Universidad de Burgos Repositorio Repositorio
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4264

Ver estadísticas de uso
Título : An SVM-based solution for fault detection in wind turbines
Autor : Santos, Pedro
Villa, Luisa F.
Reñones, Anibal
Bustillo Iglesias, Andrés
Maudes Raedo, Jesús M.
Publicado en: Sensors, 2015, V. 15, n. 3, p. 4605-7083
Editorial : MDPI
Fecha de publicación : mar-2015
ISSN : 1424-8220
DOI: 10.3390/s150305627
Resumen : Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.
Palabras clave: fault diagnosis
neural networks
support vector machines
wind turbines
Materia: Informática
Computer science
Licencia: http://creativecommons.org/licenses/by/4.0/
URI : http://hdl.handle.net/10259/4264
Versión del editor: http://dx.doi.org/10.3390/s150305627
Aparece en las colecciones: Artículos ADMIRABLE

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Santos-Sensors_2015.pdf988,84 kBAdobe PDFVisualizar/Abrir

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons
Creative Commons

Los ítems del Repositorio Institucional de la Universidad de Burgos están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2008 MIT and Hewlett-Packard - Sobre DSpace