UNIVERSITY OF BURGOS

Area of Electronic Technology

José Maria Cdmara Nebreda, César Represa Pérez, Pedro Luis Sdnchez Ortega
Parallel & Hybrid Programming. 2015

Area of Electronic Technology

Electromechanical Engineering Department

University of Burgos

Yo Yo 1U o1 1o 1 5

Activity 1: MPI Matrix MURIPICAtION ..uveeeiii et e e e e e e e e e e e e e nrnee s 7
OBUETIVES ettt ecitee ettt e ettt e ettt e s sttt e s st e e s s ate e e s s b taee s s beeeeesabeeaeeaaseaeeeaaseeeeesaseeeessnseeesssnsenesennsens 7
THEORETICAL CONCEPRTS. ...ttt ettt ettt ettt ettt sttt ettt e e sttt e e sttt e e s aebteessabneeesansseeesansbenesannreeens 7
PRACTICAL EXERCISEevviiieieiteeeiiteessiitte sttt e s st e e s st e e s saaeeessabaeessnabeaesssbeeessnnbanessnsenessnssenessnnsens 7
QUESTIONS ...ttt ettt ettt e e sttt e e st e e s s bte e e s sabeaeessbeeeeesabeeeessaseaeessabeeeessaseneessnseaeesnnsenessnnsens 8

Activity 2: Performance ASSESSMENT......uiii i i iiieee et e e et e e e e rte e e e stte e e e e ttee e e sbeeeseeabteeessnreeeeennnees 9
(0] 21 O I Y o PP PPPP 9
THEORETICAL CONCEPTS. .. .etttie ettt ettt s ettt e sttt e e sttt e e s ssbte e e ssabbe e e sanbaaeesaabaeeesaasseeesansseeesansreeens 9
PRACTICAL EXERCISEveiiiiitee ettt ettt s it e e sttt e e sttt e e s st e e s e et e e s sabeeeessabaeeessabaeesssanenessnnnens 12
QUESTIONS ...ttt ettt e sttt e e sttt e e sate e e e saabeeeesstaeeesastaeessnbaeessanbaeessnteeessanteeessanseeessans 13

Activity 3: Introduction to Hybrid Programming..........cccuuiiiiiiii it e e e 14
OBUETIVES. ...ttt ettt ettt ettt e e sttt e e sttt e e sab et e e smtt e e e sauteeeesanbteeesnbeeeesanbaeeesansaeeesnbeeessanseeessans 14
THEORETICAL CONCEPTS. ... ettt ettt ettt ettt ettt s s e e s st e e s st e e s s st ee e s ssbteessnabeeessnabaeessnanes 14
PRACTICAL EXERCISEetiiiiiiiiee e eeitee e eiitee et e e sttt e e s sttt e e s st e e s sbte e e s s btaeessabeaeessnbtaeessabeaesssnsenessnasens 17
QUESTIONS ... ettt ettt ettt e e sttt e e s sttt e e s bttt e e sabe e e e samteeeesanbeeeesanteeeesanbaeeesanbeeeesnteeessanseeessans 17

Activity 4: Hybrid Programmingeeeeeeiiiiiiiiiie et e e e eere e e e e s e enerere e e e e e e s e eneneeeeeaeeesennnrnenees 18
OBUECTIVES. ..ttt ettt ettt ettt e e sttt e s sttt e e s s a b e e e e sate e e e sataee e s seteessnbaeessnbaeessantaeessstaeessastaeessans 18
THEORETICAL CONCEPRTS. ...ttt ettt ettt ettt sttt e sttt e s ettt e s et e s s bt e e s e b e e e s enbaeesesnsaeesennreeessnnnes 18
PRACTICAL EXERCISEetiiiiiiiiee ettt ettt e sttt e e s sttt e e s stte e e s sbte e e s sbeaeessabtaaessabaaeessabeaessnnbenessnanens 19

ACTIVITY 5: IMPI VS OPENIMPcoeieieiiieiteeteieeeeeteveteteaeeetaeeeaeseeeeeeesesseeesesasesaeesaeesasasasssasesssassnssenssnsssnsnnnnnsnnes 20
OBUECTIVES. ... ettt ettt ettt ettt ettt e e sttt e s sttt e e sttt e e sate e e e samte e e e snteeeesanbeeeesamtaeeesansaeessnteeessanseeessans 20
THEORETICAL CONCEPTS. ...ttt ettt ettt ettt sttt ettt e st e s st e e s st e e s e sbee e s sabteessabaeessnabaeessnanes 20
PRACTICAL EXERCISEeeiiietteeeeitee ettt ettt e sttt e e s st e e e smte e e s sne e e e ssaneeeessanaeeeesaneeesssnneneesnnens 20

Activity 6: SUbMItEING JODS 10 @ CIUSLEN..ccii it 21
OBUETIVES ..ttt ettt ettt ettt e sttt e s sttt e s s aba e e e s s bt e e e ssbaeeesasbaeeesnbeaessanbaeessnbaeessanbaeessantaeessans 21
THEORETICAL CONCEPTS. .. .etteee ettt ettt ettt e st e e st e s st e e e st e e e esbaeeessbaeeeennseeeaennsenessnnsens 21
PRACTICAL EXERCISEviiiiiceieie e ecieee s ecittee e eeiiee e sttt e e s s ate e e e sbte e e e sbteeessbtaeeesaseeeeesnseneessnseneessnseneessnnens 26

ACHIVILY 7:JOD SChEAUIING ...t e e et e e e eeat e e e e sata e e e sntaeeesantaeeeenns 27
(0] 21 = LY SRRSO 27
THEORETICAL CONCEPTS. .. .eeteee ettt ettt ettt ettt e s e e st e e s st e e st ee s esbeaeessbteesssnseeeeenaseeessnnsees 27
PRACTICAL EXERCISEuviiiiiiiiie e ecieee e eiieee sttt e e s e itee e s sttt e e s svae e e s snteeessneaeessnbeeeessssenessnssenessnsenessnnnens 30

F Yot LAY Y < N o] o Yol a =Y (V1170 Y = 1 USRS 31
OBUETIVES. ...ttt ettt ettt e sttt e e sttt e e s ab e e e s abe e e e sateeeesanbeeessanbeeessanbaeessnbeeeesnbeeessanteeessans 31
THEORETICAL CONCEPTS. ...ttt ettt ettt ettt ettt e st e e st e e s st e e s st e e s ssbee e s ssbeeessnnbeeesennbenessnnnens 31
PRACTICAL EXERCISEeeiiiittee ettt ettt ettt ettt e s sttt e e sttt e e s st e e s st eessabteeessabaeeessaneeesssaseeessnnnes 31

Activity 9: JOD SChEAUIING I ..eeeeeiiiieeeeee e e e et e e st e e e e ssata e e e sentaeeesnraeeeeans 32
OBUETIVES .. tcttteee ettt sttt ettt e s sttt e e sttt e e s s ate e e s s aba e e s saateeeesstaeeesasbaeessastaaessantaeessansaeessnteaessansanessans 32
THEORETICAL CONCEPRTS. ...ttt ettt ettt ettt ettt ettt e s sttt e s ettt e e s st esenbe e e e snabeeessnnbeeesennbaeesenanes 32
PRACTICAL EXERCISEeeiiiiieee ettt ettt e et e e st e e s sttt e e s st e e s s neeeessabeeeessanaeeessaseeeessnsenessnnnes 32

Activity 10: Performance COMPETLITION.ccueiiiiiiiie ettt e et e e e e eate e e e seare e e e eenreeaeeans 33
OBUETIVES. ...ttt ettt ettt ettt sttt e e sttt e e sttt e e s bt e e e e smte e e e sasbaeeesanbeeessanbeeessantaeessanbaeessnteeessanseeessans 33
THEORETICAL CONCEPRTS. ...ttt ettt ettt ettt ettt e sttt e ettt e s ettt e s st e e s esbe e e s sabeeesesabeeesennraeessnnnes 33
PRACTICAL EXERCISEetiiiiiiiiee ettt e e eiitee st e e s itee e s sttt e e e sbte e e s sbte e e s sbtaaessabaeesssabaeeessnbenessnnsenessnnsens 33

LT = 1 =1 oo o 34

(000 a1 1={U = 4 Lo o PSSR 34
(1= 18 T 0T o110 T= 40 o] o 1= RSP 34
LCT =T o] o1l = a1V T oY a4 =1 | A USSR 34
Deino MPI manual. Available at: http://mpi.deino.net/manual.htmcccoeeeiiiiiiiiiiiicee e 38
Appendix B: Project Configuration in Visual Studio 2010cccueeiiiiiiiieeciiee ettt eeree e 39

Appendix C: Configuration Of IMS-IMIPL.ooiiiiiiie et e e eetre e e s eta e e e seataeeeeans 44

LABORATORY GUIDE Introduction

Introduction

Our interest will be focused on parallel programing for multicomputer MIMD machines. Our
application programs will split into several processes and each one will have the potential capability
to be executed on a different node of our cluster.

The processes created by the user will cooperate to achieve a common computational objective. The
collaboration will be possible due to communication and synchronization tools provided by the
programming environment. Communication is implemented in the form of message exchanging.

