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Abstract: NIR spectroscopy has become one of the most prominent techniques in the food
industry due to its easy and fast use. Coupled with PLS, it is a well-established method for
determining nutrients, contaminants, or adulterants in foods. Nevertheless, it is not com-
mon when calculating the capability of detection or discrimination given a target/permitted
value, providing probabilities of false non-compliance (α) or false compliance (β). That is
exactly the main purpose of this work, where a single procedure using the accuracy line
to evaluate these figures of merit by generalizing ISO 11843 when using NIR-PLS in real
scenarios in agri-food industries is shown. Nevertheless, it is a completely general proce-
dure and can be used in any analytical context in which a PLS calibration is applied. As an
example of its versatility, several analytical determinations were performed using different
common food matrices in the agri-food industry (butter, flour, milk, yogurt, oil, and olives)
for the quantification of protein, fat, salt, and two agrochemicals. Some results were a
detection capability of 5.2% of fat in milk, 1.20 mg kg−1 for diflufenican, and 2.34 mg kg−1

for piretrin in olives when maximum limits were established at 5%, 0.6 mg kg−1, and
0.5 mg kg−1 respectively. Also, 1.02% for salt in butter and 11.45%, 3.78%, and 2.65% for
protein in flour, milk, and yogurt, respectively, were obtained when minimum limits were
established at 1.2%, 12%, 4%, and 3% respectively. In all cases α = β = 0.05.

Keywords: PLS calibration; NIR spectroscopy; contaminants; food adulterants; capability of
detection; minimum detectable concentration; false positive; false negative; false compliance;
false non-compliance

1. Introduction
Monitoring and preserving food quality is an increasingly critical aspect of food control

that has direct repercussions on human health, also having impact on our economy. The
problems of food adulterations make the food items used in daily life unsafe. Adulteration
in food items can have a tremendous effect on human health without our knowledge. This
effect has been extensively reviewed in reference [1]. On the other hand, the FDA estimates
that food fraud affects 1% of the global food industry at a cost of approximately $40 billion
per year [2].
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The flexibility and adaptability of near infrared (NIR) spectroscopy in the agri-food
industry is well known to assess the quality of raw materials and/or the final products.
During food quality control using this technology, it is possible to perform the rapid and
non-destructive determination of many quality characteristics of different foods and/or
the detection of potential counterfeits or adulterations.

Technical advances in NIR instruments and the scalation of multivariate chemometric
techniques have made this technology one of the most widely used in the analytical agri-
food field, specifically in industry. To confirm this, bibliographic research was carried
out over the past fifteen years, focusing, firstly, on NIR spectroscopy, secondly, on foods,
and finally, on the food matrices of this paper: bibliographic research within “Article title,
Abstract & Keywords” was carried out in Scopus using, as the keyword search, “NIR
spectroscopy”, having found a total of 31,376 publications. When also adding the word
“foods”, the number decreases to 2269. If focusing on the food matrices of this paper, the
number of publications varies according to Figure 1. In those cases, the search was made
by separately adding the words “butter, flour, milk, yogurt, olive oil, and olives” (which
are the food matrices used in this work) to the previous search, having found a total of
357 publications.
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each food matrix used in this work.

Among all the publications associated with food and NIR spectroscopy since the
year 2010, 16% of them are related to the food matrices of this work; for instance, there
are many publications referring to analyses on flour, the majority of them focused on
detecting adulterations [3–5]. Studies on butter are less common but still relevant when
quantifying adulterations [6,7]. Also, in references [8,9], different procedures based on NIR
are presented to study the presence of different agrochemicals in olives.

The use of multivariate soft calibration models, such as the ones based on Partial
Least Squares (PLS) coupled with NIR spectroscopy signals [10], are quite common in the
agri-food industry; in fact, many of the previously cited studies used it. For many years,
there have been different International Organization for Standardization (ISO) documents
that protocolize how to calibrate using NIR and PLS depending on the analyte and the
food matrix [11,12]. Although the importance of NIR spectroscopy and its advantages have
been proven, this technique has some downsides, like its low sensitivity. For that matter, it
is imperative to know, with certainty, the minimum discriminable concentration that can
be detected with this calibration, that is, the capability of detection of the method or the
capability of discrimination (given a target value of interest, whether it is a minimum or a
maximum limit). All of this is precisely the main aim of this work, encouraged after having
checked that within the latter bibliographic research mentioned, practically none of the
publications that were found had used these figures of merit, only 20 (6 for flour [4,13–17],
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12 for milk [17–29], and 1 for olives and olive oil [30]) out of 357 (the ones schematized in
Figure 1) when adding the terms “capability of detection or detection limit” to the search.
However, in no cases were the probability of false non-compliance and the probability
of false compliance indicated. The capability of the detection of an analytical method
evaluating the probabilities of false positives and false negatives according to ISO 11843-2
has already been implemented in reference [31]. Nevertheless, it has to be generalized
when the signals are not of the order zero, as it was made in references [32,33] using
different instrumental signals and PLS. In both cases, the generalization uses the accuracy
line (predicted concentration using the PLS model versus the true concentration).

The present work shows the versatility of this unified procedure. It is applied to
some analytical determinations in foods using NIR spectroscopy and PLS laying out all
possible cases:

• Determine the quantity that can be ensured when maximum permitted limits are
established by official regulations (as for agrochemicals or prohibited substances) or
when minimum or maximum limits are established for a certain parameter in a food
matrix by the industry itself to guarantee the quality of their products

• Ascertain with statistical guarantee the minimum amount that it is possible to discrim-
inate in a certain analytical method.

Thus, all cases are a matter of determining the parameter of interest with a pre-
established probability of committing false non-compliances or false compliances in the
measurements (which, in the case of the capability of detection, will be false positives and
false negatives, respectively).

The inclusion of the described methodology in the NIR-PLS calibrations would con-
tribute to improving compliance with current food quality regulations, obtaining some
benefits both for the industries and/or the consumers. Some practical aspects about this
are described in Section 4.

