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Abstract

In machine learning, wide datasets are common in several fields, especially biology and
genomics. Datasets of that sort contain a large number of features compared to the number of
their instances. Known as the ’curse of dimensionality’, it represents a challenge for learning
models, in that the number of dataset features makes it harder to find useful information
that might solve a given machine-learning problem. The small number of instances causes
overfitting of the data model, preventing it from uncovering a valid general solution for new,
unseen data patterns. That same limitation can also imply an uneven number of instances for
each label, biasing the model towards the most common label. A phenomenon that is known
as class imbalance.

Data preprocessing techniques are effective at dealing with this problem. One of the most
common approaches to deal with large datasets is feature selection, which identifies the most
relevant features for the learning model and eliminates those deemed irrelevant. Feature
reduction or feature extraction transforms the data into a lower-dimensional space, retaining
the most relevant information. Data resampling balances the number of instances for each
label. The low number of instances may be due to a lack of labels, so the extension of wide
data to semi-supervised learning is an interesting solution to this problem.

This thesis is a compendium of three papers, each presented in its own chapter. In the
first paper, the optimal order of feature selection and resampling algorithms is investigated.
In the second paper, the performance of feature selection algorithms is compared with feature
reduction algorithms. In the third paper, a systematic review of semi-supervised feature
selection algorithms is presented and a new taxonomy is proposed.

In conclusion, the importance of data preprocessing techniques for wide data is demon-
strated. Likewise, the effectiveness of both feature selection and feature reduction algorithms
is underlined when used alongside resampling methods and guidance is provided on how
to combine both. The feature reduction algorithms that can compete with feature selection
algorithms are carefully illustrated. Finally, the review of different semi-supervised algo-
rithms will also serve as a guide for researchers wishing to choose the most appropriate
semi-supervised feature selection algorithm for a specific problem.
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1
Introduction

In this chapter, the necessary concepts to understand the work developed in this thesis are
introduced. First, the basics of machine learning, the research field of the thesis, are explained,
after which the concept of wide data and the problems that can occur when working with
that sort of data are outlined. Subsequently, the most common data-preprocessing techniques
are presented, focusing on feature selection, feature reduction, and data resampling. The
concept of semi-supervised learning is then introduced, explaining the different types of
semi-supervised learning algorithms and the importance of their use with wide data. Finally,
the most common model performance evaluation methods are presented.

1.1 Machine learning

Machine learning (ML) [21], a sub-field of computer science, is focused on developing
algorithms which can learn the inherent patterns of datasets. These patterns can be used to
help professional decision-making in various fields, such as predicting system behaviour,
data classification, and process optimisation. The main advantage of ML algorithms is that
they can be trained to perform tasks without being explicitly programmed to solve those
tasks.
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The most common data structure used in ML, the tabular format, is where several
measures or features are collected for each instance. An instance is an object or event that
is described by a set of features (e.g., a person, a product, or a day). Those features are the
individual measurable properties or characteristics of a phenomenon that is under observation.
Features can be numerical (height, temperature, price) or categorical (weekday, colour, city).
The tabular data, as can be seen in Table 1.1a, is stored in a matrix where each instance is
represented by a row and each feature by a column. Images and signals can be stored for
analysis in other types of data structures.

One feature of tabular data is the label, which is the target variable that the ML algorithm
will attempt to predict. Depending on the variable type, the task is either called regres-
sion (numerical) or classification (nominal). The goal of the ML algorithm is to learn the
relationship between the features and the label, so it can predict the label of new unseen
instances.

Some of the most popular algorithms for regression and classification, respectively, are
linear regression and Support Vector Machines (SVM) [29]. Linear regression generates
a linear fit of all the data objects, minimising the quadratic distance between the line and
the data points, as shown in Formula 1.1. Figure 1.1 shows an example of a fitted linear
regression model, where the x-axis represents the feature and the y-axis represents the label
to be predicted. On the other hand, the SVM is programmed to find the hyperplane that
separates the data into two classes, maximising the margin between the classes, as shown in
Figure 1.2.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1.1)

1.2 Wide data

Wide data [101], sometimes referred to as high dimensionality data, have a large number of
features compared to the number of instances; a difference that is visually represented in
Table 1.1.

Data of this class are especially common in biology and genomics, some examples of
their use being the analysis of type 2 diabetes [20] and the diagnosis of epilepsy using
electroencephalography [121, 201]. Wide datasets are also used in engineering, for fault
detection to diagnose engine system errors [66], and induction motor faults [6, 84]. High-
dimensional data are also analysed in solar radiation estimation [86]. Examples are found
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Fig. 1.1 Visual representation of linear regres-
sion.

Fig. 1.2 Visual representation of an SVM.

in other areas such as computer security where intrusion detection systems in network
environments have to process multi-feature data [211].

Learning models commonly have difficulties when working with wide data. The number
of features makes it harder to find the information needed to solve the problem, which is,
as previously mentioned, known as the ’curse of dimensionality’ [88]. The low number of
instances can mean that the model will overfit the data, avoiding the problem of generalisation
to new unseen instances. The number of instances for each label is very often not the same
in data with a low number of instances, which introduces bias towards the most common
label in model. This problem is known as class imbalance [55]. Three data-preprocessing
techniques are frequently used to address this issue: feature selection (Section 1.3.1), feature
reduction (Section 1.3.2), and resampling (Section 1.3.3).

1.3 Data Preprocessing

Data preprocessing [60] is a crucial step in the ML pipeline with great potential for improving
model performance. The goal of data preprocessing is to prepare the data, so as to facilitate
the learning process of the ML algorithm. A typical data-preprocessing pipeline is shown in
Figure 1.3 where the data undergo multiple transformations.

Preprocessing techniques can be divided into two main categories: data preparation and
data reduction. Data-preparation techniques include initialising the data, so it can be used as
input for the model. Data reduction techniques reduce the dimensionality of the data, making
it easier for the model to learn its patterns.
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Features Label

a Normal dataset

Features Label

b Wide dataset

Table 1.1 Comparison between normal and wide dataset sizes.

Fig. 1.3 Data preprocessing pipeline.
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Some of the most common and useful data-reduction techniques for wide data are feature
selection, feature reduction, and data resampling. Feature selection is the process of selecting
the most relevant features for the model and discarding the irrelevant ones. Feature reduction
transforms the data into a lower dimensionality space, keeping the most relevant information.
Data resampling balances the number of instances for each label, reducing the chances of a
biased model.

1.3.1 Feature selection

Feature selection is a preprocessing technique that selects the most relevant features, in
order to improve model performance [157]. The features that are selected have the most
information on the label and any irrelevant and redundant features are discarded.

The correlation between the feature and the label can be calculated, to determine the
importance or relevance of a feature. The simplest correlation is the linear correlation or
Pearson correlation coefficient. A coefficient that ranges between −1 and 1 where 1 is a
perfect positive linear correlation, −1 is a perfect negative linear correlation, and 0 is a
non-linear correlation. Figure 1.4 shows an example of several correlation grades between
the feature on the horizontal axis and the label on the vertical axis.

However, the linear correlation is not the only kind of possible correlation, as is shown
in Figure 1.5. In this case, the logarithmic and quadratic correlations that are shown could
not be captured by the linear correlation coefficient. There are different approaches towards
capturing different sorts of correlations, including multivariate correlation.

Feature selection algorithms are usually divided into three main categories: filter, wrapper,
and embedded. Additionally, more advanced approaches include hybrid and ensemble
methods [24]. Their descriptions are listed below and are summarized in Table 1.2.

• Filter methods [25] create a ranking of features usually using statistical measures.
These methods are the fastest, but the features are selected as a global solution and in
no case ever optimise model performance.

• Wrapper methods [92] search in the space of possible feature subsets for the one which
provides the best model performance. These methods provide the best performance,
but the time complexity is higher than the other types, as the performance of the model
has to be trained and checked while exploring each subset . This optimisation method
can also lead to model overfitting.

• Embedded methods [105] evaluate the relevance of the features during a model
training. Unlike wrapper methods, the classifier used in embedded methods is not nec-
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(a) High positive correlation (b) Positive correlation (c) No correlation

(d) High negative correlation (e) Negative correlation

Fig. 1.4 Different grades of linear correlations.

(a) Logarithmic correlation (b) Quadratic correlation

Fig. 1.5 Non linear correlations.
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Table 1.2 Advantages and disadvantages of feature selection algorithms.

Advantages Disadvantages

Filter • Generalisation
• Speed

• Model-specific optimisation
• Lower performance

Wrapper • Model-specific optimisation
• High performance

• Overfitting
• Slow
• Solution model-specific

Embedded • Model-specific optimisation
• Faster than wrappers
• More general than wrappers

• Cannot choose the model
freely
• Slower than filters
• Less general than filters

Hybrid • Improve filter performance
• Faster than wrappers
• Improve wrappers generali-
sation

• Solution model-specific

Ensemble • Low probability to overfit
• Stable solutions

• Hard to interpret
• Can be slow

essarily the same as the one used for classification. These methods do not tend towards
overfitting as much as wrapper-based methods, and their complexity is somewhere
between filter and wrapper methods.

• Hybrid methods [158] combine a filter method and a wrapper method. They use the
filter method to reduce the number of features and then, the wrapper method to select
the best subset of features. This combination can improve the performance of the filter
method and reduce the time complexity of the wrapper method.

• Ensemble methods [23] combine the results of several feature selection algorithms to
provide a more stable solution. These methods can provide a more robust solution by
reducing the likelihood of overfitting.

1.3.2 Feature reduction

Feature reduction [10], also known as feature extraction, is an alternative preprocessing
technique that transforms the data into a lower dimensionality space, retaining the most
relevant information. Rather than removing features as feature selection does, this technique
creates a completely new representation of the data that can be used to train the model and to



10 Introduction

Sepal Length Sepal Width Petal Length

S
epal W

idth
P

etal Length
P

etal W
idth

(a) Iris pairs of features. (b) PCA projection.

Fig. 1.6 Pairs of features from the Iris dataset plotted in a 2D space and their projection into
a 2D space using PCA.

visualise the data. Feature reduction algorithms can be classified into either unsupervised
and supervised, or linear and non-linear.

The most common feature reduction algorithm is Principal Component Analysis (PCA) [142].
An unsupervised algorithm that creates a new representation of the data by projecting the
data into a lower dimensionality space, retaining the most variance. A typical visualisation of
high dimensional data can be in a plot of all the feature pairs within a 2D space. An example
of the 4 dimensional iris dataset is shown in Figure 1.6a. PCA can be used to project the data
into a 2D space, retaining the most variance, as is shown in Figure 1.6b, and providing a
simpler visualisation of the data.

However, since PCA is an unsupervised algorithm, it just projects the data, keeping
the most variance, but not the most separability between the classes, which is the goal
of the classification algorithms. Supervised feature reduction algorithms such as Linear
Discriminant Analysis (LDA) [190] can be used instead. LDA finds the projection that
maximises the separability between the classes. An example using artificial data is shown in
Figure 1.7 where it can be observed that LDA reacts to the class distribution, unlike PCA.

The previously mentioned algorithms are linear, which means that the new representation
of the data is a linear combination of the original features. However, if the manifold is non-
linear, then linear algorithms will not be able to capture the most relevant information. The
swiss roll dataset shown in Figure 1.8a is a typical example of a non-linear manifold where
the data are distributed in a spiral shape. Non-linear algorithms such as Isomap [179] can be
used to project the data into a lower dimensionality space. Isomap creates a neighbourhood
graph between the instances and calculates the shortest path between them, finally showing
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(a) PCA projections (b) LDA projection

Fig. 1.7 PCA and LDA projections of an artificial dataset. PCA is an unsupervised method,
so its data projection is dissimilar to the ’proper’ LDA projection.

the new data through multidimensional scaling [97]. Figure 1.8a shows the data-projection
capabilities of Isomap, through a swiss roll dataset projection into a 2D space.

1.3.3 Data resampling

Resampling is a preprocessing technique that equalises the number of instances for each
label. As previously noted, the uneven class distribution affects the classification model,
due to its inherent bias towards the most common class. There are two main resampling
techniques, oversampling and undersampling:

• Undersampling decreases the number of instances for the majority class. The most
common algorithms used for undersampling are Random Undersampling (RUS) [79]
and Tomek links [187]. RUS randomly selects instances from the majority class to be
removed, while Tomek links removes the instances that are close to the minority class.

• Oversampling, as opposed to undersampling, increases the number of instances for the
minority class. The most common algorithms used for oversampling are Random Over-
sampling (ROS) [79] and Synthetic Minority Over-sampling Technique (SMOTE) [32].
ROS randomly selects instances from the minority class to be duplicated, while SMOTE
creates new instances in between the minority class instances.

In Figure 1.9, an example of a dataset with class imbalance is shown where the minority
class (red) is hidden by the majority class (blue). Alongside it, a representation of undersam-
pling and oversampling techniques are shown where the majority class is decreased and the
minority increased, respectively, so that the class boundaries become more visible.
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(a) Swiss roll dataset
(b) Isomap projection

Fig. 1.8 The Swiss roll dataset is presented in a 3D scatter plot and projection to a 2D space
using the non-linear feature reduction algorithm Isomap.

(a) Original data (b) Undersampling (c) Oversampling.

Fig. 1.9 Resampling strategies.
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Features Label

a Supervised

Features Label

b Unsupervised

Features Label

c Semi-supervised

Table 1.3 Comparison of the different datasets tasks.

1.4 Semi-supervised learning

In ML, the supervision defines the availability of the label in the training dataset. This results
in three observable categories in Table 1.3: In supervised learning, the instances are fully
labelled. In unsupervised learning, there are no labels, and in semi-supervised, only some of
the instances are labelled.

Semi-supervised data is common to find in real-world problems where labelling the
instances is an expensive, time-consuming process [189]. This lack of instances may be
the cause of wide data. Taking advantage of the information retained in both labelled and
unlabelled instances and mixing them to improve model performance is the goal of semi-
supervised learning. Figure 1.10 shows the error of a linear model trained with a few labelled
instances, compared with a better decision boundary obtained when the unlabelled instances
are included.

The following data-related conditions are assumed in semi-supervised learning ap-
proaches: instances that are close in space have the same label (smoothness assumption),
decision boundaries lie in regions of low sample density (low-density assumption), instances
that belong to the same manifold belong to the same class (manifold assumption), and
each multiple hidden manifold within the data describes the patterns of a class (clustering
assumption).

These learning algorithms can be divided into two categories: transductive and induc-
tive [189].
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Best boundary

Supervised model

Fig. 1.10 Boundary comparison between a few labelled instances (triangular-shapes) and the
optimal boundary.
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• Transductive algorithms, rather than training a model capable of predicting the class
of unseen instances, only return the label of the unlabelled instances available at the
training stage.

• Inductive algorithms train a model using the labelled and the unlabelled instances that
can be used to predict the label of new unseen instances. Three main categories can be
found within this category:

– Wrapper methods, use one or more models trained with the labelled instances to
pseudolabel the unlabelled instances with the most confident predictions. This
process is repeated, increasing the number of labelled instances in each iteration.
Some examples are self-training[217] and co-training [22].

– Unsupervised preprocessing methods are used to extract useful information
from the unlabelled instances as new features, or initial parameters to train a
supervised model. PCA and autoencoders are some of the algorithms used [206].

– Intrinsically semi-supervised methods incorporate the unlabelled instances in
the training process or optimisation function. Algorithms based on SVM [112]
are popular in this field.

1.4.1 Semi-supervised feature selection

In semi-supervised learning, feature selection can be performed using the information retained
in both labelled and unlabelled instances [169]. The taxonomy of semi-supervised feature
selection is similar to the supervised one, containing the same three main categories: filter,
wrapper, and embedded. The most popular tools in this field are the Laplacian matrix and
Pairwise constraints.

The Laplacian matrix properties and its eigenvectors are studied through spectral graph
theory [43]. The Laplacian matrix is calculated using the adjacency matrix (A) and the degree
matrix (D). The adjacency matrix shows the connections between the instances, while the
degree matrix shows the number of connections that each instance has. The Laplacian matrix,
as it can be seen in Figure 1.11, is calculated as L = D−A, showing the connections between
the instances by a negative value in the matrix and the degree of each node in the diagonal.
Some of the algorithms that use this matrix are the unsupervised feature selector Laplacian
score [70] and the semi-supervised Laplacian score [51].

Employing pairwise constraints is another method for integrating information from both
labelled and unlabelled instances. These constraints are a set of rules called must-link and
cannot-link constraints. Must-link constraints specify that two instances should belong to the
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1 2 3

4

5

1 2 3 4 5
1 1 -1 0 0 0
2 -1 4 -1 -1 -1
3 0 -1 2 -1 0
4 0 -1 -1 2 0
5 0 -1 0 0 1

Fig. 1.11 Laplacian matrix of a graph.

same class, whereas cannot-link constraints dictate that two instances should not be in the
same class. Pairwise constraints are employed to generate a similarity matrix, wherein the
constraints determine the similarity between instances. This similarity matrix is then used to
find the feature importance. Some of the algorithms that use this technique are the constraint
score 1 (C1) [228] for supervised learning and the pairwise constraint score (C4) [85] for
semi-supervised learning.

1.5 Model evaluation

Model evaluation is a critical step in machine learning. It is used to determine the performance
of the model and to compare different models. No simple task in itself, it can be divided into
performance metrics, validation type and statistical tests.

1.5.1 Performance metrics

Several metrics can be used to evaluate the performance of models. It is recommended to
use more than one metric to avoid biased evaluations [125]. Most metrics are based on the
confusion matrix for classification tasks, which is a table that shows the real and the predicted
values of the instances. This matrix, shown in Table 1.4, measures the following:

• True positive (TP): Instances correctly predicted as positive.

• False positive (FP): Instances incorrectly predicted as positive.

• False negative (FN): Instances incorrectly predicted as negative.

• True negative (TN): Instances correctly predicted as negative.
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Table 1.4 Confusion matrix: real positive cases (P), real negative cases (N), predicted positive
cases (PP), predicted negative cases (PN), true positive (TP), false positive (FP), false negative
(FN), and true negative (TN).

Predicted value

Positive (PP) Negative (PN)
A

ct
ua

l Positive (P) TP FP
Negative (N) FN TN

Based on this matrix, several metrics can be calculated, among the most popular of which
are:

• Accuracy (ACC): The proportion of correctly classified instances:

accuracy =
TP+TN

P+N
(1.2)

• Recall (TPR): True positive ratio or the probability of correctly classifying a positive
instance:

recall =
TP
P

(1.3)

• Specificity (TNR): True negative ratio or the probability of correctly classifying a
negative instance:

specificity =
TN
N

(1.4)

• F1-Score: The harmonic mean of precision and recall:

F1-score = 2× precision× recall
precision+ recall

(1.5)

• Matthews correlation coefficient (MCC): The correlation between the real and
predicted values:

MCC =
TP×TN −FP×FN√

(TP+FP)× (TP+FN)× (TN +FP)× (TN +FN)
(1.6)
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All data
Train 80% Test 20%

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Table 1.5 Example of a 5-fold cross-validation.

1.5.2 Cross validation

After training a model, it is necessary to evaluate its performance with new data. The most
common way to do so is to split the data into two sets, the training set and the test set on the
basis of an 80−to−20 ratio. This split should be stratified, so as to ensure that the distribution
of classes in the training and test sets is the same as in the original dataset. However, testing
several models with the same split can lead to overfitting. Cross-validation can be used to do
so. The most common way to use cross-validation is to split the data into k folds, train the
model with k−1 folds, and test it with the remaining fold. This process is repeated k times,
so each fold serves once as the test set. An example of a 5-fold cross-validation is shown in
Table 1.5.

1.5.3 Statistical tests

Statistical tests are tools used in machine learning to determine whether the model results
are significant in relation to a problem. So, they are used to compare the performance of the
models on a problem. The most common tests are the paired t-test [90] and the Wilcoxon
signed-rank test.

The paired t-test is a parametric test that supposes that the data follow a normal distribu-
tion. It is used to compare the means of two samples. The null hypothesis is that the means
are equal, and the alternative hypothesis is that they are different. The t-test is calculated as:

t =
x̄− ȳ√

s2
x+s2

y−2ρsxsy
n

(1.7)

Where x̄ and ȳ are the means of the samples, s2
x and s2

y are the variances, ρ is the
correlation coefficient for the two variables and n is the number of values.
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The Wilcoxon signed-rank test is a non-parametric test that makes no assumptions related
to any one data property. It is used to compare the medians of two samples. The null
hypothesis is that the medians are equal, and the alternative hypothesis is that they are
different. The Wilcoxon signed-rank test is calculated, following the steps listed below:

1. Calculate the differences between paired observations: di = xi − yi, where x and y are
the paired observations.

2. Calculate the rank mean of the absolute differences (|di|) from smallest to largest.

3. Sum the ranks of the positive differences as T+ and sum the ranks of the negative
differences as T−.

4. Calculate the test statistic T as the minimum of T+ and T−.

Once T is calculated, the Wilcoxon distribution is used to find the p-value, using n
degrees of freedom. If the p-value is less or equal to the significance level, T , then the null
hypothesis is rejected.





2
Motivation and Goals

The main objective of this thesis is to explore different preprocessing techniques, so as to
improve the performance of learning models on wide data. As mentioned in the previous
chapter, since wide data contain a large number of features and a low number of instances,
the most convenient preprocessing techniques are feature selection, feature reduction, and
data resampling.

Studies focused on feature selection commonly use high-dimensional data, but not all
include wide data and class imbalance. This is especially true in the feature reduction field
where, due to matrix multiplication limitations, datasets with more columns than rows are
not expected, and the algorithms commonly used are not valid for datasets of that sort.

Semi-supervised learning is also considered a promising field to explore, since one
reason for the wide data set is the lack of labels. Retaining information in both labelled and
unlabelled instances can improve model performance, and using semi-supervised feature
selection algorithms might be a good approach and first step towards resolving the issue.

Each of the following sections describes the objectives of the three papers compiled in
this thesis as chapters.
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2.1 Feature selection and resampling pipeline

The aim of investigating the effectiveness of combining balancing techniques with feature
selection is to improve classification performance on wide datasets. By using common
algorithms for both tasks, the aim is to determine the optimal approach to achieve improved
results. Experimenting with wrapper approaches has a high computational cost, excluding it
on a cost basis, and making it impractical for wide datasets.

The paper extends the existing literature by providing a comprehensive analysis of differ-
ent strategies, including comparisons of the different balancing algorithms and exploratory
conclusions about when to integrate them, either before or after feature selection.

The results for different percentages of selected features are also evaluated and the
performance of different algorithm combinations are compared, providing a more detailed
understanding of the problem space.

2.2 Feature reduction and feature selection performance
comparison

Appropriate feature reduction and resampling strategies for wide datasets are described in
this study, in terms of performance and computational efficiency. It adds to previous studies,
by introducing feature reduction experiments and comparing the new results.

If feature reduction methods are to be used with wide datasets, it is crucial to identify
the methods that are compatible with the dataset dimensions. In this study, one aim is
to determine the significance of different balancing methods and to find the best feature
reduction approach for each classifier.

