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 a b s t r a c t

In populations subject to evolutionary processes, the assortment of players with different genes or strategies can 
have a large impact on players’ payoffs and on the expected evolution of each strategy in the population. Here 
we consider assortment generated by a process of partner choice known as selective assortment. Under selective 
assortment, players looking for a mate can observe the strategies of a sample of potential mates or co-players, 
and select one of them to interact with. This selection mechanism can generate positive assortment (preference 
for players using the same strategy), or negative assortment (preference for players using a different strategy). 
We study the impact of selective assortment in the evolution and in the equilibria of a population, providing 
results for different games under different evolutionary dynamics (including the replicator dynamics).

1.  Introduction

The standard model for random encounters of agents in Evolutionary 
Game Theory (Weibull, 1995; Sandholm, 2010) assumes uniform ran-
dom matching in large (technically, infinite) well-mixed populations, 
meaning that any agent is equally likely to meet any other agent. Thus, 
under uniform random matching, the probability of interacting with an 
agent who uses strategy 𝑖 (an 𝑖-player) equals the fraction of 𝑖-players 
in the population. Many scholars have pointed out that such situations 
are probably rare in nature, and argued in favor of studying deviations 
from the well-mixed model.

A first natural extension of the well-mixed model is to let the proba-
bility that two players interact depend on their individual strategies. For 
instance, if there is positive assortment, individuals preferentially interact 
with individuals of the same type; on the other hand, if there is nega-
tive assortment, individuals preferentially interact with individuals of a 
different type. We consider processes in which the average assortment 
of a type determines its expected payoff, and expected payoffs deter-
mine the population dynamics. An alternative and more detailed way of 
departing from the framework of well-mixed populations is to assume 
that players are embedded on an underlying network. In networks, the 
probability that a certain individual interacts with other individuals de-
pends on the network configuration (the distribution of strategies over 
the locations of the network). Thus, in networks, local assortment can 
present considerable fluctuations with respect to average assortment.

Eshel and Cavalli-Sforza (1982) discuss two potential sources of as-
sortment, focusing on positive assortment. The first source is called struc-
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tural assortment, and is associated with situations in which players with 
different strategies happen to find themselves in different mating envi-
ronments. This could be due, for instance, to spatial effects: descendants, 
who share common traits, are usually in close spatial proximity. Local 
reproduction or local imitation, combined with local interactions, also 
tend to generate positive assortment.

The second source of assortment is called selective assortment, and 
it assumes that, when looking for a mate or partner, players can meet 
a (small) number 𝑘 of potential mates, observe their strategy (or some 
reliable and highly correlated proxy), and select one of those potential 
mates.

Naturally, both sources of assortment (structural and selective) can 
take place simultaneously: players may actively select mates in different 
potential-mate environments.

A reference model for positive assortment is the so-called two-pool as-
sortative matching process with constant assortativity 𝛼 (Eshel and Cavalli-
Sforza, 1982; Bergstrom, 2003, 2013), which Eshel and Cavalli-Sforza 
(1982) interpret as a model of structural assortment. This model assumes 
that a player interacts:

• with probability 𝛼 > 0, with a player who uses the same strategy, 
and

• with probability (1 − 𝛼), with a random player from the population.
Equivalently (in terms of expected payoffs), one can suppose that all 
players in the population are matched in pairs, in a way such that a frac-
tion 𝛼 of the population is matched assortatively to individuals of their 
same strategy, and a fraction (1 − 𝛼) is matched uniformly at random.
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$\x ^\delta \equiv (\delta ,\tfrac {1}{2},\tfrac {1}{2}- \delta , 0, \ldots , 0 )$


$\delta \leq \tfrac {1}{2}$


$\pi _1(\x ^\delta ) = U_{12}$


$\x ^0 \equiv (0,\tfrac {1}{2},\tfrac {1}{2}, 0, \ldots , 0 )$


$\lim _{\epsilon \to 0}\x ^\epsilon = \x ^0$


$\lim _{\delta \to 0}\x ^\delta = \x ^0$


$\lim _{\epsilon \to 0} \pi _1(\x ^\epsilon ) = U_{13}$


$\lim _{\delta \to 0}\pi _1(\x ^\delta ) = U_{12} \neq U_{13}$


$\pi _1(\x $


$x^0$


\begin {equation}\label {eq:p12} \sum _{j \neq i} p_{j|i}^{k+}(\x ) = \sum _{j \neq i} c(\x ) \, x_j = c(\x ) \sum _{j \neq i} x_j = c(\x ) \, (1-x_i).\end {equation}


$p_{i|i}^{k+}(\x )= 1-(1- x_i)^k$


$i$


$i$


$p_{j|i}^{k+}(\x ) = c(\x ) \, x_j$


$c(\x )$


$\sum _j p_{j|i}^{k+}(\x ) = 1$


\begin {equation}\label {eq:p11} \sum _{j \neq i} p_{j|i}^{k+}(\x ) = 1-p_{i|i}^{k+}(\x ) = (1- x_i)^k.\end {equation}


$c(\x ) = (1- x_i)^{k-1}$


$p_{j|i}^{k+}(\x )= (1-x_i)^{k-1} x_j$


$j \neq i$


$p_{i|i}(\x )= x_i^k$


$i$


$i$


$p_{j|i}^{k-}(\x ) = c(\x ) \, x_j$


$c(\x )$


\begin {equation}\label {eq:p22} \sum _{j \neq i} p_{j|i}^{k-}(\x ) = \sum _{j \neq i} c(\x ) \, x_j = c(\x ) \sum _{j \neq i} x_j = c(\x ) \, (1-x_i)\end {equation}


$\sum _j p_{j|i}^{k-}(\x ) = 1$


\begin {equation}\label {eq:p21} \sum _{j \neq i} p_{j|i}^{k-}(\x ) = 1-p_{i|i}^{k-}(\x ) = 1- x_i^k\end {equation}


$c(\x ) = \frac {1- x_i^k}{1-x_i}$


$x_i \neq 1$


$p_{j|i}^{k-}(\x )= \frac {1- x_i^k}{1-x_i} x_j$


$j \neq i$


$x_i < 1$


$x_i = 1$


$p_{i|i}^{k-}(\textbf {e}_i)= 1$


$p_{j|i}^{k-}(\textbf {e}_i)= 0$


$j \neq i$


$\pi _j^{k+}(\textbf {e}_i) = \pi _j^{k-}(\textbf {e}_i)= U_{ji}$


$i,j \in S$


$k$


\begin {equation*}\pi _i(\x ) = [1-(1- x_i)^k] \, U_{ii} + \sum _{j \neq i} (1-x_i)^{k-1} \, x_j \, U_{ij}.\end {equation*}


$\lim _{k \to \infty } \pi _i(\x ) = U_{ii}$


$\x $


$\textbf {e}_{\hat {i}}$


$\lim _{k \to \infty } \pi _j(\x ) = U_{jj} < U_{\hat {i}\hat {i}}$


$j \neq \hat {i}$


$\bar {\pi }(\x ) = \sum _j x_j \pi _j(\x )$


$\x $


$D_1 \equiv U_{\hat {i}\hat {i}}=\max _j U_{jj}$


$D_2 \equiv \max _{j\neq \hat {i}} U_{jj} < D_1$


$\x $


$x_{\hat {i}}> 0$


\begin {equation}\label {eq:limitbound} \lim _{k \to \infty } \bar {\pi }(\x ) \leq x_{\hat {i}} \, D_1 + (1-x_{\hat {i}}) \, D_2.\end {equation}


$0 <x_{\hat {i}}< 1$


\begin {equation*}\lim _{k \to \infty } \bar {\pi }(\x ) \leq x_{\hat {i}}\, D_1 + (1-x_{\hat {i}}) \,D_2 < D_1 = \lim _{k \to \infty } \pi _{\hat {i}}(\x ),\end {equation*}


$\epsilon >0$


$k$


$x_{\hat {i}} \in [\epsilon , 1-\epsilon ]$


$\pi _{\hat {i}}(\x ) > \bar {\pi }(\x )$


$\dot {x}_{\hat {i}}> 0$


$x_{\hat {i}}\in [\epsilon , 1-\epsilon ]$


$M \equiv \max _{j \neq \hat {i}, m \neq j} U_{jm}$


\begin {align*}\bar {\pi }(\x ) &= x_{\hat {i}} \, \pi _{\hat {i}}(\x ) + \sum _{j \neq \hat {i}} x_j \, \pi _j (\x ) \leq x_{\hat {i}} \, \pi _{\hat {i}}(\x ) + \sum _{j \neq \hat {i}} x_j \, [1-(1-x_j)^k] \, D_2 \\ &\quad + \sum _{j \neq \hat {i}} x_j \, (1-x_j)^k \, M \\ &= x_{\hat {i}} \, \pi _{\hat {i}}(\x ) + (1-x_{\hat {i}}) \, D_2 + \sum _{j \neq \hat {i}} x_j (1-x_j)^k \, (M - D_2)\\ &\quad \overset {k \to \infty }{\longrightarrow } x_{\hat {i}} \, D_1 + (1-x_{\hat {i}}) \, D_2.\end {align*}


$x_i<1$


\begin {equation*}\pi _i(\x ) = x_i^k\, U_{ii} + (1- x_i^k) \sum _{j \neq i} \frac {x_j}{1-x_i} \, U_{ij}.\end {equation*}


$\underline {i}$


$\min _{j\neq \underline {i}}U_{\underline {i}j} > \max _{j\neq \underline {i}}U_{j\underline {i}}$