2. Materials and Methods
2.1. Instrumentation and Experimental Methods

All the experiments were carried out in different Spanish food industries. As previ-
ously explained, the analyses were carried out using six different food matrices (butter,
flour, milk, yogurt, olive oil, and olives), with the analyte studied in most of the examples
being different (see Table 1). The measurement procedure was made in every case with the
AONIR (AOTECH S.L. [34]) integrated solution for real-time NIR measurements, including
an NIR sensor, a measurement platform, and the precise software to integrate the hardware
with the model outcome for posterior real-time monitoring of the parameters that were
going to be measured in this work. The spectrometer was configured equally in all cases
so that NIR reflectance was registered in each food matrix in a wavelength range from
900 to 1670 nm (125 wavelengths, accounting for a pixel resolution of 6 nm and a spectral
resolution of 12 nm) and 50 readings per spectrum with an integration time of 10.8 ms.
Nevertheless, the number of samples, the sample replicates, and the spectral ones were
not the same in all cases given the determining factor that the measurements were made
in different industries where it is necessary to adapt to the times of reception of samples,
production times, and availability, among others. The state of the samples was also con-
sidered; for example, as can be seen in Table 1, it was decided to average the eight spectra
recorded for each olive sample, considering that the distribution of the agrochemicals could
not be homogeneous. The same applies to the powdery-nature flour, for which replicates
are higher than in the other matrices. In some cases, the samples were even measured
on different days. The details of samples and sample replicates, along with the final data
matrix for each case, can be found in Table 1.



Appl. Sci. 2025, 15, 4808 4 of 21

After the NIR measurements, the samples were sent to an accredited laboratory in
order to be measured using a certified reference method (the one indicated in Table 1 for
each analyte in each food matrix).

Table 1. Reference method for each food matrix and each analyte, number of samples, data collection
summary, and data matrix size.

Matrix Analyte Reference
Method N * Sample

Replicates
Spectral

Replicates
Final Data

Matrix
Data Matrix of the

Prediction Set

Butter
Fat (%) (w/w) NMR

11 2 3 66 × 125 24 × 125
Salt (%) (w/w) Atomic

absorption

Flour Protein (%)
(w/w)

Kjeldahl
method 36 3 3 or 6 504 × 125 -

Milk
Fat (%) (w/w) FTIR

38 1 or 2 3 195 × 125 52 × 125Protein (%)
(w/w) FTIR

Yogurt Fat (%) (w/w) Gravimetry
19 2 or 4 3 144 × 125 24 × 125Protein (%)

(w/w)
Kjeldahl
method

Olive oil Refined olive
oil (%) (v/v) ** 14 1 or 2 3 81 × 125 18 × 125

Olives
Both

agrochemicals
(mg kg−1)

GC-MS-MS
QqQ 40 1 *** 40 × 125 -

* N: number of samples; ** the mixtures were prepared, knowing the true concentration; *** 8 averaged spectra.

As mentioned above, the AONIR platform developed by AOTECH S.L. [34] was
used to obtain the recorded spectra in a .csv file, while PLS-Toolbox [35] working under
MATLAB version 9.9.0 (R2020b) [36] was employed for fitting the PLS models. The decision
limits and the capabilities of detection were calculated using the DETARCHI [31] program,
whereas CDα and CDβ were estimated using a handmade program also working under
MATLAB [36], which generalizes DETARCHI [31] to all the cases described in this work.
These programs avoid using a table of the non-central t-distribution and automate obtaining
graphs and CCα, CCβ, CDα, and CDβ values for any number of replicates and the values
of the probabilities of false compliance and false non-compliance.

2.2. Statistical Method

When working with univariate linear calibrations, ISO 11843-2 [37] and the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) [38] defined a procedure to determine
the decision limit and the capability of detection of an analytical method, evaluating the
probabilities of false positives and false negatives. Nevertheless, when a multivariate
calibration is used, as mentioned in Section 1, this methodology has to be generalized
because these documents only refer to univariate calibrations. The decision limits and
the detection capabilities are always calculated using a hypothesis test obtained from the
calibration model whether it is univariate or multivariate. In the following sections, the
main aspects of this generalization for multivariate signals are explained (given that we are
working with multivariate signals), both for the capability of detection and the capability
of discrimination, and then, the global procedure followed in this work is summarized for
PLS models with NIR signals.

2.2.1. Decision Limit and Capability of Detection at x0 = 0 or for a Permitted Limit, x0 = PL
with Multivariate Signals

NIR spectra combined with PLS regression can be used for the control of maximum
permitted limits based on official regulations or the maximum and/or minimum limits in-
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tentionally established to guarantee food quality. Regarding that, new figures of merit, CDα

and CDβ had to be defined and evaluated, which are analogous to CCα and CCβ [37,38].
In order to formalize the notation, the definitions given by (EU) 2021/808 regula-

tion [39] referring to a permitted limit (PL) were used. PL can be defined as the maximum
residue limit, maximum level, or other maximum tolerance for substances established
in any normative or regulation. On the one hand, the decision limit when PL = 0 (CCα)
is “the concentration limit at and above which it can be concluded with an error probability of α

that a sample is non-compliant when it truly is”. On the other hand, the detection capability
(CCβ) definition is different depending on if a PL is established or not. For prohibited or
unauthorized substances, CCβ is “the lowest concentration at which a method is able to truly
detect or quantify, with a statistical certainty of 1 − β, samples containing residues of prohibited
or unauthorized substances” whereas for the case of authorized substances with an estab-
lished PL, it is defined as “the concentration at which the analytical method is able to detect
concentrations below the permitted limit with a statistical certainty of 1 − β”.

CCα and CCβ were already established for PL = 0 by ISO 11843-2 [37] and IUPAC [38]
and can be generalized for any other PL value, where they will be named as CDα and
CDβ, respectively, to distinguish them from the terms already established in the regulatory
framework mentioned above (when the calibration is univariate).

On the contrary, when the calibration is multivariate, and in particular, if for a given
parameter, x, it is considered a minimum permitted (or established) limit, PL = x0, the
corresponding one-tailed hypothesis test should be outlined as in Equation (1). The word
one-tailed specifies that the alternative hypothesis of the test is not an inequality.

H0: x = x0 (the parameter is greater than or equal to x0, compliant sample)
Ha: x < x0 (the parameter is less than x0, non-compliant sample)

(1)

For example, if it is wanted to guarantee that the fat content of a milk sample is at least
12%, then the minimum permitted limit is PL = x0 = 12%. The hypothesis test allows one to
decide, with a probability of false non-compliance (α) and false compliance (β), whether a
new sample, based on its NIR spectrum, fulfils the minimum PL or not.