A significant novelty of this study is its broadly extensive experimentation, with a
particular focus on resampling techniques. While previous studies have focused primarily on
basic techniques, a wider range of methods are explored in this study, including non-linear
approaches.

Suitable approaches to process out-of-sample instances need to be identified for the
application of non-linear feature reduction techniques.
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2.3 Systematic review of semi-supervised feature selection

The aim of this review is to address the curse of dimensionality in semi-supervised learning
problems through the use of semi-supervised feature selection algorithms. It extends previous
studies to provide a new, updated view of the field.

The effectiveness of semi-supervised feature selection is measured in various domains,
including video processing, image and multimedia annotation, chemistry, biology, and
physics, among others. It demonstrates its applicability and impact on improving model
performance with limited labelled data. This preprocessing is relevant for wide datasets
where not only can a large number of challenging features be found, but also a low number
of instances, which may be due to the cost of labelling in some domains.





3
Discussion of Results

In this chapter, the journal papers published or submitted during the development of the thesis
are presented. Additionally, other relevant journal papers not included in the compendium,
but related to the main topics and published during the same period are listed. Finally, the
repositories containing the experimental data resulting from the experiments and the code
used to generate the results are presented.

3.1 Journal Papers

1. Title: When is resampling beneficial for feature selection with imbalanced wide data?

Authors: Ismael Ramos-Pérez, Álvar Arnaiz-González, Juan J. Rodríguez and César
García-Osorio.

Journal: Expert Systems with Applications (JCR: Q1, SJR: Q1).

Year: 2022

Reference: [150]

Repository: https://github.com/Ismael-rp/feature_selection_wide_data

2. Title: An Extensive Performance Comparison between Feature Reduction and Feature
Selection Preprocessing Algorithms on Imbalanced Wide Data

https://github.com/Ismael-rp/feature_selection_wide_data
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Authors: Ismael Ramos-Pérez, José Antonio Barbero-Aparicio, Antonio Canepa-
Oneto, Álvar Arnaiz-González, and Jesús Maudes-Raedo.

Journal: Information (JCI: Q2, SJR: Q2).

Year: 2024

Reference: [149]

Repository: https://github.com/Ismael-rp/feature_reduction_feature_selection_
wide_data_comparison

3. Title: Systematic review of semi-supervised feature selection techniques

Authors: Ismael Ramos-Pérez, Álvar Arnaiz-González, Jesús Maudes-Raedo, Juan J.
Rodríguez

Journal: Under review.

Year: 2024

Repository: Not applicable.

3.2 Other Journal Papers

1. Title: Analysis of the learning process through eye tracking technology and feature
selection techniques

Authors: María Consuelo Sáiz-Manzanares, Ismael Ramos Pérez, Adrián Arnaiz
Rodríguez, Sandra Rodríguez Arribas, Leandro Almeida and Caroline Françoise
Martin

Journal: Applied Sciences (JCR: Q2, SJR: Q2).

Year: 2021

Reference: [159]

2. Title: An experiment on animal re-identification from video

Authors: Ludmila I Kuncheva, José Luis Garrido-Labrador, Ismael Ramos-Pérez,
Samuel L Hennessey and Juan J Rodríguez

Journal: Ecological Informatics (JCR: Q1, SJR: Q1).

Year: 2023

Reference: [99]

https://github.com/Ismael-rp/feature_reduction_feature_selection_wide_data_comparison
https://github.com/Ismael-rp/feature_reduction_feature_selection_wide_data_comparison
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3. Title: Semi-supervised classification with pairwise constraints: A case study on animal
identification from video

Authors: Ludmila I Kuncheva, José Luis Garrido-Labrador, Ismael Ramos-Pérez,
Samuel L Hennessey and Juan J Rodríguez

Journal: Information Fusion (JCR: Q1, SJR: Q1).

Year: 2024

Reference: [100]





4
Conclusions

A study on preprocessing methods for wide datasets has been presented in this thesis. Each
set of results was focused on one of three different preprocessing techniques: feature selection
and resampling, feature reduction, and feature selection for semi-supervised learning. The
most relevant contributions are listed in the following sections.

4.1 Feature Selection and resampling

The study of the effects of feature selection and resampling on wide data led to a key question
that became the topic of the first paper: When is resampling beneficial for feature selection
with imbalanced wide data? After a large number of experiments, the following conclusions
may be advanced:

• Balancing is beneficial to feature selection for wide data classification.

• The effectiveness of balancing strategies depends on the classifier and feature selection
method that is used. Some balancing methods can be counterproductive.

• The preprocessing methods order affects model performance, but the choice depends
on the combination of algorithms (Classifier, feature selector, and resampling method)
chosen.
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• Resampling before feature selection is better with Random Under Sampling while
resampling after feature selection works better with Random Over Sampling and
SMOTE.

• For the datasets used in the experiments, the best performing classifiers for wide data
were KNN and SVM-G, with the best feature selection algorithms being ReliefF, T-test,
and SVM-RFE.

4.2 Feature Reduction

The natural question that emerges after applying feature selection to any problem is: What, if
instead of feature selection, feature reduction algorithms were applied, to avoid the curse of
dimensionality? To answer that question, an extensive and large number of feature reduction
models were explored in the second paper for their comparison with the feature selection
algorithms. Normally, when a feature reduction algorithm is used, it is compared with other
feature reduction and feature selection algorithms. However, the methods selected are basic
and limited. Relevant conclusions of this paper may be highlighted here:

• The feature reduction algorithm MMC was of interest, because of its performance and
the FSCORE because of its simplicity.

• MMC outperformed the best feature selection algorithm found in the previous paper
(SVM-RFE) that performed second best.

4.3 Feature Selection in semi-supervised learning

Expanding the feature selection topic to semi-supervised learning, a systematic review
covering 102 studies was performed. As a result of that review, a new taxonomy was
proposed, and 103 algorithms were classified. That information is shown alongside other
data related to the studies, such as the datasets, authors, and typical experimental setups. The
conclusions can be summarized as follows:

• The most common type of semi-supervised feature selection algorithms are the filters
based on the Laplacian matrix and pairwise constraints.

• In this field, researchers should explore two critical parameters usually chosen arbitrar-
ily: the number of labelled instances and the number of selected features.
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• Some good practices to ensure results validation are not always followed, such as the
application of robust metrics to unbalanced data, proper cross-validation techniques,
and statistical tests.

• Only 10% of the algorithms have available code, which hinders result reproducibility
and delays further research.

• Supervised learning models, particularly SVM and KNN, are the predominant models
used to evaluate the performance of semi-supervised feature selection algorithms.

4.4 General conclusions

After a long period of research, the results have shown that preprocessing techniques remain
essential to improve model performance and to provide some guidance on the choice of
algorithm and the order of preprocessing in the field of wide data. In addition, the systematic
review has not only provided an updated comprehensive view of the field for new researchers,
but has also been a great exercise to improve critical thinking and scientific research skills.
Finally, this thesis has achieved its goals of providing new information on the research topic,
as well as offering a great opportunity to learn and to mature as a researcher.





5
Future Lines

This thesis has opened new lines of research that can be explored in the future. Examples
include the use of hybrid and ensemble techniques for feature selection.

As mentioned in the conclusions, the choice of dimensionality to reduce the data is a
challenging task. The application of dimensionality estimator [134] algorithms may help in
making this decision. Applying meta-learning techniques [106] to choose the best type of
preprocessing is also an option, as it has been noted that their performance partly depends
on the other algorithms with which they are combined. Those algorithms do not need to
be limited to the ones already applied, so new preprocessing techniques can be studied
individually or combined with others on wide data, such as noise detection [193], which
removes irrelevant instances.

The feature selection techniques have been studied in the field of semi-supervised learn-
ing, but the scope of these preprocessing methods can be extended to other areas such as
regression [202], clustering [127], multi-label [115] or multi-target regression [219].
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When is resampling beneficial for feature

selection with imbalanced wide data?

This study explores the influence of combining methods of balancing and feature selection
on wide data using different classifiers across multiple datasets.

Authors: Ismael Ramos-Pérez, Álvar Arnaiz-González, Juan J. Rodríguez and César
García-Osorio.

Type: Journal
Published in: Expert Systems with Applications (JCR: Q1, SJR: Q1).
Year: 2022
Keywords: Feature selection, Wide data, High dimensional data, Very low sample size,

Unbalanced, Machine Learning.
Reference: [150]

Abstract

This paper studies the effects that combinations of balancing and feature selection techniques
have on wide data (many more attributes than instances) when different classifiers are
used. For this, an extensive study is done using 14 datasets, 3 balancing strategies, and 7
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feature selection algorithms. The evaluation is carried out using 5 classification algorithms,
analyzing the results for different percentages of selected features, and establishing the
statistical significance using Bayesian tests.

Some general conclusions of the study are that it is better to use RUS before the feature
selection, while ROS and SMOTE offer better results when applied afterwards. Additionally,
specific results are also obtained depending on the classifier used, for example, for Gaussian
SVM the best performance is obtained when the feature selection is done with SVM-RFE
before balancing the data with RUS.

1.1 Introduction

The term “wide data” has been used to refer to datasets characterized by a high number of
features and a low number of instances [101], which severely impairs the smooth performance
of learning algorithms. We have not been able to find in the literature a proper definition of
the term “wide data”. Although strictly speaking a dataset could be considered wide when
its number of features (#Features) is just greater than its number of examples (#Examples),
#Features > #Examples, we believe that for a dataset to deserve to be called wide, this
difference must be substantial, #Features ≫ #Examples, for example, of at least one order of
magnitude. For reference, in the datasets used in the experimental part of this article, that
difference is even greater, with a #Features/#Examples ratio that is greater than 20 for all
datasets, and with at least 2 000 features.

Several real-world datasets suffer from these problems, especially biological and ge-
nomics datasets, discussed in Liu et al. [121], where data from electroencephalography
analyses were used for epilepsy diagnosis, analysis in early detection of type 2 diabetes [20],
and the prediction of mortality among patients admitted to an intensive care unit [191].
However, this type of data also arises in other areas such as fault detection in engineering: for
example, the diagnosis of engine system faults from measurements taken from the bearing
assembly [66], the detection of induction motor failures [6, 84], and in solar radiation esti-
mation [86], among others. It also appears in computer security environments, for intrusion
detection in network environments [211]. The presence of a large number of features (high
dimensionality) decreases the efficiency of learning algorithms and increases their execution
time [128].

As it is well known, the aim of feature selection (FS) algorithms is to find the optimal
combination of features that will help to create models that are simpler, faster, and easier to
interpret. However, this task is not easy and is, in fact, an NP-hard problem [62]. In addition,
this type of data is known as unbalanced data when the number of instances belonging to
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each class is very different between classes [55]. When dealing with unbalanced datasets,
even if the classifier achieves high global accuracy, it is often the case that the identification
of the instances belonging to the minority class is not highly precise. Classifiers work well
with instances of the majority classes, though these instances are usually the least interesting,
which means that the classifier is largely useless. Some of the most popular algorithms
that try to solve this problem are based on oversampling techniques [1] that increase the
number of instances of minority classes and undersampling techniques [136] that decrease
the number of instances of the majority classes. And there are more recent proposals that
use ensembles to combat imbalance [50], or deal with this problem in the context of big
data [83].

The objective of this study is to conduct a series of experiments to assess whether
balancing techniques improve classification performance when they are used in conjunction
with feature selection on wide data. For this purpose, we use the most common algorithms
at each of these stages. Moreover, we are not only interested in finding the more suitable
balancing algorithm, but we also seek to determine the most appropriate moment to use it:
either before or after feature selection. There is too little literature comparing the performance
of these two strategies [145, 225], the main novelties of the present paper are:

• The use of a wider variety of algorithms.

• The use of a larger number of datasets.

• The evaluation of the results for different percentages of selected features, avoiding the
bias of using a fixed percentage, and hence providing a more complete overview of the
problem.

• The performance comparison of different combinations classifier-balancing method.

The R code used for the feature selection and to create the figures can be found on
GitHub1.

The rest of the paper will be organized as follows. In Section 1.2, the background on
the different approaches of the feature selection methods will be given. In Section 1.3, the
same will be done for the techniques dealing with unbalanced problems. Information will
be provided in Section 1.4 on the experimental setup and the results will be presented and
analyzed in Section 1.5. The main insights of the study are discussed in Section 1.6. Finally,
the conclusions and future work will be presented in Section 1.7.

1https://github.com/Ismael-rp/feature_selection_wide_data.

https://github.com/Ismael-rp/feature_selection_wide_data
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Feature selection algorithms

Filter

Univariate Multivariate

Wrapper

Exponential Sequential Random

Embedded

Fig. 1.1 Taxonomy of feature selection algorithms [157].

1.2 Feature selection

In data science, it is often very important to know which features of a dataset are the most
relevant for training learning algorithms [157]. The use of certain features may not only
make no contribution to the improvement of the learning algorithm, but their use might even
worsen its performance. This reason explains why FS algorithms are used to find the subset
of features that improves the performance of the models obtained using machine learning
algorithms. Moreover, FS algorithms also prevent the learning algorithm from overfitting
and speeds up its training. In addition, knowledge of which the selected features actually are
can provide useful insight into the datasets.

This problem is even more relevant when dealing with wide data, where the number of
features is extremely high. At the same time, this technique is widely used for big data [144]
where reducing both data size and execution times are paramount.

Some taxonomies [237, 157] can be found in the literature on the different FS algorithms,
the most widely used of which and, from our point of view also the most convenient, classify
the features by their relationship with the learning algorithm. This taxonomy is shown in
Figure 1.1, in which we can find three main types: filters, wrappers and embedded methods
(or nested subset methods):

• Filters [25] are used to calculate the relevance of each feature, mainly based on its
statistical properties, providing a numerical score for each feature that depends on its
contribution to the performance of the algorithm, also called importance.

Since the operation of these methods will not depend on the use of any particular
classifier, it means that the feature sets can be used with any classifier. This approach
will reduce overfitting, but it cannot guarantee the best performance, unlike other FS
algorithms.
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It should be noted that since this type of algorithms cannot determine the optimal
number of features, which would provide the best performance. That number is an
additional parameter that must be set to select the subset of relevant features.

An advantage of filter methods is that they are only executed once before the training,
avoiding having to adjust a lot of hyperparameters, making the training faster and more
scalable. This feature makes them specially suitable for big-data problems.

Two kinds of filters may be identified: univariate and multivariate. While the univariate
FS algorithms find dependencies between each feature and the output, the multivariate
ones try to find dependencies between the features, unfortunately, this is at the cost of
more processing time, which makes them less scalable.

• Wrapper methods [93] search throughout the entire space of feature subsets looking
for the subset that provides the best performance to the specific learning algorithm
given as parameter. They usually offer better performance than the filter methods,
however the risk of overfitting is higher. They are also slower and less scalable, because
the learning algorithm has to be executed every time a subset of features needs to be
evaluated.

• Embedded methods [207, 64] take advantage of the inner properties of certain learning
algorithms, in order to discover the most relevant features in the dataset, as is the case
with Random Forest.

Unlike wrapper methods, the classifier on which the embedded methods are based is
not necessarily the same as the one used to classify. These methods have lower risks
of overfitting and are faster than the wrapper-based methods, although they are still
slower than the filter-based methods.

The strategies of the previous methods can be combined to obtain new algorithms, the
two combination approaches are:

• Hybrid algorithms take advantage of filter and wrapper methods, sequentially com-
bining their outputs. The output of the filter is given as the input to the wrapper,
which reduces the wrapper computation time, by making an initial selection using
the filter method and exploiting the efficiency that the wrapper can obtain. Although
the sequence of filter-wrapper is generally used, different combinations can also be
found [158].

• Ensemble algorithms [23] combine the output of several individual methods to
improve the results that would have been obtained from using each of them in isolation.
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In the same way as ensemble classifiers, ensembles for feature selection can be classi-
fied into homogeneous (those that use the same FS method) and heterogeneous (that
use different FS methods). The latter are the most widely used.

For this study, we focused on the most cited FS algorithms in the state of the art. To
facilitate the comparison of methods, in the experiments we only included those that return a
ranking, among which we can find filters (T-test, ANOVA, Information gain, Chi squared, and
ReliefF) and embedded methods (Random Forest importance and SVM Recursive Feature
Elimination):

• T-test [143] is a popular statistical test that may be used for an individual evaluation of
feature relevance. It computes the ratio between the differences of two class means
and the variability between them.

• ANOVA [82], an acronym that stands for “ANalysis Of VAriance”, is a simple and
well-known method that can be used for feature selection. It works in a similar way to
the previous method, testing the differences of means between groups.

• Chi squared (Chi-S) is a feature selection algorithm proposed by [116] that uses the
χ2 statistic and works in two phases. The first phase uses the ChiMerge of [89],
automatically increasing the χ2 threshold. The second phase attempts to merge the
features, by using the values computed in the previous phase; if two features can be
merged, it means that one of them is irrelevant and can be discarded.

• Information gain (Info-Gain) is a measure commonly used in the construction of deci-
sion trees for finding the most informative feature to use for splitting each node. The
use of information gain for feature selection involves an evaluation of the information
gain of each feature with respect to the target feature. More specifically, information
gain measures the expected reduction in entropy [132].

• Random Forest importance (RF-Imp) determines the usefulness of each feature by
measuring the performance difference of the out-of-bag data when noise is added, as
proposed by [27].

• ReliefF [94] is an extended version of the original Relief feature selector of Kira and
Rendell [91]. Based on instance-based learning (kNN is used for searching similar
instances), it estimates the importance of a feature in relation to other features, and it
is non-parametric, that is, no assumption of any distribution is made [188].



1.3 Unbalanced data 43

• SVM Recursive Feature Elimination (SVM-RFE) [63] is an iterative process that
recursively removes features according to the feature weights in a support vector
machine classifier (SVM). It is an example of backward feature elimination [92] where
the elimination is recursive and the classifier used is the popular SVM.

1.3 Unbalanced data

A dataset is said to be unbalanced when it has a very different number of instances for each
class, which affects negatively the classifiers performance, is commonly measured using the
imbalance ratio (IR) [125], it is even more common in wide data due to the low number of
instances.

A straightforward solution for dealing with unbalanced data is to resample the original
data set by adjusting the balance ratio as desired. On the one hand, undersampling methods
eliminate instances corresponding to the majority class [136]; on the other hand, oversampling
methods create artificial instances for the minority class [1], and hybrid methods combine
both approaches.

The resampling methods used in this study are described below:

• Random undersampling (RUS) [79] algorithm randomly selects instances from the
majority class (i.e., it removes instances of the majority class).

• Random oversampling (ROS) [79] algorithm duplicates instances from the minority
class.

• Synthetic Minority Over-sampling Technique (SMOTE) [32] algorithm creates new
instances, interpolating two instances of the original data set, the first one chosen
randomly and the second one chosen randomly from among its k closest neighbors
where k is a predefined parameter.

1.4 Experimental setup

Evaluating the performance of an FS algorithm is not as simple as with a common classifier,
where the evaluation is simply based on the number and the type of correctly classified
instances.

We aim to evaluate how good an FS algorithm is at selecting the features. These
algorithms will attach greater weight to the more relevant features and less weight to the
less relevant ones. Using an artificial dataset, we would be able to compare the real weight
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Table 1.1 Datasets used in the experimental study. Datasets 1–9 were previously used
in [237]. Datasets 10–14 were used in [109].

Dataset #Ex. #Feat. #Feat.
#Ex. Class (min.; max.) %min.; %max. IR

1 Colon1 62 2 000 32.26 (Normal; Tumor) 0.35; 0.65 1.86
2 MLL_ALL1 72 12 582 174.75 (ALL; rem) 0.33; 0.67 2.03
3 MLL_AML1 72 12 582 174.75 (AML; rem) 0.39; 0.61 1.56
4 MLL_MLL1 72 12 582 174.75 (MLL; rem) 0.28; 0.72 2.57
5 SRBCT_11 83 2 308 27.81 (1; rem) 0.35; 0.65 1.86
6 SRBCT_41 83 2 308 27.81 (4; rem) 0.30; 0.70 2.33
7 Lung_11 203 12 600 62.07 (rem; 1) 0.32; 0.68 2.12
8 Lung_41 203 12 600 62.07 (rem; 4) 0.10; 0.90 9.00
9 Lung_51 203 12 600 62.07 (rem; 5) 0.10; 0.90 9.00

10 Leukemia_BM2 72 7 130 99.03 (BM; rem) 0.29; 0.71 2.45
11 TOX_171_12 171 5 748 33.61 (1; rem) 0.26; 0.74 2.85
12 TOX_171_22 171 5 748 33.61 (2; rem) 0.26; 0.74 2.85
13 TOX_171_32 171 5 748 33.61 (3; rem) 0.23; 0.77 3.35
14 TOX_171_42 171 5 748 33.61 (4; rem) 0.25; 0.75 3.00

1 https://jundongl.github.io/scikit-feature/datasets.html
2 http://csse.szu.edu.cn/staff/zhuzx/Datasets.html

of each feature with the one provided by the FS. However, as with the case presented here
where real datasets are used, it is common to evaluate the selected features according to the
classifier performance [23]. In this section, the steps followed during the experiments are
explained, in order to evaluate the performance of the combination of feature selection and
balancing on imbalanced wide data.

1.4.1 Datasets

The 14 high dimensional unbalanced datasets used in this study are summarized in Table 1.1.
For each dataset, the number of examples, the number of features, the relation between the
number of examples and features, the class names, the percentage of examples for each class,
the class imbalance ratio (IR), and the reference are shown. All the dataset features were
numeric and the original multi-class labels were grouped into a new one, in order to obtain
new two-class unbalanced datasets. The dataset name indicates which classes were used
(where rem represents the combination of the remaining classes).

https://jundongl.github.io/scikit-feature/datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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1.4.2 Cross validation

The experiments were performed using 5×2-fold cross validation. Having been randomly
divided into 2 parts, both parts were used for training and testing and the same step was
repeated 5 times. This kind of cross validation is very useful when processing datasets with
classes that have a very low number of instances, since using 10-fold cross validation will
leave a very low number (or even no one) of instances belonging to the minority class in the
test [49].

Moreover, all the datasets were normalized for transforming all the features: the mean
to 0 and the standard deviation to 1.

1.4.3 Feature selection and balancing

Since our goal is to assess how data balancing affects feature selection, we will combine
the 7 FS algorithms with the 4 balancing strategies explained in sections 1.2 and 1.3 (all the
methods are listed in Table 1.2).

There are two possible ways to combine these algorithms: either to perform feature
selection first and then to balance the dataset (FS+bal), or in reverse, to balance the dataset
first and then to perform feature selection (bal+FS).

All of these combinations (7 FS algorithms, 4 balancing strategies, and 2 ways to combine
them) added up to a total of 56 configurations that were all tested.

Since all the FS algorithms used were rankers, they only offered a list of features sorted
by importance, without ever indicating the optimal number of features for any algorithm. In
other studies [145], the authors selected a specific number of features what could induce a
bias in the results. Here, we wished to conduct a broader and more in-depth study of the
process, so as to offer a better overview of the behavior of the interactions between the two
preprocessing steps, which is why up to 20 different scenarios were considered, each using a
different percentage of selected features, with a separation of 5 points between them.

