Universidad de Burgos Repositorio Repositorio
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3863

Ver estadísticas de uso
Título : Neural visualization of network traffic data for intrusion detection
Autor : Corchado, Emilio
Herrero, Alvaro
Publicado en: Applied soft computing. 2011, V. 11, n. 2, p. 2042-2056
Editorial : Elsevier
Fecha de publicación : mar-2011
ISSN : 1568-4946
DOI: 10.1016/j.asoc.2010.07.002
Resumen : This study introduces and describes a novel intrusion detection system (IDS) called MOVCIDS (mobile visualization connectionist IDS). This system applies neural projection architectures to detect anomalous situations taking place in a computer network. By its advanced visualization facilities, the proposed IDS allows providing an overview of the network traffic as well as identifying anomalous situations tackled by computer networks, responding to the challenges presented by volume, dynamics and diversity of the traffic, including novel (0-day) attacks. MOVCIDS provides a novel point of view in the field of IDSs by enabling the most interesting projections (based on the fourth order statistics; the kurtosis index) of a massive traffic dataset to be extracted. These projections are then depicted through a functional and mobile visualization interface, providing visual information of the internal structure of the traffic data. The interface makes MOVCIDS accessible from any mobile device to give more accessibility to network administrators, enabling continuous visualization, monitoring and supervision of computer networks. Additionally, a novel testing technique has been developed to evaluate MOVCIDS and other IDSs employing numerical datasets. To show the performance and validate the proposed IDS, it has been tested in different real domains containing several attacks and anomalous situations. In addition, the importance of the temporal dimension on intrusion detection, and the ability of this IDS to process it, are emphasized in this work
Palabras clave: Neural and exploratory projection techniques
Connectionist unsupervised models
Computer network security
Intrusion detection
Network traffic visualization
URI : http://hdl.handle.net/10259/3863
Versión del editor: http://dx.doi.org/10.1016/j.asoc.2010.07.002
Aparece en las colecciones: Artículos GICAP

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Corchado-ASC_2011.pdf6,52 MBAdobe PDFVisualizar/Abrir

Los ítems del Repositorio Institucional de la Universidad de Burgos están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2008 MIT and Hewlett-Packard - Sobre DSpace