To build the hypothesis test of Equation (1), the procedure begins with a PLS calibra-
tion, y = fPLS(s), which assigns a concentration (y) to the NIR spectrum (s) of a sample
of which the concentration measured using a reference accredited method is x. From the
calibration data (xi,yi) i = 1, . . . I, the accuracy line y = a + bx, previously defined in
Section 1, is built.

On another note, CDα is related to the probability of false non-compliance, α. That
is, α is the probability of deciding that the tested sample is non-compliant when it truly
was. In other words, α is the significance level in the hypothesis test of Equation (1). For
a given α, the probability of a false compliant decision (β) is the probability of wrongly
affirming that the tested sample has a value of the parameter greater than or equal to x0,
i.e., to conclude that it is compliant, when it was not. The capability of detection (CDβ) is
the value of the parameter related to this decision and is computed as in Equation (2):

CDβ = x0 −
∆(α,β)wx0 σ̂

b̂
(2)

where σ̂ is the residual standard deviation of the accuracy line, b̂ its slope, and wx0 is
defined according to Equation (3), where it can be observed that it depends on the position
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of the standards in the accuracy line (xi, i = 1, . . . I), the number of sample replicates (r),
and the number of standards (I).

wx0 =

√√√√1
r
+

1
I
+

(x0 − x̄)2

∑I
i=1(xi − x̄)2 (3)

In Equation (2), ∆(α,β) is the value of the non-centrality parameter of a non-central
t-distribution that depends exclusively on the probabilities α and β and on the number
of standards (I). This parameter models the changes in the probability distribution of the
response when considering values lower than x0. The distribution changes from being a
Student’s t with I − 1 freedom degrees to being a non-central Student’s t distribution with
the same degrees of freedom and with a non-centrality parameter equal to ∆.

The limit of decision, CDα, will be then calculated as in Equation (4),

CDα =
yc − â

b̂
(4)

where â and b̂ are the estimated intercept and slope of the accuracy line, respectively, and
yc, is the critical value that satisfies Equation (5) for a minimum permitted limit.

α = probability
{

y < yc

∣∣x = x0
}

(5)

Figure 2 shows a scheme of the hypothesis test that assesses, with an α probability of
false non-compliance and a probability β of false compliance, a minimum permitted or
established limit. The accuracy line is shown in the upper left corner of the figure. The
concentration, x , of the calibration samples is represented on the abscissa axis, and the
values obtained using the PLS model using the NIR spectra of those same samples are
represented on the ordinate axis. The two arrows indicate the pair (x0, y0). The density
function of the y values around y0 is shown, and the probability α is the area marked in
red and described by Equation (5), which defines the critical value yc. With the recorded
spectrum of a new sample, the corresponding yp is obtained using the PLS calibration
model. If this value is less than yc, then it will be concluded that the sample is non-
compliant with a probability α. Nevertheless, the probability of false compliance, β, is
not being evaluated. As one moves toward lower values of concentration x, the mean
of the density function decreases. At the value x1 of the graph, there is a decrease in the
mean of the density function and a larger one at x2, and so on. In each one of these density
functions, the probability of obtaining a value greater than the critical value, that is, β, has
been marked in blue. Clearly, β decreases as x moves away from x0. On the other hand, the
power curve (Operating Characteristic Curve) of the test is shown at the bottom right of
Figure 3. Again observing the accuracy line graph, it is obvious (and there is mathematical
proof of this) that indicating β is equivalent to indicating the shift in concentration, because
the mean value of the distribution is related to the concentration based on the accuracy line.
Additionally, CDα is the value that corresponds to the accuracy line with the critical value
yc (Equation (4)), and it can be observed that for CDα, the probability of false compliance,
β, is 0.5. That means that 50% of the times that the test is applied, a false compliant result
will occur. This situation always occurs, even if α is small. In other words, if the test is not
applied considering the requirement to guarantee the probability of false compliance, there
will always be a probability equal to 0.5 of accepting that the sample is compliant when it
is not. However, CDβ (Equation (2)) guarantees that probability.
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Operative Characteristic Curve (bottom right) for a minimum limit (x0 = PL) according to the
hypothesis test in Equation (1), where x is the true concentration of a sample, y is the obtained
concentration based on the PLS model, and where yc depends on the significance level of the test (α).

In another completely different situation when the established limit, PL = x0 is a
maximum, a different one-tailed hypothesis test is used (Equation (6)).

H0: x = x0 (the parameter is smaller than or equal to x0, compliant sample)
Ha: x > x0 (the parameter is greater than x0, non-compliant sample)

(6)

Thus, the capability of detection, CDβ (analogous to CCβ when x0 = 0 and named xd

by ISO 11843-2 [37]), is defined as in Equation (7).

CDβ = x0 +
∆(α,β)wx0 σ̂

b̂
(7)

In this case (when having a maximum permitted limit, x0), wx0 is estimated with
Equation (3), and CDα is obtained equally as for a minimum permitted limit, with Equation
(4), but in this case, yc is the value that satisfies Equation (8).

α = probability
{

y > yc

∣∣x = x0
}

(8)

Figure 3 shows a scheme of the hypothesis test (Equation (6)) that assesses, with an α

probability of false non-compliance and a probability β of false compliance, a maximum
permitted or established limit. The interpretation of this figure is completely analogous,
point by point, to the one of Figure 2, except for the reason that since the PL is a maximum,
the inequality of the alternative hypothesis is the opposite of the one in Equation (1). This
implies that the displacement of the mean value of the density function goes towards
greater values than in PL = x0. This is reflected by the change in the sign in Equation (7)
regarding Equation (2). Equation (7) allows one to obtain the CDβ for a predetermined
probability of false non-compliance, α.
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2.2.2. Capability of Discrimination or Multivariate Sensitivity

