Sólidos Iónicos El enlace Iónico (1)

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4^a Ed., Harper Collins, 1993. Capítulo 4.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3^a Ed., John Wiley & Sons, 1994. Capítulo 5.
- * Douglas, B.; McDaniel, D.; Alexander. J., "Problems for Concepts and Models of Inorganic Chemistry", 3^a Ed., John Wiley & Sons, 1994. Capítulo 5.
- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999. Capítulo 14.

- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984. Capítulo 3.
- * Moeller, T., "Inorganic Chemistry. A Modern Introduction", John Wiley & Sons, 1994. Traducción española: "Química Inorgánica", Reverté, 1994. Capítulo 4.
- * Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3ª Ed., Pearson Prentice Hall, 2008. Capítulo 6. Traducción española de la 2ª Ed. "*Química Inorgánica*", Pearson Prentice Hall, 2006. Capítulo 5.
- * Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., (Shriver-Atkins) "*Inorganic Chemistry*", 4^a Ed., Oxford University Press, 2006. Traducción española de la 4^a Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008. Capítulo 3.
- * Rodgers, G. E., "Introduction to Coordination, Solid-state and Descriptive Inorganic Chemistry", McGraw-Hill, 1994. Traducción española: "Química Inorgánica, Introducción a la Química de Coordinación, del Estado Sólido y Descriptiva", McGraw-Hill, 1995. Capítulo 7 y 8.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Compuestos iónicos → Propiedades diferentes de los covalentes. Propiedades relacionadas con la estructura cristalina, la presencia de dos tipos de partículas, y las interacciones existentes entre ellas.

1) Muy baja o nula conductividad en estado sólido.

Abribuida a la presencia de partículas con carga eléctrica, pero ocupando posiciones fijas y con una movilidad muy restringida.

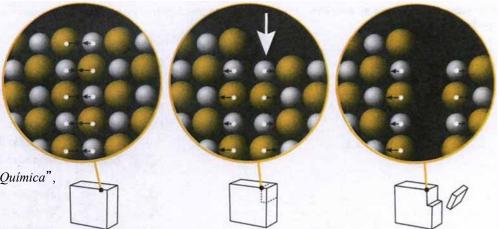
Conductores en disolución o fundidos.

Forma iones con total libertad de movimiento. No implica su existencia en sólido.

2) Puntos de fusión y ebullición elevados.

Interacciones iónicas fuertes y omnidireccionales.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 92.


^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 298.

Compuestos iónicos → Propiedades diferentes de los covalentes. Propiedades relacionadas con la estructura cristalina, la presencia de dos tipos de partículas, y las interacciones existentes entre ellas.

3) Compuestos muy duros, pero muy frágiles

Interacciones iónicas fuertes y omnidireccionales.

Interacciones atractivas y repulsivas.

Kotz, J. C.; Treichel, P. M., "Química y Reactividad Química", 5ª Ed., Thomson Paraninfo, 2003, pp 95.

4) Solubles en disolventes polares.

$$E = \frac{q^+ \cdot q^-}{4\pi r \epsilon}$$
 Polaridad disolvente \uparrow , $\epsilon \uparrow$, $1/\epsilon \downarrow$, $E \downarrow$, atracción \downarrow Efecto de la solvatación (Ión–Dipolo)

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4^a Ed., Harper Collins, 1993, pp 92.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 298.

Compuestos iónicos: Elementos con gran diferencia de electronegatividad.

Elementos metálicos muy activos (M⁺)

Elementos no metálicos muy activos (X⁻)

 $\left\{\begin{array}{c} P.I. \\ A.E. \end{array}\right\}$ Favorables

* Atomos capaces de "perder" 1-2 electrones (raramente 3)

Li, Na, K, ... Be, Mg, Ca, Sr, ...

* Atomos capaces de "ganar" 1-2 electrones (casi nunca 3)

F. Cl. Br. ... O. S. Se. ...

* Cationes de los metales más activos:

Grupo 1 (Li, Na, ...) 2 (Be, Mg, ...) y parte del 13 (Ga, In)

Algunos metales de transición en estados de oxidación bajos

$$Sn^{2+}$$
, Pb^{2+} (n s²) Cu_2^{2+} , Ag^+ , Au^+ , Zn^{2+} , Cd^{2+} , Hg^{2+} (n-1 d¹⁰), Fe^{3+} , Mn^{2+} (n-1 d⁵)

P.I. Endotérmicos, pequeños en valor absoluto.