Most of the scenarios proposed admit a number of different parallel solutions. We should try to
come up with the most advantageous in terms of system performance. To do so we must take into
account:

e We will try to increase performance (execution time). To do so, we will try to squish the
application’s potential locality, that is, its capability to work with local data avoiding the need
for much information exchange between processes.

e Another important point is “scalability”. In a hardware environment, where the amount of
available resources is unknown at programming time, the application must scale to make the
most of the available resources at any time.

Parallel programing is not an easy job. The theory around the development of concurrent and
parallel software is beyond the scope of this course but, we will provide some hints. Parallel
programming, as well as sequential programming is a creative task; what is about to be exposed is
nothing more than a series of steps we recommend to follow when facing a parallelization. Let’s split
up the process in 4 steps:

e Fragmentation: this initial step is meant to find potential parallel structures within the
problem to be solved. As a first approach, we may try to decompose the job in as many small
parallel tasks as possible. Two criteria can be followed to carry out this decomposition:

0 The functional way: seeks for possible divisions in the job to be carried out by paying
attention to its nature.

0 The data way: pays attention to the nature of the data to be processed trying to
decompose them into the smallest chunks.

e Communication: once identified potential parallel tasks, communication needs between
them must be analyzed.

e Binding: given that the cost of communications is high in terms of global execution time, the
formerly identified tasks have to merge partially in order to balance computation and
communication.

e Mapping: once the program’s structure is settled, the recently generated processes have to
be spread across the computers available. The strategy to be adopted differs according to

Introduction LABORATORY GUIDE

the fragmentation way. As a rule of thumb, there should be at least as many processes as
computers are available in order to prevent anyone being unused. If all computers are equal,
it would be recommendable to make as create as many processes as computers. If not, the
most powerful computers can host a higher number of processes. It is also possible to assign
processes to nodes on the go, thus balancing processors’ load dynamically.

Depending on several aspects, being the type of computer one of the most relevant, parallel
programming admits different approaches:

e Message passing: especially indicated for distributed memory computers, can be used on any
hardware platform.

e Shared memory: suitable only for shared memory environments.

e Hybrid programming: a combination of the two previous. It is meant to optimize
performance when both shared and distributed memory schemes are present. This scenario
is very common in recent days. Modern clusters and MPPs are integrated by multicore
memory sharing nodes.

In this course we will assume that the student is familiar enough with message passing programming.
More precisely, the concepts given in the Bachelor Degree on Computer Science about MPI
programming are considered as known. Otherwise it is highly recommended for the student to go
through the MPI Programming Fundamentals course. At least from activity O to activity 5.

LABORATORY GUIDE Activity 1: MPI Matrix Multiplication

Activity 1: MPI Matrix Multiplication

OBJETIVES

7
0‘0

Apply previously acquired knowledge to develop a bit more complex program intended to be
used as a benchmark to measure system performance.

THEORETICAL CONCEPTS

No new concepts will be introduced in this chapter since it is meant to exploit those already learned.
As obvious, not all aspects of MPI development environment have been exposed and nor our
application program is expected to find the most optimal solution but quite a good job is possible
though.

However, it may be helpful to introduce some additional information about the functions we already
know. Function MP1_Recv returns a MP1_Status type parameter that we haven’t used so far. It is a
structure integrated by 3 elements: MP1_SOURCE, MP1_TAG & MP1_ERROR. The first one contains
the Rank of the sender process. If the message was received under MP1_ANY_SOURCE it can be
necessary to find out who sent it later on in the program. The second one returns the message’s tag.
If it was received under MPI_ANY_TAG, it could be interesting to get to know the tag’s value as well.
The third one returns an error code. We won’t deal with error codes in this exercise.

PRACTICAL EXERCISE

We will program a parallel matrix multiply. It is the student’s decision how to scatter calculations
among all the processes. The size of the matrices (square) must be configurable. Dynamic memory
allocation is strongly recommended so no limits to the size of the matrices are imposed.

Process 0 will initialize the operand matrices with any value (random, loop, etc). Data type will be
float. In a first stage, multiplication results will be displayed to check correctness. Once the program
has been validated, result printing must be removed to allow matrix size to grow. Execution time has
to be displayed in all cases.

REMARK:

To combine double indexing with dynamic memory allocation for matrices, we must use double
pointers. Each pointer within an array will give access to a row in a matrix:

// Declare a double poiter for the matrix
// This will let us refer to the elements in a [row][column] manner
float **Matrix;
// Initialize the double poiter to store poiters to each and every row in the matrix.
Matrix = (float **) malloc(ROWS*sizeof(float *));
// We initialize each poiter to the starting poit of each row
for (i=0; i< ROWS; i++)
{
MatriX[i] = (float *) malloc(COLUMNS*sizeof(float));

}

// Now we can us [row][column] format for our matrix:

7

Activity 1: MPI Matrix Multiplication LABORATORY GUIDE

for (int i1=0; I<ROWS; i++)

{
for (int j=0; j<COLUMNS; j++)
{
Matrix[i][j] = 0.0;
3
3

However, this dynamic allocation procedure does not guarantee that rows in the matrix are
contiguous in memory. This can be necessary for sending functions in our program. We should send
data row by row in that scenario. If we want to keep double indexing while adding contiguity, we will
have to proceed as follows:

// Declare a double poiter for the matrix
// This will let us refer to the elements in a [row][column] manner
float **Matrix;
// Initialize the double poiter to store poiters to each and every row in the matrix.
MatriX = (Float **) malloc(ROWS*sizeof(float *));
// Declare a new pointer to allocate memory space for the whole matrix.
float *Mf;
// Initialize the pointer that will guarantee consecutive location of all rows
MFf = (float *) malloc(ROWS*COLUMNS*sizeof(float));
// We initialize each poiter to the starting poit of each row.
for (i=0; i< ROWS; i++)
{
MatriX[i] = MF + i* COLUMNS;
3
// Now we can us [row][column] format for our matrix:
for (int i=0; iI<ROWS; i++)

{
for (int j=0; jJ<COLUMNS; j++)
{
Matrix[i][j] = 0.0;
3
3

It is now important to notice that this alternative leads to the use of Matrix[0] as the starting
address of the data stored in the matrix.

QUESTIONS

e In order to multiply AxB matrix A can be delivered to all processes whilst matrix B se can be
distributed in columns. Think of a different option.

e Would it be possible to avail of the power of Cartesian topology to facilitate the resolution of
this exercise?

e The need to broadcast one of the matrices slows program execution. Think of a different
solution to avoid delivering so much information. Try to guess what the performance of this
new option would be compared with the current program.

LABORATORY GUIDE Activity 2: Performance assessment

Activity 2: Performance Assessment

OBJECTIVES
+ To measure system’s performance in various circumstances.

+» To learn how to estimate system’s power and how to exploit it. A compromise between
learning effort and code optimization must be obtained.

THEORETICAL CONCEPTS
In this chapter some common performance related concepts are presented:

o Degree of parallelism (DOP): Number of processors used to run a program in a precise
moment on time. The curve, DOP = P(t), representing the degree of parallelism as a function
of time is called parallelism profile of the program. It doesn’t need to match the number of
processors available (n). For the following definitions we will assume that there are more
processors than necessary to reach the maximum degree of parallelism admitted by a
program: max{P(t)} =m<n.

e Total amount of work: Being A the computation capacity of a single processor, given either
in MIPS or MFLOPS, and assuming all processors to be equal, it is possible to measure the
amount of work carried out between time instant t, and tz; from the area under the
parallelism profile as:

Usually the parallelism profile is a discrete graph (figure 3), so the total amount of work can
be computed as:

Where t; is the time span when the degree of parallelism is i, being m the maximum degree
of parallelism all over the program’s execution time.

According to this, the sum of the different time intervals is equal to the program’s execution
time:

zti =1z —1,.
i1

e Average parallelism: Is the arithmetic mean of the degree of parallelism along time:

Activity 2: Performance assessment LABORATORY GUIDE

tg
L [P@)-d £ —

g =ty f zti

i=1

DOP

Average
parallelism

time
Figure 3.Parallelism profile and average parallelism.

e Available parallelism: Maximum degree of parallelism that can be extracted from a program,
regardless of hardware constraints.

m
e Asymptotic speedup: Let W, =1-A-t pe the work done when DOP = i, hence W = zWi .
i-1

In this situation, the time employed by a single processor to carry out the work W, s

W, W
t; Q= XI; for k processors it is ti(k) = , and for an infinite number of processors it is

k-A

ti(oo):i\{v—iA.

Hence, the response time is defined as:

TO-Y L=y

)= Yt () = Y

The maximum speed-up on a parallel system is reached when the number of processors is
unlimited. It will be determined by the quotient of both:

10

LABORATORY GUIDE Activity 2: Performance assessment

nW &AL O
T Za & oA % " s
TTo) SW, LiAh &

,Zl:| A Z‘ i-A ,Z::‘ti

It can be stated that the maximum speed-up for a parallel system with an unlimited number
of processors is equal to the intrinsic average parallelism of the program to be parallelized.
Obviously what is difficult is to figure out this intrinsic parallelism and make the program be
as parallel as that.