The sensitivity of an analytical method can be defined as the smallest amount of
substance or analyte that can be accurately measured. So, an increased sensitivity means
a higher increment of the response for the same amount or concentration of an analyte.
To fix the notation, consider the interval of concentrations (x0 − ε, x0 + ε) around a value
x0. The sensitivity (the increase in the response of the method in that interval) should
be defined in terms of what probability that a value outside the interval is significantly
different from x0 or not is obtained. If only the quotient of the increment in the response
regarding the increment of the concentration is considered (e.g., the slope of an univariate
calibration), the inherent uncertainty in any determination in the decision is omitted, and it
also depends on the units in which the response is expressed. Given that the hypothesis
tests have already been formalized so that, given a predetermined value (x0), it is possible
to decide whether it is significantly greater or less than x0, it is reasonable to generalize the
situation to the case of deciding whether the concentration is significantly different from x0.
Consequently, given a nominal concentration, PL = x0, in order to know the performance of
an analytical procedure in samples with a similar concentration, the minimum discriminable
concentration (or multivariate sensitivity) is defined as the smallest concentration of the
analyte in a sample that can be distinguished with a probability 1 − β from x0. Some
extended details about the multivariate capability of discrimination can be consulted in
reference [33]. In process quality control, univariate charts are used to control a single
parameter or several parameters at the same time with multivariate charts. Both cases are
formalized as a hypothesis test with the evaluation of probabilities α and β. Unlike control
charts, the multivariate sensitivity approach proposed in this work does not imply taking
the decision based on the parameter measurement (e.g., the fat % of a milk sample). Instead,
an NIR spectrum of the sample is recorded, PLS calibration is then applied, and the result
is used to determine whether the sample fulfills the quality standards using multivariate
analytical sensitivity. That is, the decision is not made with a direct measurement of the
controlled parameter but rather indirectly through its NIR spectrum.
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Formally, the compliance of an analytical procedure corresponds to x = x0, while, if
x ̸= x0, the procedure is not compliant. Therefore, a two-tailed hypothesis test can be
outlined as in Equation (9).

H0: x = x0 (the parameter is equal to x0, compliant sample)
Ha: x ̸= x0 (the parameter is smaller or greater than x0, non-compliant sample)

(9)

This text formalizes the definition of the minimum discriminable concentration con-
sidering that a given concentration will be different from x0 if it is greater than x0 + ε

or if it is less than x0 − ε. In terms of the previous section, x0 + ε is a maximum PL and
x0 − ε is a minimum PL. Nevertheless, both α and β must be distributed within both limits.
Therefore, each of the CDβ and the corresponding critical values with α/2 and β/2 are
determined as indicated in Equations (10)–(12), for which the graphical interpretation
can be made observing Figure 4. In summary, the capability of detection, CDβ, has, in
this case, a minimum value, CDβlower, and a maximum value, CDβupper, evaluated using
Equation (10).

CDβlower = x0 −
∆(α/2,β/2)wx0 σ̂

b̂

CDβupper = x0 +
∆(α/2,β/2)wx0 σ̂

b̂

(10)

In the same way, the decision limit, CDα, is divided into two values depending on
whether it is above or below the PL value. These values are calculated using Equation (11).

CDαlower =
ycl−â

b̂
CDαupper =

ycu−â
b̂

(11)

where ycl and ycu are the values that satisfy Equation (12) for a discrimination problem.

α/2 = probability
{

y < ycl

∣∣x = x0
}

α/2 = probability
{

y > ycu

∣∣x = x0
} (12)

Figure 4 is a schematic representation of the elements that make up the capability of
discrimination. Methodologically, it is analogous to the cases in which there is a minimum
or a maximum permitted/established limit (Figures 2 and 3) but distributing the proba-
bilities of false compliance and false non-compliance bilaterally regarding y0. As in the
previous cases, x is the true concentration of a sample, y, the concentration obtained based
on the PLS calibration, and ycl and ycu depend on the significance level (α) of the test.

Figure 4 shows that the two critical values from Equation (12) are established with the
density function of the response in x0, assigning the probability α/2 in each one of their tails
(marked in red in the figure). As the concentration x moves away from the value x0 based
on higher or by lower values, the probability of false compliance decreases (the sum of the
two areas marked in blue in the figure). In a similar way as in Figure 2 (but in this case,
bilaterally) if the interval [CDαl, CDαu] is considered as the capability of discrimination
regarding x0, the probability of incorrectly stating that the concentration is x0 is β, which is
practically 1. On the contrary, by expanding the interval around x0, or what is the same,
decreasing β, that is the probability of incorrectly stating that the concentration is different
from x0.
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2.2.3. Global Procedure for Multivariate Calibration to Guarantee CCα and CCβ (or CDα
and CDβ) with NIR Spectroscopy and a PLS Model

To determine CCα and CCβ (or CDα and CDβ), a multivariate PLS calibration model
is built using the NIR spectra as predictor variables and the concentration of the analyte or
substance as a response. Particularly, the matrix size of the predictor variables of this work
could be seen in Table 1.

In order to carry out the complete procedure, the specific following steps were followed
in this work:

1. To build a PLS model for each parameter, y = f(X), (i) first, the predictors were
preprocessed by applying the standard normal variate (SNV) followed by a first (D1)
or a second (D2) derivative and a second-degree polynomial (also varying the window
size from 9 and 15) depending on the case of study. Then, both the predictors and
the responses were mean-centered (all the details can be consulted for each data set
and each case in Table 2). (ii) The number of latent variables was selected through
cross validation. (iii) The samples with a standardized residue greater than 3 (in the
absolute value) or with both Q residuals and T2 Hotelling values larger than their
corresponding threshold values at a 95% confidence level were removed (outliers).
(iv) Steps (ii) and (iii) were repeated until no outliers were detected;

2. The accuracy line was then built by means of a least squares regression, representing
the predicted values obtained with the PLS models (y) versus the true concentration (x)
obtained using the reference method specified in Table 1 for each case of study. In this
way, the predicted and true concentrations are linked by means of a linear model. The
characteristics of every constructed accuracy line can be found in Table 3, whereas their
graphical representations can be seen in Figure S1 in the Supplementary Material;

3. Using the data resulting from the accuracy lines, CCα and CCβ (or CDα and CDβ)
were calculated for probabilities of both a false positive and false negative (or
false non-compliance and false compliance) of 0.05, regarding the definitions in
Sections 2.2.1 and 2.2.2.