$B_1 \equiv \min _{j\neq \underline {i}}U_{\underline {i}j}$


$B_2 \equiv \max _{j\neq \underline {i}}U_{j\underline {i}}$


$B_1 > B_2$


$M \equiv \max _{j\neq \underline {i}, m\neq j}U_{jm}$


$\x $


$x_{\underline {i}}< 1$


\begin {equation*}\lim _{k \to \infty } \pi _{\underline {i}}(\x ) \geq B_1.\end {equation*}


$\x $


$x_{\underline {i}} > 0$


\begin {equation}\label {eq:bound neg2} \lim _{k \to \infty } \pi _j(\x ) \leq \frac {x_{\underline {i}} \, U_{j\underline {i}} + (1-x_{\underline {i}}-x_j) \, M}{1-x_j} \leq \frac {x_{\underline {i}} \, B_2 + (1-x_{\underline {i}}-x_j) \, M}{1-x_j}\end {equation}


$j \neq \underline {i}$


$B_2$


$M$


$M \leq B_1$


$B_2<B_1$


$\x $


$0 < x_{\underline {i}} < 1$


$\lim _{k \to \infty } \pi _{\underline {i}}(\x ) > \lim _{k \to \infty } \pi _j(\x )$


$k$


$\underline {i}$


$x_{\underline {i}} \in [\epsilon , 1-\epsilon ]$


$\epsilon > 0$


$k$


$M \leq B_1$


$M > B_1$


$\gamma > 0$


$x_{\underline {i}} > \gamma $


\begin {equation*}\label {eq:bound neg3} \lim _{k \to \infty } \pi _j(\x ) \leq B_2 + \left (1-\frac {x_{\underline {i}}}{1-x_j}\right ) (M-B_2) \leq B_2 + (1-\gamma ) (M-B_2)\end {equation*}


$\gamma $


\begin {equation*}B_2 + (1-\gamma ) (M-B_2) = B_1\end {equation*}


$\gamma = \frac {M-B_1}{M-B_2} < 1$


$x_{\underline {i}} \in \left (\frac {M-B_1}{M-B_2},1\right )$


$\lim _{k \to \infty } \pi _{\underline {i}}(\x ) > \lim _{k \to \infty } \pi _j(\x )$


$\left \{x: x_{\underline {i}} \in \left [\frac {M-B_1}{M-B_2}+\epsilon ,1-\epsilon \right ]\right \}$


$\underline {i}$


$\epsilon >0$


$k$
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Most models of assortment in the literature on population games 
(Alger and Weibull, 2013; Grafen, 1979; Alger and Weibull, 2010; Nax 
and Rigos, 2016; Newton, 2017; Iyer and Killingback, 2020; Holdahl 
and Wu, 2023) have focused on variations of the two-pool positive as-
sortment process with constant assortativity. As indicated before, this 
process can be understood as a result of matching or allocating all play-
ers into pairs. Jensen and Rigos (2018) provide a general framework 
for matching rules that allocate all individuals into groups with dif-
ferent compositions (i.e., different frequencies for each strategy), and 
van Veelen (2011) studies the replicator dynamics in two-strategy games 
with allocation into groups. Wu (2016) studies two-strategy coordina-
tion games in which the index of assortativity is chosen by majority 
voting.

In this paper we focus on selective assortment, which does not assume 
that all players are matched in pairs. Specifically, we extend Eshel and 
Cavalli-Sforza’s (1982) model of selective assortment to allow for more 
than two strategies and also for negative assortment. Interestingly, to the 
best of our knowledge, there are no reference models for negative assort-
ment. Probably, one of the reasons lies in the difficulties of extending 
matching processes with constant assortativity to negative assortment 
(Jensen and Rigos, 2018). In particular, in Appendix A we show that 
extending the two-pool assortative matching process with constant assorta-
tivity to model negative assortment can give rise to several undesirable 
issues, both from a mathematical point of view (discontinuous payoff 
functions) and in terms of obtaining realistic models.

For the two-strategy case, following a different but related approach, 
Taylor and Nowak (2006) discuss replicator dynamics with non-uniform 
interaction rates. These non-uniform interaction rates can also be in-
terpreted in terms of assortment. Interestingly, the phase portraits ob-
tained under selective assortment that we present for the specific case 
of two strategies and replicator dynamics show some parallels with the 
phase portraits in Taylor and Nowak (2006). Friedman and Sinervo 
(2016) present a general framework for assortative interactions based on 
matching (or encounter) matrices, whose terms can also be interpreted 
as measures of the frequency with which 𝑖-players receive payoffs from 
interactions with 𝑗-players. Hauert and Miȩkisz (2018) consider a model 
in which players who interact together are also more likely to be com-
petitors for reproduction, which leads to deviations from well-mixed 
populations and mimics structural assortment.

Most of the proofs are presented in Appendix B. All phase portraits 
shown in this paper can be easily replicated with freely available open-
source software, which performs exact computations of rest points and 
exact linearization analyses (Izquierdo et al., 2024).
2.  Setting and notation

We consider a population of individuals who may interact with each 
other in pairs, to play a symmetric two-player game. Each individual has 
a type or strategy 𝑖 ∈ 𝑆 = {1, 2,… , 𝑛}. An 𝑖-player who interacts with a 
𝑗-player obtains a payoff 𝑈𝑖𝑗 .

Let 𝑥𝑖 be the proportion, or fraction, of type 𝑖 in the population and 
let x = (𝑥𝑖)𝑖∈𝑆 be the population state: the vector describing the distribu-
tion of types in the population. Since 𝑥𝑖 ≥ 0 and ∑𝑖∈𝑆 𝑥𝑖 = 1, the pop-
ulation state x lives in the simplex Δ𝑛−1 = {x ∈ ℝ𝑛

+ ∶
∑

𝑖∈𝑆 𝑥𝑖 = 1}. The 
monomorphic states in which all players use the same strategy 𝑖 are 
represented by the unit vectors e𝑖.

At a population state x, each type, or strategy, 𝑖 is assumed to have 
an average or expected payoff 

𝜋𝑖(x) =
𝑛
∑

𝑗=1
𝑝𝑗|𝑖(x)𝑈𝑖𝑗 (1)

where 𝑝𝑗|𝑖(x) is the conditional probability that an 𝑖-player interacts with 
a 𝑗-player, receiving payoff 𝑈𝑖𝑗 .1 Thus, in this setting, we allow the prob-

1 Consequently, 𝑝𝑖|𝑖(x) is the conditional probability that an 𝑖-player interacts 
with an 𝑖-player, receiving payoff 𝑈𝑖𝑖, and 𝑝𝑖|𝑗 (x) is the conditional probability 
that a 𝑗-player interacts with an 𝑖-player, receiving payoff 𝑈𝑗𝑖.

abilities of interaction 𝑝𝑗|𝑖(x) to depend on individual’s type. In this way, 
we generalize the standard framework of well-mixed populations, where 
𝑝𝑗|𝑖(x) = 𝑥𝑗 holds for all 𝑖, 𝑗 ∈ 𝑆, which we refer to as neutral assortment.

The conditional probabilities 𝑝𝑗|𝑖(x), with 
∑𝑛

𝑗=1 𝑝𝑗|𝑖(x) = 1, define the 
assortment of interactions and determine the expected payoff for each 
strategy type, at any population state x. We assume that these probabil-
ities are defined at every population state x ∈ Δ𝑛−1.

Note that the expected payoff 𝜋𝑖(x) for strategy 𝑖 (1) is a convex com-
bination of the game payoffs {𝑈𝑖𝑗}. Hence, 𝜋𝑖(x) lies between the mini-
mum and the maximum payoffs for 𝑖, i.e., 𝜋𝑖(x) ∈ [min𝑗 𝑈𝑖𝑗 ,max𝑗 𝑈𝑖𝑗 ].

2.1.  Positive and negative assortments

In the literature, the terms assortment or assortative mating are of-
ten used to indicate that individuals interact with their own type with 
more probability than under random matching. Some authors (see e.g. 
Iyer and Killingback, 2020) distinguish between positive and negative 
assortment, depending on whether the conditional interaction proba-
bilities 𝑝𝑖|𝑖 are bigger or smaller than 𝑥𝑖 (random matching). In the 
following, we use the term assortment to refer to the set of functions 
𝑝𝑗|𝑖 ∶ Δ𝑛−1 → [0, 1] that characterize the conditional interaction proba-
bilities (for each strategy pair) at every state. Comparing the probabili-
ties with uniform random matching, we say that an assortment is:

• Positive if 𝑝𝑖|𝑖(x) ≥ 𝑥𝑖 for every 𝑖 ∈ 𝑆 and every state, with strict in-
equality at least at one state.

• Negative if 𝑝𝑖|𝑖(x) ≤ 𝑥𝑖 for every 𝑖 ∈ 𝑆 and every state, with strict 
inequality at least at one state.

• Neutral if 𝑝𝑖|𝑗 (x) = 𝑥𝑖 for every 𝑖, 𝑗 ∈ 𝑆 and every state.

When referring to an assortment at a specific state x, we say that an 
assortment is

• positive at x if 𝑝𝑖|𝑖(x) > 𝑥𝑖 for every 𝑖 ∈ 𝑆,
• negative at x if 𝑝𝑖|𝑖(x) < 𝑥𝑖 for every 𝑖 ∈ 𝑆, and
• neutral at x if 𝑝𝑖|𝑗 (x) = 𝑥𝑖 for every 𝑖, 𝑗 ∈ 𝑆.