A different way to calculate speed-up assumes that a job (being it either a single program or

“ II

a group of them), is to be run in mode if “i” processors are to be employed. In this
scenario, R; represents the collective speed of them all in either MIPS or MFLOPS; R; would
be the speed of a single processor and T; = 1/R; the execution time. Let’s suppose the job is
conducted in “n” different modes, with different workload for each one, which results in a

different weight f; assigned to each mode. In this scenario, speed-up is defined as:

4
"X

Where T* is the weighted harmonic mean of the execution time for the

ll 4

execution modes.

In an ideal scenario, no delays are introduced by communications or lack of resources, so R; =
1, R,‘ =i:

This expression is equivalent to the previous one.

From the previous case, the Amdahl’s law is derived. R; =i and it is assumed that W; = ¢ and
W, = 1 — a, which implies that part of the work is to be done in sequential mode and the rest
will exploit all system power. In this scenario:

1 n

g+1—a :1+(n—1)a
1 n

Hence:
n—>oo:>S—>}/
a

In other words, system performance is upper bounded by the sequential part of the job.

System efficiency: Determines the degree of exploitation of the resources available:

11

Activity 2: Performance assessment LABORATORY GUIDE

n _n-T(n)

e Redundancy: Is the ratio between the number of operations performed by the system and
those performed by a single processor to carry out the same job:

- o)
o)
e System utilization:
u-r.g-20
n-T(n)
e Quality of parallelism:
S-E T3(1)

Q= R 1 -Tz(n)'O(n) assuming T(1) = O(1).

PRACTICAL EXERCISE

The program developed in the previous exercise (matrix multiply) is to be used as a benchmark to
measure system performance. Matrix multiply is a cubic order problem that involves a significant
calculation increase for a small increase in matrix size. In this exercise we will explore the influence of
both system size and computation on execution time.

Concerning the amount of calculation, we must choose some precise values for matrix size. The first
figure is intended to result in a similar execution time regardless of the amount of resources
available. It will depend on the capabilities of the computers available. In our case we will start from
matrices 3000x3000 in size. This leads to 27x10° multiplication operations.

Starting from this size, we will increase matrix size to 4000 and 5000. For each of this values we will
launch from 1 (2 in case process 0 doesn’t perform calculations) to 6 (7) processes to be executed on
the same number of computers. A graph representing execution time as a function of the number of
computers (processes) should demonstrate that, when the workload is high, execution time is
reduced proportionally to the number of resources deployed.

Speed-up graphs
Make a graph of the evolution of speed-up (S) and efficiency (E) as a function of the number of
Computers and compare it with the ideal scenarios (figure a and figure b, respectively).

12

LABORATORY GUIDE Activity 2: Performance assessment

10
5
1.2
8
1
—_~ 7 —~
@ w
1 Z
o 6 ‘E 0.8
? o
c
-92) 5 % 0.6
o =
n o,]
0.4
3
0.2
2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
N° de maquinas (n) N° de maquinas (n)
(a) (b)
QUESTIONS

e For our experiments, determine: efficiency, utilization, redundancy and system quality.

e Compare the speed-up obtained with the one that should be achieved according to the

amount of resources utilized.
e Try to figure out the reasons for the deviation.

e Describe which aspects should be improved to obtain a higher speed-up.

13

Activity 3: Introduction to Hybrid Programming LABORATORY GUIDE

Activity 3: Introduction to Hybrid
Programming

OBJETIVES

oo

Understand the limitations of single thread parallel programming.
+* Understand the benefits of multithread parallel programming.

+* Learn how to embed memory sharing threads within distributed memory processes.

THEORETICAL CONCEPTS
Limitations of single threaded parallel programs.

So far we have implemented single threaded application programs. There were several threads
launched but only one per process. This has noticeable limitations when the program is intended to
run in multicore systems which are the most common nowadays. If we launch as many processes as
processors in the system, only one core on each processor will be busy. Efficiency can be improved
simply by launching as many processes as cores. In that case a slightly more profound discussion will
prove that there is still some inefficient use of resources to be fixed.

In message passing environments, such as MPI, information is exchanged by means of messages
made up from the information itself and many other pieces of information: source, destination, tag,
count, etc. When source and destination processes are physically located on different processor only
connected by the local or system area network, that’s fine and is actually the only way to share
information. However, when processes are located on the same processor, they don’t need to go
over such a complicated procedure since they share a common memory where they both can read
and write. In this scenario, the use of message introduces an overwhelming overhead. A shared
memory environment must be put in place to improve efficiency to the top.

How to embed sharing memory threads into message passing processes.

So far we have implemented single threaded application programs. Each MPI process is single
threaded. We can create multiple threads in different ways but we will choose the OpenMP
programming environment for the sake of simplicity. To move to multithread programming, project
settings must be changed:

14

LABORATORY GUIDE Activity 3: Introduction to Hybrid Programming

B vyt o v e T R v N

Archivo Editar Ver Proyecto Generar Depurar Equipe Datos Herramientas Prueba Ventana Ayuda

A S B 2R -85 b [Debug -| | win32 - -] | S0 G < e BB - -
desoluciones ~ 1 X E!: e H
2|3
3 Solucion HybridHello' {1 pr Configuracisn: [Active(Debug) | Platsforma: [Activewing2) ~| [Administrador de configuracién

4[] HybridHello

Si (/Zciwchar t)
Si (/ZeforScope)

Si{fopenmp)

b Vinculador
» Herramienta Manifiesto
enerador de documentos
i6n de examen

> Paso de compilacién persq

Deshabilitar extensiones de lenguaje
Suprime o habilita las extensiones de lenguaje. (/Za)

(=] Resultados

Now the project is ready to accept OpenMP directives but some preliminary tips on this environment
have to be provided.

OpenMP PARALLEL REGIONS

OpenMP programs are single threaded by default. They have a master thread that, in certain cases
splits into a number of threads to perform a bunch of operations in parallel. There pieces of code are
called “parallel regions”:

#pragma omp parallel

{

Parallel region

}

Function omp_get_thread_num() returns current thread’s ID from 0 to N-1, but, how is N
set? There are also many options here but in this course we will use only a static explicitly
defined one:

#pragma omp parallel num_threads (N)

{

Parallel region

}

This is fine but, we still need to define the contents of the parallel region inside. This could be
integrated by any possible collection of wvalid instructions but in this programming
environment parallel regions are used most of the times to parallelize loops. “For” loops are
the ideal candidates:

#pragma omp parallel num_threads (N)

{

#pragma omp for

15

Activity 3: Introduction to Hybrid Programming LABORATORY GUIDE

for(i=0;i<n;i++){
Operations to be performed

}
}

The “n” operations to be performed will be scattered among the N threads. That will
hopefully result in a reduction of execution time in case of multicore/multithreaded
processors.

This is a shared memory environment but, where are the shared variables? Variables declared
outside the parallel region are shared. Variables declared inside the parallel region are private
to each thread. Still it is possible to turn a shared variable into a private one:

#pragma omp parallel num_threads (N) private (j)

{
#pragma omp for
for(i=0;i<n;i++){
Operations to be performed on variable j
}
}

In this case, each thread will have its own copy of “j”” even though it was declared outside the
region but, what would be j’s value on each thread? In the previous piece of code “j” is not
initialized regardless the value it might have before the region. If we want use its previous
value to initialize each thread’s copy:

#pragma omp parallel num_threads (N) firstprivate (j)

{
#pragma omp for
for(i=0;i<n;i++){
Operations to be performed on variable j
}
}

Likewise, we may need the master thread to be aware of the changes suffered by “j” inside the
region once it finishes. We can force the value of “j” to be the last one taken inside the region:

#pragma omp parallel num_threads (N) firstprivate (j) lastprivate (j)

{
#pragma omp for
for(i=0;i<n;i++){
Operations to be performed on variable j
}
}

To end up this brief introduction, we will have a look at an additional capability of OpenMP.
It won’t be hard to understand since there is an equivalent one in MPI we have already used.
This is the reduction operation. It applies to a situation where a shared variable is being
modified into different values by different threads. Sometimes the final value of this variable

16

LABORATORY GUIDE Activity 3: Introduction to Hybrid Programming

has to be obtained from a combination of the values generated by the different threads. Let’s
have a look at the example:

#pragma omp parallel num_threads (N)

{
#pragma omp for reduction(+:sum)
for (i=0;i<n;i++){
sum=sum+(a[i]);
¥
}

It is obvious that we intend to obtain a final value of “sum” which should be the result of the
“n” sums performed on it. The reduction clause will take the last value generated by each
thread and then perform a final sum on all of them. To make this possible, a private copy of
the shared variable is generated on each thread.

PRACTICAL EXERCISE

Take again the matrix multiply program and conduct the following experiments:

Perform the multiplication on 5000x5000 matrices. Launch two processes.
Do the same with as many processes as processor cores available.
Do it again with one more process than cores.

A

Now adapt your program to the hybrid programing paradigm launching two processes and
splitting the working one in as many threads as cores minus one.
5. Run the same hybrid program with as many threads as cores.