4. The final results, after applying this global procedure, can be consulted in Section 3.
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3. Results
3.1. PLS Calibration

According to the experimental data described in Table 1, a PLS calibration was built
for each analyte individually. The data were pretreated as indicated in Table 2. In every
case, the standard normal variate (SNV) was applied to reduce the (physical) variability
between samples due to scattering. It was also applied to the adjustment for baseline
shifts between samples. Except for the protein determination in yogurt, a derivative was
also always applied after the SNV. The first derivative was used for corrections of the
baseline, and the second derivative to eliminate both the baseline and linear trends. The
former has been used for the butter model, whereas in the others, the second derivative
was used. The derivatives have been applied using the Savitsky–Golay method with a
second-degree polynomial and a window width varying from 7 to 15 points, as shown in
Table 2. The derivative order, the polynomial degree, and the window width have been
chosen after testing several different combinations to improve the PLS model, which is
why in the case of yogurt, the preprocessing method is different for protein (being just
the SNV the one that provided the best results). A review of preprocessing methods for
NIR spectra can be consulted in reference [40]. Also, in Figure S2 of the Supplementary
Material, these explained effects can be observed by comparing the raw spectra with the
pre-processed ones for each food matrix. Centering the NIR spectra after preprocessing
them has a huge impact on the PLS calibration models. In a qualitative way, PLS can be
described as a regression technique that searches for directions in the space of predictor
variables such that they explain the greatest variance and, at the same time, that they are as
highly correlated as possible with the response. As a consequence, if the predictor variables
(preprocessed spectra) are not centered, the direction of greatest variability will be the one
that connects the vector of means of the data with the origin of the coordinates. From the
perspective of the PLS regression, it is highly recommended to center the preprocessed
spectra, which is what has been performed in every case studied in this work (see Table 2).
The number of the LV of the models, also indicated in Table 2, was selected according to
the minimum value of Root Mean Squares Error of Cross-validation (RMSEC), obtained by
applying the venetian blinds method in all cases, since there were many objects in random
order. Three samples per blind were selected to avoid the replicate sample trap with a
variable number of splits, depending on the size of the data matrix. In the case of olives,
the number of samples per blind was just one, given that each spectrum was obtained as an
average of eight spectra originating from one olive. The explained variance of the models
ranged between 90.32% and 98.60%, both for the predictors and for the response, having
found few outliers. After the models were built, the Root Mean Square Error of Prediction
(RMSEP) was calculated using an external prediction set to reflect the predictive ability of
the model. As can be seen in Table 2 that the RMSECV and RMSEP values are quite similar,
what indicates the stability of the models and their predictive ability.

Table 2. PLS model results for each food matrix and each modeled analyte.

Matrix Analyte Preprocess 1 LV
Variance of

x-Block
(%)

Variance of
y-Block

(%)
Out. 2 RMSEC RMSECV RMSEP

Butter
Fat (%) SNV + 1D (2, 11) + MC 4 94.98 95.10 - 0.295 0.437 0.317
Salt (%) SNV + 1D (2, 11) + MC 6 98.68 96.46 - 0.084 0.175 0.175

Flour Protein (%) SNV + 2D (2, 13) + MC 7 97.00 95.15 20 0.278 0.357 -

Milk
Fat (%) SNV + 2D (2, 13) + MC 6 98.32 96.11 3 0.112 0.135 0.172

Protein (%) SNV + 2D (2, 13) + MC 4 96.77 90.32 6 0.105 0.117 0.085
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Table 2. Cont.

Matrix Analyte Preprocess 1 LV
Variance of

x-Block
(%)

Variance of
y-Block

(%)
Out. 2 RMSEC RMSECV RMSEP

Yogurt Fat (%) SNV + 2D (2, 9) + MC 6 99.31 98.60 7 0.292 0.360 0.315
Protein (%) SNV + MC 7 99.95 96.40 2 0.177 0.207 0.215

Olive oil Refined olive
oil (%) SNV + 2D (2, 15) + MC 4 94.99 94.13 5 2.896 3.620 2.872

Olives

Diflufenican
(mg kg−1) SNV + 2D (2, 7) + MC 7 97.09 94.90 2 0.317 0.484 -

Piretrin (mg
kg−1) SNV + 2D (2, 7) + MC 7 92.09 95.93 - 0.971 1.644 -

1 SNV: standard normal variate; iD (y, z): where iD refers to the “first” or “second” “derivative”, y is the
polynomial degree, and z is the window size; MC: mean centering. 2 Out: outliers. The number indicated in each
row of this column refers to the total number of outlier spectra.

The decision limit and the capability of detection are invariant for linear transformation
of the response [33]. Therefore, the concentration calculated using an univariate calibration
model (accuracy line) can be employed instead of using the univariate analytical response.
Even if the calibration model is multivariate, the accuracy line can always be calculated. In
fact, not only with a multivariate PLS calibration model, but also with any other function of
calibration, can the accuracy line be used (i.e., principal component regression, regression
on a parallel factor analysis decomposition -PARAFAC-, neural networks. . .). It is suitable
for univariate and multivariate signals (excitation emission matrices or hyperspectral
images among others). Therefore, this approach facilitates probabilistic quantification in
the application of false compliance and false non-compliance criteria for any type of sample
and analytical signal. Considering all of this, once the PLS calibration modes were obtained
(of which characteristics were previously explained and indicated in Table 2), the accuracy
lines (predicted concentration based on the PLS models versus the real concentration of
the analyte) were constructed. The accuracy lines were extensively used to evaluate the
calibration models, but for the purpose of this work, only the necessary data for building
them and to apply the methodology developed in Section 2 were collected in Table 3. So, for
each of the PLS models in Table 2, the estimates of the intercept, slope, and residual standard
deviation of the corresponding accuracy line are noted in Table 3. The concentration ranges
of the analytes in each food matrix are also indicated. The p-values that also figure into
that table indicate that there is no evidence to reject the null hypothesis of the test; that is,
there is a significant linear relation between the parameters at a confidence level of 95%.
The graphical representations of these accuracy lines can be observed in Figure S1 in the
Supplementary Material.

Table 3. Number of samples, N, intercept, and slope of the accuracy lines, and p-value for the
significance test.