Note that the reference interaction probabilities (those correspond-
ing to random or neutral matching) depend on the state x. In particular, 
having large values for every same-type interaction probability 𝑝𝑖|𝑖(x) at 
a population state does not guarantee that there is positive assortment 
at that state. For instance, if at some state x, 𝑝𝑖|𝑖(x) = 0.9 for every 𝑖 ∈ 𝑆, 
but there is a strategy 𝑗 such that 𝑥𝑗 > 0.9, then there is no positive as-
sortment. Similarly, having low values for every same-type interaction 
probability at a state does not guarantee negative assortment at that 
state. For instance, if at some state x, 𝑝𝑖|𝑖(x) = 0.1 for every 𝑖 ∈ 𝑆, but 
there is a strategy 𝑗 such that 𝑥𝑗 < 0.1, then there is no negative assort-
ment.

2.2.  Balanced and boundary-compatible assortments

In many cases, it seems natural to assume that if at some popula-
tion state x there are no 𝑗-players (i.e., if 𝑥𝑗 = 0), then the conditional 
probability of meeting a 𝑗-player at such a state 𝑝𝑗|𝑖(x) must be 0. An as-
sortment that satisfies this condition is said to be boundary-compatible. 
Specifically, an assortment is boundary-compatible if
𝑥𝑗 = 0 ⟹ 𝑝𝑗|𝑖(x) = 0

for every state x ∈ Δ𝑛−1, and every 𝑖, 𝑗 ∈ 𝑆.
At a monomorphic state e𝑖 (where all players use strategy 𝑖), the 

conditional probabilities of a boundary-compatible assortment satisfy 
𝑝𝑖|𝑗 (e𝑖) = 1 for every 𝑗 (i.e., if there are only 𝑖-players, any 𝑗-player enter-
ing the population will meet an 𝑖-player), leading to payoffs 𝜋𝑗 (e𝑖) = 𝑈𝑗𝑖. 
Note that 𝜋𝑗 (e𝑖) can be interpreted as the payoff obtained by a single 
𝑗-player who enters a monomorphic population of 𝑖-players.

Another interesting property to take into account is balance. We say 
that an assortment is balanced if:
𝑥𝑖 𝑝𝑗|𝑖(x) = 𝑥𝑗 𝑝𝑖|𝑗 (x) for every 𝑖, 𝑗 ∈ 𝑆 and x ∈ Δ𝑛−1.
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To interpret this condition, note in Eq. (1) that 𝑝𝑗|𝑖(x) is the rel-
ative weight of (𝑖 − 𝑗) interactions in the payoff to 𝑖-players. If the 
frequency of interaction is the same for every player, and all inter-
actions are considered equally relevant, then the balancing condition 
is met: in payoff-relevant (𝑖 − 𝑗) interactions, the number of 𝑖-players 
equals the number of 𝑗-players. However, if players with different 
strategies interact at different rates, or if there is some asymmetry in 
the relevance of some interactions, the assortment will typically be
non-balanced.

For instance, uniform random matching generates the neutral as-
sortment 𝑝𝑖|𝑗 (x) = 𝑥𝑖, which is boundary-compatible and balanced: 
𝑥𝑖 𝑝𝑗|𝑖(x) = 𝑥𝑖 𝑥𝑗 = 𝑥𝑗 𝑝𝑖|𝑗 (x). Complete matching (which assumes that ev-
ery player plays once with every other player) generates the same as-
sortment. The two-pool process with constant assortativity generates a 
balanced assortment, but it is not boundary-compatible: the minimum 
value for the probability 𝑝𝑖|𝑖(x), i.e. for an 𝑖-player to meet another 𝑖-
player, is 𝛼 > 0 —even at states where there are no 𝑖-players.

Selective assortment, on the other hand, is boundary-compatible but 
it is non-balanced. Specifically, under selective assortment, the relevant 
payoffs for a player are those obtained when actively selecting a co-
player for an interaction. The number of payoff-relevant 𝑖 → 𝑗 inter-
actions (those initiated by 𝑖-players who select a 𝑗-player) can differ 
from the number of payoff-relevant 𝑗 → 𝑖 interactions (those initiated 
by 𝑗-players who select an 𝑖-player). For example, consider two types 
(1 and 2), and a state 𝑥1 = 0.9 (𝑥2 = 1 − 𝑥1 = 0.1): under (strong) nega-
tive selective assortment we can obtain 𝑝1|2 ≈ 1 and 𝑝2|1 ≈ 1, i.e., almost 
all players are able to find a partner who is using the other strategy 
(see Section 3 for the formulas). This implies that the ratio between 
the frequency of payoff-relevant 1 → 2 interactions and the frequency 
of payoff-relevant 2 → 1 interactions is 𝑥1𝑝2|1𝑥2𝑝1|2

≈ 9.
Similarly, for processes where players have different expected num-

ber of interactions per period (e.g., heterogeneous structured popula-
tions (Maciejewski et al., 2014)), and assuming that the relevant payoff 
is the average payoff per interaction, the associated assortment is typi-
cally non-balanced.

2.3.  Two-type games. Positive assortment vs positive index of assortativity

For a two-type random matching process where each individual is 
matched with exactly one partner, Bergstrom (2003, 2013) defines the 
index of assortativity at state x as the difference between the conditional 
probability of interacting with a type (e.g., type 1) if the player is of that 
same type (type 1) minus that conditional probability if the player is of 
the other type (type 2): 
𝛼(x) ≡ 𝑝1|1(x) − 𝑝1|2(x). (2)

It follows from ∑𝑗 𝑝𝑗|𝑖 = 1 that 𝛼(x) = 𝑝2|2(x) − 𝑝2|1(x).
The assortment generated by the two-pool assortative matching pro-

cess with constant assortativity 𝛼 presents a constant assortativity index 
𝛼(x) = 𝛼 at every state x (note that 𝛼(x) is the assortativity index at 
state x and 𝛼 is a non-negative constant).

In the same context of random matching processes where each player 
is matched to another player once, a popular measure of assortative 
mating is Wright’s F-statistic or correlation coefficient (Wright, 1965). 
Bergstrom (2003, 2013) shows that, in this setting, the index of assor-
tativity is equal to Wright’s F-statistic.

The index of assortativity in Eq. (2), however, can be used for any as-
sortment, not only for cases in which each player is matched to another 
player once. From 𝑝1|2 + 𝑝2|2 = 1 and (2) we have
𝛼(x) = 𝑝1|1(x) + 𝑝2|2(x) − 1

This identity leads to the following observation for two-type games:

Observation 1. Positive assortment at x implies positive index of assortativ-
ity 𝛼(x) > 0. Negative assortment at x implies negative index of assortativity 
𝛼(x) < 0.

For a two-type balanced assortment, it can be shown2 that 
𝑝𝑖|𝑖(x) = 𝑥𝑖 + 𝛼(x)(1 − 𝑥𝑖). This implies that, in the special case of bal-
anced assortments, at any interior3 state x there is an equivalence be-
tween positive (negative) index of assortativity and positive (negative) 
assortment.

However, in general, the converse of Observation 1 is not true: a 
positive (negative) index of assortativity at a state does not guarantee 
positive (negative) assortment at that state. Suppose, for instance, that 
at state (𝑥1, 𝑥2) = (0.5, 0.5) we have 𝑝1|1 = 0.7, 𝑝2|1 = 0.3, 𝑝1|2 = 0.6, 𝑝2|2 =
0.4. At this state we have a positive index of assortativity 𝛼(0.5, 0.5) =
0.7 − 0.6 = 0.4 − 0.3 = 0.1, but there is no positive assortment, because 
𝑝2|2 = 0.4 < 𝑥2 = 0.5. In general, positive assortment at a state x is a 
stronger condition than a positive index of assortativity 𝛼(x) > 0 at that 
state.

3.  Selective assortment

In this section we extend the two-type model of positive selective 
assortment defined by Eshel and Cavalli-Sforza (1982) to any number 
of types as well as to negative assortment.

Under selective assortment, a player looking for a mate obtains a 
sample of 𝑘 ≥ 1 random players, or potential mates, to interact with. 
The selection of a mate depends on the assortment:

Positive assortment: select a mate using the same strategy as the 
player, provided there are any in the sample.

Negative assortment: select a mate at random that is using a different 
strategy, provided there are any in the sample.

If the sample lacks the desired strategy, then a random mate is chosen.
The special case 𝑘 = 1, which corresponds to neutral assortment, is 

included as a reference for both positive and negative assortment.

3.1.  Positive selective assortment

The probability 𝑝𝑘+𝑗|𝑖 (x) denotes the conditional probability that an 
𝑖-player selects a 𝑗-player under positive assortment (marked by +) given 
a sample size 𝑘 ≥ 1.

The probability that a sample of size 𝑘 has no 𝑖-players is (1 − 𝑥𝑖)𝑘. 
Similarly, the probability that the sample includes at least one 𝑖-player 
is 1 − (1 − 𝑥𝑖)𝑘. Now, assuming that every player with a strategy 𝑗 ≠ 𝑖 is 
treated equally by an 𝑖-player, we show (see Appendix B): 

𝑝𝑘+𝑗|𝑖 (x) =

{

1 − (1 − 𝑥𝑖)𝑘 if 𝑗 = 𝑖
(1 − 𝑥𝑖)𝑘−1𝑥𝑗 if 𝑗 ≠ 𝑖

(3)

At monomorphic states we have 𝜋𝑘+
𝑗 (e𝑖) = 𝑈𝑗𝑖. This holds for every 

sample size 𝑘, i.e., payoffs at monomorphic states are not affected by 
the sample size.

At interior states, we have lim𝑘→∞ 𝜋𝑘+
𝑖 (x) = 𝑈𝑖𝑖 due to positive as-

sortment. This means that the payoff for every strategy at interior states 
converges, as 𝑘 → ∞, to the strategy’s same-type-interaction payoff 𝑈𝑖𝑖.

3.2.  Negative selective assortment

We now derive the assortment probabilities 𝑝𝑘−𝑗|𝑖 (x) for negative se-
lective assortment (marked by −) with sample size 𝑘 ≥ 1.