Compare the time spent by the different experiments and answer the following
QUESTIONS

e Which programming paradigm provides de highest performance?

e Is it more optimal to run only one process/thread on each core or it turns out that process 0
must share core with another process/thread?

e Are these results what we could expect? Why?

17

Activity 4: Hybrid Programming LABORATORY GUIDE

Activity 4: Hybrid Programming

OBJECTIVES

7

+* Understand some work scheduling options in order to optimize execution time.

THEORETICAL CONCEPTS

Synchronization.

The default synchronization procedure introduces a barrier at the end of the parallel region so
execution does not continue until all threads reach that point. This is a sensible thing to do
but, in certain cases, it may be useful to avoid that constraint. This can be done by means of
the “nowait” clause.

#pragma omp parallel num_threads (N)

{
#pragma omp for nowait
for(i=0;i<n;i++){
Operations to be performed on variable j
¥
}

In this particular example it doesn’t make any difference but, in case we had another parallel
loop right after, it would save time if some threads could enter it as soon as possible.

Scheduling.

So far we have assumed that the amount of work to be done is delivered to the different
threads in a fair manner. That’s right but, even in this case there could be different
possibilities that result in significant performance variations.

The default scheduling policy divides the number of iterations by the number of threads thus
giving each thread the same amount of work if possible. This work is assigned prior execution
and no changes are made at run time. It is possible to specify different work “chunks”. In this
case each particular implementation decides how to allocate chunks on threads.

#pragma omp parallel num_threads (N)

#pragma omp for schedule(static,10)

for(i=0;i<n;i++){
Operations to be performed on variable j
}

18

LABORATORY GUIDE Activity 4: Hybrid Programming

In this example chunks of 10 iterations are delivered. The last chunks are made smaller when
necessary.

Static policies do not allow to dynamically assigning pieces of work to threads as they finish
their previously assigned one. This results in a loss of efficiency that should be avoided.
Dynamic policies can be applied to do so.

#pragma omp parallel num_threads (N)

#pragma omp for schedule(dynamic,10)

for(i=0;i<n;i++){
Operations to be performed on variable j
}

}

In this example, threads get new chunks as soon as they finish their current calculation.

PRACTICAL EXERCISE

We will continue the experiments done on the previous exercise. We already have the results
obtained from the default static scheduling. Now we will add these new ones:

o Try again the static scheduling but specifying a chunk size of 10.
o Then try chunk size 100.

o Now shift to dynamic scheduling with chunk size 10.

o Try again dynamic with chunk size 100.

Compare all results to see which the best policy is and try to explain why.
Work with the number of threads that proved to be the best option in the previous exercise.

REFERENCES:

OPENMP APPLICATION PROGRAM INTERFACE. Available at:
http://www.openmp.org/mp-documents/spec30.pdf

19

http://www.openmp.org/mp-documents/spec30.pdf

Activity 5: MPI vs OpenMP LABORATORY GUIDE

Activity 5: MPI vs OpenMP

OBJECTIVES

% In hybrid programming many different number of threads and processes may be launched. We
will try to find out which is the best combination.

*» Message passing and shared memory involve different programming techniques and a distinct
use of hardware resources. We need to know which one is more efficient and then more
convenient.

THEORETICAL CONCEPTS

No additional theoretical discussion will be introduced for this exercise.

PRACTICAL EXERCISE

We will launch a battery of test meant to fulfill the first of the objectives already stated:

e Repeat the matrix multiplication on two 5000x5000 matrices with two MPI processes in the
local machine.

e Launch as many MPI processes as cores are available.

e Launch as many MPI processes as cores are available plus one.

e Back to two MPI processes split the working one (rank 1) into as many threads as cores
available minus one.

e Split rank 1 into as many threads as cores are available so one of its threads will share a core
with rank O process.

Compare all results to see which the best policy is and try to explain why.

Now we will address the second objective. Use the 5000 x 5000 case again:

e Launch as many processes as processors available plus one and split the working processes
into as many threads as cores available.
e Launch as many processes as cores available plus one (no shared memory this time).

Compare the results and try to explain them. See references to find answers.

REFERENCES:

Comparing the OpenMP, MPI, and Hybrid Programming Paradigms on an SMP Cluster

Gabriele Jost and Haogiang Jin and Dieter An Mey and Ferhat F. Hatay

NAS Technical Report NAS-03-019, November 2003.

20

LABORATORY GUIDE Activity 6: Submitting Jobs to the cluster.

Activity 6: Submitting jobs to a cluster

OBJETIVES

+» Get to know how Jobs are submitted to a computation cluster.

‘0

e Understand the differences between a local working environment and a cluster architecture

THEORETICAL CONCEPTS

The Jobs we are about to submit to the cluster are no different from those we have been working
with so far. They will be MPI programs mainly derived from the matrix multiply application we are
using as a benchmark. We will work in Windows 8.1 using the user roles previously generated within
the ARAVAN workgroup and also within the HPC (High Performance Computing) cluster. The user will
be allowed to launch jobs to the cluster. From now we are going to use the Microsoft MPI
implementation: MS-MPI.

The tool used to submit these Jobs is the “Job Manager” and it is part of the client tools installed by
the HPC PACK 2012 R2. Before we can send jobs to execution there are a few issues we have to deal
with:

1. We won’t have a GUL. Initialization information will be parsed to the applications from the
command line. Other information needed at run time has to be provided within a file.
Therefore it will be necessary to adapt our programs to these situations in certain cases.
Concerning the matrix multiply program we have developed, matrix size will be introduced as
an initialization parameter from command line. A code line simliar to: “size = atoi (argv[1]);”
will provide the numerical value of this parameter so it can be used within the program.

2. Program’s output will be redirected to a text file we will have to open once the program has
finalized to see the results.

3. The job manager will consider the program’s execution unsuccessful unless it returns a zero
code. We can write “exit (0)” at the end of the program to do so. It is defined within
<stdlib.h>.

Local job generation with Job Manger.

A job is integrated by a number of tasks. Tasks are user applications meant to be executed by the
system. We mean to launch jobs comprising one single task: our MPI application. In this case we can
use the option “Single Task Job” to make the process simple.

21

Activity 6: Submitting Jobs to the cluster. LABORATORY GUIDE

New Single-Task Job - g
File View Tasks Options
: Job properties
o pea Navigaion 7o . ICTETR |
Select a job template to use for this job. The job template specifies a set of options to use when =
Job Management running a job. > Actions
Pl All Jobs Job template: | Default w Bl e
Configuring Send a notification when this job: Job Submission ~
Active [] Starts [] Completes &= Mewlob ..
Finished Send email notifications to: &~ New Single-Task Job ...
il &> Mew Parametric Sweep Job ..
Canceled 5
&= New Job from XML File ...
- My Jobs Task properties
ERtiEiE A Job Actions ~
gunng Task name: MPlsingletask
Active
Finished Command line:
Failed mpiexec -n 4 c:\mpiapps\MPIappl.exe
Canceled

- By Job Template

Default
Working directony:
Cheluster v Browse...
Task Actions &

Standard input:
Cihclusterinput.bc v Browse...
Standard putput:
Chclusterioutput.bet Y] Browse...
Standard error:

. Cihclust bt B

J Job Management ‘\clustererror. w OWSE. "

Data updated: 6/1/2015 11:46:45 PM

—
= A B o

Gl Lp)

Figure 6.1. Single task job configuration.

We have to select the working directory. In this case we introduce the folder where the input and
output text files are to be placed. We also introduce the names for these files. If no input data is
required the “Standard input” field may be left blank.

On the command line we describe the task to be performed, a parallel MPI application in this case:
“mpiexec —n 4 c:\mpiapps\MPlappl.exe”. It doesn’t need to be located in the working directory. The
“-n 4” parameter tells the system to launch 4 processes.

Parametric sweep jobs.

In many real situations, tasks are not performed individually but rather in a combined manner so
results can be analyzed and compared. As a matter of fact, we usually launch many executions of our
matrix multiply program to see how different configurations and sizes affect execution time. It is
possible to launch a job for each case but it would be more efficient to launch them all together. This
is what the “Parametric sweep job” option makes possible.

22

LABORATORY GUIDE Activity 6: Submitting Jobs to the cluster.

] &) MNew Parametric Sweep Job - a
File View Tasks .
E Job properties
e e . TP o |
: Select a job template to use for this job. The job template specifies a set of options to use when running a job. -
Job Management > Actions
Job template: | Default v - -
4 AllJobs 3 B e
Configuring Send a notification when this job: 5 ST TeT Y ~
Active [[] Starts [[] Completes &=| NewJob ..
Finished Send email netifications to! & | New Single-Task Job ..
il &> Mew Parametric Sweep Job ..
Canceled . 5
Task properties &=| New Job from XML File ...
4 I
Ry ebs Task name: | Sweep_example "~
Configuring Job Actions ~
Active Step 1: Select the start and end values for the sweep task: (5| Viewlob ..
Finished Start value: |1 + Endwvalue |3 -
Failed
Step 2: Select the amount to increment the value at each step of the sweep task:
Canceled | Copy Job ..
! By Job Temp Increment value: |1 = o
Default Step 3: Enter the command line, working directory, and file locations for the sweep task,
Use an asterisk (*) where the step values should be inserted.
Command line: mpiexec -n 2 c:\clusterCommandexamplerG4 = b Export Job ..
Task Actions &
Working directory: | Cih\cluster v Browse...
Standard input: Cihclusterinput.bt v Browse...
Standard cutput: Chclusteroutput™ ot W Browse...
] Standard error: Cihcluster\error® bt v Browse...
i | Job Manager
| v

=M o jGls 8

Figure 6.2. Parametric sweep job configuration.

