
Lecture 1

Multiprocessor Architectures:
shared memory MIMD computers

V 1.1

José M. Cámara (checam@ubu.es)

Multiprocessors & multicomputers

 Multiprocessors: integrated by a number of
processors working in parallel. Communication is
achieved by common variables in a shared memory.

 Multicomputers: each processor in the system owns a
private memory unreachable by the rest. This is
known as a distributed memory system.
Communication is achieved by a message passing
mechanism.

Shared memory
 UMA

 Processor
1

Processor
2

Processor
n

SHARED
MEMORY

IN
TER

C
O

N
N

EC
T

 NUMA

Processor
1

Processor
2

Processor
n

Memory 1
Local

Memory 2
Local

Shared memory

Local
Memory n

IN
TER

C
O

N
N

EC
T

Shared memory

Coherence conflicts due to:

Data sharing

Process migration

Input - output

To accomplish:

Write propagation

Write serialization

Cache Coherence
Bus snoopy protocols:

Write invalidate

Write update

Source snoopy protocols:

Directory based protocols:

Full mapping

Limited

Chained

Snoopy protocols:
Invalidate:

Write-trough

Write-back

MSI

MESI (Intel)

MOESI (AMD)*

MESIF (Intel)*

Update:
Firefly

Dragon

SHARED MEMORY

Cache Cache
controller

Process
or

Cache Cache
controler

Process
or

* Are not associated to a bus but rather to point to point connections

Write through

PRw

PRw PRr

Bw

Br

Bw

Br

PRw

PRr

PRr

V I

MSI protocol

Multimedia content available

https://youtu.be/AGDBXdYVlJo

MESI protocol

Multimedia content available

https://youtu.be/2EphLPdsybE

Dragon protocol

Multimedia content available

https://youtu.be/L4L3E2edFMo

Directories
 Stored in main memory.
 Provide the memory controller information

about all copies of cache lines present in local
caches.

 Each cache line has an attached tag.
 There are 3 types of directories:

 Full map directories
 Limited directories
 Chained directories

Full map directories
 Tag includes a single bit field for each possible owner

of copy (normally all processors).
 An additional single field bit indicates if write rights

have been granted to any processor. In that case,
only the requester’s bit on the tag will be active.

 Before granting write access, the memory controlled
hass to invalidate all other copies.

 Full map directories do not scale well:
 Tags’ sizes grow proportionally to the number of nodes > too much

space in main memory to store the directory.

Full map directory example

 512 node computer; 2 Gbytes main memory on each
node.

 64 bytes cache lines.
 1024GB/64bytes = 240/26=234 cache lines= tags
 Each tag 512 + 1 bits ≈ 29 bits = 26 bytes
 234 tags * 26 bytes/tag = 240 directory bytes

Limited directories
 Tag includes only some fields to keep track of copies on a limited

number of nodes.
 Although less in number, fields have to be big enough to point to

any node on the network: log2 (number of nodes).
 The write permission field does exist as well.
 Total tag’s size is reduced if the number of fields is severely

restricted.
 In compensation, the number of copies in local caches is

accordingly reduced. If all fields are being occupied and a new
processor request a copy of the cache line, another one has to be
removed. This leads to unnecessary swaps and a swapping
algorithm has to be implemented.

Chained directories
 Tags in main memory point only to the last copy owner to join the

list.
 Each one on the list has a pointer to the previous one.
 When a new node joins the list, it is placed at its end and given a

pointer to its predecessor.
 It a write request is issued, it has to be propagated to the beginning

so all nodes are aware and invalidate their copies. Eventually, the
memory controller grants write access.

 This is a space saving but slow procedure. Directory space in main
memory is optimized but some of as well as management
capabilities have to be assumed by the nodes.

Directories

 Full-map directories

N 1 bit fields 1 dirty bit

Tag

• N processors in the system
• M cache lines in main memory

Directory:
M tags

 Limited directories

 Chained directories

log2(N) bits fields

Tag

Directory:
M tags

1 dirty bit

1 log2(N) bits field

Directory:
M tags

Tag

Cache

Cache

Cache

Actual bus example: TLSB
 Introduced in Alpha computers such as

Alphaserver 8400.
 Second half of the 90s.
 Synchronous bus with separated address

and data buses.
 256 bits data bus.
 BW up to 3,2 Gbytes/s: 32bytes / 100MHz.

TLSB: Addressing I
 Three address lines for geographical

addressing of the modules. Up to 9 modules
can be connected since 000 address is
shared by device 0 and the required I/O
module.

 Virtual addressing scheme for devices such
as memory banks and CPUs whom, in this
way are given an address within the system.
Each module can hold up to 8 virtual
addresses.

TLSB: Addressing II
 Up to 1TB main memory can be addresses

via a 40 bits address scheme.
 The address is decoded by the requester

to extract the bank’s virtual address.
 Up to 16 memory banks can be supported.
 Cache line size is 64 bytes.
 The requester may launch a bus request

and check local cache alongside. If a
cache hit happens, the request is
invalidated.

TLSB: Addressing III
 Bits 6 to 39 are used as cache line

address.
 Bit 5 is used to determine the order in

which the two 32 bytes parts of the line
are delivered: High>low or Low>high.

 The 5 bits remaining are used to code
the virtual address (up to 16 CPUs & up
to 16 memory banks).

TLSB: Arbitrage
 Any transaction on the bus must be initiated as

a request from the module will to
communicate.

 TLSB implements a distributed arbitrage
mechanism. That means that there is no
arbiter. Conflicts have to be solve by the
competing modules with no external
intervention.

 Priority is set according to the geographical
address at star up.

 At run time a Round Robin mechanism is used
to guarantee fairness.

TLSB: Transfers
 When a slave node is ready to deliver the requested

data, it takes over the bus.
 The slave activates TLSB_SEND_DATA line, forcing

the nodes storing copies of the same cache line to
set TLSB_SHARED or TLSB_DIRTY lines.

 TLSB_SHARED set means that there is another node
possessing a valid copy and wants to keep it.

 TLSB_DIRTY set means that a more recent copy of
the line exists and, in this case, the node that set the
line will complete the transaction.

 Bus specifications do not reference any coherence
protocol in particular. They just set up the basis to
make it possible.

References
 [1] K. Whang. Advances Computer Architectures.

McGraw Hill.
 [2] Alphaserver8400 system handbook.

	Lecture 1
	Multiprocessors & multicomputers
	Shared memory
	Shared memory
	Shared memory
	Cache Coherence
	Snoopy protocols:
	Write through
	MSI protocol
	MESI protocol
	Dragon protocol
	Directories
	Full map directories
	Full map directory example
	Limited directories
	Chained directories
	Directories
	Actual bus example: TLSB
	TLSB: Addressing I
	TLSB: Addressing II
	TLSB: Addressing III
	TLSB: Arbitrage
	TLSB: Transfers
	References