Matrix Analyte N
Analyte Range

Intercept Slope syx p-Value *
Min Max

Butter
Fat (%) 66 81.10 86.60 4.109 0.951 0.293 <0.0001
Salt (%) 66 0.00 1.20 0.008 0.965 0.083 <0.0001

Flour Protein (%) 484 9.41 14.58 0.575 0.952 0.272 <0.0001

Milk
Fat (%) 192 3.65 6.16 0.166 0.961 0.110 0.0058

Protein (%) 190 3.09 4.27 0.339 0.904 0.100 <0.0001

Yogurt Fat (%) 137 0.1 9.4 0.038 0.986 0.292 <0.0001
Protein (%) 142 2.8 6.4 0.137 0.964 0.174 <0.0001

Olive oil Refined olive oil (%) 76 61 100 4.794 0.941 2.847 <0.0001

Olives
Diflufenican (mg kg−1) 38 0.00 3.42 0.047 0.949 0.281 <0.0001

Piretrin (mg kg−1) 40 0.00 11.40 0.126 0.9593 0.869 <0.0001

* H0: the regression is not significant versus Ha: the regression is significant.
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With these data, it is possible to determine the capability of detection and/or the
capability of discrimination as explained in the following section.

3.2. Estimation of the Capability of Detection and the Capability of Discrimination

In addition to the stringent official regulations imposed within the agri-food sector
(where the maximum permitted limits of some residues are established, as in the case of
some agrochemicals in olives in this work), sometimes, some companies internally establish
some standards (target values) that ensure the quality of their products, either to fulfill legal
requirements or for internal reasons, for example, because the value of the characteristic
determines the subsequent stages of processing. In this sense, it is crucial to know the
level of certainty with which these limits are not exceeded, whether they are minimum or
maximum values, that is, to know the minimum discriminable quantity with a probability
of false compliance (β) and false non-compliance (α) in order to decide whether to accept a
sample or not and continue with the process. In the following, some possible real scenarios
that may occur in the agri-food industry are presented.

The results of applying the global procedure described in Section 2.2 can be seen in
Tables 2–4, and graphically, for some of the Operative Characteristic Curves of the applied
tests, in Figures 5–8. In these figures, the Operating Characteristics Curves are represented,
β on ordinate axis versus the true concentration on the abscissa axis. In each one of them,
the dashed line indicates the value of CDβ (or CCβ) on the x-axis for a probability β = 0.05
(in the y-axis), when the probability α = 0.05 is fixed. In Section 2.2.2., the use of the
operative curve of the test to discriminate a concentration has been described. This allows
one to evaluate the performance of an NIR-PLS calibration in relation to another different
one obtained with another different instrument or measuring in another matrix. Note
that by setting the values of α and β and the number of replicates, r, the interval [CDβi,
CDβu] allows one to immediately obtain the best option in terms of the discrimination
capability. This approach is of great interest in scenarios such as food safety and food
fraud control, as shown in this section. The curves were plotted for the case of different
future replicates (r = 1, r = 3, r = 6 and r = ∞, the theoretical value in the case of infinite
samples). It can be observed that as more replicates are performed, the values obtained
for the capability of detection and/or the capability of discrimination become closer to
the desired PL value. This happens as a consequence of the fact that the expressions CCα,
CCβ, CDα, and CDβ contain the factor wx0, which also contains the summand 1/r, which
decreases as the number of replicates, r, increases. In some cases, increasing the number
of replicates may allow a limit to be fulfilled without modifying any other aspect of the
measurement system. However, it is not always possible to perform a high number of
replicates in certain industrial processes; it will always depend on the conditions imposed
by each industry. In this work, r = 3 replicates were considered. It can also be seen in every
representation that for the same value of r, the greater the |x − x0|distance, the lower the
value of β is. In other words, the lower the risk of committing false compliances (or false
negatives) is in an analysis.

In particular, Figure 5 shows these Operative Curves when the discriminable amount
wants to be detected; for instance, for fat in butter, for the 85% w/w established value,
the two-tailed test applied is the one in Equation (9). As can be seen in Table 4, this test,
as it is a two-tailed test, has a lower CDβ and an upper one that encompass the range
[84.27, 85.73]. That is, the capability of discrimination of this method of analysis in the 85%
value is bounded by these values, guaranteeing the measure of fat via NIR spectroscopy
with a probability of false non-compliance (α) and false compliance (β) of 0.05.
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Table 4. Decision limit, capability of detection, and minimum discriminable concentration for each
matrix and each analyte obtained for probabilities of a false positive (or false non-compliance) and
false negative (or false compliance) α = β = 0.05 and for r = 3.

Matrix Analyte N
Range

PL = x0 yc CCα CCβ CDα CDβ
Min Max

Butter
Fat (%) 66 81.10 86.60 85 * 84.94/85.64 - - [84.63,

85.36]
[84.27,
85.73]

Salt (%) 66 0.00 1.20
0 0.091 0.086 0.171 - -

1.2 ** 1.077 - - 1.11 1.02

Flour Protein (%) 484 9.41 14.58 12 ** 11.733 - - 11.73 11.45

Milk
Fat (%) 192 3.65 6.16 5 *** 5.079 - - 5.11 5.22

Protein (%) 190 3.09 4.27 4 ** 3.856 - - 3.89 3.78

Yogurt Fat (%) 137 0.1 9.4 0 0.322 0.290 0.580 - -
Protein (%) 142 2.8 6.4 3 ** 2.867 - - 2.83 2.65

Olive
oil Refined olive oil (%) 76 61 100 80 ** 77.30 - - 77.03 74.07

Olives
Diflufenican (mg kg−1) 38 0.00 3.42

0 0.336 0.304 0.604 - -
0.6 *** 0.901 - - 0.90 1.20

Piretrin (mg kg−1) 40 0.00 11.40
0 1.016 0.928 1.844 - -

0.5 *** 1.492 - - 1.42 2.34

(*) discrimination limit; (**) minimum permitted or established limit; (***) maximum permitted or established
limit.

On the other hand, Figure 6 shows the Operative Curves for a minimum limit. The
corresponding test from Equation (1) is applied to determine the minimum amount of
protein in flour, in this case, 12% (w/w). It can be observed that, despite having a minimum
of a 12% (w/w) of protein as a target value, with the PLS calibration model built, only
11.45% (w/w) can only be assured with probabilities α and β equal to 0.05.