The probability that all players in a sample are 𝑖-players is 𝑥𝑘𝑖 . Again, 
assuming that every player with strategy 𝑗 ≠ 𝑖 is treated equally by an 

2 The proof is a straightforward adaptation of the proof of Eq. (A.1) in
Appendix A.
3 A state x is interior if 𝑥𝑖 > 0 for every strategy 𝑖.
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Fig. 1. Payoffs for each strategy as a function of the fraction of cooperators in the Snowdrift game with payoffs {𝑃 = 0, 𝑆 = 1, 𝑅 = 3, 𝑇 = 4} under neutral assortment 
(𝑘 = 1), and under positive and negative selective assortment with sample sizes 𝑘 = 2 and 𝑘 = 10. The unique interior ESS moves with 𝑘 in opposite directions 
depending on whether the assortment is positive or negative.

𝑖-player, we show (see Appendix B): 

𝑝𝑘−𝑗|𝑖 (x) =
⎧

⎪

⎨

⎪

⎩

𝑥𝑘𝑖 if 𝑗 = 𝑖
(

1 − 𝑥𝑘𝑖
) 𝑥𝑗
1−𝑥𝑖

if 𝑗 ≠ 𝑖 and 𝑥𝑖 < 1

0 if 𝑗 ≠ 𝑖 and 𝑥𝑖 = 1

(4)

As before, at monomorphic states 𝜋𝑘−
𝑗 (e𝑖) = 𝑈𝑗𝑖 holds, regardless of 

the sample size 𝑘.
At interior states, as 𝑘 → ∞, the probability of same type interactions 

𝑝𝑘−𝑖|𝑖 (x) tends to 0 due to negative assortment. Moreover, 𝑝𝑘−𝑗|𝑖 (x) →
𝑥𝑗

1−𝑥𝑖
for 𝑗 ≠ 𝑖, i.e., the probability that an 𝑖-player selects a 𝑗-player ap-
proaches the relative frequency of 𝑗-players among non-𝑖-players.

4.  Selective assortment in games with two strategies

In this section we analyze the impact of positive and negative se-
lective assortment in 2-player 2-strategy symmetric games (henceforth, 
2 × 2 games). We name the strategies 𝐶 for cooperate and 𝐷 for defect, 
and characterize the population state by the fraction of 𝐶-players 𝑥𝑐 . 
Payoffs are 𝑈𝐶𝐶 = 𝑅,𝑈𝐷𝐷 = 𝑃 ,𝑈𝐷𝐶 = 𝑇 , and 𝑈𝐶𝐷 = 𝑆: 

𝐶 𝐷
𝐶
𝐷

(

𝑅 𝑆
𝑇 𝑃

)

(5)

Let us study the different cases, focusing on generic games (i.e., as-
suming that the four payoffs are different). Without loss of generality, let 
us assume that mutual cooperation (𝐶𝐶) is more efficient than mutual 
defection (𝐷𝐷), i.e., 𝑅 > 𝑃 .

4.1.  Payoff functions

From (1) and (3), the payoff functions for positive selective assort-
ment are 
𝜋𝑘+
𝐶 (𝑥𝑐 ) = 𝑅 − (1 − 𝑥𝑐 )𝑘 (𝑅 − 𝑆)

𝜋𝑘+
𝐷 (𝑥𝑐 ) = 𝑃 + 𝑥𝑘𝑐 (𝑇 − 𝑃 )

(6)

From (1) and (4), the payoff functions for negative selective assort-
ment are 
𝜋𝑘−
𝐶 (𝑥𝑐 ) = 𝑆 + 𝑥𝑘𝑐 (𝑅 − 𝑆)

𝜋𝑘−
𝐷 (𝑥𝑐 ) = 𝑇 − (1 − 𝑥𝑐 )𝑘 (𝑇 − 𝑃 )

(7)

Fig. 1 shows some illustrative examples of these functions for a Snow-
drift game (𝑇 > 𝑅 > 𝑆 > 𝑃 ).

At every interior state, the formulas for the payoffs show:

Positive assortment: as 𝑘 grows, the payoff of each strategy 𝑖 con-
verges to its same-type-payoff 𝑈𝑖𝑖 along the diagonal:

𝜋𝑘+
𝐶 (𝑥𝑐 )

𝑘→∞
⟶ 𝑅 and 𝜋𝑘+

𝐷 (𝑥𝑐 )
𝑘→∞
⟶ 𝑃 .

Negative assortment: as 𝑘 grows, the payoff of each strategy 𝑖 con-
verges to its different-type-payoff 𝑈𝑖𝑗 along the anti-diagonal (for 
2 × 2 games):

𝜋𝑘−
𝐶 (𝑥𝑐 )

𝑘→∞
⟶ 𝑆 and 𝜋𝑘−

𝐷 (𝑥𝑐 )
𝑘→∞
⟶ 𝑇 .

The payoff functions in (6) and (7) are monotonic in 𝑥𝑐 . The differ-
ences (𝑅 − 𝑆) and (𝑇 − 𝑃 ) determine whether the payoff functions are 
increasing or decreasing as well as their concavity. For instance, for the 
Snowdrift game (𝑅 − 𝑆 > 0, 𝑇 − 𝑃 > 0), 𝜋𝑘+

𝐶 (𝑥𝑐 ) is increasing and con-
cave, while 𝜋𝑘+

𝐷 (𝑥𝑐 ) is increasing and convex (see Fig. 1).
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Fig. 2. Phase portraits for 2 × 2 symmetric games, in the replicator dynamics 
under neutral assortment. The phase portraits are different in each of the four 
regions (I–IV). Red dots are attractors and white dots are repellors.

4.2.  The replicator dynamics

Let us study the replicator dynamics (Taylor and Jonker, 1978; 
Weibull, 1995) 

�̇�𝑖 = 𝑥𝑖

(

𝜋𝑖(x) −
∑

𝑗
𝑥𝑗 𝜋𝑗 (x)

)

(RD)

in every 2 × 2 generic game under selective assortment based on mono-
tonicity and concavity of the payoff functions. The phase portrait for the 
replicator dynamics (RD) does not change by adding a constant to every 
payoff, or by multiplying all payoffs by the same positive constant (see
(6) and (7)). Hence, we can assume normalized payoffs 𝑅 = 1 and 𝑃 = 0
without loss of generality (normalized by subtracting 𝑃  and dividing by 
𝑅 − 𝑃 ). We then define the following four regions:

Region 𝐼: 𝑇 > 1 and 𝑆 < 0. Example: Prisoner’s Dilemma.

Region 𝐼𝐼: 𝑇 > 1 and 𝑆 > 0. Example: Snowdrift.

Region 𝐼𝐼𝐼: 𝑇 < 1 and 𝑆 < 0. Example: Stag Hunt.

Region 𝐼𝑉 : 𝑇 < 1 and 𝑆 > 0. Example: Harmony.

A rest point or equilibrium point is a state 𝒙 such that �̇�𝑖 = 0 for 
every strategy 𝑖. If a dynamic process reaches (or starts at) a rest point, 
it remains there. Under neutral assortment, the phase portraits for the 
replicator dynamics in each region are shown in Fig. 2. In region 𝐼 , 
𝐷 is strictly dominant, so e𝐷 is a rest point that attracts all interior 
trajectories. In region 𝐼𝐼 , a unique interior, evolutionarily stable rest 
point exists and attracts all interior trajectories. In region 𝐼𝐼𝐼 , there is 
bi-stability of e𝐶 and e𝐷, with an internal unstable rest point separating 
their basins of attraction. Finally, in region 𝐼𝑉 , 𝐶 is strictly dominant, 
so e𝐶 attracts all interior trajectories.

Under positive assortment, a new phase portrait appears in region 𝐼
(Prisoner’s Dilemma) for large enough sample size (see Fig. 3). This new 
phase portrait includes an additional attractor (close to e𝐶 , for large 𝑘) 
as well as an additional repellor (close to e𝐷, for large 𝑘). Furthermore, 
both the level of cooperation and the size of the basin of attraction of 
this new attractor (where cooperators and defectors coexist) increase as 
the sample size 𝑘 grows. Note, however, that positive selective assort-
ment cannot stabilize full cooperation in the Prisoner’s Dilemma, not 
even for very large 𝑘, because a single 𝐷-player entering a population 
of 𝐶-players obtains payoff 𝜋𝑘+

𝐷 (e𝐶 ) = 𝑇 > 𝑅 = 𝜋𝑘+
𝐶 (e𝐶 ). In region 𝐼𝐼 , for 

large 𝑘, the interior attractor is close to e𝐶 . In region 𝐼𝐼𝐼 , for large 𝑘, 

Fig. 3. Phase portraits for 2 × 2 symmetric games in the RD under positive se-
lective assortment. The phase portraits are different in each of the four regions 
(I–IV). The symbol (↑ 𝑘) over an interior rest point, with an associated double 
arrow below, indicates that, for large values of 𝑘, the interior rest point is close 
to the corresponding edge. Red dots are attractors and white dots are repellors.

Fig. 4. Phase portraits for 2 × 2 symmetric games in the RD under negative 
selective assortment. The phase portraits are different in each of the four regions 
(I–IV). The box in the bottom right corresponds to the triangle of region IV where 
𝑇 > 𝑆. The symbol (↑ 𝑘) over an interior rest point, with an associated double 
arrow below, indicates that, for large values of 𝑘, the interior rest point is close 
to the corresponding edge. Red dots are attractors and white dots are repellors.

the interior repellor is close to e𝐷. In every case, for large 𝑘, the flow 
in most of the state space points towards e𝐶 , which is the most efficient 
monomorphic state, leading to a stable state (either at e𝐶 or close to it). 
For small 𝑘, the phase portraits approach those of neutral assortment 
(which corresponds to 𝑘 = 1, Fig. 2).

