
Parallel Architectures &
Programming

José M. Cámara
(checam@ubu.es)

v. 1.0

Agenda
Three different approaches.

Operating system level.
• Network operating systems.
• Multiprocessor operating systems.
• Distributed operating systems.

o Message passing systems.

Application level programming.
• Concurrent programming.

o Synchronization in shared memory systems.
o Synchronization in message passing

systems.
o Management of concurrent processes.
o Concurrent programming motivation.

Management level.
• Scheduling.
• PBS.

Relevant issues.
Program: piece of code to be executed by
the processor (machine code).

User: the one to make use of the computer
(programmer, administrator,…).

Operating system level

In the past, there were a number of OS available for MIMD machines (usually
vendor Unix distributions). More recently, most of them have been dismissed
and merged into a few Unix vendor distribution and, more commonly been
replaced by Linux. In the last few years MS Windows has found a place in this
market as well.

Operating systems for shared memory multiprocessors:
• Tightly coupled software
• Tightly coupled hardware

Sistema operativo de red (actualmente todos):
• Loosely coupled software
• Tightly coupled hardware

Distributed operating system (DOS):
• Tightly coupled software
• Loosely coupled hardware

Network operating systems.

Make operations on
remote computers

possible by the use of
the network adaptor.

Currently, all operating
systems provide this

functionality, so we will
not deepen in their

study.

They make parallel
computation feasible

but not very efficiently.

Multiprocessor Operating Systems I

Like network OS, their
capabilities are available in

all modern systems.

They make
multiprogramming
management over

multiprocessor hardware
possible.

What is different from
single processor

management is that there is
a hardware resource, the
processor, that has been

replicated.

It is the scheduler’s job to
manage the queue of

awaiting processes and
make an efficient use of all

available processors.

These OS are designed to
manage both

multiprocessor and
multicore systems.

Multiprocessor Operating Systems II
Two important
concepts:

Process: protection and resource allocation unit.

Thread: scheduling unit.

A single process may host several threads. Each thread has its own stack, state of
execution and processor context.

Threads belong to
both user application
programs and
operating system. In
this regard there are:

Symmetric multiprocessors: all nodes have the same
functionality and are equally able to execute OS routines.

Asymmetric multiprocessors (master – slave): one node
executes OS and the rest only deal with programs -> A high
number of slaves may collapse the master.

In this scenario, race conditions when the OS is concurrently executed may arise.
Access to the threads queue from concurrent scheduler routines have to be
performed in mutual exclusion conditions.

Multiprocessor Operating Systems III -
Scheduling

Processor (thread)
scheduling in
multiprocessors involves:

Allocating CPU time to processes.

Decide which CPU will host the process.

There are
various models:

Time sharing: all threads are queued and are independently
scheduled.

Space sharing: related threads (belonging to the same
process or task) are scheduled together; they are allocated
when a sufficient number of CPUs are available and are
never interrupted.

Gang scheduling: related threads can be interrupted but
they are all stopped and resumed simultaneously.

Multiprocessor Operating Systems IV -
Example

LINUX includes multiprocessor support from 2.6 kernel. O(1) scheduler is then
implemented.

Process scheduling is time shared. Two process queues are created on each CPU: one
for active processes and one for the expired ones.

Processes join the “expired queue” when they use up their time slot.

For a certain priority level, when all its tasks are expired the queue turns active.

Each queue handles 140 priority levels, being the upper 100 for real time tasks. Within
each priority level the queue is a FIFO one.

Every 200ms processors’ load is monitored and balanced.

The one queue per CPU scheme improves cache efficiency. Retrieving a previously
issued task decreases cache misses.

Distributed operating systems
They make a system integrated by independent computers work, in the eyes of the
user, as a single (virtual) machine.
•Modern OS do not include this functionality.

But there are various ways to implement it:

•Client server architectures: implemented, for instance on information systems, where local clients
access remote servers by the use of a query language.

•Remote procedure calls: application programs make calls to procedures that are executed in remote
systems.

•Message passing systems: processes executed in different computers exchange messages and
collaborate to carry out a common task. This is the most common option in parallel computing
systems.