* Aniones de los no metales más activos:

Grupo 17 (F, Cl, ...) 16 (O, S, ...) y el N

Oxidación / Reducción

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 92.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 298.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Iónico puro, Electrones localizados enteramente en los aniones

Sin delocalización electrónica (metálico)

Sin compartición electrónica (covalente)

 N^{o} Coord max. 8 \rightarrow menos compactos que los metales \rightarrow menos densos que los metales

Menos elásticos

No mecanizables

Sólidos Iónicos: NO existen moléculas discretas

Químicamente Iones y átomos de procedencia son cosas radicalmente distintas

Na: 1s² 2s² 2p⁶ 3s¹ Metal reacciona violentamente con el agua dando NaOH

Reductor color metálico

Na⁺: 1s² 2s² 2p⁶ Catión soluble en agua

poco reactivo incoloro

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 92.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 298.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Estructuras Cristalinas

Estructura cristalina iónica, inherente al estado sólido.

Se trata de acomodar dos tipos de partícula en una estructura cristalina siguiendo ciertas reglas:

- 1) Cada catión debe rodearse del máximo número posible de aniones (número de coordinación del catión) y cada anión debe rodearse del máximo número posible de cationes (número de coordinación del anión).
- 2) La separación entre iones de igual signo debe ser la máxima posible (minimizar repulsiones) al tiempo que la separación entre iones de distinto signo deber ser la mínima posible (maximizar atracciones).
- 3) Debe respetarse la neutralidad eléctrica de la estructura, la proporción de aniones y cationes debe ser la correspondiente a la estequiometría del compuesto.

Sólidos Iónicos: Su fórmula química nos indica la proporción en que participan aniones y cationes en la estructura cristalina resultante

Unidades fórmula – SI

Moléculas discretas – NO

Modelo de empaquetamiento de aniones

Radio del anión	r
Radio hueco Td	0,225 r
Radio hueco Oh	0,414 r

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

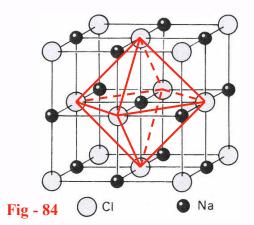
^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3ª Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 94.

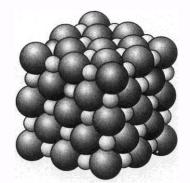
^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

Tipos de Redes – Cationes en huecos Octaédricos

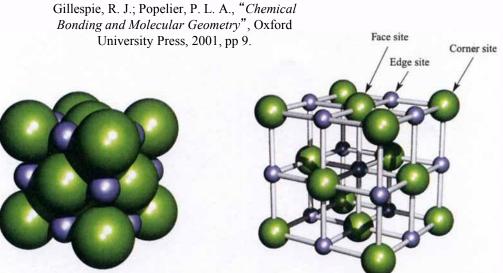
Red Tipo NaCl


Empaquetamiento Cúbico Compacto de Aniones

Cationes ocupando todos los huecos Oh


Nº coordinación anión 6

Nº coordinación catión 6


Coordinación 6:6

Gutiérrez Ríos, E, "*Química Inorgánica*", 2ª Ed. Reverté, 1984, pp 56.

4 Unidades fórmula en la celda unidad

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008. pp 165.

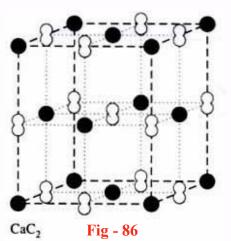
- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.
- * Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.
- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

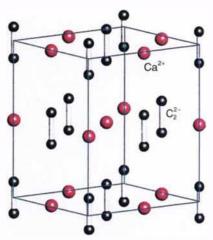
Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Octaédricos

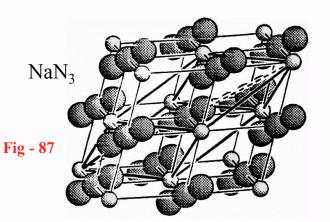
Red Tipo NaCl


Empaquetamiento Cúbico Compacto de Aniones

Cationes ocupando todos los huecos Oh


Nº coordinación anión 6

Nº coordinación catión 6


Coordinación 6:6

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 213.

Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Traducción española de la 4ª Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008, pp 85.

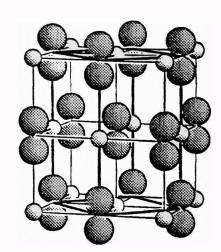


Fig - 85

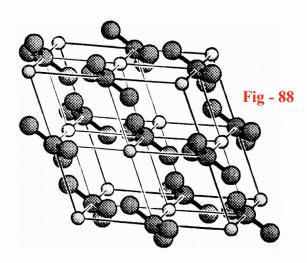
- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3ª Ed., John Wiley & Sons, 1994, pp 206.
- * Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 94.
- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

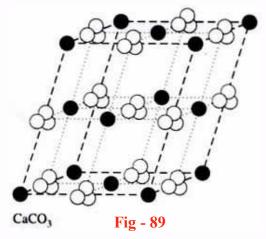
4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Octaédricos

Red Tipo NaCl


Empaquetamiento Cúbico Compacto de Aniones


Cationes ocupando todos los huecos Oh

Nº coordinación anión 6

Nº coordinación catión 6

Coordinación 6:6

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 213.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3ª Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 94.

^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

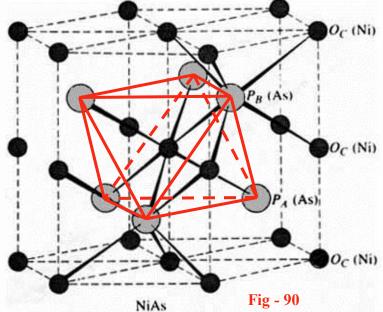
4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Octaédricos

Red Tipo NiAs

Empaquetamiento Hexagonal Compacto de Aniones


Cationes ocupando todos los huecos Oh

Nº coordinación anión 6

Nº coordinación catión 6

Coordinación 6:6

4 Unidades fórmula en la celda unidad

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 207.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3ª Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

Química Inorgánica

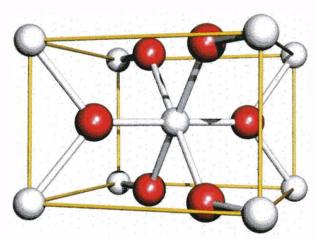
Tema 4: Estado Sólido

4.4.- Sólidos Iónicos - El enlace Iónico

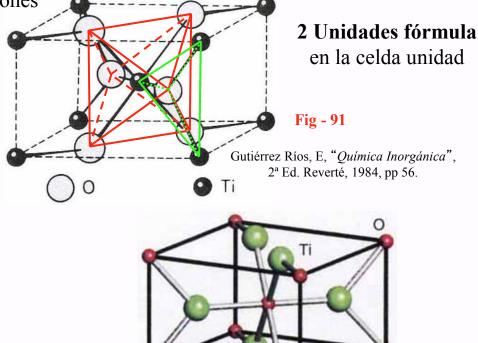
Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Octaédricos

Red Tipo Rutilo, TiO₂


Empaquetamiento Hexagonal Compacto de Aniones

Cationes ocupando *la mitad de los huecos Oh*


Nº coordinación anión 3

Nº coordinación catión Ti⁴⁺ 6

Coordinación 3:6

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008. pp 170.

Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Traducción española de la 4ª Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008, pp 88.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Octaédricos