1.4.4 Classifiers

Some of the most popular classifiers were used for testing feature selection: k-nearest
neighbors (KNN), SVM-Gaussian, C4.5 trees, Random Forest, and Naive Bayes [23].

1.4.5 Parameters

All the algorithms together with the parameters used and the libraries that were applied are
shown in Table 1.2. For the SVM-G classifier we performed a grid parameter search and we
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Table 1.2 Resampling algorithms used in this study with their parameters and the R pack-
ages used: class (https://cran.r-project.org/web/packages/class/index.html), e1071 (https:
//cran.r-project.org/web/packages/e1071/index.html), RWeka (https://cran.r-project.
org/web/packages/RWeka/index.html), randomForest (https://cran.r-project.org/web/
packages/randomForest/randomForest.pdf), naivebayes (https://cran.r-project.org/web/
packages/naivebayes/index.html), sigFeature (https://www.bioconductor.org/packages/
release/bioc/html/sigFeature.html), mlr3filters (https://cran.r-project.org/web/packages/
mlr3filters/index.html), FSelector (https://cran.r-project.org/web/packages/FSelector/
index.html), and unbalanced (https://cran.r-project.org/web/packages/unbalanced/index.
html).

Algorithms Parameters Package

Classifier

KNN K = 1 class
SVM-G c = 1e+09, g = 1e−07 e1071
C4.5 Default RWeka
Random Forest Default randomForest
Naive Bayes Default naivebayes

Feature selection

T-test - sigFeature
ANOVA - mlr3filters
Chi-Squared - FSelector
Info Gain - FSelector
RF-Imp - FSelector
ReliefF neighbors = 1 FSelector
SVM-RFE - sigFeature

Balancing

ROS Ratio 1:1 Own impl.
RUS Ratio 1:1 Own impl.
SMOTE Ratio 1:1, k=5 unbalanced

https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/naivebayes/index.html
https://cran.r-project.org/web/packages/naivebayes/index.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://cran.r-project.org/web/packages/mlr3filters/index.html
https://cran.r-project.org/web/packages/mlr3filters/index.html
https://cran.r-project.org/web/packages/FSelector/index.html
https://cran.r-project.org/web/packages/FSelector/index.html
https://cran.r-project.org/web/packages/unbalanced/index.html
https://cran.r-project.org/web/packages/unbalanced/index.html
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Table 1.3 Confusion matrix

Actual positive Actual negative

Predicted true True positive (TP) False positive (FP)
Predicted false False negative (FN) True negative (TN)

found that using c = 1e+09 and g = 1e−07, we obtained an optimum performance in all
datasets. Regarding ReliefF, as it needs a long time to rank the features, we set the parameter
n to 1 in order to reduce its execution time. For SMOTE, we tested a range of values from 1
to 20 for the parameter k, we observed that the performance is very similar for all of them
and the recommended parameter 5 gives usually slightly better performance than the others.
Finally, with the balancing algorithms, we left the balancing ratio to 1 for all the datasets
(i.e., the same number of instances for both the majority and the minority classes).

1.4.6 Metrics

Testing an algorithm with unbalanced data can be problematic. If, for example, the unbalance
ratio were 1:10, with 100% majority-class accuracy and 0% minority-class accuracy, the
accuracy rate can be set at 90%, however these results are of no use, as the trained classifier
cannot distinguish between the two classes.

We selected some of the most accepted metrics in feature selection and data balancing,
to evaluate the performance of each configuration: the Area Under the ROC Curve (AUC),
Geometric Mean (G-Mean), and F1-Score.

These metrics are based on the confusion matrix (see Table 1.3) where the following
values can be found:

• True Positive (TP): positive instances correctly classified (minority class in our data).

• True Negative (TN): negative instances correctly classified.

• False Positive (FP): positive instances incorrectly classified.

• False Negative (FN): negative instances incorrectly classified.

Our objective was to maximize the balance between TP and TN values in the diagonal.
Using these values, the three basic ratios can be calculated before computing our three main
metrics:

• Recall is the probability of considering a positive instance as positive.
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recall =
TP

TP+FN
(1.1)

• Specificity, as opposed to recall, is the probability of classifying a negative instance as
negative.

specificity =
TN

TN +FP
(1.2)

• Precision is the probability of an instance classified as positive.

precision =
TP

TP+TN +FP+FN
(1.3)

From these ratios, the measures used to evaluate the results of the experiments can be
defined.

• Area Under the ROC Curve (AUC) the mean between recall and specificity. Note that,
although it is often used to evaluate multiple possible classifiers, here we just use it
with a single point, which is the mean between recall and specificity. This measure has
been used in earlier studies [58].

AUC =
recall+ specificity

2
(1.4)

• F1-Score is the harmonic mean between precision and recall.

F1-Score = 2× precision× recall
precision+ recall

(1.5)

• G-Mean, widely used in unbalanced problems, is the geometric mean between sensi-
tivity and specificity.

G-Mean =
√

recall× specificity (1.6)
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1.5 Results

This section summarizes the results of the 6 860 experiments that were performed: the
performance of 5 classifiers on 14 wide datasets (Table 1.1) using all possible combinations
of 7 strategies for FS algorithms and 7 balancing strategies 2.

For the sake of readability and simplicity, only the results of the AUC metric are shown,
since the conclusions drawn from the F1-Score and G-Mean metrics were very similar.
Nevertheless, the figures of all the metrics are compiled in the additional material3.

Figure 1.2 shows all combinations of FS algorithms and classifiers in a matrix of stacked
graphs. In the stacked graphs, the ordinate axis is the percentage of victories, and the abscissa
axis is the percentage of selected features (20 different percentages with separation steps
of 5 percent; the minimum percentage of features used is 5 percent and the maximum is
100 percent). The different shades of blue correspond to different balancing strategies (as
shown in the top legend). The rows of the matrix of graphs correspond to different classifiers
(shown on the right side), the columns to the selectors (specified on the top of each column).

Moreover, Figure 1.3 is included where the area plots are replaced by line plots: the y axis
represents the average ranks obtained for each balancing strategy and the x axis represents
the percentage of the features selected by the corresponding FS algorithm (sorted from best
to worst).

In Figures 1.2 and 1.3, it can be seen that the results depend more on the classifier than on
the other parameters. Broadly speaking, we can see the following insights for each classifier:

• KNN: The best performance was achieved when resampling is performed before the
FS algorithm, more specifically, SMOTE+FS and ROS+FS were on the top.

• SVM-G: Although it may not be so clear in the rankings, it can be seen in the area
graphs that FS+RUS usually provided the best results. Specially when SVM-RFE was
the feature selector in use.

• C4.5: While not using any balancing strategies showed better results in the area graphs
and ROS+FS in the average ranks, both RUS balancing strategies were the lowest in
the performance rankings.

• RF: The balancing configuration FS+ROS in the area plots, and FS+RUS in the
average ranks, showed better performance than the others. Unlike C4.5, the rankings

2Each balancing strategy applied in two orders, before or after the feature selection, and the case of not
balancing.

3Additional material: https://ars.els-cdn.com/content/image/1-s2.0-S0957417421013622-mmc1.pdf

https://ars.els-cdn.com/content/image/1-s2.0-S0957417421013622-mmc1.pdf
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T-test ANOVA Chi-S Info-Gain RF-Imp ReliefF SVM-RFE
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Fig. 1.2 Comparison of balancing methods: each row corresponds to a classifier, each column
to an FS algorithm. At the intersection, a stacked graph shows the results of the different
balancing methods for the corresponding combination of FS and classifier in shades of
blue (the abscissa axis is the percentage of selected characteristics; the ordinate axis is the
percentage of victories).



1.5 Results 51

T-test ANOVA Chi-S Info-Gain RF-Imp ReliefF SVM-RFE
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Fig. 1.3 Comparison of balancing methods by means of the average ranks, each row corre-
sponds to a classifier, each column to an FS algorithm. At the intersection, a line graph shows
the average rank for the different balancing methods for the corresponding combination of
FS and classifier (the abscissa axis is the percentage of selected characteristics; the ordinate
axis is the average rank).
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Table 1.4 The best balancing configurations (rows) for each classifier (columns).

KNN SVM-G C4.5 RF NBayes

FS ✓
FS+ROS ✓
FS+RUS ✓ ✓ ✓
FS+SMOTE
ROS+FS ✓ ✓
RUS+FS ✓
SMOTE+FS ✓

showed that no use of balancing was by far the worst combination, a behavior also
supported by the results of a previous study [145].

• NBayes: The use of RUS appeared to provide the biggest area, especially FS+RUS
which can also be seen in the average ranks. According to the rankings, SMOTE was
the worst, regardless of when the feature selection was implemented, either before or
after its application.

Considering all the percentages of features and the different selectors used, we summarize
the most remarkable balancing strategies for each classifier in Table 1.4.

Additionally, it is interesting to note that the number of selected features appeared not to
have much impact on the final rankings of the balancing strategies.

So far, the balancing strategies have been compared to show which one worked best for
each classifier. In what follows, similar graphs will be used to compare and to determine
which the best combinations of classifiers and FS algorithms.

Figure 1.4 compares the FS algorithms which are differentiated by colors. The columns
represent each different balancing strategy used, and the rows represent each classifier. It can
be seen that among those that provide the best performance are SVM-RFE alongside most of
the classifiers, specially with NBayes, KNN, and T-test. It also achieves good results with
the KNN, making some appearances with the smallest number of features in SVM-G, C4.5,
and RF.

Finally, looking at Figure 1.5, where each graph shows the percentage of times that a
method has been the best for different sizes of feature subsets, the classifier that shows the
best overall performance was SVM-G, with KNN in second place. However, the behavior of
NBayes was also noteworthy, which yielded good results for some combinations of selectors
and balancing strategies, when the percentage of selected characteristics was low.

After the general overview provided by the previous figures, we used average rankings to
compare the configurations of the best classifiers (KNN and SVM-G). In the Table 1.5 can be
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Fig. 1.4 Comparison of feature selector methods using the percentage of victories. The
results are organized by balancing methods (columns) and classifiers (rows), while showing
the percentage of features selected on the x axis.
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are divided by balancing methods (columns) and feature selector used (rows), while showing
the percentage of features selected on the x axis.
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Table 1.5 Average ranks of the most promising configurations previously identified.

Classifier FS Balancing Avg. rank

SVM-G SVM-RFE FS+RUS 9.43
KNN SVM-RFE SMOTE+FS 12.93
KNN SVM-RFE FS+SMOTE 13.79
SVM-G SVM-RFE ROS+FS 14.00
SVM-G SVM-RFE SMOTE+FS 17.57
KNN SVM-RFE ROS+FS 20.21
SVM-G SVM-RFE FS+ROS 20.93
SVM-G SVM-RFE FS 22.00
SVM-G SVM-RFE FS+SMOTE 22.00
KNN SVM-RFE FS+RUS 22.86
SVM-G SVM-RFE RUS+FS 23.36
KNN T-test SMOTE+FS 25.14
KNN ANOVA SMOTE+FS 26.43
KNN ANOVA FS+SMOTE 27.64
SVM-G ANOVA ROS+FS 28.00
SVM-G ANOVA FS+RUS 28.57
SVM-G T-test FS 29.07
SVM-G T-test FS+RUS 29.14
SVM-G T-test ROS+FS 29.36
KNN SVM-RFE RUS+FS 29.64
KNN T-test FS 30.43
SVM-G T-test FS+ROS 30.64
KNN T-test FS+ROS 30.79
SVM-G T-test FS+SMOTE 31.00
KNN SVM-RFE FS+ROS 32.00
SVM-G ANOVA SMOTE+FS 32.21
KNN ANOVA ROS+FS 32.64
KNN T-test ROS+FS 32.93
SVM-G T-test SMOTE+FS 34.93
SVM-G ANOVA FS+ROS 35.07
SVM-G ANOVA FS+SMOTE 35.64
KNN SVM-RFE FS 35.93
KNN T-test FS+SMOTE 35.93
SVM-G ANOVA RUS+FS 35.93
SVM-G ANOVA FS 36.21
SVM-G T-test RUS+FS 36.64
KNN ANOVA FS+RUS 39.29
KNN ANOVA RUS+FS 42.57
KNN ANOVA FS+ROS 43.71
KNN T-test RUS+FS 45.00
KNN ANOVA FS 45.50
KNN T-test FS+RUS 46.21

seen the most promising combinations of classifiers, FS algorithms and balancing methods
from the previous figures. It shows some interesting patterns. Combinations that use SVM-G
as a classifier appear to perform better than those that use KNN. Regarding the FS algorithm,
the dominance of the combinations that use SVM-RFE appears clear, as these combinations
occupy the top positions. Finally, it appears that the balancing strategies have little influence
on the positions that the combinations occupy; not only there is no clear pattern, but both the
best and worst combinations use the same balancing strategy FS+RUS.

In an attempt to assess the effect of balancing the data and to complete the analyses
performed so far, in what follows, we use the Bayesian test [18] to compare the FS configura-
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(c) FS+SMOTE

Fig. 1.6 Example of three Bayesian tests for the classifier KNN and the feature selection
ReliefF, where no balancing strategy is compared against using ROS, RUS, and SMOTE.

tions, which are the ones that do not balance the data, with the other configurations, which
use different balancing strategies.

The Bayesian hypothesis testing is a relatively recent approach to the analysis of ex-
perimental results that tries to overcome the limits and problems which characterize null-
hypothesis significance tests. It can be used to compare two different methods, obtaining
the probabilities that one is better than the other, or that both have a performance that is
practically equivalent. In Bayesian tests, this “practical equivalence” is given by the value
of a parameter called the Region Of Practical Equivalence (ROPE), which was set at 0.001
for this work. In addition, only the performance values for the best balancing strategies in
previous experiments were used, applying only the best 10% of selected characteristics, to
reduce the number of results and to facilitate the analysis.

A Bayesian test constructs a probability distribution whose parameters are obtained from
the differences in the experimental results observed when comparing two methods, using
certain weights that are assumed to follow a Dirichlet distribution [137]. Given specific
weights, the distribution can be used to calculate three probabilities: i) the probability that
the first method is better than the second; ii) the probability that the second is better than the
first; iii) the probability that both methods are practically equivalent. Through a Monte Carlo
process [96], the weights can be sampled, obtaining different probability triplets. The three
values of these triplets can be considered as barycentric coordinates that can be drawn as
points in a simplex of coordinates {(1,0,0),(0,1,0),(0,0,1)} [17].

As shown in Figure 1.6, where the classifier KNN and the feature selector ReliefF (with
the 10% of the best features) without balancing is compared to the strategies FS+ROS,
FS+RUS, and FS+SMOTE. Each triangle represents one test where the left corner shows
the probability of not using any balancing, the right corner represents one of the different
resampling techniques (ROS, RUS, and SMOTE), and the top corner represents the probability
of no significant differences between them.
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Fig. 1.7 Bayesian test results comparing each resampling strategy with not use any resam-
pling.

Rather than using triangles, we substituted each triangle for colored tiles in the heatmaps
of Figure 1.7, due to the high number of tests that were performed, to facilitate the presentation
of the results. Two probability numbers are displayed in each tile: the top one is the probability
that the best option is to use the balancing strategy shown at the bottom of each column,
the lower one is the probability that no balancing is the best option. The color of the
tile is obtained from the difference between these two values, with a scale that goes from
green, when the difference is more in favor of using the balancing strategy, to red, when the
difference is more in favor of not balancing. The white color represents the cases in which
there is no clear winner between the two approaches. Each row is for a different combination
of classifier and FS algorithm (shown on the left).

There are two heatmaps on the figure, the left one shows the results when the AUC
metric is used, and the right side when the F1-Score is used (we also computed the results
for the G-Mean, but they have been left as additional material3, since they are similar to
those obtained with AUC). Note that the first three tiles on the top left of the right matrix
(F1-Score) display the values corresponding to the triangles explained in Figure 1.6.

Finally, we also applied Bayesian analysis to answer the question of whether it is better
to balance before or after FS. The results of this comparison were very interesting (see
Figure 1.8). The figure is divided into three blocks according to the balancing method
used (RUS, ROS, and SMOTE). The results for the different combinations of classifier and
selector are grouped by rows (only those combinations that gave the best results in previous
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Fig. 1.8 Summary of the Bayesian tests to compare at which point it is better to apply the
balancing techniques (top value corresponds to the application of balancing before FS, the
lower value to the application afterwards).

experiments have been considered). The results obtained for the different performance
measures are grouped in each column.

In each tile, the upper number is the probability that resampling before the FS stage is
better, and the lower number the probability that resampling after the FS stage is better. The
color of the tile is given by the difference between both values; if the difference is in favor of
resampling before FS, the greener its color will be; if the difference is in favor of resampling
after the FS stage, the color will be redder. When both strategies give similar results, the
color will be close to white.

1.6 Discussion

As can be seen in Figure 1.7, in most cases the balancing strategies (top probability) are the
ones that offered the best results, especially for KNN+ANOVA and KNN+SVM-RFE. The
exception is when considering the RUS+FS balancing strategy, which seems to be clearly
counterproductive for most combinations of classifiers and FS algorithms. The results of the
combination FS+RUS are equally discouraging.
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Also of interest is the behavior of the KNN+T-test combination, which only seems to
benefit from the balance obtained with the SMOTE+FS strategy, if considering the AUC, or
with the SMOTE+FS and ROS+FS strategies, if considering the F1-Score.

When analyzing the order in which the balancing and feature selection methods should
be applied, Figure 1.8 clearly shows that, in the case of RUS, it is better to apply balancing
before feature selection. This result is confirmed by all the performance measures considered.
The only exception to this general trend seems to be when using the KNN+T-test, where
applying the balancing before the FS does not seem to offer many advantages, being in fact
worse, if we look at the F1 measurement. Interestingly, for KNN+T-test, this deviation from
the general trend also appears for the other two balancing methods.

On the contrary, the results suggest that, in general, SMOTE and ROS perform better
if applied after feature selection. This order of application is especially beneficial when
the balancing method is ROS and the classifier is KNN. Although KNN+T-test is again
an exception if we look at the values of the AUC and G-Mean measurements. The results
observed with the combination of SMOTE with KNN+T-test are also very remarkable,
suggesting that with this combination, balancing necessarily has to be done after feature
selection to obtain the best results.

It is also interesting to note that the results with SMOTE appear to be halfway between
using RUS and ROS.

These results extend the findings of previous studies [145, 225], which only gave as a
general rule that to improve the final results balancing had to be done before the feature
selection stage. According to our results, to choose the most appropriate order, one must also
take into account the particular balancing method that will be used and, in some cases, even
the classifier and the feature selection technique.

1.7 Conclusions

The objective of our study has been to test whether balancing improves the classification
performance when used alongside a FS on unbalanced wide data.

The main novelty of this study is its much broader view than other previous studies, both
in terms of the number of methods that were tested, and the number of datasets. Furthermore,
when evaluating the methods, another notable novelty is that we have considered the results
of various sizes of selected features, rather than restricting ourselves to a single size as in
previous studies.

The conclusions we have reached, following thorough experimentation, have confirmed
some of the results of previous studies. According to the Bayesian test using the 10%
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best features selected, we can state that using a strategy that includes balancing generally
outperforms the use of no balancing.

However, not all balancing strategies work in the same way and their performance
is highly dependent on the classifier and the FS that is used. In so far as one balancing
can improve the classifier or can be counterproductive. The same happens at the time of
resampling (before or after), since resampling before the FS stage is generally better with
RUS while resampling after the FS stage generally works better with ROS and SMOTE.

We can conclude that the best classifiers (among those used in this study) for wide data
were KNN and SVM-G, while ReliefF, T-test, and SVM-RFE were the best FS algorithms.
Furthermore, the best configuration was the SVM-RFE feature selector used before RUS
for the SVM-G classifier.The percentage of chosen features among the best selected slightly
affected the results, but not as much as using a balance method more suitable for the classifier.

Finally, the best results are obtained using RUS as the balancing method, SVM-RFE as
the feature selector (applied before RUS) and SVM-G as the classifier. So this is a good
combination with which to initially process wide data. If it is necessary to use any of the
other classifiers included in our study, Table 1.4 summarizes the best balancing and feature
selector combinations for each of them.

Based on the results of this study, we plan to use more advanced algorithms for this type
of problem in future works, such as ensembles and hybrid algorithms for feature selection
and other balancing algorithms. Given that the final performance of the combination of
selector and balancing method (and the moment at which they are applied) may also depend
on the characteristics of the dataset to which it is applied, in the future we will consider using
meta-learning to analyze whether relationships can be established between the characteristics
of the data and the best combination.
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Abstract

The most common preprocessing techniques used to deal with datasets having high dimen-
sionality and a low number of instances—or wide data—are feature reduction (FR), feature
selection (FS), and resampling. This study explores the use of FR and resampling techniques,
expanding the limited comparisons between FR and filter FS methods in the existing lit-
erature, especially in the context of wide data. We compare the optimal outcomes from a
previous comprehensive study of FS against new experiments conducted using FR methods.
Two specific challenges associated with the use of FR are outlined in detail: finding FR meth-
ods that are compatible with wide data and the need for a reduction estimator of nonlinear
approaches to process out-of-sample data. The experimental study compares 17 techniques,
including supervised, unsupervised, linear, and nonlinear approaches, using 7 resampling
strategies and 5 classifiers. The results demonstrate which configurations are optimal, accord-
ing to their performance and computation time. Moreover, the best configuration—namely, k
Nearest Neighbor (KNN) + the Maximal Margin Criterion (MMC) feature reducer with no
resampling—is shown to outperform state-of-the-art algorithms.

2.1 Introduction

Within the machine learning field, the term “wide data” [104] refers to datasets containing a
much greater number of features than instances. This type of data is common in bioinformat-
ics [67, 160], and usually presents two main problems that affect the performance of learning
algorithms: the curse of dimensionality and data imbalance.

The curse of dimensionality [88] refers to the difficulty of accurately generalizing prob-
lems with high-dimensional datasets when using machine learning algorithms. This increases
both the processing time and required space, as well as the risk of overfitting, as it makes it
difficult to distinguish meaningful patterns from noise.

Considering the low number of instances, wide data are prone to imbalance caused by
the large difference in the number of instances per class [69]. The algorithms trained with
this data may be biased towards the majority class, making it difficult to accurately classify
data belonging to the minority classes.

One of the solutions that may mitigate these problems is the use of preprocessing
techniques. In particular, the curse of dimensionality can be addressed with feature selection
(FS) [157] and feature reduction (FR) [10] methods. FS methods identify and select the most
informative and relevant features from a given dataset, discarding the noisy or redundant
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data. In contrast, FR methods transform the original feature space into a lower-dimensional
one using the information present in the original features.

Resampling methods [133] solve the imbalanced data problem through removing in-
stances from the majority class or creating new ones for the minority class.

There are many application examples of these methods in different areas. For example,
in medicine, FR improves the accuracy of epilepsy diagnosis through analyzing electroen-
cephalography signals, avoiding invasive techniques [201]. FS has been also used for
breast cancer detection [156] analyzing microarray data. Regarding engineering, the authors
of [141] used Principal Component Analysis (PCA) in several predictors to remove noise
from building energy consumption datasets. In another example, in fault diagnosis, FS
was applied to select the best features extracted from magnet DC motors [194] or rotating
machinery [232]. Furthermore, FR techniques are valuable in text mining tasks, such as
document classification, e.g., in [9] PCA and Latent Semantic Indexing (LSI) were used to
extract useful features for an SVM classifier.