It is necessary to install an additional software layer called middleware. It will
provide virtual machine capabilities, involving two main aspects:
•Process migration: it must be able to move processes from one processor to another in order to, for

example, achieve load balancing.
•Fault tolerance: must respond faultlessly to the disappearance or incorporation of nodes at runtime.

Message passing systems

Implementation
alternatives for
message passing:

Reliable: ensures message delivery and provides mechanisms to send acknowledgement to the sender.

Unreliable: injects the message into the network and forgets it. It is a less secure mechanism but also
less costly in terms of network overloading.

Blocking: interrupts requesting process until the requested operation has been completed (send or
receive). Completion does not imply delivery; just a copy of the message in a local buffer is enough.

Non blocking: processing continues regardless of the situation of the message. Communication is
completed in background. It is faster but may lead to race conditions.

Synchronous: interrupts sender process until the receiver has collected the message.

Asynchronous: sender interruption depends on whether the system is blocking or not.

The middleware may provide just one of the former options or let the user choose among several or even all of them.

There are two possible strategies when implementing
the middleware:

Extend the operating system providing distributed system
capabilities.

Integrate in the software stack as an intermediate layer . It is not
part of the operating system but provides an API for user
application programs (MPI).

Both strategies may be complementary: the first one is usually a better approach to the definition of virtual machine,
whereas the second make the development of parallel programs possible and provides a basic approach to the
capabilities of a virtual machine.

Programming level
There are two
paradigms
associated to
parallel
programming:

Implicit parallelism: the user is not committed with hardware exploitation. On the
contrary, he relies on lower software layers (compiler, OS) to do that job for him.

Explicit parallelism: the user gets involved in the development of parallel
application programs under any of the options available for him.

Explicit
parallelism
models:

Traditional languages with parallel libraries (MPI). It requires a certain start up
effort and high implication from the user. An unexperienced programmer may at
first, cause a performance loss.

Extended traditional languages. The start up effort is a bit higher. They also require
a different compiler.

Compilation directives: parallelism is achieved by means of a set of directives that,
if ignored, result in a correct sequential program.

Once again, there are complex alternatives combining several of the previous
options. The start up effort will depend on their application field (CUDA).

Concurrent programming
Concept: it materializes when the programmer gets involved in the creation, elimination and synchronization
of threads, processes or tasks.

Each one of these entities will be executed by a “virtual processor”.

In case the virtual processor is also a real one, it will be parallel programming.

Regardless of where it is developed,
the programming environment must
provide a series of services:

A way to express concurrent execution by the explicit declaration of either
processes, threads or tasks.

Communication tools.

Synchronization mechanisms.

Processes may be:

Independent: they don’t need neither communication nor synchronization.

Collaborative: they exchange information to carry out a common job.

Competitive: they are independent by compete for access to common
resources so they will make use of communication and synchronization
mechanisms.

Communication may be:
Shared memory.

Message passing.

Shared variable synchronization I

Cause: avoid race
conditions when
accessing critical sections.

Critical section: code area where a
shared variable is changed.

Options:

Busy waiting:

Semaphores:

Conditional critical regions:

Monitors:

Protected objects:

Synchronized methods:

Shared variable synchronization II

• This procedure has difficulties
to upscale if the number of
processes is high.

• Awaiting processes are
constantly checking the value
of “turn” thus penalizing
performance.

• This could be improved
through a suspend and resume
mechanism.

Busy waiting: before entering a critical section the
process checks presence of another process inside.
To do so it is necessary to create an indicator and

synchronized its use. The complexity of the critical
section must offset this effort. It can be carried out
by the use of one indicator per process and a “turn”
variable. The indicator keeps track of the processes
trying to gain access. In case there are more than

one, “turn” variable decides. When the process exits
the section, “turn” changes.

Semaphores: are integer non negative variables. Two procedures permit their management:
wait(decrements its value if >0 otherwise the process waits) & signal(increments its value).

Both operations are atomic. Awaiting processes are queued and suspended. Queue
management can be performed in various ways; FIFO is the default one.