Red Tipo Perovskita, CaTiO₃

Empaquetamiento Cúbico Compacto de O²⁻ (caras) y Ca²⁺ Vértices

Catión Ti⁴⁺ ocupando 1/4 de los huecos Oh

Nº coordinación catión Ti⁴⁺: 6 O²⁻, 8 Ca²⁺

Nº coordinación catión Ca²⁺: 6 Ca²⁺, 12 O²⁻, 8 Ti⁴⁺

1 Unidad fórmula en la celda unidad

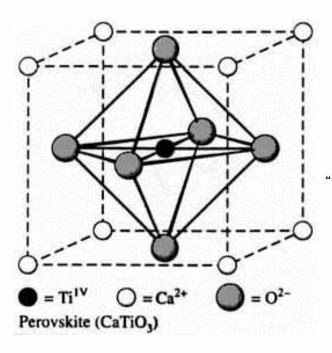
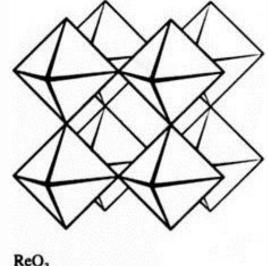



Fig - 92

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3^a Ed., John Wiley & Sons, 1994, pp 209.

Fig - 93

ReO,

- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.
- * Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.
- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

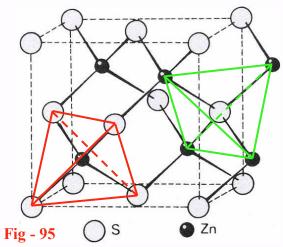
Profesor: Rafael Aguado Bernal

4 Unidades fórmula

en la celda unidad

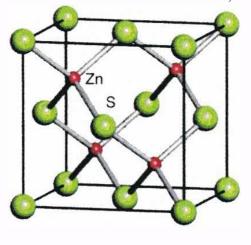
Tipos de Redes – Cationes en huecos Tetraédricos

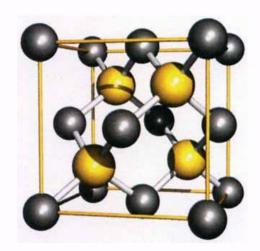
Red Tipo Blenda, ZnS


Empaquetamiento Cúbico Compacto de Aniones

Cationes ocupando la mitad de los huecos Td

Nº coordinación anión 4


Nº coordinación catión 4


Coordinación 4:4

Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 56.

Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Traducción española de la 4ª Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008, pp 86.

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008. pp 168.

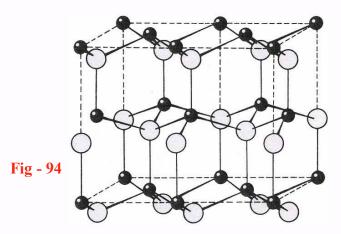
- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.
- * Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.
- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

Química Inorgánica

Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Tetraédricos

Red Tipo Wurtzita, ZnS


Empaquetamiento Hexagonal Compacto de Aniones

Cationes ocupando *la mitad de los huecos Td*

Nº coordinación anión 4

Nº coordinación catión 4

Coordinación 4:4

Gutiérrez Ríos, E, "*Química Inorgánica*", 2ª Ed. Reverté, 1984, pp 56.

8 Unidades fórmula en la celda unidad

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008. pp 170.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3ª Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

Química Inorgánica

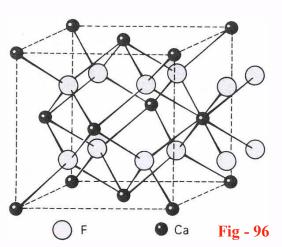
Tema 4: Estado Sólido

4.4.- Sólidos Iónicos - El enlace Iónico

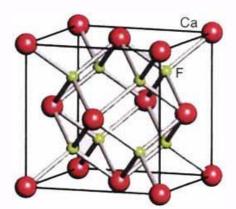
Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Tetraédricos

Red Tipo Fluorita, CaF₂

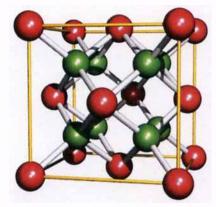

Empaquetamiento Cúbico Compacto de Cationes

Aniones ocupando todos los huecos Td


Nº coordinación anión 4

Nº coordinación catión 8

Coordinación 4:8



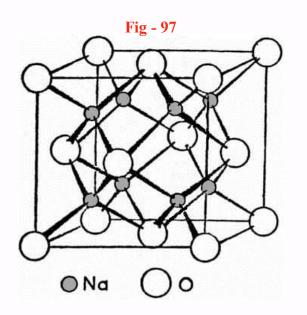
Gutiérrez Ríos, E, "*Química Inorgánica*", 2ª Ed. Reverté, 1984, pp 56.

