo.y Nj

K7.1 =
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
Ni Go Ax Dwxo.y N

′

j

K8.0 =
✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤
Ni Go Ay Dwyo.x N

′

j

Torsion - distorsion. The orthogonalization between torsion and distor-
tion warping means that Iwa.wd

= 0, for which reason the terms in which it
appears are discounted.

K5.5 = P
′′

i1 Eo Ia P
′′

j1 + P
′

i1 Go It P
′

j1

K5.6 = P
′′

i1 Eo Ia P
′′

j2 + P
′

i1 Go It P
′

j2

K6.5 = P
′′

i2 Eo Ia P
′′

j1 + P
′

i2 Go It P
′

j1

K6.6 = P
′′

i2 Eo Ia P
′′

j2 + P
′

i2 Go It P
′

j2

K5.9 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i1 Eo Iwa.wd
P

′′

j1 + P
′

i1 Go Dtd.ta P
′

j1

K5.10 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i1 Eo Iwa.wd
P

′′

j2 + P
′

i1 Go Dtd.ta P
′

j2

K6.9 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i2 Eo Iwa.wd
P

′′

j1 + P
′

i2 Go Dtd.ta P
′

j1

K6.10 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i2 Eo Iwa.wd
P

′′

j2 + P
′

i2 Go Dtd.ta P
′

j2

K9.5 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i1 Eo Iwa.wd
P

′′

j1 + P
′

i1 Go Dtd.ta P
′

j1

K9.6 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i1 Eo Iwa.wd
P

′′

j2 + P
′

i1 Go Dtd.ta P
′

j2

K10.5 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i2 Eo Iwa.wd
P

′′

j1 + P
′

i2 Go Dtd.ta P
′

j1

K10.6 = −
✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤
P

′′

i2 Eo Iwa.wd
P

′′

j2 + P
′

i2 Go Dtd.ta P
′

j2

K9.9 = P
′′

i1 Eo Id P
′′

j1 + P
′

i1 Go Dtd.td P
′

j1 + Pi1 Eo Kd Pj1

K9.10 = P
′′

i1 Eo Id P
′′

j2 + P
′

i1 Go Dtd.td P
′

j2 + Pi1 Eo Kd Pj2

K10.9 = P
′′

i2 Eo Id P
′′

j1 + P
′

i2 Go Dtd.td P
′

j1 + Pi2 Eo Kd Pj1

K10.10 = P
′′

i2 Eo Id P
′′

j2 + P
′

i2 Go Dtd.td P
′

j2 + Pi2 Eo Kd Pj2

APPENDIX C. NOTATION

The notation used to represent the variables is provided below:
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Notation Units
Longitudinal coordinate z m
Coordinates of the cross-section x, y m
Elastic center xc = 0 , yc = 0 m
Shear center xa , ya m
Unit tangent vector tx , ty −

Area of cross-section A m2

Moments of inertia Ix , Iy m4

Reference Young’s modulus Eo kN/m2

Reference elastic shear modulus Go kN/m2

Total transverse vx(x, y, z) , m
displacement of any point vx(x, y, z)
Transverse displacement of the
shear center

ux(z) , uy(z) m

Total longitudinal displacement
of any point

vz(x, y, z) m

Longitudinal displacement of the
elastic center

uz(z) m

Shear areas Ax , Ay , Axy m2

Warping due to shear forces wx(x, y) , m−1

wy(x, y)

Torsion constant It m4

Warping torsion constant Ia m6

Intensity of rotation θz(z) −

St. Venant torsional moment Mzu = Go It θ
′

z kN m
Torsional warping moment Mzw = −Eo Ia θ

′′′

z kN m
Torsional bimoment Bw = Eo Ia θ

′′

z kN m2

St. Venant torsional warping
around the shear center

wa(x, y) m2

Warping induced by the non ho-
mogeneous torsional shear stress
(neglected)

wat(x, y) m4

Distortion constant Dtd,td m4

Warping distortion constant Id m6

Distortional bending constant Kd m2

Torsional-distortional constant Dta,td m2

Intensity of distortion ψd(z) −

Distortional moment Mdu = −Go Dtd,td ψ
′

d kN m
Distortional warping moment Mdw = Eo Id ψ

′′′

d kN m
Distortional bimoment Bd = −Eo Id ψ

′′

d kN m2

Distortional warping wd(x, y) m2

Warping induced by the non-
homogeneous distortional shear
stress (neglected)

wdt(x, y) m4

In plane distortional displace-
ment mode

udx(x, y) , udy(x, y) m

Tangential distortional displace-
ment

uds m
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