The corresponding results for negative assortment are shown in 
Fig. 4. In region 𝐼 (Prisoner’s Dilemma) there is no significant change 
as compared to neutral assortment (c.f. Fig. 2). In region 𝐼𝐼 , for large 
𝑘, the interior attractor is either close to e𝐶 (if 𝑆 > 𝑇 ) or close to e𝐷 (if 
𝑇 > 𝑆). Similarly, in region 𝐼𝐼𝐼 , for large 𝑘, the interior repellor is ei-
ther close to e𝐷 (if 𝑆 > 𝑇 ) or close to e𝐶 (if 𝑇 > 𝑆). Finally, in region 𝐼𝑉 , 
a new phase portrait appears for large enough sample size and 𝑇 > 𝑆
(white triangle in the center of Fig. 4). This phase portrait includes an 
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additional attractor (close to e𝐷, for large 𝑘) and an additional repellor 
(close to e𝐶 , for large 𝑘). In every case, for large 𝑘:

• If 𝑇 > 𝑆, the flow in most of the state space points towards e𝐷, lead-
ing to a stable state (either at or close to e𝐷) in which all or most of 
the population is using strategy 𝐷.

• If 𝑇 < 𝑆, the flow in most of the state space points towards e𝐶 , lead-
ing to a stable state (either at or close to e𝐶 ) in which all or most of 
the population is using strategy 𝐶.

5.  Selective assortment in games with any number of strategies

In this section we consider symmetric two-player games with any 
number of strategies for different evolutionary dynamics with positive 
or negative selective assortment.

We use the concept of a symmetric Nash strategy profile from classi-
cal game theory (a profile being a pair of strategies), and the concept of 
a Nash population state from evolutionary game theory (which refers to 
a distribution of strategies in the population). For completeness, we for-
mally define these concepts below, before discussing their relationship 
under selective assortment.
Definition 1. A strategy profile (𝑖, 𝑖) is a Nash profile if 𝑈𝑗𝑖 ≤ 𝑈𝑖𝑖 for 
every 𝑗 ≠ 𝑖. It is a strict Nash profile if the condition holds with strict 
inequality. 

For instance, the payoff matrix for the 1-2-3 coordination game, with 
strategies 1, 2 and 3 is given by: 

1 2 3
1
2
3

⎛

⎜

⎜

⎝

1 0 0
0 2 0
0 0 3

⎞

⎟

⎟

⎠

(8)

It is easy to check that the three strategy profiles (1, 1), (2, 2) and 
(3, 3) are strict Nash profiles. Simply note that the maximum payoff in 
column 𝑖 is 𝑈𝑖𝑖.

In population games, the payoff function 𝜋𝑖(x) denotes the payoff to 
strategy 𝑖 in a population with state x. This yields the following standard 
definitions of Nash and strict Nash monomorphic states.
Definition 2. A monomorphic state e𝑖 is a Nash state if 𝜋𝑗 (e𝑖) ≤ 𝜋𝑖(e𝑖)
for every 𝑗 ≠ 𝑖. It is a strict Nash state if the condition holds with strict 
inequality. 

At any monomorphic state e𝑖 we have:
• for positive selective assortment with sample size 𝑘, 𝜋𝑘+

𝑗 (e𝑖) = 𝑈𝑗𝑖, 
and

• for negative selective assortment with sample size 𝑘, 𝜋𝑘−
𝑗 (e𝑖) = 𝑈𝑗𝑖,

which yields the following observation:
Observation 2. A monomorphic state e𝑖 is a (strict) Nash state of a game 
with selective assortment if and only if strategy profile (𝑖, 𝑖) is a (strict) Nash 
profile of the game.

For instance, for the 1-2-3 coordination game (8), the three 
monomorphic states e1, e2 and e3 are strict Nash states under selec-
tive assortment (either positive or negative, and for every sample size 
𝑘).

Strict Nash states are asymptotically stable in the replicator dynam-
ics, under the weak condition of having Lipschitz continuous payoff 
functions (Hofbauer and Sigmund, 2003). In our setting, this continuity 
condition corresponds to the basic requirement that if two population 
states are close, then, for every strategy 𝑖, the two payoffs obtained by 
strategy 𝑖 at both states are also close.4 From Eqs. (1), (3) and (4), it 

4 Technically, the condition requires the existence of some constant 𝑀 such 
that, for any two states x and 𝒚, and for every strategy 𝑖, |𝜋𝑖(x) − 𝜋𝑖(𝒚)| < 𝑀 ||x −
𝒚||.

is easy to check that the payoff functions for selective assortment are 
Lipschitz continuous. We consequently have the following result:

Observation 3. If (𝑖, 𝑖) is a strict Nash profile, then the monomorphic state 
e𝑖 is asymptotically stable in the replicator dynamics under selective assort-
ment (either positive or negative, and for every sample size 𝑘).

Indeed, Observation 3 extends to every dynamics for which strict 
Nash states are asymptotically stable. This includes best response dy-
namics, payoff monotonic imitation dynamics and, more generally, any 
myopic adjustment dynamics (Hofbauer and Sigmund, 2003).

Observation 4. If (𝑖, 𝑖) is not a Nash profile, then the monomorphic state e𝑖
is an unstable rest point of the replicator dynamics under selective assortment 
(either positive or negative, and for every sample size 𝑘).

Similarly, Observation 4 extends to every dynamics for which non-
Nash states are unstable, such as every payoff monotonic imitation dy-
namics. Furthermore, for many dynamics, such as best response dynam-
ics, only Nash states can be rest points (Sandholm, 2010). Thus, if (𝑖, 𝑖) is 
not a Nash profile then e𝑖 is not even a rest point under such dynamics.

For positive assortment and large 𝑘, an attractor of the replicator 
dynamics exists at or close to the most efficient monomorphic state. 
Moreover, most trajectories converge to this attractor. For example, in 
the 1-2-3 coordination game (see Example 2 below) the attractor is lo-
cated at the most efficient monomorphic state, whereas it lies close to 
it in the Prisoner’s Dilemma (Example 1) and in the Traveler’s Dilemma 
(Example 3).

In order to show this, we use the concept of a relative neighborhood 
𝑂. For any given state x, a relative neighborhood 𝑂 of x is any set of 
states that contains x and the states closest to x. More precisely, any set 
of states that contains {x ∈ Δ𝑛−1 ∶ ||x − x|| < 𝑟} for some positive 𝑟 > 0. 
Note that 𝑟 is the radius of a ball centered at x.
Proposition 1. Assume positive selective assortment. Suppose that there is 
a unique most-efficient monomorphic state e𝑖, i.e., 𝑈𝑖𝑖 > max𝑗≠𝑖 𝑈𝑗𝑗 , which 
always holds for generic games. Then:

• Given any interior point x, strategy ̂𝑖 becomes the unique best strategy at 
x for a sufficiently large sample size 𝑘, i.e,
𝜋𝑘+
𝑖

(x) > 𝜋𝑘+
𝑗 (x)  for every 𝑗 ≠ 𝑖.

• Any relative neighborhood 𝑂 of e𝑖 eventually (i.e., for large enough 𝑘) 
contains an attractor of the replicator dynamics. Moreover, given any 
interior state x, the trajectory that starts at x eventually converges to 𝑂.

Note that e𝑖 may not be Nash, and hence the most efficient monomor-
phic state is potentially unstable. Convergence to a (small) neighbor-
hood of e𝑖 implies that the dynamic process approaches e𝑖 (if it is not 
already close to it) and remains close to it forever. Thus, most of the 
population ends up adopting strategy ̂𝑖.

Proposition 1 extends to every dynamics satisfying
𝜋𝑖(x) >

∑

𝑗
𝑥𝑗𝜋𝑗 (x) ⟹ �̇�𝑖 > 0,

such as aggregate monotonic imitation dynamics (Hofbauer and Sig-
mund, 2003).

Example 1. In the Prisoner’s Dilemma (see Fig. 5), e𝐷 is a strict Nash 
state: it is asymptotically stable in the replicator dynamics under ev-
ery selective assortment. The cooperative state e𝐶 is the most efficient 
monomorphic state but not a Nash state: it is unstable in the replica-
tor dynamics under every selective assortment. However, for positive 
assortment and large enough 𝑘, an attractor exists close to e𝐶 , which 
eventually attracts most trajectories (see Fig. 5(c) for 𝑘 = 10).

Example 2. In the 1-2-3 coordination game (payoff matrix (8)) with 
positive selective assortment (Fig. 6) the three monomorphic states are 
strict Nash states. Consequently, they are asymptotically stable in the 
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Fig. 5. Payoffs for each strategy as a function of the fraction of cooperators in the Prisoner’s Dilemma with payoffs {𝑆 = 0, 𝑃 = 1, 𝑅 = 3, 𝑇 = 4} under neutral 
assortment (𝑘 = 1) and under positive selective assortment with sample sizes 𝑘 = 2 and 𝑘 = 10. The arrows show the phase portrait for the replicator dynamics.

Fig. 6. Replicator dynamics for positive selective assortments, for the 1-2-3-coordination game with payoff matrix (8). Red dots are attractors, while white dots are 
unstable rest points. The background colors represent speed (blue for slow, yellow for medium, red for fast).

Fig. 7. Replicator dynamics for positive selective assortments, for the Traveler’s Dilemma game with payoff matrix (9). Red dots are attractors, while white dots are 
unstable rest points. The background colors represent speed (blue for slow, yellow for medium, red for fast).

replicator dynamics under (every) selective assortment. The most effi-
cient monomorphic state is e3. For positive assortment and increasing 𝑘, 
most trajectories eventually converge to e3. More specifically, all those 
with an initial 𝑥3 that exceeds a threshold converge, and the threshold 
decreases with 𝑘.