In this example we have set the parameter to vary from 1 to 5 incrementing one by one. As a result,
5 tasks will be conducted, one for each of its values. The asterisk used to place the parameter in the
command line is also placed within the names of the text files so each task is linked to its own output
file.

In this example we have used the parameter to modify the command line argument parsed to the
program but it can connected with any other aspect of the information provided in the command
line. For instance, we could vary the number of processes to be launched instead: “mpiexec —n *
c:\ruta\multimatriz 5000”. We could provide more than one asterisk in the same command line but it
is very unlikely that the same values make sense in different positions. Netting parameters within the
same task is not permitted.

Job generation with Job Manger for the cluster.

Generating jobs for the local node or for the cluster is conceptually the same, since the former is just
a section of the later. Nevertheless is important to remark in this section some settings to be made:

e Folder and subfolder sharing.
e Working directory configuration.

e Node selection.

23

Activity 6: Submitting Jobs to the cluster. LABORATORY GUIDE

For the applications to be executed by remote nodes, the working directory must be shared. We can
use Windows Explorer to edit the properties of the folder containing the working directory and then
share it.

. cluster MO N 0LET =TI
| PerfLog cluster Properties
i Progran General | Sharng | Security | Customize
. Progran
U Network File and Folder Sharing
| Users
| Window cluster -
[Shared
Netwark Path: 2 File Sharing
SWTEC-24\cluster
Share...

Choose people on your network to share with

Advanced Sharing Type a name and then click Add, or click the arrow to find someone.

Set custom pemis
advanced sharing

'ﬁ'ﬁ.d\ranced § | | hd Al
MName Permission Level
2 Administrator Read/Write +
2 checam Owner
52 Everyone Read,/Write *

Figure 6.3. Sharing the working directory.
Users meant to execute the application must have the appropriate rights.

If the job is to be executed by other nodes, its path must be known under a common format. UNC
(https://msdn.microsoft.com/en-us/library/gg465305.aspx) is the one accepted for this purpose. It is
use to declare the path for the working directory. The rest of paths: input and output files and the
application itself are referred to the working directory as a relative path. Figure 6.4 shows how to
make these settings.

24

https://msdn.microsoft.com/en-us/library/gg465305.aspx

LABORATORY GUIDE Activity 6: Submitting Jobs to the cluster.

) Task Details and I/0 Redirection

Task name: Hw4

Command line:

mpiexec -n 20 programas\Commandexample?'x&4\Release
“Commandexample? 64, exe]

Working directory:

SWTE-C-24\cluster v Browse...

Standard input:

] Browse...
Standard cutput:
programash CommandexampleT\x64\Release\output] Browse...
Standard error
programas\ CommandexampleT\x64\Release\error v Browse...

Specify the minimum and maximum number of resources to use for this job. The job
resource type is set to core,

Minimum: Maximum:
5 = 20 =

QK Cancel

Figure 6.4. Configuratiopn of the shared working directory.

In this particular case the application’s whole path would be:

TE-C-24\c:\cluster\programas\Commandexample7\x64\Release\Commandexample764.exe, =~ where
“150” is a command line argument for the application.

When configuring a new job, the “Resource Selection” option will display the available nodes on the
cluster so we can select the desired ones.

25

Activity 6: Submitting Jobs to the cluster. LABORATORY GUIDE

Select the resources to use for this job. Selecting a node group will filter the nodes available in the node selection list. Entering hardware

Job Details preferences will limit the node groups and nodes you have selected to those that meet the specified hardware preferences.
Edit Tasks

Node preferences
Resource Selection Don't modify node groups for this job S
Licenses Available node groups Selected node groups
Environment Variables ComputeModes

WorkstationModes

Advanced AzureNodes

UnmanagedServerMNodes

Run this job enly on nodes in the following list:

MNode Name Cores Memory State

[TE-C-21 4 4080 Online
[Te-c-22 4 4080 Online
TE-C-23 4 4080 Online
TE-C-24 4 4080 Online
TE-C-25 4 4080 Online
TE-C-26 4 4080 Online
[T TE-SERVER 4 7915 Online

Figure 6.5. Node selection.

PRACTICAL EXERCISE

First we will launch the classic HelloWorld application. It will display the usual waiving message along
the process rank and the total number of processes.

The, going back to the matrix multiply program, it has to be adapted to the new situation. Matrix size
has to be entered from the command line as already explained. We will launch two parametric jobs:
one of them will vary the number of processes from 2 to 8 and the other will vary matrix size from
3000 to 5000 in steps of 1000.

e Copy all outputs in the activity report.

e The report must include the resources assigned to the different tasks. This can be obtained
from the task report provided once it has been finalized.

e Check that the time the system declares to have invested in each task matches the one
provided by the matrix multiply as its output result.

26

LABORATORY GUIDE Activity 7: Job scheduling.

Activity 7: Job scheduling

OBJETIVES

++ Understand job scheduling policies.

+* Analyze their impact on overall system performance.

THEORETICAL CONCEPTS

The system administrator is responsible for the establishment of efficient scheduling policies. The
goal is to optimize system performance. What this means is not obvious though. There may be
several ways of interpreting performance and therefore different objectives to meet:
e Maximize system utilization.
e Minimize job execution time (wall time).
¢ Maximize throughput (jobs done per time unit).
From the user’s prospective, wall time is usually what matters but, the administrator is not expected
to serve one privileged user but rather to make the most of the system as a whole.
Windows HPC Job Scheduler provides several scheduling options. The first choice to be made is
whether to launch jobs in a queued or in a balanced way:
e Queued: the scheduler will try to give the maximum requested resources to incoming jobs
and to incoming tasks within a job. When all resources are exhausted, next jobs will have to
qgueue up. As shown in the figure, several sub options accompany this decision.

27

Activity 7: Job scheduling. LABORATORY GUIDE

Job Scheduler Configuration

lob History Affinity Resource Pools
Policy Configuration E-mail Motifications Error Handling Backfilling Filters

Scheduling mode:
®) Queved - Attempt to assign the maximum amount of requested rescurces to running jobs.

() Balanced - Start as many jobs as possible with the minimum ameount of requested resources for each. If
additicnal resources are available on the cluster, grow jobs based on their pricrity and the Pricnty Bias
setting.

Pre-emption options

® Graceful pre-emption - To enable higher priority jobs to start sooner, take resources away from lower
pricrity jobs as their tasks complete,

) Immediate pre-emption - To enable higher pricrity jobs to start sooner, take resources away from lower
pricrity jobs by canceling running jobs.

¥ Task level pre-emption - To enable pre-emption of individual tasks instead of whole jobs,

) No pre-emption - Jobs will continue to run until completion, even if higher priority jobs are waiting for
FESCUrCEes,

Adjust rescurces automatically

Increase resources automatically (grow) - Use available resources to grow higher priority, running jobs to
their maximum kefore starting lower pricrity jobs,

Grow by pre-emption - To help grow higher pricrity, running jobs, use pre-emption to take resources
from lower pricrity, running jobs.

Decrease resources automatically (shrink) - Automatically release unusued job resources over time when
a job holds resources that it cannet use,

Mere about policy configuraticn

Restore Defaults oK Cancel Apply

Figure 7.1. Queued scheduling policy.

One of them is how to deal with preemption. It can be graceful so higher priority jobs may
take resources away from others but only when individual tasks within them finish. It can be
immediate so lower priority jobs are cancelled in order to serve higher priority ones. Or it can
be disabled. Resources may be set to adjust automatically. Higher priority jobs may be given
more resources until they reach the maximum requested before any lower priority job is
launched. They can even grow taking away resources from already running lower priority
jobs. Finally resources may be set to be taken away from jobs that no longer will make use of
them.

28

LABORATORY GUIDE Activity 7: Job scheduling.

Balanced: the scheduler will try to start as many jobs as possible. To do so it will reduce de
amount of resources allocated to each one but not below the minimum requested by the
user. Therefore, as long as there are resources available, new jobs will be launched rather

than increasing the resources to already running jobs. As in the previous case, a number of
sub-options become available.

Job Scheduler Configuration

lob History

Affinity
Policy Configuration

Resource Pools
E-mail Notifications Error Handling

Backfilling Filters
Scheduling mode:

O Queued - Attemnpt to assign the maximum amount of requested rescurces to running jobs,

(®) Balanced - Start as many jobs as possible with the minimum amount of requested resources for each. If

additicnal resources are available on the cluster, grow jobs based on their pricrity and the Pricrity Bias
setting.