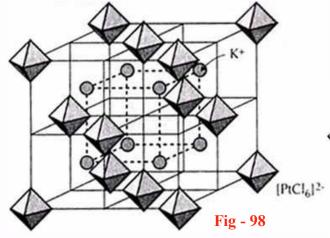
4 Unidades fórmula en la celda unidad

Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Traducción española de la 4ª Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008, pp 87.

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008. pp 168.

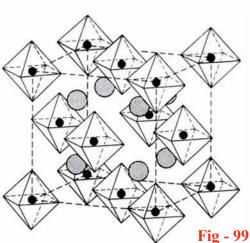
- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.
- * Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.
- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.


Tipos de Redes – Cationes en huecos Tetraédricos


Red Tipo anti-Fluorita, M_2X

Empaquetamiento Cúbico Compacto de Aniones

Cationes ocupando todos los huecos Td


Nº coordinación catión 4 Nº coordinación anión 8 Coordinación 8:4

Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 315.

4 Unidades fórmula en la celda unidad

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 210.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

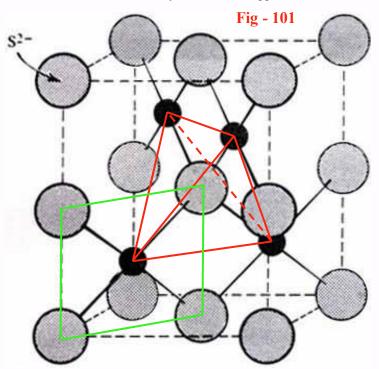
^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos Tetraédricos

Red Tipo PtS


Empaquetamiento Cúbico Compacto de Pt²⁺

S²⁻ ocupando *la mitad de los huecos Td*

N° coordinación catión Pt²⁺ 4 plano cuadrado N° coordinación anión S²⁻ 4 tetraédrico Coordinación 4:4

4 Unidades fórmula en la celda unidad

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 210.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3ª Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

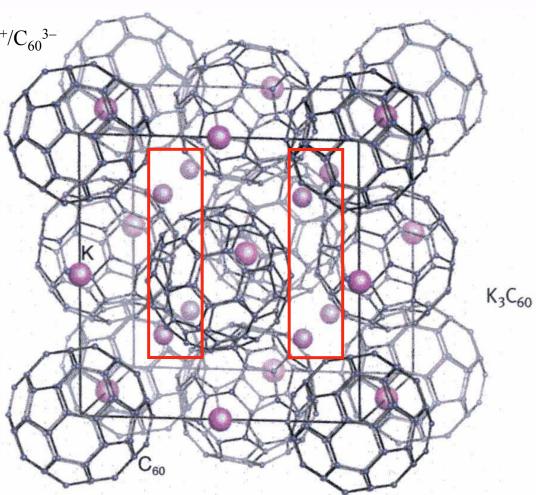
^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

Tipos de Redes – Cationes en huecos

Red Tipo BiF₃


Empaquetamiento Cúbico Compacto de $\mathrm{Bi^{3+}/C_{60}^{3-}}$

F-/K+ ocupando todos los huecos Td y Oh

4 Unidades fórmula en la celda unidad

Fig - 100

Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Traducción española de la 4ª Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008, pp 322 y 637.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

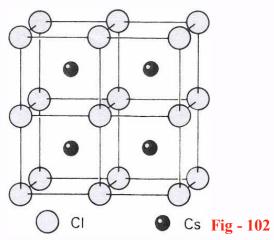
^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal

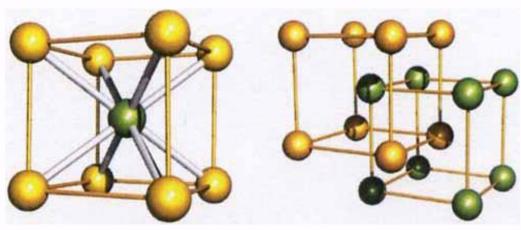
Tipos de Redes – Cationes en huecos

Red Tipo CsCl


Empaquetamiento Cúbico Simple de aniones Cl-

Cationes Cs⁺ ocupando *el centro del cubo*

Nº coordinación catión 8


Nº coordinación anión 8

Coordinación 8:8

Gutiérrez Ríos, E, "*Química Inorgánica*", 2ª Ed. Reverté, 1984, pp 56.