Example 3. The Traveler’s dilemma game is exemplified by the follow-
ing payoff matrix for three strategies: 

1 2 3
1
2
3

⎛

⎜

⎜

⎝

2 4 4
0 3 5
0 1 4

⎞

⎟

⎟

⎠

. (9)

With positive selective assortment (Fig. 7) the inefficient e1 is a strict 
Nash state and hence asymptotically stable. In contrast, e2 and e3 are 
not Nash states and hence unstable for every 𝑘. The least and most ef-
ficient monomorphic states are e1 and e3, respectively. Under neutral 

assortment, the least efficient state e1 attracts all interior trajectories. 
For positive assortment and increasing 𝑘, most trajectories converge to 
an attractor close to the most efficient monomorphic state e3. More pre-
cisely, all those where the initial 𝑥3 exceeds a threshold converge. For 
increasing 𝑘 not only the threshold decreases but also the attractor gets 
closer to e3.

For negative selective assortment and large 𝑘, our next proposition 
provides conditions that guarantee the existence of an attractor close to 
one of the monomorphic states of a game. It may seem surprising that 
negative assortment (a preference to interact with other types) leads 
most players to use the same strategy. However, note that, under se-
lective assortment with large sample size 𝑘, most interactions in the 
population take place between players using different strategies even if 
most players are using the same strategy: when looking for a partner, 
players using the majority strategy are very likely to find and select a 
partner using some minority strategy.
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Fig. 8. Replicator dynamics for negative selective assortments, for the game in Example 4. Red dots are attractors, while white dots are unstable rest points. The 
background colors represent speed (blue for slow, yellow for medium, red for fast). Note how, as 𝑘 increases from 1 (i) to 10 (iii), the attractor that appears in (ii) 
close to the top of the simplex (close to e1) gets closer to e1 and attracts most trajectories.

Proposition 2. Assume negative selective assortment. If a monomorphic 
state e𝑖 satisfies min𝑗≠𝑖 𝑈𝑖𝑗 > max𝑗≠𝑖 𝑈𝑗𝑖, then any relative neighborhood 𝑂
of e𝑖 contains, for sufficiently large 𝑘, an attractor of the replicator dynamics.

Additionally, if min𝑗≠𝑖 𝑈𝑖𝑗 ≥ max𝑗≠𝑖,𝑚≠𝑗 𝑈𝑗𝑚, then most trajectories con-
verge to 𝑂 for large enough 𝑘. Specifically, given any interior state x, the 
trajectory starting at x eventually (i.e., for large enough 𝑘) converges to 𝑂. 
Note that e𝑖 may not be Nash, and hence potentially unstable. Consid-
ering the payoff matrix {𝑈𝑖𝑗} of the game (see e.g. payoff matrix (10)), 
the first condition in Proposition 2 compares the minimum non-diagonal 
payoff in the row for strategy 𝑖, min𝑗≠𝑖 𝑈𝑖𝑗 , with the maximum non-
diagonal payoff in its column. The second condition compares the same 
value with the maximum non-diagonal payoff in all the other rows. The 
proof is detailed in Appendix B.

The convergence to a (small) neighborhood of e𝑖 implies that the dy-
namic process approaches e𝑖 (if it is not already close to it) and remains 
close to it forever. Note the attractor (red dot) close to e1 in Fig. 8(b) 
& (c) for 𝑘 = 3 and for 𝑘 = 10. For 𝑘 = 10 most trajectories converge to 
that attractor.

Proposition 2 extends to any dynamics under which a single optimal 
strategy grows unless everybody is using it. More specifically, for any 
dynamics satisfying
(

𝜋𝑖(x) > max
𝑗≠𝑖

𝜋𝑗 (x)  and 0 < 𝑥𝑖 < 1
)

⟹ �̇�𝑖 > 0,

such as best response dynamics.

Example 4. Consider an interaction with the following payoff matrix: 
1 2 3

1
2
3

⎛

⎜

⎜

⎝

0 3 3
1 3 3
1 3 5

⎞

⎟

⎟

⎠

. (10)

Under neutral assortment, strategy 1 is dominated by strategies 2 and 3. 
Strategy 3 is dominant and attracts all interior trajectories of the repli-
cator dynamics (see Fig. 8).

For strategy 1, after excluding 𝑈11, the minimum row-payoff is 
greater than the maximum column-payoff (3 > 1). According to Propo-
sition 2 an attractor exists close to e1, for negative selective assortment 
and large enough 𝑘. Furthermore, given that 3 ≥ max𝑗≠1,𝑘≠𝑗 𝑈𝑗𝑘 = 3, we 
have that, for any 𝜖 > 0 and large enough 𝑘, all trajectories with an ini-
tial value of 𝑥1 ∈ [𝜖, 1 − 𝜖] approach this attractor. However, given that 
e1 is not a Nash state, e1 itself is not an attractor. 

6.  Conclusions

In order to study the effects of positive assortment, the two-pool assor-
tative matching process (Eshel and Cavalli-Sforza, 1982; Bergstrom, 2003, 

2013) can be considered a standard reference model. In sharp contrast, 
no standard reference model to study the effects of negative assortment 
seems to exist. In fact, providing reference models for negative assort-
ment is not immediate: many direct extensions of positive assortment 
processes (such as extending the two-pool process) can be problematic 
or unrealistic (see Appendix A for details).

In this paper we have analyzed a model of selective assortment for 
two-player interactions that extends Eshel and Cavalli-Sforza (1982)’s 
two-strategy positive assortment model to several strategies and, more 
importantly, to negative assortment. Through this extension, our contri-
bution now proposes a reference model for negative assortment.

In the replicator dynamics with two strategies the two monomor-
phic states are rest points under neutral assortment. In generic games, 
there can be at most one additional, interior rest point, which is either 
an attractor or a repellor. Selective assortment does not modify the sta-
bility of the two monomorphic states, but it can significantly alter the 
dynamics in the interior of the state space. For instance, for sufficiently 
strong positive selective assortment, a new interior attractor appears in 
the Prisoner’s Dilemma, where cooperators and defectors coexist. Fur-
thermore, both the level of cooperation and the size of the basin of at-
traction of this interior attractor increase with the strength of positive 
assortment. In other games, negative selective assortment can generate 
a similar effect.

In 2-player games with any number of strategies, and under many 
evolutionary dynamics, we have shown that positive selective assort-
ment leads to most of the population playing the most efficient strategy, 
i.e. the strategy with the greatest same-type payoff 𝑈𝑖𝑖, for sufficiently 
large sample size 𝑘 and most initial conditions. Similarly, for negative 
assortment, we have identified strategies that are adopted by the major-
ity of the population under many evolutionary dynamics.
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Appendix A.  Alternative models for negative assortment

Somewhat surprisingly, defining the negative-assortment comple-
ment to a process that generates positive assortment is generally not 
straightforward or even possible. In this appendix, we present three po-
tential extensions of the two-pool positive assortment model (Eshel and 
Cavalli-Sforza, 1982) to include negative assortment, and discuss the 
issues that each of them presents.

In the two-strategy case, the two-pool positive assortment model gener-
ates an assortment whose index of assortativity 𝛼(x), as defined in (2), is 
a constant 𝛼, i.e., 𝛼(x) = 𝛼 at every state x. We start by presenting three 
possible characterizations of the two-pool positive assortment model for 
any number of strategies. Each characterization simply represents one 
possible way to arrive at the same model of positive assortment. In con-
trast, each of the three different characterizations of the (same) model of 
positive assortment leads to a different model for negative assortment.

A.1.  Three characterizations of the two-pool positive assortment model

The following characterizations can be used to define the two-pool 
positive assortment model with constant assortativity factors 𝛼:

[C-I] Players compute their payoffs by interacting:
• with probability 𝛼 > 0, with a player using the same strategy, and
• with probability (1 − 𝛼), with a random player.

This is how the model was initially introduced in Section 1.
[C-II] In the two-type case, the model is characterized by balanced as-

sortment with constant index of assortativity (Section 2.3). For 
more strategies, the index of assortativity can be extended to as-
sortativity factors, 𝛼𝑖𝑗 (x) = 𝑝𝑖|𝑖(x) − 𝑝𝑖|𝑗 (x), defined for every pair 
of different strategies and every state x. Thus, a constant index 
of assortativity translates to 𝑝𝑖|𝑖(x) − 𝑝𝑖|𝑗 (x) = 𝛼 for every 𝑖 and 
𝑗 ≠ 𝑖.

[C-III] A representative fraction 𝛼 of the population is matched in pairs 
in a way such that the number of same-strategy pairs is max-
imized, and the remaining fraction (1 − 𝛼) of the population is 
randomly matched. Note that maximizing the number of same-
strategy pairs is equivalent to matching players using the same 
strategy; thus, [C-III] is equivalent to [C-I].

We now summarize the main properties of this two-pool positive as-
sortment model (regardless of how it is characterized).

Conditional probabilities: the probabilities 𝑝𝑗|𝑖(x) in this assortment 
are:

𝑝𝑗|𝑖(x) = 𝛼 𝛿𝑖𝑗 + (1 − 𝛼) 𝑥𝑗 ,

where 𝛿𝑖𝑗 is the Kronecker delta (𝛿𝑖𝑖 = 1, and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗).

Proof. 

[C-I] The proof is straightforward: simply consider that 𝑥𝑗 is the prob-
ability that a random player uses strategy 𝑗.