Shared variable synchronization III
Conditional critical regions: are sections of code that can only

be executed in mutual exclusion. Awaiting processes awake
periodically to check access condition which is also accessed in

mutual exclusion.

Monitors: modules where critical regions are encapsulated
together. It doesn’t provide additional synchronization

mechanisms but all variables and procedure calls are accessed
in mutual exclusion.

Protected objects, synchronized methods: complementary
tools provided by certain programming environment (Ada,

Java).

Message passing synchronization

• Synchronous systems.
• Asynchronous systems.
• Remote invocation: the

sender only resumes
operation when it has
received a response from
the receiver.

Has a lot to
do with

what has
already

been
explained

about
middleware:

Management of concurrent processes I

Structure: affects
process creation:

• The number of
processes does
not vary.

• It may vary at
run time.

Layers:

• Flat model.
• Nested

processes.

Granularity:

• Coarse grained:
a few processes
carry out
complex jobs.

• Fine grained:
many processes
perform simple
tasks.

Inicialización:

• Information is
given to
processes at
start up.

• Information is
given to
processes at run
time.

Management of concurrent processes II
Finalization (how processes die):

• When they reach the end of their
sequence of statements.

• Suicide: self - finalizing.
• Aborted or killed by other process.
• As a result of an unmanaged error.
• Never (embedded applications).
• When they are no longer

necessary (a server process that
has no clients left).

Process creation:

• Fork/join: provides dynamic
process creation and parameter
passing for initialization. Child
processes are finalized by their
parent. It is a mechanism prone to
errors. (C/Pthreads).

• Cobegin: specifies concurrent
execution of a sequence of
instructions (until a coend if
found). Flat model. All processes
die when they execute the whole
sequence.

• Explicit declaration: the
programming language provides
the tools to create new processes.

Why concurrent programming?

The model matches real
situations: the world is

concurrent.

Increases parallel
systems performance.

Performance raises
even if there is no
underlying parallel

hardware (autopilot’s
example).

Scheduling

Job management in supercomputers

Job scheduling in parallel machines involves decision making about when and how to provide
CPU time to processes waiting in a queue.

The impact of scheduling in overall system performance is critical.

There is no algorithmic procedure to obtain the most optimal solution so the alternatives soar.

Multiple factors intervene in this problem so its management is highly complicated.

The scenario where scheduling has to be resolved has changed in the last years. Some
architectures have been set aside and some new ones have flooded the market.

Currently nearly all supercomputers are distributed memory machines and an increasing
number of them are clusters. In this scenario, memory is no longer considered an independent
resource but something that is linked to the processor.

Introduction

• the bunch of resources associated to
a job. The term derives from the
existence of mid-coupled computers.

• Now it is being replaced by other
terms such as “chunk” in PBS.

Partition:

• the ability to suspend ongoing
processes to serve higher priority
ones.

Preemption:

Some relevant terms

Partitioning (resource allocation):

Static: the
resources
assigned to an
application
remain
unchanged for
the whole
execution time.

Fixed: the number of processor is determined by the system
administrator and no longer modified.

Variable: decision is based on user request when submitting the job.

Adaptive: partition size is determined by the scheduler at the time of
starting the job. It is based on both system load and user requirements.

Dynamic: the resources allocated may change at run
time. Changes will be based on variations of system
load and priority levels.

Alternatives I

Job flexibility:

Rigid jobs: the number of processors assigned to a job is externally
determined and not changed at run time.

Moldable jobs:
the number of processors is determined by the scheduler
with some constraints and again is not changed at run
time.

Evolving jobs:
the number of resources demanded by the job changes
through the different phases of its execution and so does
the number of processors allocated.

Malleable jobs:
the scheduler may change the number of processors
assigned to a job at run time. It takes into account global
system needs to take some processors or assign some more.

Alternatives II

Level of preemption supported:

No preemption: initiated processes keep all their assigned processors until
completion and are never interrupted.

Local preemption: threads of a job can be stopped but will resume later in the
same processor.

Migratable preemption: suspended threads can resume in a different processor.

Gang scheduling: all threads of a job are suspended and resumed together with
or without migration.

Alternatives III

• Minimize wait time for
processes in the queue.