This study aims to find the best strategies to process wide datasets, composed of combi-
nations of FS or FR, resampling, and classifiers, through evaluating their performance and
computation time. In the literature, studies comparing dimensionality reduction techniques
with resampling methods have been limited to the use of FS [146]. In this case, new FR
experiments are compared to the best results from [150], which extensively compared various
FS, resampling methods, and classifiers on a wide dataset.

As mentioned in Section 2.2, the use of FR techniques with wide datasets requires
thorough research to identify compatible approaches. For example, applying nonlinear
transformations requires estimation to handle out-of-sample instances.

The scope of this study excludes the use of wrapper FS methods. As detailed in Sec-
tion 2.3, their high computational cost is a crucial factor when processing wide data, as
it presents a large number of features. Both the FS and FR algorithms used require the
dimensionality to be set, which simplifies the comparison and visibility of the results, as the
dimensionality can be set to be the same. The obtained results are analyzed to address the
following objectives of this study:

1. To find an FR method that is compatible with wide data and provides a means to
perform nonlinear transformations over out-of-data instances.

2. To compare the two previously mentioned types of preprocessing techniques (FR and
FS) and determine which is more suitable to use on wide datasets.

3. To determine whether balancing is important while using FR methods and, if so,
whether it is more convenient to use it before or after the FR step.
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4. To determine the best FR method for each classifier.

While previous studies have included some comparisons of FS and FR algorithms over the
same datasets [130], these evaluations are not particularly exhaustive. They predominantly
focus on basic and widely used FR techniques, avoiding the use of nonlinear approaches.
Furthermore, the lack of use of wide datasets makes it impossible to discern which techniques
are optimal in such cases, as not all algorithms are compatible with such data.

Performing a large number of experiments to compare FS and FR approaches for wide
datasets is one of the main novelties of this study. Due to the high presence of the imbalance
problem in wide data, this study also focuses on resampling techniques in combination with
FR and FS preprocessing methods. The code for all of the algorithms, allowing for their
standardized use, can be found on GitHub1.

The remainder of this paper is organized as follows. First, in Sections 2.2–2.4 the
background for all the preprocessing methods used (i.e., FR, FS, and resampling) is provided.
In Section 2.5, the experimental setup is detailed, while the results are shown in Section 2.6.
Finally, the conclusions, limitations, and future work are presented in Sections 2.7–2.9,
respectively.Finally, the conclusions and future work are presented in Section 2.7.

2.2 Feature Reduction

Feature reduction (FR) or manifold learning [10] methods are preprocessing techniques
used to reduce the number of dimensions of high-dimensional datasets. This is useful
for improving the performance of learning algorithms, enhancing data visualization, and
facilitating feature extraction from images. The present study focuses on FR for wide
data classification.

As previously explained, high dimensionality poses a significant challenge to classifi-
cation algorithms, as it complicates the distinction between useful and noisy features. FR
methods attempt to solve this problem through creating a new dataset with the desired dimen-
sionality, combining all the original features. A good FR method should be able to determine
the structure of the original dataset (manifold) and preserve it in a lower dimensional rep-
resentation. This structure is divided into local and global structures. Preserving the local
structure refers to preserving the distance of all individual points to their nearest neighbors,
whereas the global structure refers to the rest of the further points. Preserving both structures
simultaneously is difficult [135], and in FR methods, usually, only one is well retained.

There are some taxonomies that can be used to discriminate FR algorithms according
to their behavior, and some of them can be very extensive, such as the one presented in

1https://github.com/Ismael-rp/feature_reduction_feature_selection_wide_data_comparison

https://github.com/Ismael-rp/feature_reduction_feature_selection_wide_data_comparison
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the study [10]. The present manuscript divides FR methods according to two properties:
supervised/unsupervised and linear/nonlinear. Unsupervised methods ignore the data labels
when creating the new dataset, which makes them useful for clustering problems. On the
other hand, supervised methods utilize data labels, allowing classes to be separated more
effectively and, therefore, making these methods more suitable for classification problems.

Linear FR methods transform the data using a linear transformation which minimizes or
maximizes some criteria and, at the same time, reduces the dimensionality as desired. As
shown in Equation (2.1), matrix A with dimensions of (r× c) is reduced to a B matrix with k
dimensions using a kernel or linear transformation K.

r


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(2.1)

Non-linear transformations are required to uncover the hidden manifold in nonlinear
data. As most of these algorithms are unsupervised, all of the methods used in this study
are unsupervised. Unlike their linear alternatives, due to their intrinsic behavior, nonlinear
methods do not provide a way to reproduce the transformation on out-of-sample data;
however, the authors of [215] presented a generalized and accurate approximation to solve
this issue.

Based on the fact that every point in the space is linearly relocated to a new position in
the lower-dimensional space under a nonlinear transformation, this linear transformation can
be approximated through the following three steps. (1) Retrieve the K out-of-sample nearest
neighbor instances from the training dataset. As the authors recommend, the K value was
set to 5. (2) Reduce this neighbor sub-dataset to the desired dimensionality using Principal
Component Analysis (PCA). (3) Using linear regression, obtain the linear projection to
transpose the neighbor sub-dataset into the final positions obtained with the FR method.

The PCA and linear regression models are applied to the out-of-sample instance to be
transformed. This process is repeated for each out-of-sample instance.

Unlike traditional datasets, wide data has a much greater number of columns than rows
(r << c), preventing some of the most popular linear and nonlinear FR algorithms from
being able to calculate the projection.
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The FR methods used in this study are listed below, following the taxonomy mentioned
above:

• Linear

– Unsupervised

* Principal Component Analysis (PCA) [142] is the most popular FR method,
which reduces the feature dimensionality while maintaining the maximum
data variance.

* Locality Pursuit Embedding (LPE) [131] respects the local structure
through maximizing the variance of each local patch according to Euclidean
distances (unlike PCA, which preserves the global structure).

* Parameter-Free Locality Preserving Projection (PFLPP) [52] is a parameter-
free version of the Locality Preserving Projection (LPP) algorithm [72],
which is a linear version of the nonlinear graph-based Laplacian Eigenmaps
method [12].

* Random Projection (RNDPROJ) [2] projects the data into a new random
spherical hyperplane that is randomly selected using the origin. It is not a
trivial computation problem.

– Supervised

* Fisher Score (FSCORE) [56] finds the projection that maximizes the ratio
between each feature mean and the standard deviation of each class.

* Locality Sensitive Laplacian Score (LSLS) [114] is based on the Laplacian
score FS method [70]. It adjusts the Laplacian graph using the class label to
simultaneously minimize the local within-class information and maximize
the local between-class information.

* Local Fisher Discriminant Analysis (LFDA) [183] is an improved version
of the FDA-supervised FR method, which is suitable for reducing datasets in
which individual classes are separated into several clusters.

* Maximum Margin Criterion (MMC) [108] projects the data while maxi-
mizing the average margin between classes.

* Sliced Average Variance Estimation (SAVE) [48] calculates the projection
matrix by averaging the covariance of the data of each slice in which the
whole dataset has been divided.

* Supervised Locality Pursuit Embedding (SLPE) [234] is a supervised
version of the LPE algorithm, which enhances the model using label data.
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• Non-linear

– Classical Multidimensional Scaling (MDS) [98] computes the dissimilarities
between pairs of objects (assuming Euclidean distance). This matrix serves as the
input for the algorithm that outputs a coordinate that minimizes a loss function
called strain.

– Metric Multidimensional Scaling (MMDS) [26] is a superset of the previ-
ous method. It iteratively updates the weights given by the MDS using the
SMACOF algorithm, in order to minimize a stress function such as the residual
sum of squares.

– Locally Linear Embedding (LLE) [154] bases its performance on produc-
ing low-dimensional vectors that best reconstruct the original objects through
computing the kNN and using this information to weight them.

– Neighborhood Preserving Embedding (NPE) [71] first identifies the structure
of the data neighborhood in the original space, then determines a linear subspace
minimizing the reconstruction error of the local neighborhood structure [216].

– Locally Embedded Analysis (LEA) [26] aims to preserve the local structure of
the original data in the computed embedding space.

– Stochastic Neighbor Embedding (SNE) [74] is a probabilistic approach that
places the data in a low-dimensional space that optimally preserves the neighbor-
hood of the original space.

– An Autoencoder [155, 75] is a kind of artificial neural network that is trained
in an unsupervised manner. The aim of the autoencoder is to capture the hidden
information in the high-dimensional input space of the dataset. Autoencoders
have the same number of artificial neurons in their first (input) and last (output)
layers, while having less in their center layers (see Figure 2.1). During training,
Autoencoders attempt to generate the same information in the output layer that
is presented in the input layer. Therefore, the center layer aims to capture the
intrinsic information of the dataset and, thus, can be used for feature reduction.

2.3 Feature Selection

Feature selection [157] is an alternative preprocessing approach to FR, which aims to
solve the curse of dimensionality. Instead of combining all features into a completely new
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Fig. 2.1 Schematic representation of an Autoencoder.

low-dimensional dataset, FS methods identify which features are the most suitable for the
classification step. These methods attempt to discard the noisy, irrelevant, and redundant
features that limit the performance of the classifier.

Machine learning models that only use a few features are more interpretable than those
that combine all original features into a new dataset. Generally speaking, the three types of
feature selectors are filters, wrappers, and embedded:

• Filter methods [25] are mainly based on statistical measures. They analyze the features
and rank them in an ordinal or numerical way according to their importance. Although
these methods do not usually achieve the best performance for any classifier, they
evade overfitting.

• Wrapper methods [92] perform any search algorithm to find the best feature subset for
a specific classifier, according to a certain metric. Some of the most common methods
are the recursive feature elimination (RFE) and genetic implementation methods. These
methods obtain better performance than others; however, they tend to overfit and their
computational cost is usually too high.

• Embedded methods [105] take advantage of the properties of classifiers such as
support vector machines or decision trees to determine the importance of a feature
subset. Although the selected subset can be used to train any model, it may perform
better on the base classifier used to obtain it.
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The method used for comparison with the best FR configuration is the SVM-RFE [63],
the superior performance of which on wide data has been proven in a previous study [150]
when compared with six of the most popular filters and embedded approaches (i.e., Ttest, Chi-
squared, Random forest importance, ANOVA, Information gain, and ReliefF). SVM-RFE is
an embedded FR method that recursively eliminates features according to their performance
contribution, removing the feature whose associated weight in the current iteration is the
minimum.

2.4 Imbalanced Data

There is a great chance that wide data suffer from imbalance due to the associated low
number of instances. As previously stated, having a great difference in the number of
instances between classes often causes a problem for the classifier [125], as its output may
be biased with respect to the most-represented class. This problem can be solved through the
use of any of the three types of resampling methods: removing instances from the majority
class (undersampling methods), creating new instances for the minority class (oversampling
methods), or combining both methods (hybrid methods).

The methods used in this study, which are the most popular ones, are described as follows:

• Random Undersampling (RUS) [79] removes instances randomly selected from the
majority class.

• Random Oversampling (ROS) [79] duplicates instances randomly selected from the
minority class.

• Synthetic Minority Over-sampling Technique (SMOTE) [32] creates synthetic
instances of the minority class. For the creation of new instances, SMOTE randomly
selects instances from the minority class. The feature values of the new instances are
computed through interpolating the features of two instances randomly selected from
the k nearest neighbors of the original instance (k being a parameter of the algorithm).

2.5 Experimental Setup

In this section, the experimental setup is explained. Some of the decisions made, such as
datasets, classifiers, or balancing strategies applied, were the same as in our previous study [150].
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2.5.1 Cross-Validation

For this study, 5× 2-fold cross-validation was performed, where the original dataset was
randomly split into 2 parts 5 times, and each part was used for training and testing; thus,
every instance was used for both training and testing 5 times.

This type of cross-validation is particularly appropriate for imbalanced data as, con-
sidering the low number of instances for some classes, performing the usual 10-fold cross-
validation would leave a small number of the minority class instances on the training set [49].

2.5.2 Data Sets

A total of 14 wide datasets were used to compare the methods, the main characteristics
of which are listed in Table 2.1. In addition to information commonly used in the field,
we include the ratio between features and instances, due to their wide nature. All of them
contained two classes and their features were numeric. Every fold from the cross-validation
was standardized, setting its mean to zero and standard deviation to one. The test folds
were standardized using the mean and standard deviation obtained from the training folds.
The imbalance ratio [61, 138] in the table was computed as the number of instances in the
majority class divided by the number of instances in the minority class.

2.5.3 Dimensionality and Number of Features

For fairness when comparing FR and FS methods, it is appropriate to configure them to
obtain datasets with the same dimensionality as the output. However, the number of features
is limited in some of the nonlinear FR methods (SNE, MDS, MMDS, and LLE). Therefore,
in such cases, the maximum dimensionality was set to the number of instances belonging to
each fold.

2.5.4 Resampling Strategies

Each one of the three resampling methods detailed in Section 2.4 was used in two ways: (1)
balancing before performing dimensionality reduction or (2) balancing after dimensionality
reduction. Therefore, there were a total of seven strategies, including the option of not
performing resampling.
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Table 2.1 Data sets used in the experimental study. Datasets 1–9 were used in [237],
while 10–14 were used in [109]. The column names refer to dataset name, number
of examples, number of features, ratio features/examples, minority and majority class
labels, min and max percentage of instances for the minority and majority classes, and
imbalance ratio.

Data Set #Ex. #Feat. #Feat.
#Ex. Class (min.; maj.) %min.; %maj. IR

1 Colon1 62 2 000 32.26 (Normal; Tumor) 0.35; 0.65 1.86
2 MLL_ALL1 72 12 582 174.75 (ALL; rem) 0.33; 0.67 2.03
3 MLL_AML1 72 12 582 174.75 (AML; rem) 0.39; 0.61 1.56
4 MLL_MLL1 72 12 582 174.75 (MLL; rem) 0.28; 0.72 2.57
5 SRBCT_11 83 2 308 27.81 (1; rem) 0.35; 0.65 1.86
6 SRBCT_41 83 2 308 27.81 (4; rem) 0.30; 0.70 2.33
7 Lung_11 203 12 600 62.07 (rem; 1) 0.32; 0.68 2.12
8 Lung_41 203 12 600 62.07 (rem; 4) 0.10; 0.90 9.00
9 Lung_51 203 12 600 62.07 (rem; 5) 0.10; 0.90 9.00

10 Leukemia_BM2 72 7 130 99.03 (BM; rem) 0.29; 0.71 2.45
11 TOX_171_12 171 5 748 33.61 (1; rem) 0.26; 0.74 2.85
12 TOX_171_22 171 5 748 33.61 (2; rem) 0.26; 0.74 2.85
13 TOX_171_32 171 5 748 33.61 (3; rem) 0.23; 0.77 3.35
14 TOX_171_42 171 5 748 33.61 (4; rem) 0.25; 0.75 3.00

1 https://jundongl.github.io/scikit-feature/datasets.html
2 http://csse.szu.edu.cn/staff/zhuzx/Datasets.html

https://jundongl.github.io/scikit-feature/datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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2.5.5 Classifiers

According to [23], the most popular algorithms for high-dimensional data are as follows:
k-nearest neighbors (KNN), SVM-Gaussian, C4.5 trees, Random Forest, and Naive Bayes.
For this reason, these five classifiers were used in this study.

2.5.6 Parameters

After preliminary experiments involving tuning the algorithm parameters, the parameters
of the algorithms were set as stated in Table 2.2. This table lists all the algorithms used, as
well as their corresponding parameters and implementation packages. Most parameters were
set as defaults while others, such as the SVM-G classifier and SMOTE, were optimized as
detailed in [150].

The SVM-G classifier was optimized using a grid parameter search, with c = 109 and
γ = 107, resulting in optimal performance on all datasets. For SMOTE, values of k ranging
from 1 to 20 were tested, and the performance was slightly better when the recommended
value of 5 was used. Regarding the balancing algorithms, the balancing ratio was set to 1 for
all datasets, such that the number of instances for both the majority and minority classes was
the same.

As explained in Section 2.2, an algorithm to approximate the transformation on out-of-
sample instances on nonlinear FR is needed; this is denoted “transformation approximation”
in the table and, as the authors recommended, the parameter k was set to 5. Finally, autoen-
coders had a single inner layer with as many neurons as the desired output dimensionality
size. Several well-known functions (linear, rectilinear uniform, sigmoidal, and tangential)
were considered. The tangential function learned the fastest, requiring only 10 epochs to
reach the best performance on the training fold; hence, it was selected as the activation
function.

2.5.7 Metrics

Multiple metrics are commonly used to assess the performance of machine learning classifiers.
In order to provide an unbiased set of performance metrics, five metrics are used in this study:
Area Under the ROC Curve (AUC), F1-Score, G-Mean, Matthews correlation coefficient,
and Cohen’s kappa

Some of these metrics use the confusion matrix, which consists of a 2×2 matrix (in binary
classification) that summarizes the hits and misses of the classifier regarding a classification
problem (see Table 2.3). The class of interest (usually the less-represented one) is called
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Table 2.2 All the algorithms used in the study are grouped according to their type, including
their parameters (when applicable) and their corresponding R packages, all of then have been
accessed on June 2023. * The asterisk indicates that, in the method, the parameter K was set
to 5 in the transformation estimator needed for the nonlinear feature reducers explained in
Section 2.2.

Algorithms Parameters Package

Classifier KNN k = 1 class 1

SVM-G c = 109, γ = 107 e1071 2

C4.5 Default RWeka 3

Random Forest Default randomForest 4

Naive Bayes Default naivebayes 5

Feature reduction
Linear—Unsupervised

PCA - Rdimtools 6

LPE Default Rdimtools 6

PFLPP - Rdimtools 6

RNDPROJ Default Rdimtools 6

Feature reduction
Linear—Supervised

FSCORE - Rdimtools 6

LSLS Default Rdimtools 6

LFDA Default Rdimtools 6

MMC - Rdimtools 6

SAVE Default Rdimtools 6

SLPE - Rdimtools 6

Feature reduction
Non-linear *

MDS - Rdimtools 6

MMDS - Rdimtools 6

LLE Default Rdimtools 6

NPE Default Rdimtools 6

LEA Default Rdimtools 6

SNE Default Rdimtools 6

AUTOENCODER epoch = 10, activation = “Tanh” h2o

Feature selection SVM-RFE sigFeature 7

Balancing ROS Ratio 1:1 Own impl.
RUS Ratio 1:1 Own impl.
SMOTE Ratio 1:1, k = 5 unbalanced 8

1 https://cran.r-project.org/web/packages/class/index.html
2 https://cran.r-project.org/web/packages/e1071/index.html
3 https://cran.r-project.org/web/packages/RWeka/index.html
4 https://cran.r-project.org/web/packages/randomForest/randomForest.html
5 https://cran.r-project.org/web/packages/naivebayes/index.html
6 https://cran.r-project.org/web/packages/Rdimtools/index.html
7 https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
8 https://cran.r-project.org/web/packages/unbalanced/index.html

https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/randomForest/randomForest.html
https://cran.r-project.org/web/packages/naivebayes/index.html
https://cran.r-project.org/web/packages/Rdimtools/index.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://cran.r-project.org/web/packages/unbalanced/index.html
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Table 2.3 Confusion matrix: true positive (TP), false positive (FP), false negative (FN), and
true negative (TN).

Actual value

Positive Negative

Pr
ed

. Positive TP FP
Negative FN TN

the positive class, while the other is called the negative class. The diagonal captures the hits
of the classifier, while the other two cells contain the misses. These can be either a false
positive (FP), when the classifier predicts positive but the actual label is negative, or a false
negative (FN) in the opposite case.

To compute most of the aforementioned measures, some intermediate metrics that rely
on the confusion matrix are needed:

• Recall, or the true positive rate, is the probability of classifying a positive instance
as positive.

recall =
TP

TP+FN
(2.2)

• Specificity, as opposed to recall, is the probability of considering a negative instance
as negative.

specificity =
TN

TN +FP
(2.3)

• Fall-out, or the false positive rate, is the probability of the probability of a false alarm
occurring.

fall-out =
FP

TN +FP
(2.4)

• Precision is the probability that an instance is classified as positive.

precision =
TP

TP+TN +FP+FN
(2.5)

Finally, the five metrics used for the experiment are defined as follows:

• The Area Under the ROC Curve can be calculated in different ways. Although ROC
can also be used to evaluate multiple possible classifier thresholds, in this study, only
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one per fold is evaluated using the formula based on the true positive rate (recall) and
the false positive rate (fall-out) from [57].

AUC =
1+ recall− fall-out

2
(2.6)

• The F1-Score is the harmonic mean between precision and recall.

F1-Score = 2× precision× recall
precision+ recall

(2.7)

• The G-Mean, which is widely used for imbalanced problems, is the geometric mean
between recall and specificity.

G-Mean =
√

recall× specificity (2.8)

• The Matthews correlation coefficient (MCC – Do not confuse with the feature reduction
method called Maximum Margin Criterion (MMC).) was originally presented by
Matthews [129] and introduced to the Machine Learning community in [11]. The
MCC has become a well-known performance measure of binary classification not
affected by imbalanced datasets, and the authors of [41, 42] have recommended this
metric over AUC and F1-Score.

MCC =
T N ×T P−FN ×FP√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.9)

• The Cohen’s kappa measure compensates for the random hits that are usually observed
in classification problems [45].

K =
P0 −Pe

1−Pe
(2.10)

where P0 is the ratio of success of the classifier and Pe is the ratio of success expected
by chance.

Finally, average rankings [47, 59] were calculated to compare the performances of
the different algorithm combination strategies. To compute the rankings, the strategy that
achieved the best results on a specific dataset received a score of one, the strategy that
achieved the second-best results received a score of two, and so on. In the case of a tie, the
rankings of the tied methods were averaged. Average rankings were then computed through
taking the average of the rankings computed on all datasets.
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2.6 Results

This section attempts to answer the questions presented in Section 2.1. The performance of
all feature reduction methods was compared, indicating the difference when any balancing
method was used. Finally, the best algorithm configuration (i.e., FR or FS and classifier) was
identified, including the feature selectors.

In order to reduce the number of figures and tables in this section, only the results for the
MCC metric are shown for the advantages explained in Section 2.5.7. The Supplementary
Materials2 contain the information for all other metrics, from which it can be assessed that
the results obtained for them were similar.

2.6.1 Best Feature Reducers

Table 2.4 compares the performance (average ranks) of all 90 possible configurations, ob-
tained when combining the 5 classifiers with the 17 feature reducers plus the classifiers
themselves without any preprocessing method (i.e., 18 configurations). The option without
preprocessing, where the classifier was trained with all the features, was used as a baseline.

As can be seen from the table, the best configuration combined the supervised FR
algorithm MMC and the KNN classifier. The second-best configuration was SVM-G using
no preprocessing method. As in our previous study [150], the best results were obtained with
the KNN and SVM-G classifiers.