Pre-emption opticns

® |mmediate pre-empticn (Recommended) - To enable additional jobs to start, take resources away from
running jobs by canceling running tasks

() Graceful pre-emption (Advanced) - To enable additional jobs to start, take resources away from running
Jobs as tasks exit

-fjj For maost cluster workloads, immediate pre-emption in Balanced mode enables more jobs to start in a
time pericd.

Pricrity bias

Priority Bias controls how additional resources are allocated to running jobs. A higher bias level allocates
more resources to higher pricrity jobs,

Pricrity Bias level:
(") High bias
(®) Medium bias

(") Ne bias

Rebalancing interval

The job scheduler rebalances rescurce allocation at a constant time interval. Jobs can grow and shrink in

order to start new jobs, fill available resources, and balance resource allecation according to the Pricrity Bias
level.

Seconds between rebalancing: 10(=

More about policy configuration

Restore Defaults

QK Cancel

Apply

Figure 7.2. Balanced scheduling policy.
Yet again, pre-emption can be selected as either graceful or immediate but this time it is not
possible to disable it. When it comes to allocating additional resources to running jobs, the

decision of how to do it is biased by priority. How big this influence is can be adjusted.
Finally, the time elapsed between rebalancing decisions can be set as well.

29

Activity 7: Job scheduling. LABORATORY GUIDE

Priority is assigned by the user to a job at its configuration. Individual tasks within a job share the
jobs priority. In this activity we will work with single multitasked jobs, so we will ignore all what has
to do with priority for the moment.

PRACTICAL EXERCISE

We are going to set up a job integrated by a number of tasks. Each task will consist of the execution
of a 8000 x 8000 matrix multiplication. The number of processes will increase from 4 to 4 multiplied
by the number of computers available in the cluster so the last task may potentially make use of all
cores in the system. The number of processes will increase in 4 over the previous taks thus
determining the total number of tasks to be in the job.

The job will be launched under queued policy and then under balanced policy. On each case the tasks
will be sorted according to the number of processes launched. It will be done from lowest to highest
and then from highest to lowest. Four tests will then be conducted in total.

For each case build up a table to show the resources allocated to each task, its execution time and
the overall execution time.

What scheduling policy turns out to be the best for this type of load? Using the contents of the
tables, try to explain why.

30

LABORATORY GUIDE Activity 8: Job scheduling II.

Activity 8: Job scheduling II

OBJETIVES

+ Understand the differences between tasks and jobs.

B3

Working with different priority levels and scheduling policies.

THEORETICAL CONCEPTS

In this activity we will work with multiple jobs so priority configuration will become available to us.
Different jobs may be assigned different priority levels either because their importance to the user is
different or in order to optimize performance. In this exercise we will try to do the latest.
Priority levels can be set for each job as:

e Highest.

e Above normal.

Normal.

Below normal.

e |lowest.
When trying to work with jobs a new issue will probably arise. The top number of simultaneous
connections to the share folder (up to 20 are permitted by the operating system) may be exceeded.
The solution to this problem is to work with shared folders located in the server, whose operating
system allows an almost unlimited number of connections. Set the folder provided by the system

administrator as working directory, copy your .exe file there and everything should work fine.

PRACTICAL EXERCISE

First, we will repeat the experiments conducted in the previous exercise but launching multiple single
task jobs instead of one multitasked job in each case. All jobs will keep their default normal priority
level for the moment. Rebuild the tables generated in the previous activity with the new results and
compare both.

Are execution times better or worse this time? What other circumstances arise now? How could
them be overcome?

Now, keeping the scheduling settings as default, change priority levels to what you expect to be the
best for your experiments and do the same as before.

Have you managed to improve performance? Why do vyou think is that?

31

Activity 9: Job scheduling IIl. LABORATORY GUIDE

Activity 9: Job scheduling III

OBJETIVES

+»» Understanding preemption.

«» Checking the influence of preemption on system performance.

THEORETICAL CONCEPTS

Preemption allows higher priority jobs to interrupt lower priority ones. As shown before, this can be
done in different ways. Since our goal remains system performance, higher priority should be given

so the overall execution time is minimized.

PRACTICAL EXERCISE

Group the tasks launched in previous scheduling activities in two jobs. On one job the tasks
comprising less processes will be placed and this job will be given the highest priority. The other job,
with the lowest priority will entail the rest of the tasks.

Under both queued and balanced scheduling policies, repeat the usual experiments trying the
different preemption options available.

Build up again the tables and compare results.

Decide what preemption policy is the most advisable for this type of workload.

Compare the results obtained under queued scheduling policy with and without the clicks on the
“Adjust resources automatically” options.

Compare the results obtained under balanced scheduling policy using the different biasing options

available.

32

LABORATORY GUIDE Activity 10: Performance competition.

Activity 10: Performance competition.

OBJETIVES

++» Making the best scheduling decisions.

THEORETICAL CONCEPTS

No theoretical concepts are introduced in this activity.

PRACTICAL EXERCISE

For a given matrix multiplication application (the same for all participants), each one will make what
are expected to be the best scheduling decisions. This will include using jobs, tasks or both. Once
they are made, the usual experiments will be conducted and the overall execution times compared in
order to find out what were actually the best scheduling options.

In your report include your decisions, your results and compare them with the best performer.
Explain why you think your decisions were not the best. If you are the best performer,

congratulations, you will save some work.

33

Appendix A: Installing DeinoMPI LABORATORY GUIDE

Appendix A: Installing DeinoMPI

DeinoMPI in an implementation of the standard MPI-2 for Microsoft Windows derived from Argonne
Nacional Laboratory’s MPICH2.

System requirements:

e Windows 2000/XP/Server 2003/Windows 7
e _NET Framework 2.0

Installation

DeinoMPI has to be downloaded and then installed in all computers in the cluster. The installation
process is the same in all nodes. It requires administrator privileges for installation but all users can
execute it afterwards.

Once it is installed folder \bin has to be added to the path.
Note: make sure Deino’s version matches the operating systems requirements (32 or 64 bits).
Configuration

Once the software has been installed, each user will need to create a “Credential Store”. It is used to
launch routines in a secure manner. Mpiexec will not execute any of them without this “Credential
Store”. The graphic environment will show the user this option in the first execution.

Launching Jobs
Once again, both the graphic environment and the command line are valid.
Graphic Environment

This tool can be used to launch MPI processes, manage the “Credential Store”, search for computers
within the local network that have MPI installed, verify mpiexec entries to diagnose common
problems, and go to the DeinoMPI web site to look for help and documentation.

Mpiexec tab
It is the main page and is used to launch and manage MPI processes.

34

LABORATORY GUIDE Appendix A: Installing DeinoMPI

Mpiexec | Credential Store | Cluster | Verfyjob [Web |

=5 A edcturas paralelashevaluacion' 1415\progra i g x| -
Break 2 2| Number of processes chema w Credential Store Account

General | Directory Staging | Corfiguration File

localonly (all processes will be launched on the local host)

[7] localroct fthe raot process will be launched with the ability ta interact with the deskton)
Environment variables: Format: "env=val envZ=val2 ..", example: MAXX=100 MAXY=200

Working directory:
Metwork drive mappings: Format: "z:\\server\share"

[T Add MPI Histary

[Add SMP Optimizations {many collective operstions have been optimized for multiple processes per node)
[Z] Print the exit codes of each process

[F] Usa MPE ta generate a log fils of all the MPIfunction calls Jumpshot

w channel

Show Messages

Introduce el tamano de la matriz N=N: 50 -
Primera matriz
1.0 4.0 3.0 8.0 2.0 5.0 1.0 1.0 5.0 7.0 1.0 2.0 2.0 1.0 8.C
3.0 9.0 4.0 7.0 3.0 1.0 4.0 0.0 7.0 7.0 6.0 1.0 5.0 5.0 1.cC
3.0 5.0 0.0 3.0 8.0 4.0 4.0 9.0 5.0 3.0 3.0 4.0 8.0 8.0 0.C
6.0 8.0 5.0 4.0 1.0 5.0 8.0 9.0 9.0 7.0 9.0 6.0 3.0 7.0 6.C
3.0 3.0 2.0 2.0 3.0 2.0 7.0 3.0 3.0 1.0 3.0 5.0 5.0 2.0 2.C
4.0 2.0 0.0 1.0 1.0 3.0 0.0 8.0 0.0 2.0 0.0 8.0 5.0 7.0 8.C
4.0 1.0 9.0 1.0 6.0 5.0 0.0 2.0 3.0 7.0 6.0 6.0 2.0 1.0 3.0 -
a'n A A R - FRrs 1A z' A A'a a'n 4 A a'a 1A s A A'r

< m b

Figure A1. Mpiexec tab.

These are the main elements of this tab:
e Application:

0 The MPI application’s path is introduced here. The same path will be taken by default in
all nodes within the cluster so it is recommendable to copy the .exe file in the same
folder in all of them.