• Minimize execution time.
• Maximize throughput.
• Maximize system

utilization.

System
administrator

may have
different
goals in
mind:

Policies

Dynamic resource allocation
tends to be more efficient

regardless of the
administrator’s aims.

On the other hand it involves a
greater complexity since the

scheduler has to be aware of the
state of execution of all jobs and

resource availability during execution.
It also has to execute decision making

algorithms continuously.

Although wait time in the queue may not be the main goal, a
commonly implemented mechanism is the so called

“backfilling”. It aims to avail of resources reserved for a waiting
process that has not jet obtained all it needs to start execution.
Meanwhile smaller processes can make use of theses reserved

resources provided they are expected to finish before the
awaiting big process has collected all it needs to begin.

Final discussion

PBS

Queues management and job
scheduling

PBS (Portable Batch System): workload management system initially
developed to manage NASA’s computational resources.

Provides a unified access interface so the users are able to queue their jobs.

Also provides administration tools to grant system managers control over
their computational resources.

It is a vendor product but complying with the IEEE 1003.2d standard.

Includes the 3 basic
components of every
workload management
system:

Queue management: collects the jobs submitted by the users and queues them until
the resources they need are available.

Scheduling: makes job selection and resources allocation policies possible.

Monitoring: provides tools to track resources utilization in order to help system
administrators to optimize system utilization.

Introduction

• grant users access to system functionality:
• User commands: used to submit jobs and track their progress.
• Administrator commands: to manage the whole system.
• Operator commands: permit a limited management of the system.

Commands

• includes basic services to issue jobs. Job server

• places the jobs into execution.
• returns output to the user when required.
• runs concurrently in every computer expected to

execute jobs.

Job
executor

• implements the job selection and resource allocation
policies.

• interacts with the executor to know the availability of
resources and also with the server to know about the
jobs waiting for execution.

Scheduler

PBS Architecture

• a computer system with a single operating system image
and a unified virtual memory space. Node (obsolete)

• an abstract object representing a set of resources which
form a usable part of a machine.

• it is the resource allocation unit.

Vnode (virtual
node)

• machine with its own operating system made up of one or
more Vnodes. Host

• a set of resources allocated to a job. Chunk

• container of jobs within a server:
• Routing queue: used to move jobs to other queues.
• Execution queue: where jobs must be to be eligible for

execution.

Queue

• a job’s execution time. Walltime

Concepts

User logs in •usually remotely

A script is used
to submit jobs •qsub<script>

The script
includes:

• Shell specification (optional).
•PBS directives: used to request

resources (CPUs, memory, licenses) or
to specify attributes (walltime).

•Tasks: programs or commands.

The system returns an
identifier to allow later
operations on the job

•monitoring,
deleting, etc.

Job upload process

• #!/bin/sh
• #PBS -l walltime=1:00:00
• #PBS -l mem=400mb,ncpus=4
• ./my_application

Script example

References
• Modern Operating Systems. Andrew S. Tanenbaum. Pearson

Education, 2009.
• http://www.ibm.com/developerworks/linux/library/
• D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik,

and P. Wong, “Theory and practice in parallel job scheduling,”
in IPPS ’97:Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing. London, UK: Springer, 1997,
pp. 1–34.

• D. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel
jobscheduling–a status report,” Lecture Notes in Computer
Science, vol.3277, pp. 1–16, 2005.

• PBS Professional User’s Guide, Altair PBS Professional 10.2
• http://www.youtube.com/watch?v=0G0z8SauSDY#t=55

http://www.ibm.com/developerworks/linux/library/

	Parallel Architectures & Programming
	Agenda
	Operating system level
	Network operating systems.
	Multiprocessor Operating Systems I
	Número de diapositiva 6
	Multiprocessor Operating Systems III - Scheduling
	Multiprocessor Operating Systems IV - Example
	Distributed operating systems
	Message passing systems
	Programming level
	Concurrent programming
	Shared variable synchronization I
	Shared variable synchronization II
	Shared variable synchronization III
	Message passing synchronization
	Management of concurrent processes I
	Management of concurrent processes II
	Why concurrent programming?
	Scheduling
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	PBS
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	References