Not all classifiers performed in the same way with all FR methods. The most suitable
FR algorithm for each classifier is presented in Table 2.5 (the average ranks were computed
independently for each classifier). Although the MMC and the KNN were positioned at the
top of the ranking. MMC only outperformed the rest when coupled with KNN. For SVM-G,
the best option was not using FR, whereas for the rest of the classifiers, FSCORE performed
the best.

2.6.2 Best Preprocessing Algorithm

Having identified the best FR and classifier combination (i.e., MMC with KNN), before
comparing it with the best FS method (SVM-RFE with SVM-G), we determined which of
the seven balancing techniques was the best for each combination, in order to conduct a fairer
comparison.

One of the objectives of this study is to compare FR and FS methods on wide datasets.
In the previous section, the best FR and classifier combination (i.e., MMC with KNN)

2Supplementary Materials: https://www.mdpi.com/2078-2489/15/4/223

https://www.mdpi.com/2078-2489/15/4/223
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Table 2.4 Comparison of average ranks using the MCC metric, the 90 possible configu-
rations when mixing our 5 classifiers and the 18 FR preprocessing methods, including as
baseline the non-preprocessing option. The color code indicates the type of algorithm,
linear unsupervised , linear supervised or non-linear unsupervised .

Classifier FR algorithm Avg. Rank

KNN MMC 1.96
SVM-G No 2.54
SVM-G FSCORE 9.21
KNN FSCORE 9.29
KNN No 10.71
SVM-G LLE 10.71
SVM-G MDS 10.71
SVM-G MMDS 10.71
RF FSCORE 13.39
KNN LLE 13.57
NBayes FSCORE 14.79
NBayes No 15.36
KNN MDS 15.43
KNN MMDS 15.43
SVM-G NPE 15.43
KNN PCA 16.64
SVM-G SNE 19.36
RF No 19.39
KNN NPE 21.00
NBayes LLE 21.64
SVM-G Autoencoder 21.86
KNN SNE 22.07
KNN LPE 22.79
NBayes MDS 26.50
NBayes MMDS 26.50
C4.5 FSCORE 28.11
NBayes NPE 29.57
NBayes SNE 29.93
KNN Autoencoder 30.36
C4.5 No 30.68
C4.5 NPE 30.86
NBayes PCA 31.36
C4.5 MDS 34.14
SVM-G LSLS 34.21
KNN SAVE 34.36
RF NPE 34.43
NBayes Autoencoder 34.64
C4.5 PCA 35.21
C4.5 LLE 35.57
C4.5 MMDS 37.00
RF Autoencoder 38.71
SVM-G LPE 38.79
C4.5 LPE 40.07
KNN LSLS 40.50
NBayes LSLS 42.86

Classifier FR algorithm Avg. Rank

RF LSLS 43.93
C4.5 Autoencoder 46.00
C4.5 LSLS 49.64
C4.5 MMC 49.93
RF LPE 50.43
SVM-G SAVE 52.14
RF SAVE 52.36
SVM-G LEA 53.43
RF MMDS 56.64
SVM-G RNDPROJ 56.64
C4.5 SNE 57.21
RF MDS 57.64
RF PCA 58.50
NBayes LPE 59.43
RF LLE 59.50
NBayes LEA 61.29
NBayes SAVE 62.14
RF LEA 62.21
RF MMC 62.50
KNN LEA 63.21
C4.5 SAVE 65.00
KNN RNDPROJ 67.43
NBayes RNDPROJ 67.50
NBayes MMC 67.93
RF RNDPROJ 70.50
KNN LFDA 71.93
RF SNE 73.89
C4.5 RNDPROJ 76.07
KNN SLPE 77.00
C4.5 SLPE 78.11
RF LFDA 78.14
RF SLPE 78.21
KNN PFLPP 78.43
RF PFLPP 78.64
SVM-G SLPE 78.75
C4.5 LEA 79.29
C4.5 PFLPP 79.29
NBayes PFLPP 79.29
SVM-G LFDA 79.29
SVM-G MMC 79.29
SVM-G PCA 79.29
SVM-G PFLPP 79.29
NBayes SLPE 79.43
C4.5 LFDA 79.79
NBayes LFDA 80.11
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Table 2.5 Comparison of average ranks using the MCC metric, the 18 FR preprocessing
methods, including as baseline the non preprocessing option. Each ranking is performed by a
different classifier in order to detect what is more suitable. The color code indicates the type
of algorithm, linear unsupervised , linear supervised or non-linear unsupervised .

a KNN

Feature reducer Avg. Rank

MMC 1.07
FSCORE 3.86
No 4.57
LLE 5.29
MDS 5.93
MMDS 5.93
PCA 6.29
SNE 7.50
LPE 7.86
NPE 8.07
Autoencoder 10.79
SAVE 11.29
LSLS 12.57
LEA 14.57
RNDPROJ 15.43
LFDA 16.14
SLPE 16.79
PFLPP 17.07

b SVM-G

Feature reducer Avg. Rank

No 1.07
FSCORE 3.86
LLE 4.21
MDS 4.21
MMDS 4.21
NPE 5.93
Autoencoder 6.64
SNE 7.21
LSLS 8.79
LPE 9.71
SAVE 11.57
LEA 11.86
RNDPROJ 12.43
SLPE 15.71
LFDA 15.89
MMC 15.89
PCA 15.89
PFLPP 15.89

c C4.5

Feature reducer Avg. Rank

FSCORE 3.46
NPE 3.57
MDS 4.43
No 4.54
LLE 4.71
PCA 5.36
MMDS 5.64
LPE 6.14
Autoencoder 8.79
LSLS 9.64
MMC 9.93
SNE 11.93
SAVE 13.36
RNDPROJ 15.25
SLPE 15.82
LEA 16.04
PFLPP 16.04
LFDA 16.36

d RF

Feature reducer Avg. Rank

FSCORE 1.29
No 2.07
NPE 3.50
Autoencoder 4.50
LSLS 6.14
LPE 7.43
SAVE 8.36
MMDS 9.36
MDS 9.64
PCA 10.14
LEA 11.00
LLE 11.00
MMC 11.36
RNDPROJ 12.93
SNE 14.93
LFDA 15.64
SLPE 15.64
PFLPP 16.07

e NBayes

Feature reducer Avg. Rank

FSCORE 2.86
No 3.14
LLE 3.79
MDS 5.71
MMDS 5.71
NPE 6.14
SNE 6.21
PCA 6.29
Autoencoder 7.00
LSLS 9.43
LPE 12.50
SAVE 12.71
LEA 13.00
MMC 13.86
RNDPROJ 14.00
PFLPP 16.14
SLPE 16.21
LFDA 16.29
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Table 2.6 Average ranks using the MCC metric of the balancing strategies for (a) the best
configuration that uses an FS method and (b) the best configuration that uses an FR method.

a SVM-RFE + SVM-G

Balacing Avg. Rank

Prior Posterior

ROS No 3.11
No ROS 3.11
No SMOTE 3.46
No No 3.57
SMOTE No 3.86
No RUS 4.25
RUS No 6.64

b MMC + KNN

Balacing Avg. Rank

Prior Posterior

No No 3.50
No ROS 3.50
No SMOTE 3.50
No RUS 3.68
SMOTE No 4.00
ROS No 4.29
RUS No 5.54

was identified, whereas the best FS and classifier combination in our previous study [150]
was SVM-RFE with SVM-G. In order to carry out a fair comparison between these two
configurations, it was necessary to determine the most suitable balancing technique for each
of them. The seven possible balancing strategies were described in Section 2.4.

The resampling technique was chosen last as, as stated in [150], it is the least influential
preprocessing step, which is highly dependent on the number of selected features.

In Table 2.6, average ranks for both configurations (including the no-balancing approach)
are shown. For the FR method, there was a tie between not using any balancing at all and
using resampling (ROS or SMOTE) as a post-balancing method. For the sake of simplicity,
the option of not balancing was chosen.

For the FS method, there was again a tie using ROS balancing either before or after
preprocessing. The selection of either of the two options was arbitrary and, so, the initial
balancing option was used.

With the aim of assessing whether or not the differences between these two configurations
are significant, Bayesian tests [18] were used to compare them one vs. one.

This hypothesis test is conducted to compare two different methods, obtaining the proba-
bility that one is better than the other, or that both have practically equivalent performance.
In this test, this equivalence is represented by the so-called region of practical equivalence
(ROPE). A parameter for the ROPE is needed, in order to declare the size of this region.
If the difference between two parameters is in the ROPE, it is considered that there is no
significant difference between them. If this area is too big, the test indicates that there is no
statistical difference between the methods.

The results of performing the Bayesian tests when setting the ROPE to 0.01 for com-
parison of the best configurations under each of the five metrics are provided in Figure 2.2.
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The left side of the triangles corresponds to the use of an FS configuration (balancing using
ROS before the FS with SVM-RFE and using SVM-G as a classifier), whereas the right side
corresponds to the FR alternative (using the FR method MMC with the KNN classifier). For
three out of the five metrics (F1-Score, MCC, and Kappa), the FR combination performed
significantly better than the FS combination; meanwhile, the other two (AUC and G-Mean)
did not show any significant differences. As none of the tests supported the left side (SVM-
RFE) and most of the tests suggested that the right side (MMC) performed better, it can be
determined that, for these datasets, the FR option was the best one.

The execution times of the 18 preprocessing methods (i.e., 17 FR methods and the best
FS method) are shown in Figure 2.3, sorted according to the average time needed to process
all of the dataset folds. The best FS method (SVM-RFE) and the preprocessing methods that
performed the best for at least one classifier are highlighted in blue. Their averages are listed
in Table 2.7. The high variance between execution times obtained for the same preprocessing
method was due to the varying size of the datasets. The most accurate methods (MMC and
SVM-RFE) were also among the fastest, being considerably faster than the worst method;
however, MMC was generally slower than SVM-RFE. Finally, the FSCORE method, which
showed promising performance relative to the baseline, completed processing within a few
seconds.

2.7 Discussion and Conclusions

In this research paper, the question of whether FR or FS performs better when considering
wide data was answered. It was empirically proven that the best configuration of an FR
algorithm determined in this study (MMC + KNN) outperformed the best FS algorithm
(SVM-RFE + ROS + SVM-G) in the previous literature [150].

During the search for the best FR algorithm for use on wide data, it was found that not
all the FR methods perform in the same way for all the classifiers. In this study, the best
FR method was the MMC for KNN and FSCORE for the other classifiers, except SVM-G,
which ranked second after the no-preprocessing stage.

As a general recommendation, our suggestions for practitioners dealing with wide data
problems can be summarized as follows: (1) Start with the FSCORE method, as it is very
fast and shows good performance. (2) When higher classification performance is desired,
the MMC + KNN or ROS + SVM-RFE + SVM-G configuration can be used, with MMC
providing better performance without the need for resampling and evading the time required
for parameter tuning in the SVM-G classifier. Nevertheless, it must be noted that MMC has a
higher processing time than SVM-RFE.
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SVM−RFE
(0.0470)

ROPE

(0.2110)

MMC
(0.7420)

(a) F1

SVM−RFE
(0.0605)

ROPE

(0.0990)

MMC
(0.8405)

(b) MCC

SVM−RFE
(0.0615)

ROPE

(0.1245)

MMC
(0.8140)

(c) Kappa

SVM−RFE
(0.0612)

ROPE

(0.7943)

MMC
(0.1445)

(d) AUC

SVM−RFE
(0.0637)

ROPE

(0.7465)

MMC
(0.1898)

(e) G-Mean

Fig. 2.2 Results of performing Bayesian tests for each of the five metrics comparing the best
FS and FR configurations. The best FS configuration is represented on the left side (balancing
using ROS before selecting the features with SVM-RFE and using SVM-G as classifier),
whereas the best FR configuration is shown on the right side (reducing dimensionality with
MMC and KNN as classifier).
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LEA
NPE

LFDA
MDS
SNE
LLE

SLPE
MMDS
PFLPP

MMC
SAVE

LPE
SVM−RFE
RNDPROJ

PCA
AUTOENCODER

FSCORE
LSLS

0 50,000 100,000 150,000 200,000
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Fig. 2.3 Box plots in the y-axis with the 18 preprocessing methods shown alongside the time
taken to process each fold (in seconds). The methods are sorted according to their average
execution time (shown as a central red dot). The preprocessing methods with highest-ranking
performances for at least one classifier are highlighted in blue, and the best FS method
(SVM-RFE) is also highlighted.
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Table 2.7 Average execution time (hours, minutes, and seconds) for each preprocessing
method to compute every fold, sorted in ascending order.

Preprocessing Time

H. M. S.

LSLS 3
FSCORE 3
AUTOENCODER 15
PCA 5 16
RNDPROJ 21 17
SVM-RFE 1 24 56
LPE 2 23 15
SAVE 2 36 4
MMC 4 8 58
PFLPP 6 7 9
MMDS 6 55 17
SLPE 8 42 3
LLE 10 27 7
SNE 10 46 2
MDS 11 11 34
LFDA 11 43 20
NPE 12 3 17
LEA 19 11 8
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Different classifiers may benefit from different preprocessing methods. This study
also provides performance results for FR methods, which are some of the most popular
algorithms for high-dimensional data. If any of the classifiers used in this study are more
suited to a specific problem, it is suggested that the results are checked to determine the best
preprocessing method for that particular classifier.

2.8 Limitations

As with the majority of studies, the design of the current research is subject to limitations.
When assessing machine learning strategies on extensive datasets, the limited number of
instances for testing raises the risk of selecting a sub-optimal model as the top performer [101].
We have attempted to address this problem by using a relatively large number of datasets and
applying 5×2-fold cross-validation (i.e. splitting the dataset into 2 folds and repeating the
process 5 times).

Although we have found a very effective model configuration, the algorithms used during
both studies are a relatively small representative collection of each of the applied domains
(FS, FR, resampling, and classification). Therefore, there could be other configurations
equally even more suitable for these and other broad data problems.

Finally, it is important to remember that the data used in the experimentation are ex-
clusively from microarrays. Therefore, their applicability in other contexts may produce
different results. Nonetheless, we consider that these results can serve as a reference.

2.9 Future Work

Different approaches to reduce the data dimensionality of wide data, such as wrapper FS
methods or combinations of FR and FS, can be explored in future work.

A future research direction is the use of FR or FS in other areas, for example, in meta-
learning, where data characteristics are studied in order to determine the most suitable
preprocessing and classifier algorithms.

Another unexplored area is the analysis of feature reduction and feature selection methods
in semi-supervised contexts, where there are only a few labeled instances and usually a large
number of unlabeled instances [189]. These preprocessing algorithms may take advantage of
the manifold assumption that the data lie on or near a low-dimensional manifold within the
high-dimensional input space.
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Abstract

Semi-Supervised Feature Selection (SSFS) techniques combine the advantages of Feature
Selection (FS) and Semi-Supervised Learning (SSL), thereby reducing the problem of high-
dimensional data in SSL contexts. The aim of this review is to provide a comprehensive
overview of work within that field, helping researchers to understand the current state of the
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art and to identify future research directions. An updated taxonomy for SSFS is presented,
based on 101 studies, published up until the end of 2023. The new FS taxonomy expands
upon the existing one, by dividing wrappers into two types: classical search wrappers, which
search for the best subset of features, and pseudo-labelling wrappers, which pseudo-label
instances to increase the available data. The information extracted from those studies includes
descriptions of the SSFS algorithms, statistics on the papers that were reviewed, and decisions
on experimental design.

3.1 Introduction

Semi-supervised Feature Selection (SSFS) algorithms are machine-learning techniques used
to solve the so-called “curse of dimensionality“ problem in Semi-Supervised Learning (SSL)
problems.

The curse of dimensionality refers to a problematic situation where the input data have
a very large number of dimensions. Within that large number of variables, many may be
redundant or irrelevant to the solution of a specific problem. That issue can decrease the
performance and generalisation capabilities of the models. It is addressed through the use of
Feature Selection (FS) algorithms that can select the most relevant features of the problem,
either by searching for the best subset of features, or by ranking the features according to
their relevance.

Moreover, only a small number of instances are labelled in SSL, unlike in supervised
learning where all the instances are labelled. A limitation that constrains supervised models
to the use of labelled instances, reducing their potential performance. SSL algorithms are
designed to take advantage of the unlabelled instances and their associated information, to
improve the performance of the final models.

Semi-Supervised Feature Selection (SSFS) has been effectively applied for the enhance-
ment of model performance across several problem domains. Examples from the literature
include its use in video processing, as seen in [123] for face recognition tasks, and image
and multimedia annotation tasks as demonstrated in [77], and in [221], respectively. It has
applications within such fields as quantitative/qualitative structure activity relationships data
analysis (chemistry) [68], ribonucleic analysis (biology) [80], and tomato maturity analysis
(agriculture) [81]. Furthermore, its potential extends to physics applications, notably for the
analysis of very high-resolution satellite images, as presented in [38].

There have been two reviews of SSFS in the past: the first review [8], in 2016, was
focused on FS for gene selection and included 10 SSL-related algorithms. The second
one [169], published in 2017, was focused exclusively on SSFS and included 28 algorithms.
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The current systematic review of 101 studies includes 103 new SSFS algorithms from the
start of this topic until the end of 2023. A number of studies that is significantly higher than
in the past two reviews, and the studies themselves are more recent, thereby providing an
updated overview of this field of study.

Moreover, the SSFS taxonomy proposed in the previous review [169] is updated in this
systematic review. The information extracted from 99 journal and conference papers includes
details of the SSFS algorithms, statistics on the papers, and common practices regarding their
experimental designs.

A comprehensive overview of the field is provided in this review, so that researchers
can gain a better understanding of the current state of the art. Its results will help them to
select algorithms for particular problems, to compare results, and to identify future research
directions.

The structure of the review is as follows: the review methodology is detailed in Section 3.2,
general concepts related to SSFS are introduced in Section 3.3, and the new taxonomy that
is proposed and a classification of the 103 SSFS algorithms is presented in Section 3.4. A
summary of the information extracted from the sample of papers is provided in Section 3.5,
and the conclusions are presented in Section 3.6, together with future lines of research.

3.2 Review methodology

The process used for searching and filtering relevant papers on the topic of SSFS is described
in this section. A summary of the process can be found in Figure 3.1.

First of all, the search for articles was restricted to the Scopus search engine. Given the
large volume of items provided, no further results from other search engines were included.
This search was performed selecting elements up to 31st of December of 2023 using the
following query:

TITLE(("feature selection" OR "feature ranking") AND ("semi-supervised"
OR "semisupervised")) OR KEY(("feature selection" OR "feature ranking") AND
("semi-supervised" OR "semisupervised")).

This query found articles containing terms related to FS and SSL in the title or keywords.
From this initial search, 455 items were obtained, which were divided into two groups. The
first group contained 257 items, excluding conference proceedings, which belonged to a
second group of 198 elements. Different filters were applied to each group.

Several filters were applied. First, all papers not written in English were filtered out,
resulting in the removal of 28 papers.
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The next filter implied a close study of all the abstracts, so as to remove any that were not
completely focused on SSFS. Those that presented new strategies and that contained more
than one new FS, such as a classifier or other pre-processing algorithms, were also removed.
For clarity, the studies that were included had to detail a new SSFS method that had been
evaluated in specific experiments. With this filter, a total of 125 articles were removed.

After analysing the full text, a final filter was applied to weed out articles of insufficient
quality. The most common reasons were not comparing the proposed methods with any
others, not explaining the algorithms sufficiently well, or not using sufficient experimental
data. In that step, 11 articles were removed.

Conference papers on aspects not cited in any of the previously selected papers were
removed (190). So, only 8 conference papers were included in the sample.

Finally, the sample for this review included 101 papers in total, of which 91 were journal
articles proposing new algorithms, 8 were conference papers, and 2 were previous reviews.

The information extracted from those articles, including details on the SSFS models, is
presented in Section 3.4, and information on the experiments is discussed in Section 3.5.

3.3 General concepts

The general concepts of FS, SSL, and the combination of both fields are introduced in this
section. The main mathematical notions are also discussed towards the end of the paper.

3.3.1 Feature selection

FS [157] is a pre-processing task that identifies a subset of features within a dataset that
provides the best performance. The data are analysed to find the most informative features,
while avoiding irrelevant, redundant, and noisy ones. Feature elimination reduces the
dimensionality of the dataset, while aiming to increase the accuracy of the model, to decrease
its training time, and to enhance the ease with which the results may be interpreted.

The classic taxonomy [24] for FS in supervised learning is divided into three main
categories:

• Filter methods [25] are used to analyse features, usually with statistical measures,
regardless of the final learning model that is used. Popular examples are the Pearson
correlation, the Chi-square test or the analysis of the variance (ANOVA). These
methods rank the features by their criteria, sometimes assigning them a number. As
they are the fastest type of FS, they are more suitable for big data [144]. However, they
normally analyse the feature importance singularly alone and not as a group, thereby
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Fig. 3.1 Diagram with the process used for searching and filtering relevant papers on the
topic of SSFS.

Feature selection algorithms

Filter Wrapper Embedded

Fig. 3.2 Taxonomy of feature selection algorithms [157].
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avoiding multi-correlational interaction. However, as they provide a global solution
that is not optimised for any specific model, they cannot guarantee an optimal result.

• Wrappers methods [93], through a search strategy, explore the space of feature subsets
to find the subset that offers the best performance for a particular learning algorithm.
While wrappers are slower than any other FS types, as the learning algorithm has to be
trained before it can explore the subset and evaluate its performance, their performance
is generally superior. However, there is a higher risk of overfitting, due to the exhaustive
search process. Some of the most popular include forward and backward search, and
Genetic Algorithms (GA).

• Embedded methods [117] use part of the training process of a model to obtain
the most relevant features. Some of those models are Random Forest Importance
(RFI) and Support Vector Machine-Recursive Feature Elimination. In contrast to
wrapper methods, the model used for FS is not necessarily the same as the final model.
These techniques present reduced risks of overfitting and show faster processing times
compared to wrappers. However, they are slower than filters.

3.3.2 Supervision types

One of the best-known taxonomies in machine learning divides the problems according
to the type of supervision. Supervision can be understood as the availability of labels (a
feature of interest) in the training data. When all data instances contain labels, in the case of
classification problems, they are used to learn differences between classes using supervised
algorithms such as decision trees and Support Vector Machines (SVM). The metrics used to
evaluate those models are based on the confusion matrix, which shows the number of correct
and incorrect predictions for each class. Some of the most common metrics are accuracy,
F1-Score, and the Matthews Correlation Coefficient (MCC).

On the other hand, if the data have no labels, the problem is described as unsupervised [78].
In this case, clustering algorithms such as k-means and DBSCAN are used to assign each
instance to a group, with no need for pre-existing labels. This approach is useful when the
underlying structure of the data must be explored. Metrics such as the Adjusted Rand Index
or Silhouette Coefficient can be used to evaluate the quality of the clusters that are obtained.

Finally, the dataset in SSL [189] is composed of instances with and without labels.
Usually, the number of labelled instances is much smaller than the number of unlabelled
ones. Algorithms such as co-training [208] and S3VM [19] use both labelled and unlabelled
data to optimise model accuracy. SSL is useful when generating labels for all data might be
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Supervised Unsupervised

Semi-sup.

Fig. 3.3 Supervision categories in machine learning.

costly or unfeasible. In those sorts of problems, the metrics used in supervised learning can
also be used to evaluate the models.