On the contrary, when working with a maximum limit, as in the case of an established
maximum value of 5% (w/w) of fat in milk samples, the applied hypothesis test is the one
in Equation (6). Figure 7 shows the Operative Curves for this specific case, concluding that
the value that can be obtained to guarantee both probabilities of a false non-compliance
and false compliance (α and β) of 0.05 is 5.22% (w/w).
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Figure 7. Capability of discrimination of operative curves for a maximum established value of a 5%
(w/w) fat content in milk samples at α = 0.05.

Lastly, Figure 8 shows the Operative Curves for PL = 0 mg kg−1 when determining
the agrochemical diflufenican in olives. Once again, the hypothesis test applied was
also the one in Equation (6), but in this case, the evaluated probabilities are the false
positive and the false negative (instead of false non-compliance and false compliance), α
and β, respectively, because PL = 0. It should be remembered that in this case, a false
positive (α) corresponds to mistakenly stating that an olive sample has the agrochemical (a
concentration of diflufenican greater than zero), while a false negative (β) is an erroneous
statement that the olive does not contain diflufenican. Reducing the probability of a
false negative, in this case, it is important to ensure the absence of toxic or prohibited
substances in food and articles intended to be in contact with foods and consumers. It is
also necessary to consider that false positives could cause significative economic losses
for manufacturers. Thus, it is critical to consider the risk of committing them, that is,
the probability of committing both errors in the decision to accept or reject a sample as
compliant. This is reflected in current legislation [39], in international regulations [37], and
in the chemical analysis [38], but always for determinations with univariate signals. The
proposal of the present work for multivariate signals is consistent with the aforementioned
standards, and its application is not limited to the agrifood sector. There are many products
that must not contain certain substances, for example, lead in gasoline, migrant products,
or substances from plastic packaging, such as bisphenol.
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Table 4 summarizes the final global results for each case estimated for r = 3 for every
parameter measured. In that same table, the calibration ranges of the accuracy lines and
the PL = x0 employed in each case are also shown. The yc signal is the value of the ordinate
axis indicated in Figures 2–4, which allows one to determine CCα (or CDα). Then, the
intersection of β = 0.05 with the Operative Curve (for r = 3) in Figures 5–8 is the one that
allow one to determine the detection capability CCβ (or CDβ) with the previously fixed
probabilities of α and β at 0.05 and the corresponding equation in each case.

From the table above, it is important to highlight that the CCβ for diflufenican is above
the permitted limit established by the EU; nevertheless, it must be considered that the
values are calculated for false positive and false negative probabilities of 5% and r = 3. It
can be seen, for example, in Figure 8, how if the number of spectral replicates is increased,
for example, up to r = 6, it is possible to reach a CCβ of 0.450 mg kg−1 for diflufenican.

4. Discussion
4.1. Contributions and Practical Implications

The increasing use of NIR spectroscopy and PLS calibration models in the agri-food
industry is undeniable. The necessity of establishing analytical sensitivity and some
permitted limits with specific assurance probabilities is also evident. However, little effort
has been devoted to this issue, as concluded based on the bibliographic review made. In
most of the few publications that deal with this matter, a limit of detection (LOD) or a limit
of quantification (LOQ) is calculated. Usually, a confidence interval is calculated for the
signal at a zero concentration (PL = 0) by calculating k times the standard deviation of
the signal in the blank (k = 3 for LOD and k = 10 for LOQ). The interval is then used to
decide that a sample does not contain the analyte when its signal is within the interval
and that it contains the analyte when it is outside of it. Regarding this, the mistake is to
use a confidence interval instead of a hypothesis test, because with the confidence interval,
only the probability of a false positive (α) can be estimated, but the probability of a false
negative (β) is not evaluated, which, as it has already been shown, is 0.5 for the LOD or
LOQ (as can be seen in Figure 2 with a PL = 0).

What has not been found in any publication is the use of the terms of false non-
compliance and false compliance for permitted limits. Using the concept of a hypothesis
test and the accuracy line, the unified methodology presented in this work is a versatile
and easy-to-apply tool.

The hypothesis tests proposed in Section 2.2 are one-tailed (Equations (1) and (6)) or
two-tailed (Equation (9)) for the mean y0, which is the accuracy line for PL = x0. Precisely,
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the structure of the data allows for a calculation of the density function of any value y
that is outside the acceptance region of the test, that is, outside the intervals [yc, y0], [yo,
yc] or [ycl, ycu] for a minimum permitted or established limit, for a maximum permitted
or established limit, or for the capability of discrimination, respectively. This density
function includes the changes in the standard deviation σ̂ when increasing the distance
|y − y0|, which is calculated using the factor wx0 (Equation (3)). The corresponding
CDβ (Equations (2), (7), (9), and (10)) is obtained using the accuracy line. In this way, all
the key elements of each problem are being considered. Knowing the parameters of this
distribution makes it possible to compute the probability of false compliance, β, for each x
different from PL = x0. This information is important and is the differential contribution
when considering the decision of accepting or rejecting the PL as a hypothesis test (instead
of using an interval of confidence for PL). The probability of false non-compliance, α,
manages the length of the intervals [yc, y0], [y0, yc], or [ycl, ycu]. The smaller the value
of α, the greater their length, and therefore, the greater the distance between the PL and
CDα. If a sample is considered compliant when y belongs to the corresponding interval, or
what is the same, when the quantity is between PL and CDα (or between CDαl y CDαu),
there would be a risk of false compliance, β, which can reach the value of “1” in the case of
discrimination, as observed theoretically in the diagram of Figure 4 and for the case of the
fat % determination in butter samples, for which the Operating Curves are seen Figure 5.

Considering all the above and applying it to the studied cases of this work, it can
be observed that, for example, Figure 8 shows the capability of detection (false negative,
because it has been calculated for PL = 0 mg kg−1 of diflufenican), which, regarding the
number of future replicate samples that could be made, could have been 1 mg kg−1 if
only one replicate was made or it could be improved to 0.42 mg kg−1 by performing six
replicates, instead of the 0.6 mg kg−1 obtained for r = 3. The three cases have probabilities
of a false positive and false negative of 0.05.