1 Unidad fórmula en la celda unidad

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008. pp 168.

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

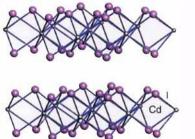
^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.

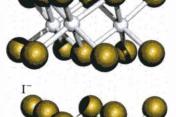
^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 94.

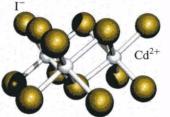
^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

4.4.- Sólidos Iónicos - El enlace Iónico

Profesor: Rafael Aguado Bernal


Tipos de Redes – Cationes en huecos

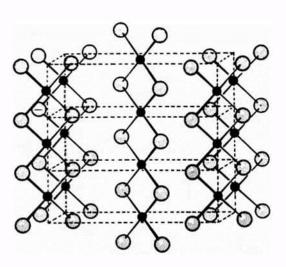

Red Tipo CdI₂


Empaquetamiento Hexagonal Compacto de aniones I⁻ Fig - 102

Cationes Cd²⁺ ocupando *la mitad de los huecos Oh por capas alternas*

Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Traducción española de la 4ª Ed. "*Química Inorgánica*", McGraw-Hill Interamericana, 2008, pp 450.

Housecroft, C. E.; Sharpe, A. G., "*Inorganic Chemistry*", 3^a Ed., Pearson Prentice Hall, 2008, pp 170.


Red Tipo PdCl₂

Cationes Pd²⁺ ocupando

la mitad de los huecos Td por capas alternas

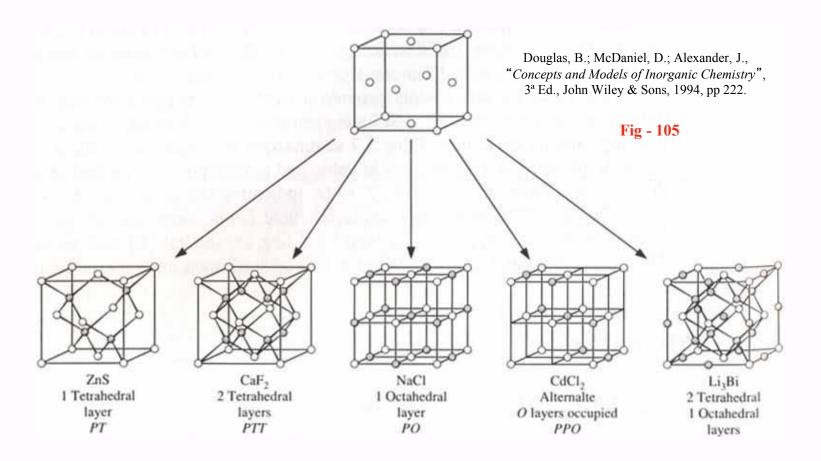

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 219.

Fig - 103

- * Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.
- * Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.
- * Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.
- * Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

Tipos de Redes – Cationes en huecos

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3a Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.

Tipos de Redes – Cationes en huecos

Fig - 106 Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 315.

TABLA 14.1 Resumen de estructuras usuales en los compuestos iónicos			
Estequiometría	Coordinación	Empaqueta- miento	Estructura
XY	8:8	cúbico simple	CsCl
	6:6	C.C. (ABC)	NaCl
		H.C. (AB)	NiAs
	4:4	C.C. (ABC)	Blenda de cinc
		H.C. (AB)	Wurtzita
X ₂ Y o XY ₂	4:8 ó 8:4	C.C. (ABC)	Fluorita o anti- fluorita
	6:3	H.C. (AB) (distorsionado)	Rutilo

^{*} Casabó i Gispert, J, "Estructura Atómica y Enlace Químico", Reverté, 1999, pp 299.

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 206.

^{*} Housecroft, C. E.; Sharpe, A. G., "Inorganic Chemistry", 3ª Ed., Pearson Prentice Hall, 2008. pp 164.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 94.

^{*} Gutiérrez Ríos, E, "Química Inorgánica", 2ª Ed. Reverté, 1984, pp 55.