3.3.3 Semi-supervised learning

As previously noted, SSL approaches seek to extract information from labelled and unlabelled
data. For this purpose, the following assumptions [189] are thought to be satisfied:

• Smoothness assumption: Nearby instances within the same space share the same
label.

• Low-Density assumption: Decision boundaries are in regions of low sample density.

• Manifold assumption: Instances belonging to the same manifold belong to the same
class.

• Cluster assumption: There are multiple hidden manifolds in the data, and each one
describes the patterns of a class.

A popular taxonomy of the SSL classification algorithms was suggested by [189]. Despite
the fact that it has many subdivisions, only the top levels are explained in the next section.

Inductive and transductive methods

The first split of the taxonomy differentiates between inductive and transductive methods. On
the one hand, inductive methods train a model using unlabelled and labelled data. Once the
model is trained, it can be used to predict the labels of new instances that have never before
been seen. On the other hand, transductive methods do not seek to return a trained model
to be used to predict new instance labels. Instead, they predict the label of the unlabelled
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Semi-Supervised Classification

Inductive
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Fig. 3.4 Taxonomy of Semi-supervised classification [189].

instances available during training, after processing a global overview of all the data. If new
instances need to be labelled, they must be included in the training data set, and the algorithm
must be retrained from scratch. Graph-based models are the norm [181].

Unsupervised pre-processing

These methods extract some information from the data before the training step to facilitate the
learning model task: Feature extraction, which extracts useful information for the classifier.
Cluster-then-label, which pre-clusters the data before labelling. And pre-training, which
initialises the learning model parameters.

Wrapper

Wrapper methods train learning models using labelled instances to pseudo-label the unla-
belled ones. They usually have several steps where instances are labelled according to the
confidence of the predictions. However, if an error (i.e., a mislabelled instance) is made in
one of the initial steps, this error could incrementally affect the following steps (i.e., adding
noise to the model). There are several groups in which wrapper methods fit, depending on
the number and type of classifiers and the labelling strategy, such as single-view, multi-view,
and boosting-based. Some of the most popular are self-training [152] and tri-training [236].

Intrinsically Semi-Supervised

Unlike the two previous methods, intrinsically semi-supervised methods process the labelled
and unlabelled data by themselves. They usually optimise a function, as with neural networks,
rather than adapting the data to a common classifier by applying pseudo-labelling or pre-
processing steps.
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3.3.4 SSFS filter concepts

Many SSFS filters are based on the Spectral graph theory [182], a branch of mathematics
focused on understanding the properties of graphs through their associated matrices. The
Laplacian matrix is one of the most common matrices studied in this field.

Laplacian matrix

The Laplacian matrix is constructed by subtracting the adjacency matrix, which represents
the connections between nodes or instances (with 1 indicating a connection), from the degree
matrix, which contains the (number of connections) degree of each node. Its formula is
represented as L = D−A, where L is the Laplacian matrix, D is the degree matrix, and A is
the adjacency matrix. The formula is shown in Equation 3.1 and an illustrative example is
provided in Equation 3.2.

Li, j =


deg(vi) if i = j

−1 if i ̸= j and vi is adjacent to v j

0 otherwise

(3.1)


1 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1


D

−


0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0


A

=


1 −1 0 0 0

−1 4 −1 −1 −1
0 −1 2 −1 0
0 −1 −1 2 0
0 −1 0 0 1


L

(3.2)

The use of the adjacency matrix varies, depending on the specific objectives of each
algorithm. For example, the matrix is adapted in SSFS to calculate the distances of labelled
and unlabelled instances in different ways. The most popular FS metric which takes advantage
of the Laplacian matrix properties is the Laplacian Score.

Laplacian score

The Laplacian Score [70] (LS) is an unsupervised score used for FS that reflects the locality-
preserving power of each feature. It is based on the premise that if two data points are close,
then they are likely to be related (Smoothness assumption).

This score is based on the Laplacian matrix. However, instead of considering the con-
nections between nodes within the adjacency matrix as simply 1, Equation 3.3, a gradual
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equation, is used where t is a suitable constant. The full formula is expressed in Equa-
tion 3.4 where f̃r is defined by Equation 3.5 and fr represents the r-th feature whose score is
calculated.

Ai j = e−
∥xi−x j∥2

t (3.3)

Lr =
f̃ T
r L f̃r

f̃ T
r D f̃r

(3.4)

f̃r = fr −
frD1

1T D1
(3.5)

Pairwise constraints

Some of these SSFS algorithms are based on pairwise constraints, which specify whether a
pair of data samples belong to either the same class, known as must-link constraints (ML), or
to different classes, referred to as cannot-link constraints (CL). These constraints are defined
as:

ML = {(xi,x j)|xi and x j belongs to the same class}
CL = {(xi,x j)|xi and x j belongs to a different class}
The classic algorithm constraint score 1 (C1) and constraint score 2 (C2) [228] are used

in supervised learning. These algorithms use ML and CL constraints to rank the features,
assuming that the most informative features keep pairs of objects of the same class relatively
close, while keeping those of different classes far apart.

Both approaches calculate the score using Equation 3.6 and Equation 3.7. The second
option provides a lambda parameter that balances the weight of both constraints (1 by
default).

C1
r =

∑(xi,x j)∈M( fri − fr j)
2

∑(xi,x j)∈C( fri − fr j)2 (3.6)

C2
r = ∑(xi,x j)∈M( fri − fr j)

2 −λ ∑(xi,x j)∈C( fri − fr j)
2 (3.7)

The formulations can be optimised using the spectral graph, as shown in Equation 3.8
and Equation 3.9, where the adjacency matrices (LM and LC) are described in Equations 3.10
and 3.11.

C1
r =

f T
r LM fr

f T
r LC fr

(3.8)
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C2
r = f T

r LM fr −λ f T
r LC fr (3.9)

AM
i, jL =

1 if (xi,x j) ∈ M or (x j,xi) ∈ M,

0 otherwise
(3.10)

AC
i, jL =

1 if (xi,x j) ∈C or (x j,xi) ∈C,

0 otherwise
(3.11)

This theory will serve as a basis for other algorithms in SSL, such as constraint score 3
(C3) and constraint score 4 (C4) [85].

Sparse models

The use of the sparse model is an effective strategy to improve the efficiency of some
SSFS [110]. These models apply the p-norm as a constraint, which forces the model
weights to be as close to zero as possible. A feature that makes them simpler and facilitates
interpretation and generalisation, similar to the behaviour of the Lasso model.

Equation 3.12 applies the Lp norm to a vector where the higher the vector values, the
larger the number that is returned.

∥x∥p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p (3.12)

The higher the p parameter value, the higher the penalty of the components, the absolute
value of which will be larger. The most common values for p are 1, which gives rise to the
well-known Manhattan norm or L1 norm, and 2, which corresponds to the Euclidean or L2
norm. However, it was observed in this review that authors often used the value 1/2. That
normalisation can be applied to a two-dimensional A matrix, using the Lp,q Equation 3.13,
where ai, j represents the matrix element found in the position marked by the indices i and j.

∥A∥p,q =

 n

∑
j=1

(
m

∑
i=1

|ai j|p
) p

q
 1

q

(3.13)

3.4 Taxonomy for SSFS algorithms

As mentioned above, SSFS addresses the high dimensionality challenge in semi-supervised
contexts. Those strategies combine approaches linked to both FS and SSL problems.
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A new taxonomy for SSFS is presented in this section, alongside a short description and
categorisation of all the algorithms covered in this study. The categorisation is based on the
taxonomy established in Section 3.4.1, classifying the data primarily into filters, wrappers,
and embedded methods.

Algorithm classification is complex, due to the frequent conceptual overlaps between
them. Many could be classified into multiple categories, particularly filters, most of which use
the Laplacian matrix or are sparse. Therefore, according to our assessment or the emphasis
provided by various authors, each method has been assigned to the group that highlights
the most significant contribution. However, when the approach is consistent, the methods
belonging to the same author or group of authors are grouped together. This taxonomy may
need future updates, due to the publication of new and original types of algorithms.

It is important to note that some methods do not have a specific name, as the authors
never provided one.

In addition, in Table 3.1, a summary of all 103 SSFS algorithms is presented in the 99
journal and conference papers included in this literature review. A list containing a brief
description of all the algorithms is provided in the supplementary material (Appendix A).

3.4.1 Taxonomy

A taxonomy was developed in the previous review [169], based on the types of algorithms
found in 28 references up until early 2016. That taxonomy was divided into two perspectives:
the FS view, in which the traditional taxonomic structure was used in the top layer, and the
second layer, in which the types were classified according to the SSFS approaches that were
found.

In the present review, as explained in Section 3.2, all items up to December 31, 2023,
were included. According to the initial search described in the same section, the total number
of published items was 455.

After reviewing the papers, it was decided to simplify the previous taxonomy, considering
using only the FS view more suitable for this field and showing the other aspects that are not
exclusive as sub-levels. These secondary aspects are more likely to be mixed than the top
levels.

The proposed taxonomy is shown in Figure 3.5. In that taxonomy, there are two wrapper
types: search wrappers, the common FS wrappers based on search techniques; and, pseudo-
labelling wrappers, which use the SSL taxonomy wrappers like self-training and co-training
methods to pseudo-label instances to increase the amount of data that could be used by other
FS techniques. By their nature, those techniques are not used alone.
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Fig. 3.5 Proposed taxonomy for SSFS, the new class “Pseudo-labelling” is included.

3.4.2 Classification of algorithms

In Table 3.1, a summary of all the SSFS algorithms is presented, including their classification
in the SSFS topology, year of publication, task (i.e., classification, regression), and the links
to the available code.

In addition to the primary sub-types of filter algorithms, based on techniques such
as Laplacian score, pairwise constraints, and sparse models, as detailed in Section 3.3.4,
those algorithms also include other sub-types, such as adaptive graph-based models, where
the graph structure can dynamically evolve to capture the underlying data structure more
efficiently. Methods reliant on regression techniques and clustering incorporate various
metrics such as the Fisher score, the Hessian matrix, Bayesian methodologies, Minimum
Redundancy Maximum Relevance (MRMR), FR, Relief, and fuzzy logic principles. Some
algorithms integrate the concept of universum data [200], which represents instances not
belonging to any class of interest. Moreover, SSFS tagged as “other“ are algorithms that do
not fit into any previously defined categories.

Wrappers are sub-classified into the aforementioned search and pseudo-labelling, whereas
embedded methods are classified according to the inner classifier, such as trees or SVM.

In Figure 3.6, the number of algorithms according to the task or label is presented. It
can be seen that most of the algorithms are designed for classification rather than regression
problems, with significantly fewer for multi-label and multi-target problems. It may be noted
that only one algorithm supports both classification and regression.

Table 3.1 Summary of the SSFS algorithms presented in the sample of papers. Types are
selected according to the new taxonomy, and sub-types, according to the properties of the
secondary algorithm.

Reference SSFS Name Year Type Sub-type Output

[231] LSDF1 2008 Filter Laplacian score based Classification
[36] ALDS 2010 Filter Laplacian score based Classification
[184] SSMCFS 2015 Filter Laplacian score based Classification
[139] RFR 2021 Filter Laplacian score based Classification
[35] SSML 2022 Filter Laplacian score based Classification
[164] SSFSM-DTI2 2022 Filter Laplacian score based Classification

Continued on next page
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Table 3.1 – continued from previous page

Reference SSFS Name Year Type Sub-type Output

[51] SSLS 2013 Filter Laplacian score based Regression
[168] S2FSGL 2017 Filter Laplacian score based Regression
[171] S3FSGL 2018 Filter Laplacian score based Regression
[95] - 2019 Filter Laplacian score based Regression
[140] SSNDI 2020 Filter Laplacian score based Regression
[81] SIDLS 2021 Filter Laplacian score based Regression
[85] C4 2011 Filter Pairwise constraints Classification
[73] CSFS 2011 Filter Pairwise constraints Classification
[33] PCDLRD 2023 Filter Pairwise constraints Classification
[167] SSCS 2017 Filter Pairwise constraints Regression
[111] SFS 2022 Filter Pairwise constraints Regression
[4] 3-3FS 2021 Filter Pairwise constraints Multi-label
[15] CLS 2011 Filter Laplacian score + Pairwise constraints Classification
[16] CSFSR 2014 Filter Laplacian score + Pairwise constraints Classification
[214] CCLS 2016 Filter Laplacian score + Pairwise constraints Classification
[5] S-CLS 2016 Filter Laplacian score + Pairwise constraints Multi-label
[124] ISR 2018 Filter Sparse model Classification
[77] - 2021 Filter Sparse model Regression
[170] GS3FS 2020 Filter Sparse model Classif. or Regres.
[175] SFS-BLL3 2023 Filter Sparse model Multi-label
[123] OGE-SFS 2018 Filter Adaptive graph model Classification
[222] ALFS 2019 Filter Adaptive graph model Classification
[235] SADA 2021 Filter Adaptive graph model Classification
[53] Sr-SemiDFS4 2022 Filter Adaptive graph model Classification
[34] RDMRS2FS 2022 Filter Adaptive graph model Classification
[103] ASLCGLFS 2022 Filter Adaptive graph model Classification
[173] MASFS 2020 Filter Adaptive graph model Regression
[203] SFS-LARLRM 2021 Filter Adaptive graph model Regression
[30] CSFS 2014 Filter Adaptive graph model Multi-label
[126] SFAM 2021 Filter Adaptive graph model Multi-label
[102] AGLRM 2022 Filter Adaptive graph model Multi-label
[226] EMSFS 2023 Filter Adaptive graph model Multi-label
[65] S2FS2R 2015 Filter Regression based Classification
[180] FSHR 2016 Filter Regression based Classification
[233] sSelect 2007 Filter Clustering Classification
[44] SSFC 2019 Filter Clustering Classification
[153] PCFS 2020 Filter Clustering Classification
[80] LPFS5 2021 Filter Clustering Classification
[68] SSFLS 2018 Filter Fisher Score Regression
[76] LGDF 2013 Filter Fisher Score Multi-label
[174] HFSL 2015 Filter Hessian Classification
[172] SMHFS 2019 Filter Hessian Classification
[166] HSFSGU6 2023 Filter Hessian Classification
[166] HLSFSGU 2023 Filter Hessian Classification
[28] BASSUM 2011 Filter Bayesian Classification
[199] SRFS 2017 Filter Bayesian Classification
[161] Semi-IAMB7 2018 Filter Bayesian Classification
[163] SSHIBA8 2021 Filter Bayesian Classification
[209] RRPC 2017 Filter MRMR Classification
[213] SSMRMR 2018 Filter MRMR Classification
[40] HM-ICS 2023 Filter Relief Classification
[186] LPLIR 2020 Filter Relief Multi-target
[227] SFS-SLL 2022 Filter Fuzzy Classification
[118] SemiFREE 2023 Filter Fuzzy Classification
[147] UVS 2016 Filter Universum data Classification
[147] ULS 2016 Filter Universum data Classification
[147] USS 2016 Filter Universum data Classification
[122] - 2013 Filter Other Classification
[120] GLSPFS 2014 Filter Other Classification
[223] UFSSI 2016 Filter Other Classification
[38] ASFS 2016 Filter Other Classification
[196] - 2016 Filter Other Classification
[197] - 2018 Filter Other Classification
[161] Semi-JMI0 2018 Filter Other Classification
[119] RSES 2019 Filter Other Classification
[107] NGAR 2019 Filter Other Classification
[113] S2LFS 2021 Filter Other Classification
[229] UDM-SFS 2022 Filter Other Classification
[212] LRF 2022 Filter Other Classification
[230] IMP4ARA 2023 Filter Other Classification
[87] SemiACO 2023 Filter Other Classification

Continued on next page
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Table 3.1 – continued from previous page

Reference SSFS Name Year Type Sub-type Output

[198] N-Semi-IG 2023 Filter Other Classification
[31] SFMC 2016 Filter Other Regression
[195] - 2017 Filter Other Multi-label
[221] - 2017 Filter Other Multi-label
[210] SCFS 2018 Filter Other Multi-label
[220] GA-TSVM 2018 Wrapper Search Classification
[185] - 2021 Wrapper Search Multi-target
[151] FW-SemiFS 2008 Wrapper Pseudo-labelling Classification
[14] EnsCLS9 2016 Wrapper Pseudo-labelling Classification
[205] GMDH-SSFS 2017 Wrapper Pseudo-labelling Classification
[54] TSLA-FSGA10 2022 Wrapper Pseudo-labelling Classification
[177] FDG 2023 Wrapper Pseudo-labelling Classification
[176] ISFS 2023 Wrapper Pseudo-labelling Classification
[178] SFM 2023 Wrapper Pseudo-labelling Classification
[13] SEFR 2012 Embedded Tree Classification
[162] OFFS 2017 Embedded Tree Classification
[3] SSS11 2021 Embedded Tree Multi-target
[224] FS-Manifold 2010 Embedded SVM Classification
[46] SENFS 2013 Embedded SVM Classification
[37] RLSR 2017 Embedded Linear regression Classification
[192] SDSSFS 2021 Embedded Linear regression Classification
[218] DSSFS 2018 Embedded Linear regression Regression
[39] SRLSR 2020 Embedded Linear regression Regression
[148] A-SFS 2022 Embedded Autoencoder Classification
[7] KNN-FRS-SSFS 2023 Embedded KNN-Fuzzy Classification
[165] SRS3FS 2023 Embedded Spline Classification

1 https://cran.r-project.org/web/packages/Rdimtools/
2 https://github.com/LBDSoft/BRNS
3 https://github.com/shidan0122/SFS-BLL.git
4 https://github.com/46551972/SrDFS
5 https://github.com/Jiang1Xue/LPFS
6 https://github.com/rsheikhpour/HSFSGU
7 https://github.com/sechidis/2018-MLJ-Semi-supervised-feature-selection
8 https://github.com/sevisal/SSHIBA
9 http://perso.univ-lyon1.fr/haytham.elghazel/EnsCLS/EnsCLS.zip
10 https://github.com/vfeofanov/TSLA-FSGA
11 https://github.com/eadiyeke/frfiles

3.5 Relevant information analysis

In this section, the most relevant information from the 99 journal and conference papers is
organised and divided into two subsections: papers and results evaluation.

https://cran.r-project.org/web/packages/Rdimtools/
https://github.com/LBDSoft/BRNS
https://github.com/shidan0122/SFS-BLL.git
https://github.com/46551972/SrDFS
https://github.com/Jiang1Xue/LPFS
https://github.com/rsheikhpour/HSFSGU
https://github.com/sechidis/2018-MLJ-Semi-supervised-feature-selection
https://github.com/sevisal/SSHIBA
http://perso.univ-lyon1.fr/haytham.elghazel/EnsCLS/EnsCLS.zip
https://github.com/vfeofanov/TSLA-FSGA
https://github.com/eadiyeke/frfiles
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Fig. 3.7 Box plot showing the number of papers for the SSFS analysed on a yearly basis.

3.5.1 Papers

The information extracted from the papers contains data on the annual number of papers, the
most common journals on this topic, and the authors who have published more articles.

Papers per year

The box plot presented in Figure 3.7 illustrates the number of semi-supervised feature
selection articles analysed for this systematic review, covering the period from 2007 to 2023.
A progressive increase in the number of papers can be observed, starting from 1 in 2007 and
reaching 14 in 2023. An increasing trend that was applicable to several research topics. Note
that, due to the filters applied in Section 3.2, the number of papers corresponding to 2009 is
zero.

Journals

Table 3.2 presents a ranking of the journals that contain at least 3 of the revised papers
(literature reviews included), amounting to a total of 15 journals that reflect a Pareto-type
distribution, as is common in this type of analysis.



3.5 Relevant information analysis 101

Table 3.2 Top journals with at least 3 appearances in the analysed papers.

Journal Freq.

Knowledge-Based Systems 10
Neurocomputing 8
Applied Intelligence 6
IEEE Transactions on Neural Networks and Learning Systems 6
IEEE Transactions on Knowledge and Data Engineering 5
Information Sciences 5
Pattern Recognition 4
IEEE Transactions on Cybernetics 3
Knowledge and Information Systems 3
Pattern Recognition Letters 3

Table 3.3 Authors who have coauthored at least 5 documents analysed in this review.

Author Papers

Nie, Feiping 10
Sheikhpour, Razieh 8
Chen, Hongmei 6
Chen, Xiaojun 6
Li, Tianrui 6
Sarram, Mehdi Agha 6
Wang, Xiao-dong 6
Benabdeslem, Khalid 5
Gharaghani, Sajjad 5

Authors

A list of authors who participated in the writing of at least 5 documents can be found in
Table 3.3.

3.5.2 Results evaluation

In this section, the most common evaluation methodologies, the experimental setups, the
classifiers and the normalisation methods, the results validation techniques, and the statistical
tests are all presented. The approaches to determine the number of selected features and
labelled instances are explored. And finally, the most common datasets used for experimenta-
tion in this field are compared.
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Experimental setup

The range of experimental setups applied in the studies was very similar. Firstly, the initial
data set, most of which fully supervised, was divided into two parts: training and testing.
The training part was divided into supervised and unsupervised subsets by removing the
labels of the latter subset. The proportions were arbitrarily determined by the researchers.
Subsequently, in some cases, the data were normalised to mitigate potential adverse effects
on the algorithms.

The following step was feature selection where a fixed number of features were chosen,
either automatically by the algorithm or at the discretion of the researcher. After reducing
the dataset, a supervised algorithm was trained. Although an SSL classifier could be used, a
supervised one was preferred for simplicity and for a better understanding of the FS-algorithm
error types. Finally, the process was repeated to apply train/test using different splits, usually
based on 10-fold cross-validation.

It is usual to include several experiments with different learning models, different numbers
of selected features and different trade-offs between the supervised and unsupervised parts.
That practice might include either not using FS, to demonstrate the effectiveness of features
in the problem, or employing supervised FS algorithms, to demonstrate the superiority of
SSL approaches.

Comparison with other supervision types

Figure 3.8 represents an area plot displaying the number of SSFS algorithms against which
the method proposed in the paper was compared for a performance assessment. It shows
the SSFS used by year and type of supervision (semi-supervised, supervised, unsupervised).
A gradual increase in the number of algorithms compared over the years may be observed.
Note that in the first years, when SSFS algorithms emerged, only a few algorithms of the
same type were compared. The distribution of papers per year can be uneven, as shown
in Figure 3.7. Some years have little or no data representation, such as 2009, for which no
papers were collected. In addition, it is worth mentioning that the new algorithm improved
supervised and unsupervised approaches. Similarly, comparing the new algorithm with the
option of selecting no features at all was only addressed in 32.3% of the sample.

Classifiers

Supervised learning models are the most frequent employed in these studies. The distribution
of the most common models is presented in Figure 3.9 where SVM and KNN (for classi-
fication) and regression based models (for regression) are the most prevalent. It should be
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Fig. 3.8 Area plot showing the average number of feature selection algorithms against which
papers are compared, grouped by year and type of supervision (semi-supervised, supervised,
unsupervised).

noted that more than one learning model was typically trained in each article, although which
model was never specified in some studies.