[C-II] the condition of being balanced, 𝑥𝑖𝑝𝑗|𝑖(x) = 𝑥𝑗𝑝𝑖|𝑗 (x), leads to 
∑

𝑗 𝑥𝑖𝑝𝑗|𝑖(x) =
∑

𝑗 𝑥𝑗𝑝𝑖|𝑗 (x). Considering that 
∑

𝑗 𝑝𝑗|𝑖(x) = 1 and 
𝑝𝑖|𝑗 (x) = 𝑝𝑖|𝑖(x) − 𝛼 for 𝑗 ≠ 𝑖, we obtain

∑

𝑗
𝑥𝑖𝑝𝑗|𝑖(x) =

∑

𝑗
𝑥𝑗𝑝𝑖|𝑗 (x) ⟹ 𝑥𝑖(

∑

𝑗
𝑝𝑗|𝑖(x)) = 𝑥𝑖𝑝𝑖|𝑖(x)

+
∑

𝑗≠𝑖
𝑥𝑗 (𝑝𝑖|𝑖(x) − 𝛼)

⟹ 𝑥𝑖 = 𝑥𝑖𝑝𝑖|𝑖(x) + (1 − 𝑥𝑖)(𝑝𝑖|𝑖(x) − 𝛼)

⟹ 𝑥𝑖 = 𝑝𝑖|𝑖(x) − 𝛼(1 − 𝑥𝑖) (A.1)

From the last equation follows that 𝑝𝑖|𝑖(x) = 𝛼 + (1 − 𝛼) 𝑥𝑖 and 
𝑝𝑗|𝑖(x) = 𝑝𝑗|𝑗 (x) − 𝛼 = (1 − 𝛼) 𝑥𝑗 for 𝑖 ≠ 𝑗.

[C-III] note that a matching of a representative (sub)population that 
maximizes the number of same-strategy pairs in the subpopula-
tion is a matching in which every player in the subpopulation 
is paired with another player in the subpopulation who uses the 
same strategy. The relative prevalence of 𝑗-players in the rest of 
the population does not change, it is still 𝑥𝑗 (for every 𝑗). Con-
sequently, [C-I] and [C-III] correspond to the same probabilities 
that each different 𝑖 − 𝑗 pairing takes place.   

Payoffs: for the payoffs 𝜋𝑖(x), from (1) we have

𝜋𝑖(x) =
𝑛
∑

𝑗=1
𝑝𝑗|𝑖(x)𝑈𝑖𝑗 = 𝛼 𝑈𝑖𝑖 +

𝑛
∑

𝑗=1
(1 − 𝛼)𝑥𝑗𝑈𝑖𝑗 =

𝑛
∑

𝑗=1
𝑥𝑗 [𝛼 𝑈𝑖𝑖 + (1 − 𝛼)𝑈𝑖𝑗 ].

Defining the modified game payoffs �̃�𝑖𝑗 as

�̃�𝑖𝑗 = 𝛼 𝑈𝑖𝑖 + (1 − 𝛼)𝑈𝑖𝑗 ,

we have 𝜋𝑖(x) =
∑𝑛

𝑗=1 𝑥𝑗 �̃�𝑖𝑗 . Thus, the payoffs from this assortment are 
linear in x and are equivalent to the payoffs obtained under uniform 
random matching using the modified game payoffs �̃�𝑖𝑗 .

Balance: this assortment is balanced and positive, but not boundary 
compatible since 𝑝𝑖|𝑖(x) ≥ 𝛼 at every state. This implies that even if there 
are no 𝑖-players in a population (𝑥𝑖 = 0), a potential invader using strat-
egy 𝑖 is assumed to be able to interact with another 𝑖-player with prob-
ability at least 𝛼 (see Bergstrom, 2013 for an alternative model). This is 
probably the main drawback of this model of positive assortment.

The following subsections present and discuss potential ways to 
model negative assortment, taking each of the three characterizations 
of the two-pool positive assortment model as a starting point.

A.2.  Extension from [C-I]. Proportional negative assortment

A natural way to model negative assortment in the spirit of charac-
terization [C-I] is: Players compute their payoffs by interacting:

• with probability 𝛼 > 0, with a player using a different strategy, and
• with probability (1 − 𝛼), with a random player.

In contrast to positive assortment, here we must also specify the 
probability of selecting each of the different strategies. A natural way 
of doing this is proportional to their frequencies. In that case, the prob-
abilities 𝑝𝑗|𝑖(x) are:

𝑝𝑗|𝑖(x) = 𝛼
𝑥𝑗

1 − 𝑥𝑖
(1 − 𝛿𝑖𝑗 ) + (1 − 𝛼) 𝑥𝑗

However, the previous formula is not defined at monomorphic states 
where 𝑥𝑖 = 1. Moreover, in generic games with more than two strategies, 
payoffs at monomorphic states cannot be defined in a continuous way. 
For example,

lim
𝜖→0

𝜋1(1 − 𝜖, 𝜖, 0,… , 0) = 𝛼 𝑈12 + (1 − 𝛼)𝑈11 , but

lim
𝜖→0

𝜋1(1 − 𝜖, 0, 𝜖, 0,… , 0) = 𝛼 𝑈13 + (1 − 𝛼)𝑈11.
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A.3.  Extensions from [C-II]. Assortment with constant negative 
assortativity

A natural way to model negative assortment in the spirit of char-
acterization [C-II] is to ensure that the assortment is balanced and 
all assortativity factors 𝛼𝑖𝑗 (x) are equal to a negative constant −𝛼, i.e. 
𝑝𝑖|𝑖(x) − 𝑝𝑖|𝑗 (x) = −𝛼 for every 𝑖 and 𝑗 ≠ 𝑖.

It turns out that there are no balanced assortments with negative 
constant index of assortativity or, more generally, with negative con-
stant assortativity factors. Jensen and Rigos (2018) prove this fact for 
the two-strategy case, but the statement also applies to more than two 
strategies. To see this, consider any state x̂ ∈ Δ𝑛−1 such that �̂�𝑖 = 0 and 
�̂�𝑗 > 0. The balancing condition implies 𝑝𝑖|𝑗 (x̂) = 0, so the correspond-
ing assortativity factor is 𝛼𝑖𝑗 (x̂) = 𝑝𝑖|𝑖(x̂) − 𝑝𝑖|𝑗 (x̂) = 𝑝𝑖|𝑖(x̂) ≥ 0. Thus, the 
assortativity factors of a balanced assortment cannot be a negative
constant.

Nevertheless, a non-balanced assortment with constant negative as-
sortativity may still exist.5 The only condition we impose is that all 
assortativity factors 𝛼𝑖𝑗 (x) are equal to a negative constant −𝛼, i.e. 
𝑝𝑖|𝑖(x) − 𝑝𝑖|𝑗 (x) = −𝛼 for every 𝑖 and 𝑗 ≠ 𝑖.

Note that this extension implies 𝑝𝑖|𝑗 (x) = 𝛼 + 𝑝𝑖|𝑖(x) > 0 for 𝑗 ≠ 𝑖. As a 
consequence, such assortments may not be realistic because they imply 
that any non-𝑖-player can interact with an 𝑖-player with strictly positive 
probability, even in a population without 𝑖-players.

A.4.  Extension from [C-III]. Matching with maximum number of 
different-strategy pairs

A natural way to model negative assortment in the spirit of charac-
terization [C-III] is to match a representative fraction 𝛼 of the population 
in pairs such that the number of pairs with different strategies is max-
imized. The remaining fraction (1 − 𝛼) of the population is randomly 
matched.

The two-strategy case is not problematic. Letting 𝑟 = 𝑥2∕𝑥1, the pay-
offs obtained when maximizing the number of pairs with different strate-
gies are:
(

𝜋1(x), 𝜋2(x)
)

=

{

(

(1 − 𝑟)𝑈11 + 𝑟𝑈12, 𝑈21
)

if 𝑥1 ≥ 0.5
(

𝑈12, (1 − 1∕𝑟)𝑈22 + 𝑈21∕𝑟
)

if 𝑥1 < 0.5
.

For more than three strategies, problems start to appear: at some pop-
ulation states, there are different matchings that maximize the number 
pairs with different strategies. Moreover, those matching mechanisms 
can lead to different payoffs. For instance, any matching in pairs of four 
players who use four different strategies maximizes the number of pairs 
with different strategies. In any case, for more than two strategies, and 
considering generic games, this assortment necessarily leads to discon-
tinuous payoff functions, as our next proposition shows.

Proposition 3. In populations with more than two strategies any matching 
mechanism that maximizes the number of pairs with different strategies leads 
to discontinuous payoff functions for generic games.
Proof.  Any matching that maximizes the number of pairs with different 
strategies satisfies:

• 𝑝3|1(x𝜖) = 1 at states x𝜖 ≡ (𝜖, 12 − 𝜖, 12 , 0,… , 0), for 𝜖 ≤ 1
2 . This implies 

𝜋1(x𝜖) = 𝑈13.
• 𝑝2|1(x𝛿) = 1 at states x𝛿 ≡ (𝛿, 12 ,

1
2 − 𝛿, 0,… , 0), for 𝛿 ≤ 1

2 . This implies 
𝜋1(x𝛿) = 𝑈12.

Let x0 ≡ (0, 12 ,
1
2 , 0,… , 0). We have lim𝜖→0 x𝜖 = x0 and lim𝛿→0 x𝛿 = x0, 

but lim𝜖→0 𝜋1(x𝜖) = 𝑈13 and lim𝛿→0 𝜋1(x𝛿) = 𝑈12 ≠ 𝑈13 for generic games. 
Thus, 𝜋1(x) cannot be continuous at 𝑥0.  

5 For the two-strategy case, Friedman and Sinervo (2016) discuss some bal-
anced assortments with (non-constant) negative assortativity.