0 If a network folder is specified, it is necessary to have sufficient privileges in the server.
0 The “application” button can be used to locate the .exe file.

e Execute: the program selected in the application dialog is launched when this button is
pressed..

e Break: aborts program execution.

o Number of processes: Sets the number of processes to be launched.
e Credential Store Account: Sets the active user of the Credential Store.
e Check box “more options”: It expands/contracts the options area.

e Hosts: Introduce here the list of hosts where you want the processes to run. Host names are
separated by blanks. To execute the program in the local machine only, keep the default
option “localonly” active or write down its name on this list

35

Appendix A: Installing DeinoMPI LABORATORY GUIDE

Credential Store Tab.
This tab is used to manage user’s credential store. If no credential store has been created so far,

select “enable create store options” check box to make remaining options available. They are hidden

by default since they are only used the first time Deino is initiated.

[F DeinoMPL 2.0.1 A B AR L ' = | O |-

Mpiexec | Credential Store | Cluster | Verfy job | Web |

Location
Passward login Select | Registry
Credentials Add Credential Keys
chema Account Public Key hash:

TADDCDGSFF7D7BIGEASEEFCI44

Password if you believe your keys need to be replaced
(compromised, policy, etc) you can do so here.
The new public key will need to be distributed

enable create store options
Create a Credential Store

to the machines in your cluster.

[7] enable create = Create New Keys

Help High securty Secure and convenient Create Credential Store
Password Encryption Location
() Password protect private k&Y @ Windows ProtectData AP Removable media
) symmetric key @ Registry
@ Mo password) no encryption ™) Hard drive E]

Figure A2. Credential Store tab including all options.

In order to create a credential store, the “enable create store options” check box must be selected.

Three possibilities arise:

“Password”:

0 If this option is selected, the credential store will be protected from access by a
password. It is the most secure option but forces the user to introduce the password any
time a job has to be launched.

0 If “No password” is selected, the use of MPI is easier but more vulnerable. Without a
password any program launched by the user can access the credential store which is not
really a problem provided no malicious software is being used.

0 Even with this “No password” option active, the credential store is not available to other
users if the encryption option is selected.

“Encryption”:

36

LABORATORY GUIDE Appendix A: Installing DeinoMPI

0 “Windows ProtectData API” allows encryption of the credential store using the
encryption scheme used by Windows for the current user. This ensures the credential
store will only be available when the user is validated.

0 If a password is selected the “symmetric key” encryption format can be chosen. This
encryption is not specific to the user so other user knowing the password could access
the store.

0 The “no encryption” option is not recommended since it stores the credential store in a
plain text file accessible to all users.

e “Location”:

0 Take the “Removable media” option to save the store in an external device such as a
memory stick. In this case, jobs can only be launched when the device is attached to the
computer. This can be the safest option since the user can decide when the credential
store is present. Combined with the use of a password and its encryption it can be
protected even against loss or robbery.

0 The “Registry” option moves the “Credential Store” to the Windows registry.
O Finally, it can be stored in the “Hard drive” which turns out to be the most common

decision.

Cluster tab
In this tab, the computers in the cluster are displayed and the DeinoMPI version installed in each of
them.

.
[B DeinoMPI 2.0.1 *“ 4 BE anw . = | B |

| Mpiexec | Credential Store | Cluster | Verfy job | Web |

Domain: - ’ Get host names l ’ Scan hosts l [Reset hosts] View:

Host: | Addhost || Clearhostlist | | Savelist || Loadlist |

SONY-VAIO

Microsoft Windows 7 Home Premium
6.1.7601

WinG4 - x64-based PC

CPU: Intel64 Familty & Maodel 42
Stepping 7

CPU name: InteliR) Core(TM})i5-
2450M CPU @ 2 50GHz
Number of CPUs: 4

Physical memory: 7,98 Gigabytes
Free disk space: 1294 Gigabytes
IP: feB0:acc2i ¥ a258: 1 1a%14
IP: 192.168.1.12

NIC speed: 0 baud

NIC speed: 54 Meqgabit

NIC speed: 0 baud

DeinoMPI: 2.0.1

Figure A3. Cluster tab — Big icons view.

37

Appendix A: Installing DeinoMPI LABORATORY GUIDE

More hosts can be added writing down their name of can be found automatically within the selected
domain.

Deino MPI manual. Available at: http://mpi.deino.net/manualhtm

38

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

Appendix B: Project Configuration in

Visual Studio 2010

In this section we will describe the same configuration process but for the 2010 version of Microsoft

Visual Studio. Configuration in more recent versions of Visual Studio is analogous.

e Generate a new project and solution. They may have both the same name:

-
New Project

(===

Recent Templates [.NET Framework4 = | Sort by: | Defautt -

Installed Templates

. . = Win32 Console Application
4 Visual Basic LE

Windows

Web FL!I MFC Application
Office
Cloud | Win32 Project
Reporting
U SharePoint “*| Empty Project
Silverlight
Test [a1t]| ATL Project
WCF
Workflow ﬂl.ﬁ MFC DLL
Visual C# Egl
_i%:| Windows Ferms Application
Visual F# =
Other Project Types
Database IE CLR Console Application
Test Projects
.| CLREmpty Project
Online Templates
5 | Class Library
i' “| Custom Wizard
Name: <Enter_name>
Location: chusershchematdocumentsivisual studio 2010°\Projects
Solution name: <Enter_name>

\

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

- Browse...

Search Installed Templates 2 ‘

~ Type: Visual C++

A project for creating a Win32 console
application

Create directory for solution
"] Add to source contral

e Set it as empty project:

Win32 Application Wizard - HelloWorld

—_——

Welcome to the Win32 Application Wizard
Owverview These are the current project settings:
Application Settings * Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information
about the project features and files that are generated.

[Next >][

Finish] [Cancel]

39

Appendix B: Project Configuration in Visual Studio 2010

LABORATORY GUIDE

-

‘Win32 Application Wizard - HelloWorld

=)

Application Settings

Overview

Application type:
Application Settings () Windows application
(@ Console application

0 DL

() Static library
Additional options:

Empty project

< Previous

Add commen header files for:

[Fnish ||

Cancel

b

[I-Ei[oorl

Once created both the Project and solution, add a code file as new item:

File Edit View Project | Build Debug Team Data

Tools Test Window Help

+| | Win32

Add Existing Item...

> 5 | ¥ Add Class.. |
B Class Wizard.. Ctel+Shift+X
Add Mew Item... Ctrl+Shift+4

Shift+Alt+4

Exclude From Project
= Show All Files

Rescan Solution

Set as StartUp Project

*0Q|00] v J2i0]dx3 samag e

+ Refresh Project Toolbox Items

E=] Properties

Installed Templates Sortby: | searchInstalled Templates P
.
== Type: Visual C++
ul ==| Windows Form Visual G-+ ype: Hisua
Creates a file containing C++ seurce code
Code =
Data @ e File (.cpp) Visual G+
Resource Cos Fie Conel |
+ File (<
Web @ HTML Page (L..,ﬂ Visual G+
Utility —
Property Sheets L@ Static Discavery File (.disco) Visual C++
@ Header File () Visual G+
S| Midi File (idl) Visual C++
Qg\ Resource File (.rc) Visual G+
@) i
81 Server Response File () Visual C+
@ Module-Definition File (.def) Visual C+
Tésj Registration Script (.rgs) Visual C++
[E5] MFC Ribbon Definition XML File Visual G+
==| Property Sheet (.props) Visual C++
Name: <Enter_name>
Locston e Chermodoc i 210 prgect iotiota .

Cancel

40

LABORATORY GUIDE

Appendix B: Project Configuration in Visual Studio 2010

e Now, and never before, the Project settings are entered (“Properties”):

45 AddClatz
B s wizaes.
17 AddReowce.
b astmennem.
| £ Exrting e,
L Mewile
D Sow ARl
Uskoad Project
Rt an Seluten
Referenies..
St oy StareUp Progect
Buld Cuntommiastions_

21 Propeiies
0 Open Fldor i Wirsdoas Exploter

Proect | Budd Detug Team Data Tock Tet Window Help

Nzt [[RENEE EE .
Corta oot =
Sokation Exploter o H
Ctrbe Shifte & 3 5
4= 21
shaaned |] 5 Sohtion MellcWond (1 prejec

A Demal Dependincies
@ Header Fies
3] resouwcen
o G Rescurce Files
T Helsiord st
4 Sounce Fie
& HelioWertd cpp

1. In the C/C++ section we must enter the route to the folder where the header MPI files

are located (“Additional Include Directories”). By default the \Archivos de Programa
(x86)\DeinoMPI\include is assumed:

HelloWorld Property Pages

=)

Configuration: | Active{Debug) | Platform: [Active(Wmﬂ)

> Common Properties
4 Configuration Properties

General

Debugging

WC++ Directories
C/C++

Linker

Manifest Tool
Resources

XML Document Generator
Browse Information
Build Events
Custom Build Step

T | v

'l l Configuration Manager...]