Normalisation step

Data normalisation is used to set all features into the same intervals to mitigate problems
associated with the distribution of the data. Only 22.2% of the sample reported any data
normalisation. The selected normalisation methods were Min-Max (18 studies), which sets
the intervals between 0 and 1, and the Z-Score (4 studies), which standardises the mean to 0
and the standard deviation to 1 in every feature.

Validation type

Researchers use validation techniques, such as cross-validation, to evaluate the performance
and generalisation capability of machine learning models and to avoid overfitting. Cross-
validation divides a data set into k folds, training the model with k−1 folds and reserving
the other fold for testing. This process is repeated k times, using each fold once as a test set,
which ensures that all parts of the data set are used for testing at some point.

There are several ways to perform a k-fold cross-validation, though they are all based
on the same principle. A summary of the validation types performed and the type in the
reviewed papers is shown in Figure 3.10. The most common practice is cross-validation (48),
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Fig. 3.9 Most frequent learning algorithm groups.

especially 5-fold cross-validation (18) and 10-fold cross-validation (20), some studies to save
computational and programming time, only employ cross-validation to tune the classifiers
(8). Others run the experiments multiple times (22), randomly re-selecting the training and
test instances every time, in the hope that all instances will appear in both the training and
testing sets. The techniques used in the remaining studies under review were never specified.

Evaluation metrics

The most popular metrics for performance evaluations of the strategies are detailed in
Table 3.4. Despite the presence of metrics designed to address class imbalance, such as
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Fig. 3.10 Types of validation used in the reviewed papers.
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Table 3.4 Top most popular metrics with at least 5 occurrences in the analysed papers.

Metric Task Freq.

Accuracy Classification 68
Mean Average Precision Classification 10
Area Under the ROC Curve (AUC) Classif. / Multi-label 8
Root Mean Squared Error Regression 7
F1-Score (F1) Classification 6
Hamming loss Multi-label 5
One error Multi-label 5
Coefficient of determination Regression 5

2

12

1

1

7

9

G2

Nemenyi

Bonferroni−Dunn

T−test

Wilcoxon

Friedman

0 2 4 6 8 10 12

Frequency

S
ta

tis
tic

al
 te

st

Fig. 3.11 Statistical tests employed for the validation of results.

F1-Score or AUC, it may be noted that accuracy remains the most commonly used metric in
the studies. It suggests a need to consider more appropriate metrics for unbalanced scenarios
in future research.

Statistical tests

It is a common recommendation to use statistical tests when comparing experimental re-
sults. Researchers can draw conclusions based on observed data on the basis of those test
results. The results confirm whether the differences between some strategies are statistically
significant.

Only 32.3% of the studies used statistical tests. Figure 3.11 shows the frequency of use
of each of these tests. The widely recognised tests were also the most widely used: the
Friedman, the Wilcoxon Signed Rank, and the Student t-tests. While the Likelihood Ratio
(G2), the Bonferroni-Dunn, and the Nemenyi tests were used almost anecdotally.
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Parameters

In machine learning, the choice of parameters is one of the main challenges. In the field of
FS, this decision corresponds to the choice of the number of attributes. The parameter has
to be explored for filters and embedded approaches, both for researching new algorithms
and for finding ways to obtain optimal results. Similarly, in the SSL context, the number of
labelled instances is a critical experimentation parameter, which used to be explored when
comparing various algorithms. The selection of these parameters is complicated by their
dependence on a specific data set, the classifier, and other pre-processing steps that may be
applied [150].

Those values can be selected as a percentage, relative to the dataset dimensions, or as an
absolute number. Since the number of instances is compared in most studies in percentile
terms and the number of features with an absolute number, their data will be presented in
those terms.

The values of those parameters may vary in each paper, as it is common to perform
experiments with different configurations. Both parameters have therefore been divided into
three aspects: the maximum number, the minimum number, and the number of steps tested
for each parameter. These data are represented in box plots in Figure 3.12.

Datasets

As mentioned in Section 3.1, SSFS algorithms have been used in a wide variety of contexts.
The 40 most popular datasets are summarised alongside their characteristics in Table 3.5,
and the corresponding links are listed in the supplementary material(Appendix A). As can be
seen, the most common datasets are related to image processing, medicine, and handwritten
text recognition.

3.6 Conclusions and future lines of research

The field of SSFS has gained popularity over recent years. However, algorithm explanations
and comparisons have only been presented so far in two reviews, in 2016 and in 2017. Neither
study has been updated and the number of SSFS presented in each one is limited.

In all, 101 contributions, since research began in this field in 2007 up until the end of
2023, have been analysed in this systematic review. A new taxonomy based on classical
FS has also been proposed in this paper and used to classify 103 of the most relevant SSFS
algorithms.
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Fig. 3.12 Statistics on the decisions taken when choosing the percentage of labelled data (a
and b) and the number of features (c and d) in the experiments when comparing algorithm
performance. (a) and (c) show the common maximum and minimum values of these parame-
ters, whereas (b) and (d) show the number of steps taken. The means are marked by a cross
(×).
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Table 3.5 Top 40 most commonly used datasets in the reviewed studies sorted by the number
of times have been used. The table includes the data domain, the number of instances, features
and classes. For picture datasets the features have been represented as image dimensions.

# Papers Data Type Instances Features Classes

18 Coil20 Images 1440 128 × 128 20
17 Ionosphere Radar 351 34 2
17 Sonar Sonar 208 60 2
16 Image Segmentation Images 2310 19 7
16 ORL Face recognition 1440 1024 20
15 USPS Handwriting 9298 256 10
13 WBDC Images 569 30 2
12 NUS-WIDE Images 269648 128 81
12 Wine Other 178 13 3
12 Colon Microarray 62 2000 2
11 Binary alphabet Images 1404 74 × 86 34
11 Dermatology Medicine 366 34 6
11 glass Physics and Chemistry 214 9 6
11 Isolet Voice recognition 7797 617 26
10 Yeast Medicine 2417 103 14
9 Statlog German Social Science 1000 24 2
9 Heart disease Medicine 303 13 4
9 WPBC Medicine 198 33 2
9 Statlog vehicle Images 946 18 4
9 Pie10P Face recognition 210 2420 10
8 Scene Image Images 2407 294 6
7 Breast Medicine 699 9 2
7 Madelon Artificial data 4400 500 2
7 Musk Physics and Chemistry 476 166 2
7 Yale Face recognition 165 1024 15
7 Waveform Physics and Chemistry 5000 40 3
7 Leukemia Medicine 72 7070 2
6 hepatitis Health and Medicine 155 19 2
6 Libras Movement Other 360 90 15
6 PcMac Text 1943 3289 2
6 Prostate Tumor Medicine 102 10509 2
6 Pima Medicine 768 8 2
6 HumanEVA Images 10000 168 5
5 Semeion Handwriting 1593 256 10
5 CNAE-9 Business 1080 856 9
5 Ecoli Biology 336 343 8
5 MNIST Handwriting 90000 784 10
5 YaleB Images 2452 168 × 192 38
5 MIML Images 2000 15 5
4 Parkinsons Medicine 197 22 2
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After analysing the literature, several interesting conclusions have been drawn. When
comparing SSFS algorithms, researchers have often explored two critical parameters that
significantly influenced algorithm performance: the number of labelled instances and the
number of selected features. Determining the values for those parameters is challenging
for different reasons and often relies on arbitrary choices. Consequently, researchers have
frequently experimented with different configurations, to ensure a fair comparison.

The predominant choice of learning models in SSFS has tended to be supervised, with
SVM and KNN as the most popular options. Moreover, the absence of any normalisation
step is remarkable.

Accuracy is used in most studies (68.3%) to analyse the different strategies and their
performance. However, proper cross-validation techniques to validate the results were only
employed in one-third of the studies. Additionally, statistical tests to evaluate the performance
of the strategies, such as the Friedman, the Wilcoxon Signed Rank, and the Student t-tests
were used in only 32.3% of the studies .

Following the production of this systematic review, some recommendations can be
presented based on the observed weaknesses. Consider data normalisation as a preliminary
step before applying algorithms. Use more appropriate metrics, such as F1-Score or AUC, to
address problems inherent to class imbalance. Use statistical tests such as the Friedman, the
Wilcoxon, and Bayesian tests to improve the robustness of the studies.

Regarding the transparency and reproducibility of the studies, the importance may be
emphasised of publishing the code of the algorithms. The codes of only 10% of the algorithms
are currently available, which hinders any replicability of the results and prolongs the time
needed to research new studies. This practice may discourage researchers and limit the
comparison of algorithms, negatively affecting the quality of future studies.

As a future research line, it could be interesting to conduct a comprehensive comparison
between SSFS methods and SSL classifiers. Since most classifiers are supervised, such a
comparison could provide valuable insights into specific contexts. Finally, it might also be
worth exploring which learning models and which SSFS pairs are better than others, given
that it has been observed that FS performance tends to depend on the model that is used.
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[127] Mackutė-Varoneckienė, A. and Krilavičius, T. (2014). Empirical study on unsuper-
vised feature selection for document clustering. In Human Language Technologies–The
Baltic Perspective, pages 107–110. IOS Press.

[128] Maldonado, S., Weber, R., and Famili, F. (2014). Feature selection for high-
dimensional class-imbalanced data sets using support vector machines. Information
Sciences, 286:228–246.

[129] Matthews, B. (1975). Comparison of the predicted and observed secondary structure of
t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–
451.

[130] Mendes Junior, J. J. A., Freitas, M. L., Siqueira, H. V., Lazzaretti, A. E., Pichorim,
S. F., and Stevan, S. L. (2020). Feature selection and dimensionality reduction: An
extensive comparison in hand gesture classification by semg in eight channels armband
approach. Biomedical Signal Processing and Control, 59:101920.

[131] Min, W., Lu, K., and He, X. (2004). Locality pursuit embedding. Pattern Recognition,
37:781–788. LPE - Locality pursuit embedding.

[132] Mitchell, T. (1997). Machine Learning. McGraw-Hill International Editions. McGraw-
Hill.

[133] Mohammed, R., Rawashdeh, J., and Abdullah, M. (2020). Machine learning with
oversampling and undersampling techniques: overview study and experimental results. In
2020 11th international conference on information and communication systems (ICICS),
pages 243–248. IEEE.

[134] Mordohai, P. and Medioni, G. (2010). Dimensionality estimation, manifold learning
and function approximation using tensor voting. Journal of Machine Learning Research,
11(1).

[135] Muntasa, A., Sirajudin, I. A., and Purnomo, M. H. (2011). Appearance global and
local structure fusion for face image recognition. TELKOMNIKA (Telecommunication
Computing Electronics and Control), 9(1):125–132.

[136] Ng, W. W. Y., Hu, J., Yeung, D. S., Yin, S., and Roli, F. (2015). Diversified sensitivity-
based undersampling for imbalance classification problems. IEEE Transactions on Cyber-
netics, 45(11):2402–2412.

[137] Ongaro, A. and Migliorati, S. (2013). A generalization of the Dirichlet distribution.
Journal of Multivariate Analysis, 114:412–426.



References 121

[138] Orriols-Puig, A. and Bernadó-Mansilla, E. (2009). Evolutionary rule-based systems
for imbalanced data sets. Soft Computing, 13:213–225.

[139] Pang, Q. and Zhang, L. (2021). A recursive feature retention method for semi-
supervised feature selection. International Journal of Machine Learning and Cybernetics,
12(9):2639–2657.

[140] Pang, Q.-Q. and Zhang, L. (2020). Semi-supervised neighborhood discrimination
index for feature selection. Knowledge-Based Systems, 204:106224.

[141] Parhizkar, T., Rafieipour, E., and Parhizkar, A. (2021). Evaluation and improvement of
energy consumption prediction models using principal component analysis based feature
reduction. Journal of Cleaner Production, 279:123866.

[142] Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.
PCA.

[143] Peck, R. and Devore, J. L. (2011). Statistics: The exploration & analysis of data.
Cengage Learning.

[144] Peralta, D., Del Río, S., Ramírez-Gallego, S., Triguero, I., Benitez, J. M., and Herrera,
F. (2015). Evolutionary feature selection for big data classification: A MapReduce
approach. Mathematical Problems in Engineering.

[145] Pes, B. (2020). Learning from high-dimensional biomedical datasets: The issue of
class imbalance. IEEE Access, 8:13527–13540.

[146] Pes, B. (2021). Learning from high-dimensional and class-imbalanced datasets using
random forests. Information, 12(8).

[147] Qiu, J. and Pan, Z. (2016). Semisupervised feature selection with universum. Mathe-
matical Problems in Engineering, 2016:e5874161. Publisher: Hindawi.

[148] Qiu, Z., Zeng, W., Liao, D., and Gui, N. (2022). A-SFS: Semi-supervised feature
selection based on multi-task self-supervision. Knowledge-Based Systems, 252:109449.

[149] Ramos-Pérez, I., Barbero-Aparicio, J. A., Canepa-Oneto, A., Arnaiz-González, Á., and
Maudes-Raedo, J. (2024). An extensive performance comparison between feature reduc-
tion and feature selection preprocessing algorithms on imbalanced wide data. Information,
15(4):223.

[150] Ramos-Pérez, I., Álvar Arnaiz-González, Rodríguez, J. J., and García-Osorio, C.
(2022). When is resampling beneficial for feature selection with imbalanced wide data?
Expert Systems with Applications, 188:116015.

[151] Ren, J., Qiu, Z., Fan, W., Cheng, H., and Yu, P. S. (2008). Forward semi-supervised
feature selection. In Advances in Knowledge Discovery and Data Mining: 12th Pacific-
Asia Conference, PAKDD 2008 Osaka, Japan, May 20-23, 2008 Proceedings 12, pages
970–976. Springer.



122 References

[152] Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised self-
training of object detection models. Proceedings - Seventh IEEE Workshop on Applications
of Computer Vision, WACV 2005.

[153] Rostami, M., Berahmand, K., and Forouzandeh, S. (2020). A novel method of
constrained feature selection by the measurement of pairwise constraints uncertainty.
Journal of Big Data, 7(1):83.

[154] Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326.

[155] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science.

[156] Sachdeva, R. K., Bathla, P., Rani, P., Kukreja, V., and Ahuja, R. (2022). A systematic
method for breast cancer classification using rfe feature selection. 2022 2nd International
Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE
2022, pages 1673–1676.

[157] Saeys, Y., Inza, I., and Larrañaga, P. (2007). A review of feature selection techniques
in bioinformatics. Bioinformatics, 23(19):2507–2517.

[158] Sahu, B., Dehuri, S., and Jagadev, A. (2018). A Study on the Relevance of Feature
Selection Methods in Microarray Data. The Open Bioinformatics Journal, 11(1).

[159] Sáiz-Manzanares, M. C., Pérez, I. R., Rodríguez, A. A., Arribas, S. R., Almeida, L.,
and Martin, C. F. (2021). Analysis of the learning process through eye tracking technology
and feature selection techniques. Applied Sciences, 11(13):6157.

[160] Salesi, S., Cosma, G., and Mavrovouniotis, M. (2021). TAGA: Tabu asexual genetic
algorithm embedded in a filter/filter feature selection approach for high-dimensional data.
Information Sciences, 565:105–127.

[161] Sechidis, K. and Brown, G. (2018). Simple strategies for semi-supervised feature
selection. Machine Learning, 107(2):357–395.

[162] Settouti, N., Chikh, M. A., and Barra, V. (2017). A new feature selection approach
based on ensemble methods in semi-supervised classification. Pattern Analysis and
Applications, 20(3):673–686.

[163] Sevilla-Salcedo, C., Gómez-Verdejo, V., and Olmos, P. M. (2021). Sparse
semi-supervised heterogeneous interbattery bayesian analysis. Pattern Recognition,
120:108141.

[164] Sharifabad, M. M., Sheikhpour, R., and Gharaghani, S. (2022). BRNS + SSFSM-DTI:
A hybrid method for drug-target interaction prediction based on balanced reliable negative
samples and semi-supervised feature selection. Chemometrics and Intelligent Laboratory
Systems, 220:104462.

[165] Sheikhpour, R. (2023). A local spline regression-based framework for semi-supervised
sparse feature selection. Knowledge-Based Systems, 262:110265.



References 123

[166] Sheikhpour, R., Berahmand, K., and Forouzandeh, S. (2023). Hessian-based semi-
supervised feature selection using generalized uncorrelated constraint. Knowledge-Based
Systems, 269:110521.

[167] Sheikhpour, R., Sarram, M. A., and Gharaghani, S. (2017a). Constraint score for
semi-supervised feature selection in ligand-and receptor-based QSAR on serine/threonine-
protein kinase PLK3 inhibitors. Chemometrics and Intelligent Laboratory Systems,
163:31–40.

[168] Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z.
(2017b). Feature selection based on graph laplacian by using compounds with
known and unknown activities. Journal of Chemometrics, 31(8):e2899. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cem.2899.

[169] Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z. (2017c). A
survey on semi-supervised feature selection methods. Pattern Recognition, 64:141–158.

[170] Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z. (2020-08-
01). A robust graph-based semi-supervised sparse feature selection method. Information
Sciences, 531:13–30.

[171] Sheikhpour, R., Sarram, M. A., and Sheikhpour, E. (2018). Semi-supervised sparse
feature selection via graph laplacian based scatter matrix for regression problems. Infor-
mation Sciences, 468:14–28.

[172] Shi, C., Duan, C., Gu, Z., Tian, Q., An, G., and Zhao, R. (2019). Semi-supervised fea-
ture selection analysis with structured multi-view sparse regularization. Neurocomputing,
330:412–424.

[173] Shi, C., Gu, Z., Duan, C., and Tian, Q. (2020). Multi-view adaptive semi-supervised
feature selection with the self-paced learning. Signal Processing, 168:107332.

[174] Shi, C., Ruan, Q., An, G., and Zhao, R. (2015). Hessian semi-supervised sparse
feature selection. IEEE Transactions on Multimedia, 17(1):16–28.

[175] Shi, D., Zhu, L., Li, J., Cheng, Z., and Liu, Z. (2023). Binary label learning for semi-
supervised feature selection. IEEE Transactions on Knowledge and Data Engineering,
35(3):2299–2312.

[176] Shu, W., Yan, Z., Yu, J., and Qian, W. (2023a). Information gain-based semi-
supervised feature selection for hybrid data. Applied Intelligence, 53(6):7310–7325.

[177] Shu, W., Yu, J., Chen, T., and Qian, W. (2023b). Neighbourhood discernibility degree-
based semisupervised feature selection for partially labelled mixed-type data with granular
ball. Applied Intelligence.

[178] Shu, W., Yu, J., Yan, Z., and Qian, W. (2023c). Semi-supervised feature selection for
partially labeled mixed-type data based on multi-criteria measure approach. International
Journal of Approximate Reasoning, 153:258–279.

[179] Silva, V. and Tenenbaum, J. (2002). Global versus local methods in nonlinear dimen-
sionality reduction. Advances in neural information processing systems, 15.



124 References

[180] Song, X., Zhang, J., Han, Y., and Jiang, J. (2016). Semi-supervised feature selection
via hierarchical regression for web image classification. Multimedia Systems, 22(1):41–49.

[181] Song, Z., Yang, X., Xu, Z., and King, I. (2022). Graph-based semi-supervised learning:
A comprehensive review. IEEE Transactions on Neural Networks and Learning Systems.

[182] Spielman, D. A. (2007). Spectral graph theory and its applications. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 29–38. IEEE.

[183] Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality
reduction. ACM International Conference Proceeding Series, 148:905–912. LFDA -
Local Fisher Discriminant Analysis.

[184] Sun, Y. and Wen, G. (2015). Emotion recognition using semi-supervised feature selec-
tion with speaker normalization. International Journal of Speech Technology, 18(3):317–
331.

[185] Syed, F. H., Tahir, M. A., Rafi, M., and Shahab, M. D. (2021). Feature selection for
semi-supervised multi-target regression using genetic algorithm. Applied Intelligence,
51(12):8961–8984.

[186] Tang, B. and Zhang, L. (2020). Local preserving logistic i-relief for semi-supervised
feature selection. Neurocomputing, 399:48–64.

[187] Tomek, I. (1976). Two modifications of cnn. IEEE Transactions on Systems, Man and
Cybernetics, SMC-6(11):769 – 772. Cited by: 1059.

[188] Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., and Moore, J. H. (2018).
Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics,
85:189–203.

[189] Van Engelen, J. E. and Hoos, H. H. (2020). A survey on semi-supervised learning.
Machine learning, 109(2):373–440.

[190] Velliangiri, S., Alagumuthukrishnan, S., et al. (2019). A review of dimensionality
reduction techniques for efficient computation. Procedia Computer Science, 165:104–111.

[191] Vidya, A., Shanthi, D., Gokulakrishnan, P., and Manivannan, K. (2019). Lehality
prediction of highly disproportionate data of icu deceased using extreme learning machine.
International Journal of Innovative Technology and Exploring Engineering.

[192] Wang, C., Chen, X., Yuan, G., Nie, F., and Yang, M. (2021a). Semisupervised feature
selection with sparse discriminative least squares regression. IEEE Transactions on
Cybernetics, 52(8):8413–8424.

[193] Wang, S., Celebi, M. E., Zhang, Y.-D., Yu, X., Lu, S., Yao, X., Zhou, Q., Miguel, M.-
G., Tian, Y., Gorriz, J. M., et al. (2021b). Advances in data preprocessing for biomedical
data fusion: An overview of the methods, challenges, and prospects. Information Fusion,
76:376–421.

[194] Wang, W., Lu, L., and Wei, W. (2022). A novel supervised filter feature selection
method based on gaussian probability density for fault diagnosis of permanent magnet dc
motors. Sensors, 22(19):7121.



References 125

[195] Wang, X.-d., Chen, R.-C., Hong, C.-q., Zeng, Z.-q., and Zhou, Z.-l. (2017a). Semi-
supervised multi-label feature selection via label correlation analysis with l1-norm graph
embedding. Image and Vision Computing, 63:10–23.

[196] Wang, X.-d., Chen, R.-C., Yan, F., and Zeng, Z.-q. (2016). Semi-supervised feature
selection with exploiting shared information among multiple tasks. Journal of Visual
Communication and Image Representation, 41:272–280.

[197] Wang, X.-D., Chen, R.-C., Yan, F., Zeng, Z.-Q., and Hong, C.-Q. (2018). Semi-
supervised adaptive feature analysis and its application for multimedia understanding.
Multimedia Tools and Applications, 77(3):3083–3104.

[198] Wang, Y. and Wang, J. (2023). Neurodynamics-driven holistic approaches to semi-
supervised feature selection. Neural Networks, 157:377–386.

[199] Wang, Y., Wang, J., Liao, H., and Chen, H. (2017b). An efficient semi-supervised rep-
resentatives feature selection algorithm based on information theory. Pattern Recognition,
61:511–523.

[200] Weston, J., Collobert, R., Sinz, F., Bottou, L., and Vapnik, V. (2006). Inference with
the universum. In Proceedings of the 23rd international conference on Machine learning,
pages 1009–1016.

[201] Wijayanto, I., Humairani, A., Hadiyoso, S., Rizal, A., Prasanna, D. L., and Tri-
pathi, S. L. (2023). Epileptic seizure detection on a compressed eeg signal using energy
measurement. Biomedical Signal Processing and Control, 85:104872.