Appendix B.  Proofs

Proof of Eq. (3).  We know 𝑝𝑘+𝑖|𝑖 (x) = 1 − (1 − 𝑥𝑖)𝑘 and that every player 
with a strategy that is not 𝑖 has the same probability of being chosen by 
an 𝑖-player. Consequently, 𝑝𝑘+𝑗|𝑖 (x) = 𝑐(x) 𝑥𝑗 for some value 𝑐(x), so 
∑

𝑗≠𝑖
𝑝𝑘+𝑗|𝑖 (x) =

∑

𝑗≠𝑖
𝑐(x) 𝑥𝑗 = 𝑐(x)

∑

𝑗≠𝑖
𝑥𝑗 = 𝑐(x) (1 − 𝑥𝑖). (B.1)

From ∑𝑗 𝑝
𝑘+
𝑗|𝑖 (x) = 1 we also have 

∑

𝑗≠𝑖
𝑝𝑘+𝑗|𝑖 (x) = 1 − 𝑝𝑘+𝑖|𝑖 (x) = (1 − 𝑥𝑖)𝑘. (B.2)

Combining (B.1) and (B.2) we find 𝑐(x) = (1 − 𝑥𝑖)𝑘−1. Consequently, 
𝑝𝑘+𝑗|𝑖 (x) = (1 − 𝑥𝑖)𝑘−1𝑥𝑗 for 𝑗 ≠ 𝑖.  

Proof of Eq. (4).  Again, we know 𝑝𝑖|𝑖(x) = 𝑥𝑘𝑖  and that every player with 
a strategy that is not 𝑖 has the same probability of being chosen by an 
𝑖-player. Consequently, 𝑝𝑘−𝑗|𝑖 (x) = 𝑐(x) 𝑥𝑗 for some value 𝑐(x), and 
∑

𝑗≠𝑖
𝑝𝑘−𝑗|𝑖 (x) =

∑

𝑗≠𝑖
𝑐(x) 𝑥𝑗 = 𝑐(x)

∑

𝑗≠𝑖
𝑥𝑗 = 𝑐(x) (1 − 𝑥𝑖) (B.3)

From ∑𝑗 𝑝
𝑘−
𝑗|𝑖 (x) = 1, we also have 

∑

𝑗≠𝑖
𝑝𝑘−𝑗|𝑖 (x) = 1 − 𝑝𝑘−𝑖|𝑖 (x) = 1 − 𝑥𝑘𝑖 (B.4)

Combining (B.3) and (B.4) we find 𝑐(x) = 1−𝑥𝑘𝑖
1−𝑥𝑖

 for 𝑥𝑖 ≠ 1. Therefore, 

𝑝𝑘−𝑗|𝑖 (x) =
1−𝑥𝑘𝑖
1−𝑥𝑖

𝑥𝑗 for 𝑗 ≠ 𝑖 and 𝑥𝑖 < 1. For 𝑥𝑖 = 1 we have 𝑝𝑘−𝑖|𝑖 (e𝑖) = 1 and, 
consequently, 𝑝𝑘−𝑗|𝑖 (e𝑖) = 0 for 𝑗 ≠ 𝑖.  

Proof of Observation 2. 𝜋𝑘+
𝑗 (e𝑖) = 𝜋𝑘−

𝑗 (e𝑖) = 𝑈𝑗𝑖 for every 𝑖, 𝑗 ∈ 𝑆 and 
for every 𝑘.  
Proof of Proposition 1.  From (1) and (3) we have
𝜋𝑖(x) = [1 − (1 − 𝑥𝑖)𝑘]𝑈𝑖𝑖 +

∑

𝑗≠𝑖
(1 − 𝑥𝑖)𝑘−1 𝑥𝑗 𝑈𝑖𝑗 .

It follows that lim𝑘→∞ 𝜋𝑖(x) = 𝑈𝑖𝑖 at any interior x. Let e𝑖 be the most 
efficient monomorphic state. Then, lim𝑘→∞ 𝜋𝑗 (x) = 𝑈𝑗𝑗 < 𝑈𝑖𝑖 for 𝑗 ≠ 𝑖, 
which proves the first part of Proposition 1.

For the second part, let �̄�(x) = ∑

𝑗 𝑥𝑗𝜋𝑗 (x) be the average payoff at 
state x, let 𝐷1 ≡ 𝑈𝑖𝑖 = max𝑗 𝑈𝑗𝑗 and let 𝐷2 ≡ max𝑗≠𝑖 𝑈𝑗𝑗 < 𝐷1. We prove 
that, for every x with 𝑥𝑖 > 0, 
lim
𝑘→∞

�̄�(x) ≤ 𝑥𝑖 𝐷1 + (1 − 𝑥𝑖)𝐷2. (B.5)

Then, for 0 < 𝑥𝑖 < 1,

lim
𝑘→∞

�̄�(x) ≤ 𝑥𝑖 𝐷1 + (1 − 𝑥𝑖)𝐷2 < 𝐷1 = lim
𝑘→∞

𝜋𝑖(x),

from which the result follows. Note, for 𝜖 > 0, large enough 𝑘 and 𝑥𝑖 ∈
[𝜖, 1 − 𝜖], we have 𝜋𝑖(x) > �̄�(x), which implies �̇�𝑖 > 0 for 𝑥𝑖 ∈ [𝜖, 1 − 𝜖].

It only remains to show (B.5). In the following bound, we use the 
value 𝑀 ≡ max𝑗≠𝑖,𝑚≠𝑗 𝑈𝑗𝑚.

�̄�(x) = 𝑥𝑖 𝜋𝑖(x) +
∑

𝑗≠𝑖

𝑥𝑗 𝜋𝑗 (x) ≤ 𝑥𝑖 𝜋𝑖(x) +
∑

𝑗≠𝑖

𝑥𝑗 [1 − (1 − 𝑥𝑗 )𝑘]𝐷2

+
∑

𝑗≠𝑖

𝑥𝑗 (1 − 𝑥𝑗 )𝑘 𝑀

= 𝑥𝑖 𝜋𝑖(x) + (1 − 𝑥𝑖)𝐷2 +
∑

𝑗≠𝑖

𝑥𝑗 (1 − 𝑥𝑗 )𝑘 (𝑀 −𝐷2)

𝑘→∞
⟶ 𝑥𝑖 𝐷1 + (1 − 𝑥𝑖)𝐷2.

   
Proof of Proposition 2.  From (1) and (4) we have that, for 𝑥𝑖 < 1,

𝜋𝑖(x) = 𝑥𝑘𝑖 𝑈𝑖𝑖 + (1 − 𝑥𝑘𝑖 )
∑

𝑗≠𝑖

𝑥𝑗
1 − 𝑥𝑖

𝑈𝑖𝑗 .
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Let 𝑖 be the strategy satisfying the condition min𝑗≠𝑖 𝑈𝑖𝑗 > max𝑗≠𝑖 𝑈𝑗𝑖. We 
use the auxiliary variables 𝐵1 ≡ min𝑗≠𝑖 𝑈𝑖𝑗 , 𝐵2 ≡ max𝑗≠𝑖 𝑈𝑗𝑖 (so, by hy-
pothesis, 𝐵1 > 𝐵2) and 𝑀 ≡ max𝑗≠𝑖,𝑚≠𝑗 𝑈𝑗𝑚. At any point x with 𝑥𝑖 < 1
we have
lim
𝑘→∞

𝜋𝑖(x) ≥ 𝐵1.

At any point x with 𝑥𝑖 > 0, we have 

lim
𝑘→∞

𝜋𝑗 (x) ≤
𝑥𝑖 𝑈𝑗𝑖 + (1 − 𝑥𝑖 − 𝑥𝑗 )𝑀

1 − 𝑥𝑗
≤

𝑥𝑖 𝐵2 + (1 − 𝑥𝑖 − 𝑥𝑗 )𝑀

1 − 𝑥𝑗
(B.6)

for 𝑗 ≠ 𝑖. The upper bound in (B.6) is a convex combination of 𝐵2 and 
𝑀 . If 𝑀 ≤ 𝐵1 (and considering that 𝐵2 < 𝐵1), then for every interior x
with 0 < 𝑥𝑖 < 1 we have lim𝑘→∞ 𝜋𝑖(x) > lim𝑘→∞ 𝜋𝑗 (x). For large enough 
𝑘 this implies that strategy 𝑖 is strictly dominant for 𝑥𝑖 ∈ [𝜖, 1 − 𝜖] (fixing 
first 𝜖 > 0, and then taking a large enough 𝑘), which proves the result 
for 𝑀 ≤ 𝐵1.

If 𝑀 > 𝐵1, let 𝛾 > 0 be a positive constant. We have from (B.6) that, 
for 𝑥𝑖 > 𝛾,

lim
𝑘→∞

𝜋𝑗 (x) ≤ 𝐵2 +
(

1 −
𝑥𝑖

1 − 𝑥𝑗

)

(𝑀 − 𝐵2) ≤ 𝐵2 + (1 − 𝛾)(𝑀 − 𝐵2)

Solving for 𝛾 in
𝐵2 + (1 − 𝛾)(𝑀 − 𝐵2) = 𝐵1

we find 𝛾 = 𝑀−𝐵1
𝑀−𝐵2

< 1, so for 𝑥𝑖 ∈
(

𝑀−𝐵1
𝑀−𝐵2

, 1
)

, we have 
lim𝑘→∞ 𝜋𝑖(x) > lim𝑘→∞ 𝜋𝑗 (x). We consequently have compact re-
gions 

{

𝑥 ∶ 𝑥𝑖 ∈
[

𝑀−𝐵1
𝑀−𝐵2

+ 𝜖, 1 − 𝜖
]}

 in which strategy 𝑖 is strictly 
dominant for small enough 𝜖 > 0 and large enough 𝑘. This completes 
the proof.  
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