A similar effect can be seen for the case of the determination of fat in butter (Figure 5),
for which the Operating Curves show the discrimination capability having 85% (w/w) as
the PL value. Its interval for r = 3 is [84.27, 85.73], while if only one replicate was made, the
interval would be larger [83.75, 86.25], once again maintaining both probabilities of false
non-compliance and false compliance at 0.05.

On another note, the change in the food matrix implies modifications in the NIR signals
and consequently in the CDα and CDβ values. The PLS calibration and the accuracy of the
analytical method to establish the reference values will also influence these values of CDα

and CDβ. For example, consider the value of CDβ for the minimum established limit of
the percentage of protein in flour, in milk, and in yogurt (values in the last column of rows
4, 6, and 8 of Table 4). All the CDβ values are calculated for r = 3 and with α = β = 0.05. As
the PL is different for each case (12%, 4%, and 3%), to compare them, CDβ will be noted as
a percentage regarding the PL (95.42%, 94.59%, and 88.33%, respectively).

In the case of the protein percentage in yogurt, we will have a distance of 88.33% from
the PL = 3%, so that the probabilities of false compliance and non-compliance are equal
to 0.05.

All of these results depend on the characteristics of the NIR measurement in each case;
specifically, it depends on the quotient σ̂/b̂ from Equation (2), which for protein in flour,
milk, and yogurt are 0.09, 0.11, and 0.18, respectively (data calculated from rows 4, 6, and 8
of Table 3). This quotient

(
σ̂/b̂

)
is the definition of analytical sensitivity and is invariant

for linear transformations of the response in any linear regression based on least squares
and characterizes the accuracy line.

The possibility of knowing the probability of false compliance for a predetermined
probability of false non-compliance opens a new scenario in the agri-food processes because,
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once the cost C1 and C2 of considering a sample as a false compliant or false non-compliant
have been assessed, respectively, the expected costs of the erroneous decision will be
β × C1 + α × C2. Regarding all of this, the usefulness of being able to calculate both
probabilities based on all the NIR system characteristics is quite evident (obtained from
Equations (2), (7), and (10) for the different possible cases).

4.2. Directions of Future Research

Once the general framework for obtaining a discrimination or a permitted/established
limit with specified assurance probabilities has been established, the effect of the number
of calibration samples and their distribution in relation to the presented problem (limit
or discrimination) will be analyzed. The effect on CDα and CDβ based on the two wx0 σ̂

factors in Equation (3) is complex because one can only act on the number of recorded
spectra and their characteristics. This issue is important given that with PLS calibrations,
it is necessary to have the response variable measured using a reference method, or the
samples need to be prepared knowing their concentration in a laboratory, which can be
expensive and time-consuming. In both cases, it is relevant to optimize the calibration
design, reducing the experimental effort of off-line (or even at-line) samples but maintaining
the quality of the parameters CDα and CDβ. For this task, it will be important to explore
the feasibility of using synthetic data generation to design and analyze calibration sets.
Experimentally generated data are never sufficient to study the complexities generated
based on the complex relationships between NIR spectra and the figures of merit evaluated
in this work. Several neural network architectures can create new synthetic data, with
the problem at hand including, but not limited to, recurrent neural networks (RNNs),
variational autoencoders (VAEs), and generative adversarial networks (GANs). These
neural networks have been extensively used with images; nevertheless, their use with
NIR data is relatively recent, for example to detect skin cancer [41] to improve palm
vein authentication performance [42] or to generate high-resolution (HR) spectra from
low-resolution (LR) spectra [43].

Another aspect of this same issue is the predictive maintenance of the calibration over
time, since it is assumed that the NIR spectroscopy control of agri-food processes must
remain with the lowest possible cost and could also be performed by controlling these
figures of merit (CDα and CDβ when PL ̸= 0, or CCα and CCβ when PL = 0). It could
be useful to adapt strategies such as periodically reducing a (optimized) percentage of
calibration samples and replacing them with new ones while maintaining the characteristics
of the PLS model. From the perspective of periodically recorded NIR spectra, tools such
ASCA (ANOVA Simultaneous Component Analysis) could also help to identify timing
points at which a calibration should be updated. Another line of approach is to identify
these changes in the space of latent variables of the PLS model. Finally, a highly interesting
option when having a mathematical model between predictor variables (NIR spectra) and
the figures of merit mentioned (as is in the case of this work) is the use of sequential adaptive
methods, which, although very computationally demanding, are effective in practice. These
methods, based on Bayesian methods, would propose how the new calibration samples
should be used to increase the information already provided by all the samples measured.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app15094808/s1, Figure S1: Accuracy lines of the models in the manuscript:
(a) for fat in butter; (b) for salt in butter; (c) for protein in flour; (d) for refined oil; (e) for fat in milk;
(f) for protein in milk; (g) for fat in yogurt; (h) for protein in yogurt; (i) for diflufenican in olives; (j) for
piretrin in olives; Figure S2: Raw and preprocessed spectra of every food matrix in this work: (a) raw
spectra of butter samples; (b) preprocessed spectra of butter samples; (c) raw spectra of flour samples;
(d) preprocessed spectra of flour samples; (e) raw spectra of milk samples; (f) preprocessed spectra of
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milk samples; (g) raw spectra of yogurt samples; (h) preprocessed spectra of yogurt samples; (i) raw
spectra of oil samples; (j) preprocessed spectra of oil samples; (k) raw spectra of olive samples with
diflufenican; (l) preprocessed spectra of olive samples with diflufenican; (m) raw spectra of olive samples
with piretrin; (n) preprocessed spectra of olive samples with diflufenican.
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NIR Near infrared
PLS Partial Least Squares
ISO International Organization for Standardization
MIR Medium infrared
IUPAC International Union of Pure and Applied Chemistry
NMR Nuclear magnetic resonance
FTIR Fourier transform infrared
GC-MS-MS Gas chromatography coupled to mass spectrometry
QqQ Triple quadrupole
PL Permitted limit/established limit
SNV Standard normal variate
LV Latent variable
CCα Decision limit
CCβ Capability of detection
CDα Decision limit for a permitted limit different from 0
CDβ Capability of discrimination for a permitted limit different from 0
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