[202] Wu, Q., Zhang, H., Jing, R., and Li, Y. (2019). Feature selection based on twin support
vector regression. In 2019 IEEE symposium series on computational intelligence (SSCI),
pages 2903–2907. IEEE.

[203] Wu, X., Chen, H., Li, T., and Wan, J. (2021). Semi-supervised feature selection with
minimal redundancy based on local adaptive. Applied Intelligence, 51(11):8542–8563.

[204] Xiang, S., Nie, F., Meng, G., Pan, C., and Zhang, C. (2012). Discriminative least
squares regression for multiclass classification and feature selection. IEEE transactions
on neural networks and learning systems, 23(11):1738–1754.

[205] Xiao, J., Cao, H., Jiang, X., Gu, X., and Xie, L. (2017). GMDH-based semi-supervised
feature selection for customer classification. Knowledge-Based Systems, 132:236–248.

[206] Xiao, Y., Wu, J., Lin, Z., and Zhao, X. (2018). A semi-supervised deep learning
method based on stacked sparse auto-encoder for cancer prediction using rna-seq data.
Computer methods and programs in biomedicine, 166:99–105.

[207] Xiao, Z., Dellandrea, E., Dou, W., and Chen, L. (2008). ESFS: A new embedded
feature selection method based on SFS. PhD thesis, Ecole Centrale Lyon; Université de
Lyon; LIRIS UMR 5205 CNRS/INSA de Lyon . . . .

[208] Xu, C., Tao, D., and Xu, C. (2013). A survey on multi-view learning. arXiv preprint
arXiv:1304.5634.



126 References

[209] Xu, J., Tang, B., He, H., and Man, H. (2017). Semisupervised feature selection
based on relevance and redundancy criteria. IEEE Transactions on Neural Networks and
Learning Systems, 28(9):1974–1984.

[210] Xu, Y., Wang, J., An, S., Wei, J., and Ruan, J. (2018). Semi-supervised multi-label
feature selection by preserving feature-label space consistency. International Conference
on Information and Knowledge Management, Proceedings, page 783 – 792. Cited by: 24.

[211] Yang, J., Li, T., Liang, G., He, W., and Zhao, Y. (2019). A simple recurrent unit model
based intrusion detection system with DCGAN. IEEE Access, 7:83286–83296.

[212] Yang, T., Deng, Y., Yu, B., Qian, Y., and Dai, J. (2022). Local feature selection
for large-scale data sets limited labels. IEEE Transactions on Knowledge and Data
Engineering.

[213] Yang, X.-K., He, L., Qu, D., and Zhang, W.-Q. (2018). Semi-supervised minimum
redundancy maximum relevance feature selection for audio classification. Multimedia
Tools and Applications, 77(1):713–739.

[214] Yang, X.-K., He, L., Qu, D., Zhang, W.-Q., and Johnson, M. T. (2016). Semi-
supervised feature selection for audio classification based on constraint compensated
laplacian score. EURASIP Journal on Audio, Speech, and Music Processing, 2016(1):9.

[215] Yang, Y., Nie, F., Xiang, S., Zhuang, Y., and Wang, W. (2010). Local and global re-
gressive mapping for manifold learning with out-of-sample extrapolation. In Proceedings
of the AAAI conference on artificial intelligence, pages 649–654.

[216] Yao, C. and Guo, Z. (2023). Revisit neighborhood preserving embedding: A new
criterion for measuring the manifold similarity in dimension reduction. Available at SSRN
4349051.

[217] Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised
methods. In 33rd annual meeting of the association for computational linguistics, pages
189–196.

[218] Yuan, G., Chen, X., Wang, C., Nie, F., and Jing, L. (2018a). Discriminative semi-
supervised feature selection via rescaled least squares regression-supplement. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1). Number: 1.

[219] Yuan, H., Zheng, J., Lai, L. L., and Tang, Y. Y. (2018b). Sparse structural feature
selection for multitarget regression. Knowledge-Based Systems, 160:200–209.

[220] Zemmal, N., Azizi, N., Sellami, M., Zenakhra, D., Cheriguene, S., Dey, N., and
Ashour, A. S. (2018). Robust feature selection algorithm based on transductive svm
wrapper and genetic algorithm: application on computer-aided glaucoma classification.
International Journal of Intelligent Systems Technologies and Applications, 17(3):310–
346.

[221] Zeng, Z., Wang, X., and Chen, Y. (2017). Multimedia annotation via semi-supervised
shared-subspace feature selection. Journal of Visual Communication and Image Represen-
tation, 48:386–395.



References 127

[222] Zeng, Z., Wang, X., Yan, F., and Chen, Y. (2019). Local adaptive learning for semi-
supervised feature selection with group sparsity. Knowledge-Based Systems, 181:104787.

[223] Zeng, Z., Wang, X., Zhang, J., and Wu, Q. (2016). Semi-supervised feature selection
based on local discriminative information. Neurocomputing, 173:102–109.

[224] Zenglin Xu, King, I., Lyu, M. R.-T., and Rong Jin (2010). Discriminative semi-
supervised feature selection via manifold regularization. IEEE Transactions on Neural
Networks, 21(7):1033–1047.

[225] Zhang, C., Bi, J., and Soda, P. (2017). Feature selection and resampling in class
imbalance learning: Which comes first? an empirical study in the biological domain. In
2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages
933–938.

[226] Zhang, C., Jiang, B., Wang, Z., Yang, J., Lu, Y., Wu, X., and Sheng, W. (2023a).
Efficient multi-view semi-supervised feature selection. Information Sciences, 649:119675.

[227] Zhang, C., Zhu, L., Shi, D., Zheng, J., Chen, H., and Yu, B. (2022a). Semi-supervised
feature selection with soft label learning. IEEE/CAA Journal of Automatica Sinica.

[228] Zhang, D., Chen, S., and Zhou, Z.-H. (2008). Constraint score: A new filter method
for feature selection with pairwise constraints. Pattern Recognition, 41(5):1440–1451.

[229] Zhang, H., Gong, M., Nie, F., and Li, X. (2022b). Unified dual-label semi-supervised
learning with top-k feature selection. Neurocomputing, 501:875–888.

[230] Zhang, Q., Zhao, Z., Liu, F., and Li, Z. (2023b). Uncertainty measurement for
single cell RNA-seq data based on class-consistent technology with application to semi-
supervised gene selection. Applied Soft Computing, 146:110645.

[231] Zhao, J., Lu, K., and He, X. (2008). Locality sensitive semi-supervised feature
selection. Neurocomputing, 71(10):1842–1849.

[232] Zhao, X. and Jia, M. (2018). Fault diagnosis of rolling bearing based on feature
reduction with global-local margin fisher analysis. Neurocomputing, 315:447–464.

[233] Zhao, Z. and Liu, H. (2007). Semi-supervised feature selection via spectral analysis.
In Proceedings of the 2007 SIAM international conference on data mining, pages 641–646.
SIAM.

[234] Zheng, Z., Yang, F., Tan, W., Jia, J., and Yang, J. (2007). Gabor feature-based face
recognition using supervised locality preserving projection. Signal Processing, 87:2473–
2483. SLPE - Supervised Locality Pursuit Embedding.

[235] Zhong, W., Chen, X., Nie, F., and Huang, J. Z. (2021). Adaptive discriminant analysis
for semi-supervised feature selection. Information Sciences, 566:178–194.

[236] Zhou, Z.-H. and Li, M. (2005). Tri-training: Exploiting unlabeled data using three
classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541.

[237] Zhu, Z., Ong, Y.-S., and Dash, M. (2007). Markov blanket-embedded genetic algo-
rithm for gene selection. Pattern Recognition, 40(11):3236–3248.





A
Supplementary Materials: Systematic review

semi-supervised feature selection

This document presents the supplementary materials of the paper titled “Systematic review
of semi-supervised feature selection methods”. The material includes a list of the 103 semi-
supervised feature selection (SSFS) methods reviewed in the main document with a brief
description. Additionally, in Table A.1, the links to the top 40 most commonly used datasets
already mentioned in the main document are provided.

A.1 Algorithms description list

• Filter - Laplacian score - Classification

– LSDF [231] uses labelled points to maximise the margin between classes. In
contrast, unlabelled points are used to discover the geometric structure of the data
space.

– ALDS [36] incorporates asymmetric class miss classification costs in the weight
matrices.
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– SSMCFS [184] extends the MCFS (multi-cluster feature selection) model based
on the Laplacian matrix eigendecomposition for SSL.

– RFR [139] is based on the Neighbourhood Discriminant Index (NDI) FS and
uses a forward iterative approach to the proposed Laplacian score (LS).

– SSML [35] used for multi-modality data, where samples in some classes are in
several clusters.

– SSFSM-DTI [164] is an optimised version of LSDF for drug-target interaction
datasets.

• Filter - Laplacian score - Regression

– SSLS [51] is a SSL version of the LS, presented alongside a supervised version
in the same article.

– S2FSGL [168] focuses on quantitative structure-activity relationship (QSAR)
models.

– S3FSGL [171] is a sparse version of the previous method called S2FSGL.

– [95] is a multi-view and multi-objective algorithm based on the Laplacian matrix.

– SSNDI [140] is a version of the supervised FS NDI, based on the neighbourhood
discrimination index combined with the LS to create.

– SIDLS [81] uses the LS with the divergence of spectral information, which uses
class probability information to construct graphs.

• Filter - Pairwise constraints - Classification

– C4 [85]

– CSFS [73]

– PCDLRD [33] is a sparse model using the L2,1 norm.

• Filter - Pairwise constraints - Regression

– SSCS [167] is oriented towards QSAR data.

– SFS [111] integrates ridge regression with pairwise constraints to improve accu-
racy in regression problems.

• Filter - Pairwise constraints - Multi-label
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– 3-3FS [4] is an ensemble that relies on data resampling through three different
methods: bagging, random sub-space method and a new resampling algorithm
called random sub-labelling strategy, centred on the label ensemble.

• Filter - Laplacian score + pairwise constraints - Classification

– CLS [15] uses C1 to constrain the effectiveness of LS for efficient semi-supervised
feature selection, knowing that the LS assumption that data points from the same
class are inherently close to each other may not always hold true.

– CSFSR [16] first focuses on reducing redundancy between selected features by
selecting pairwise constraints before applying a filter based on CLS.

– CCLS [214] is an algorithm optimised for audio classification.

• Filter - Laplacian score + pairwise constraints - Classification

– S-CLS [5] utilises CLS with an ensemble technique incorporating data resam-
pling (bagging) and a random subspace strategy to mitigate noise on multi-label
problems.

• Filter - Sparse models - Classification

– ISR [124] extends label information through label propagation and utilises a
proposed Insensitive Regression Model (IRM) with a L2,p norm.

• Filter - Sparse models - Regression

– [77] propose an SSFS method based on Flexible Manifold Embedding (FME)
FS, applying sparse regularisation techniques to enhance model smoothness and
reduce sensitivity to noise.

• Filter - Sparse models - Classification or Regression

– GS3FS [170] utilises a mixed convex and non-convex L2,p norm (0 < p ≤
1) minimisation approach for both classification and regression, focusing on
regularisation and loss function optimisation.

• Filter - Sparse models - Multi-label

– SFS-BLL [175] presents the Binary Hash Learning, which increases the number
of labels by binary hash constraints.

• Filter - Adaptive graph models - Classification



132 Systematic review semi-supervised feature selection

– OGE-SFS [123] employs adaptive neighbour assignment and an adaptive loss
function to shape the model.

– ALFS [222] integrates a local adaptive loss function with a global sparsity
constraint to enhance adaptability across various data distributions.

– SADA [235] iteratively learns an adaptive similarity matrix by a projection matrix
and controlling sparsity through the L2,p norm.

– Sr-SemiDFS [53] formulates its approach assuming two data structures: soft
data structure for pairwise weights and hard data structure for estimated labels
obtained from clustering or semi-supervised classification.

– RDMRS2FS [34] utilises an adaptive redundancy regularisation term based on
self-representation to minimise redundancy between features.

– ASLCGLFS [103] aims to enhance the quality of the similarity matrix by lever-
aging label information to guide graph learning, addressing that this crucial
information is ignored in most adaptive graph learning methods.

• Filter - Adaptive graph models - Regression

– MASFS [173] algorithm introduces self-paced learning (SPL) to the SSFS,
enabling the Laplacian weight graph to adapt according to label information.

– SFS-LARLRM [203] incorporates local adaptive and minimal redundancy, em-
ploying a similarity penalty to promote discrimination and reduce redundancy
within the selected feature subset.

• Filter - Adaptive graph models - Multi-label

– CSFS [30] criticises the reliance of multi-label SSFS methods on the manifold
assumption for exploring label correlations, proposing an optimisation strategy
that combines adaptive global structure learning with manifold learning.

– SFAM [126] note that sparse feature selection often leads to the selection of
redundant features due to similar weights assignation; therefore, it introduces
redundancy minimisation regularisation to enhance the quality of the similarity
matrix and mitigate the negative impact of redundant features.

– AGLRM [102] deals with the computational load by large datasets relying on
eigen-decomposition.

– EMSFS [226] is a multi-view algorithm that combines graph learning with label
propagation to construct a bipartite graph between training samples and generated
anchors.
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• Filter - Regression-based models - Classification

– S2FS2R [65] employs a sparse framework based on splines.

– FSHR [180] adopts a hierarchical regression approach.

• Filter - Clustering - Classification

– sSelect [233] based on spectral analysis and operating under cluster assumptions,
introduces an index for clustering purposes.

– SSFC [44] introduces a novel mutual information measure alongside hierarchical
feature clustering to eliminate redundant features.

– PCFS [153] combines pairwise constraints while optimising a clustering measure
known as Dim-reduce.

– LPFS [80] is a clustering model based on label propagation.

• Filter - Fisher Score based - Regression

– SSFLS [68] is an algorithm optimised for QSAR datasets.

• Filter - Fisher Score based - Multi-label

– LGDF [76] combines Fisher score with label propagation.

• Filter - Hessian - Classification

– HFSL [174] combines Hessian matrix with a L2,1/2 norm.

– SMHFS [172] employs multi-view sparse regularisation followed by a multi-view
Hessian approach.

– HSFSGU [166], uses a Hessian regularization matrix and a L2,p-norm regulariza-
tion to maintain the topological structure of data.

– HLSFSGU [166] is an alternative version of HSFSGU that combines Hessian
and Graph Laplacian matrices.

• Filter - Bayesian - Classification

– BASSUM [28]

– SRFS [199] applies information theory to identify and eliminate irrelevant and
redundant features.

– Semi-IAMB [161] based on Joint Mutual Information (JMI).
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– SSHIBA [163] is a multi-view multi-task approach based on the Bayesian Inter-
Battery Factor Analysis (BIBFA) model.

• Filter - Minimum Redundancy Maximum Relevance - Classification

– RRPC [209] combines Pearson correlation with MRMR,

– SSMRMR [213] applies MRMR with the CCLS mentioned above to measure
feature relevance effectively.

• Filter - Relief - Classification

– HM-ICS [40] integrates FS Relief-SC and C1 using pairwise constraints.

• Filter - Relief - Multi-target

– LPLIR [186] is based on the Logistic I-Relief, employs local preserving regular-
isation to maximise the margin of labelled data while preserving local structural
information.

• Filter - Fuzzy - Classification

– SFS-SLL [227] learns initial soft labels based on local distance clustering centres
using fuzzy C-means clustering in conjunction with a sparse regression model.

– SemiFREE [118] adopt relevance-maximisation and redundancy-minimisation
principles.

• Filter - Universum data - Classification

– UVS [147] based on Variance Score.

– ULS [147] based on Laplacian Score.

– USS [147] based on Sparsity Score.

• Filter - Other - Classification

– [122] introduce a noise-insensitive trace ratio criterion to mitigate the impact of
noisy data.

– GLSPFS [120] employs feature reduction to retain global and local structures in
feature selection.

– UFSSI [223] exploits local discriminative information to construct a linear re-
gression model under the L2,1 norm.
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– ASFS [38] algorithm evaluates each feature by linear objective functions based
on loss functions and probability distribution matrices.

– [196] proposes a multi-task learning approach for large datasets in multimedia
annotation, avoiding Laplacian graph construction.

– [197] integrates adaptive local manifold learning and FS, applying sparse con-
straints like the L2,1 norm.

– [221] propose an efficient approach which avoids creating the Laplacian graph.

– Semi-JMI [161] is based on Incremental Association Markov Blanket (IAMB)

– RSES [119] introduces an ensemble based on rough sets, proposing the Local
Neighbourhood Decision Error Rate (LNDER) to construct multiple fitness
functions for feature significance evaluation.

– NGAR [107] utilises approximate sets and neighbourhood granulation measures.

– S2LFS [113] introduces a class-specific algorithm allowing the selection of
different feature subsets for different classes.

– UDM-SFS [229] employs a soft label matrix to identify inaccessible samples
near class boundaries while imposing an L2,0 norm constraint on the projection
matrix.

– LRF [212] presents an algorithm for large-scale datasets based on the locally
related family framework.

– IMP4ARA [230] incorporates an uncertainty measurement based on class-
consistent technology.

– SemiACO [87] is based on the ACO algorithm, which minimises redundancy
and maximises relevance with a nonlinear heuristic function.

– N-Semi-IG [198] employs a one-layer projection neural network to optimise
multi-information measures by minimising redundancy and maximising rele-
vance.

• Filter - Other - Regression

– SFMC [31] presents a multi-task learning algorithm for video recognition, aiming
for versatility across different problem types while considering feature correla-
tions in batch mode feature selection.

• Filter - Other - Multi-label
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– [195] presents a sparse algorithm which seeks a shared structure for assigning
multiple labels to a single sample simultaneously.

– [221] use an efficient approach which avoids creating the Laplacian graph.

– SCFS [210] relies on probabilistic neighbourhood similarities and correlation
information in label space for SSFS.

• Wrapper Search - Classification

– GA-TSVM [220] uses a genetic algorithm alongside a transductive SVM.

• Wrapper Search - Multi-target regression

– [185] uses as base classifier a transductive SVM.

• Wrapper Pseudo-labelling - Classification

– FW-SemiFS [151] combines pseudo-labelling with the forward search wrapper,
using the search by adding pseudo-labelled instances at each iteration and then
selecting the most relevant ones.

– EnsCLS [14] employs K-Nearest Neighbors (KNN) label propagation for pseudo-
labelling, incorporating a feature selection method based on information entropy
and granulation.

– GMDH-SSFS [205] combines pseudo-labelling with neural network-based em-
bedding using the group data manipulation (GMDH) method.

– TSLA-FSGA [54] labels unlabelled instances with transductive self-training and
searches for the best ones using a genetic approach.

– FDG [177] is an ensemble which uses the proposed neighbourhood discernibility
measure, compatible with mixed data and missing values.

– ISFS [176] is used for hybrid data utilising information gain-based pseudo-
labelling with an enlarged neighbourhood granule.

– SFM [178] is a mixed input type-compatible algorithm, utilises a novel label
propagation algorithm combining K-nearest neighbour with a new feature multi-
criteria measure derived from dependency, information entropy, and information
granulation.

• Embedded - Tree based - Classification



A.1 Algorithms description list 137

– SEFR [13] employs the random forest out-of-the-bag permutation technique to
select features.

– OFFS [162] applies random forest out-of-the-bag permutation technique with
co-forest.

• Embedded - Tree based - Multi-target

– SSS [3] employs a set of random trees for multi-target regression.

• Embedded - SVM - Classification

– FS-Manifold [224] combines the SVM with manifold regularization.

– SENFS [46] applies the elastic net penalty to the SVM.

• Embedded - Linear regression - Classification

– RLSR [37] applies an L2,p norm to improve model performance in classification
problems.

– SDSSFS [192] extends the RLSR using the e-dragging technique.

• Embedded - Linear regression - Classification

– SRLSR [39] is an adaptation of RLSR to regression problems.

– DSSFS [218] is another extension to RLSR which incorporates a technique called
e-dragging [204].

• Embedded - Autoencoder - Classification

– A-SFS [148] checks the weights of an autoencoder to assume the importance of
the features.

• Embedded - KNN - Classification

– KNN-FRS-SSFS [7] uses the KNN with fuzzy logic to effectively work on
datasets with large density variations.

• Embedded - Spline - Classification

– SRS3FS [165] is a sparse spline-based wrapper designed to work on regression
problems.
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A.2 Links to datasets

Table A.1 Links of the top most commonly used datasets

Data URL

Coil20 https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
Ionosphere https://archive.ics.uci.edu/dataset/52/ionosphere
Sonar https://archive.ics.uci.edu/dataset/151/connectionist+bench+sonar+mines+vs+rocks
Image Segmentation https://archive.ics.uci.edu/dataset/50/image+segmentation
ORL & Research Laboratory https://jundongl.github.io/scikit-feature/datasets.html
USPS & States Postal Service data set https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
WBDC http://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
NUS-WIDE https://mulan.sourceforge.net/datasets-mlc.html
Wine https://unifeat.github.io/datasets.html
Colon https://jundongl.github.io/scikit-feature/datasets.html
Binary alphabet http://www.escience.cn/system/file?fileId=82035
Dermatology https://archive.ics.uci.edu/dataset/33/dermatology
glass https://archive.ics.uci.edu/dataset/42/glass+identification
Isolet https://archive.ics.uci.edu/dataset/54/isolet
Yeast https://mulan.sourceforge.net/datasets-mlc.html
Statlog German http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
Heart disease https://archive.ics.uci.edu/dataset/45/heart+disease
WPBC https://archive.ics.uci.edu/dataset/16/breast+cancer+wisconsin+prognostic
Statlog vehicle https://archive.ics.uci.edu/dataset/149/statlog+vehicle+silhouettes
Pie10P https://jundongl.github.io/scikit-feature/datasets.html
Scene Image https://mulan.sourceforge.net/datasets-mlc.html
Breast https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
Madelon https://unifeat.github.io/datasets.html
Musk https://archive.ics.uci.edu/dataset/74/musk+version+1
Yale https://jundongl.github.io/scikit-feature/datasets.html
Waveform https://archive.ics.uci.edu/dataset/108/waveform+database+generator+version+2
Leukemia https://jundongl.github.io/scikit-feature/datasets.html
hepatitis https://archive.ics.uci.edu/dataset/46/hepatitis
Libras Movement http://archive.ics.uci.edu/dataset/181/libras+movement
PcMac https://jundongl.github.io/scikit-feature/datasets.html
Prostate Tumor https://unifeat.github.io/datasets.html
Pima https://sci2s.ugr.es/keel/category.php?cat=clas
HumanEVA http://humaneva.is.tue.mpg.de/
Semeion https://archive.ics.uci.edu/dataset/178/semeion+handwritten+digit
CNAE-9 https://archive.ics.uci.edu/dataset/233/cnae+9
Ecoli https://archive.ics.uci.edu/dataset/39/ecoli
MNIST https://archive.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
YaleB https://www.kaggle.com/datasets/tbourton/extyalebcroppedpng
MIML https://www.lamda.nju.edu.cn/data_MIMLimage.ashx
Parkinsons https://www.kaggle.com/datasets/tbourton/extyalebcroppedpng
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