Universidad de Burgos Repositorio Repositorio
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3927

Ver estadísticas de uso
Título : Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques
Autor : Acebes, Fernando
Pereda, María
Poza, David J.
Pajares Gutiérrez, Javier
Galán Ordax, José Manuel
Publicado en: International journal of project management. 2015, V. 33, n. 7, p. 1597–1609
Editorial : Elsevier
Fecha de publicación : oct-2015
Fecha de disponibilidad: oct-2018
ISSN : 0263-7863
Resumen : The aim of this paper is to describe a new integrated methodology for project control under uncertainty. This proposal is based on Earned Value Methodology and risk analysis and presents several refinements to previous methodologies. More specifically, the approach uses extensive Monte Carlo simulation to obtain information about the expected behavior of the project. This dataset is exploited in several ways using different statistical learning methodologies in a structured fashion. Initially, simulations are used to detect if project deviations are a consequence of the expected variability using Anomaly Detection algorithms. If the project follows this expected variability, probabilities of success in cost and time and expected cost and total duration of the project can be estimated using classification and regression approaches
Palabras clave: Project management
Earned value management
Project control
Monte Carlo simulation
Project risk management
Statistical learning
Anomaly Detection
URI : http://hdl.handle.net/10259/3927
Versión del editor: http://dx.doi.org/10.1016/j.ijproman.2015.06.012
Aparece en las colecciones: Artículos Organización de Empresas

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Acebes-IJPM_2015.pdf736 kBAdobe PDFVisualizar/Abrir

Los ítems del Repositorio Institucional de la Universidad de Burgos están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2008 MIT and Hewlett-Packard - Sobre DSpace