Additional Include Directories C:\Program Files %28x86%23\DeinoM Pl\include,'C:\Pr

Resolve #using References
Debug Infermatien Format Program Database for Edit And Continue (/Z1)
Common Language RunTime Support
Suppress Startup Banner Yes (/nologe)
Level3 (/W3)

Mo [/WX-)

Warning Level

Treat Warnings As Errors
Multi-processor Compilation

Use Unicode For Assembler Listing

Additional Include Directories
Specifies one or more directories to add to the include path; separate with semi-colens if more than one,

(Mpath])

[Aceptar][Cancelar H Aplicar]

2. In the Linker section we must enter the route to the folder where the MPI libraries are

located

(“Additional Library Directories”).

By default

(x86)\DeinoMPI\lib is assumed:

41

\Archivos de Programa

Appendix B: Project Configuration in Visual Studio 2010

LABORATORY GUIDE

-
HelloWorld Property Pages

=)

Configuration: | Active(Debug) = | Platform: | Active(Win32) V] [Configuration Manager...]
» Common Properties Output File S{0utDir)§(TargetName)5(TargetExt)
4 Configuration Properties Show Progress Mot Set

General Version
Debugging Enable Incremental Linking Yes (/INCREMENTAL)
VC++ Directories Suppress Startup Banner Yes (/NOLOGO)
4 C/C+ Ignore Import Library No
Ganera.\ . Register Qutput No
Optimization Per-user Redirection No
Preprocessor CA\Program Files %28x86%29\DeinoMPIVib:C:\Prograf - |
Code Generation Link Library Dependencies Yes
Language Use Library Dependency Inputs No
Precompiled Headers -
Output Files Link 5tatus
Browse Information Prevent Dil Binding
Advanced Treat Linker Warning As Errors
Command Line Force File Qutput
. Linker Create Hot Patchable Image
» Manifest Tool Specify Section Attributes
> Resources
» XML Document Generator
> Browse Information
> Build Events
> Custom Build Step
Additional Library Directories
Allows the user to override the environmental library path (/LIBPATH:folder)
] M r

[Aceptar][Cancelar H Aplicar]

3. In the Linker section, in the input entry (“Input”) the “cxx.lib” y “mpi.lib” files must be
added as additional dependencies:

HelloWorld Property Pages ? ® |
Configuration: | Active(Debug) ¥ | Platform: |Active(Win32) 'l [Configuration Manager...]
» Common Properties Additional Dependencies ooclib;mpilib;%(AdditionalDependencies) L
a4 Configuration Properties Ignore All Default Libraries p
General Ignore Specific Default Libraries | Additional Dependencies M
Debugging Module Definition File
VC++ Directories Add Module to Assembly calib T
ilib
> CCes Embed Managed Resource File Lt
4 Linker Force Symbol References
General Delay Loaded Dlls
Input . s
K . Assembly Link Resource
Manifest File 1 '
Debugging §
Inherited values:
System -
Optimization kem;fllglb =
user32.li E
Embedded IDL gdi32.lib ‘j
Advanced winspoellib
Command Line comdlg3llib
> Manifest Tool =
» Resources
. XML Document Generatar Inherit from parent or project defaults
» Browse Information
> Build Events
» Custom Build Step
: v
Additional Dependencies
Specifies additional iterns to add to the link command line [i.e. kernel32.lib]
4 m 3
ll [Aceptar] [Cancelar] l Aplicar] IJ

4. In the General section the Multi-Byte set of characters (“Characrer Set”) must be
selected:

42

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

[HelloWorld Property Pages l_lg‘
Configuration: Platform: | Active(Win32) '] [Configuration Manager...]
> Common Properties - a
4 Configuration Properties 1 Output Directory $(SolutionDin${Configuration),
General Intermediate Directory S$(Configuration],
Debugging Target Name S(ProjectName)
VC++ Directories Target Extension exe
a4 C/C++ Extensions to Delete on Clean *.cdf;".cache ™ obj;™ilk " resources; ™ tlb; ™ ;™ thh;™ trp; ™. rsp;
General Build Log File $(IntDir\S(MSBuildProjectName].log
Optimization Platform Toolset V100
Preprocessor .
E:::u‘: :r;eratlon E Configuration Type Application (.exe)
. Use of MFC Use Standard Windows Libraries
Precompiled Heade .
Output Files Use of ATL Mot Using ATL
Browse Information Character Set Use Multi-Byte Character Set |z|
Advanced Common Language Runtime Suppert Ne Common Language Runtime Support
Command Line ‘Whole Program Optimization No Whole Program Optimization
4 Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL Character Set
i\duancedJ , - | | Tells the compiler to use the specified character set; aids in localization issues.
4 m [3
[Aceptar] [Cancelar] l Aplicar]

e Finally enter code in the selected source file and build the project.

43

Appendix C: Configuration of MS - MPI LABORATORY GUIDE

Appendix C: Configuration of MS-MPI.

DeinoMPI is hard to configure in some systems and it may not eventually work. As an alternative we
can install and configure the Microsoft distribution of MPI. It doesn’t provide a graphical interface
but from the command line everything can be done. Take the following steps to get it to work:

e Download MS-MPI v5 from its web location:

P @ hitps://msdn.microsoft.com/en-us/library/bb524831 (v=vs.85).aspx

Technologies « Downloads ~ Programs ~ Community ~ Documentation « Sampl

IN Library .
‘ers and Enterprise Development M IC rOSOft M PI
|

-osoft High Performance
puting for Developers Wicrosoft MPI (M53-MPI) is a Microsoft implementation of the Message Passing In

licrosoft MPI

M PI Reference MS-MPI offers several benefits:

Ease of porting existing code that uses MPICH.

Security based on Active Directory Domain Services.

High performance on the Windows operating system.

Binary compatibility across different types of interconnectivity options.

MS-MPI downloads

The following are current downloads for MS-MPL
® MS-MPI V5 (new!)
& Debugger for MS-MPI Applications with HPC Pack 2012 R2

Earlier versions of MS-MPI are available from the Microsoft Download Center.

e There are two files and both have to be downloaded and installed:

Choose the download you want

7 File Name Sire
+ masmpisdi.msi 1.9 MB
+ MSMpiSetup.axe 4.9 MB

e Each package creates a new folder: Program Files > Microsoft MPI and Program Files >
Microsoft SDKs > MPI.

e Generate a new MS Visual Studio project and solution. They may have both the same name:

44

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

~ S
New Project (R
[.NET Framework 4 + | Sort by: [Defautt | Search Installed Templates 2|

Installed Templates -y Vieual C
)) “BY Win32 Cansole Application Visual C++ [PE VUl
4 Visual Basic = A project for creating 2 Win32 console
Windows application
M ec Application Visual C++
Web EiC
Office
Cloud | Win32 Project Visual C++
Reporting
U SharePoint Empty Project Visual C++ | _
Silverlight 1
Test [aTL| ATL Project Visual C++
WCF
Workflow M e o Visual C++
Visual C# Egl
Windows Forms Application Visual C++
Visual F#
Other Project Types |
Database CLR Console Application Visual C++
Test Projects
CLR Empty Project Visual C++
Class Library Visual C++
Custom Wizard Visual C++
Name: <Enter_name>
Location: chusershchematdocumentsivisual studio 2010°\Projects -
Solution name: <Enter_names Create directory for solution
"] Add to source contral

e Set it as empty project:

-

‘Win32 Application Wizard - HelloWorld

—_——
Welcome to the Win32 Application Wizard
Owverview These are the current project settings:
Application Settings * Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information
about the project features and files that are generated.

[Next >][Finish][Cancel]

45

Appendix C: Configuration of MS - MPI

LABORATORY GUIDE

-

‘Win32 Application Wizard - HelloWorld

=)

Application Settings

Overview

Application type:
Application Settings () Windows application
(@ Console application

0 DL

() Static library
Additional options:

Empty project

< Previous

Add commen header files for:

[

Finish] [Cancel

e Once created both the Project and solution, add a code file as new item:

B8 Helloworid

File Edit View Project | Build Debug Team Data

Tools Test Window Help

+| | Win32

> 5 | ¥ Add Class.. |
| B Class Wizard... Ctrls ShiftsX
5] Add New ltem... Ctrl+Shift+A
(5] Add Existing tem... Shift+ Alt+ A

Exclude From Project
= Show All Files

Rescan Solution

Set as StartUp Project

*0Q|00] v J2i0]dx3 samag e

+ Refresh Project Toolbox Items

E=] Properties

It Tempates P — T
.
ul ==| Windows Form Visual C++
Code =
Data Iﬂ C++ File (.cpp) Visual G+
Resource =
++ File (c
Web \g HTML Page (‘L_,ﬂ Visual C++
Utility —
Property Sheets L@ Static Discavery File (.disco) Visual C++
Iﬂ Header File (h) Visual C++
S| Midi File (idl) Visual C++
Qg\ Resource File (.rc) Visual C++
@) i
Server Response File (.srf) Visual C++
@ Module-Definition File (.def) Visual C++
Tésj Registration Script (.rgs) Visual C++
[E5] MFC Ribbon Definition XML File Visual G+
==| Property Sheet (.props) Visual C++
Name: <Enter_name>
Location: G\WUsers\Chematdoc studio jectsht felloWorld

Search Installed Templates P

- Browse...

Type: Visual C++

Creates a file containing C++ seurce code

Cancel

46

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

e Now, and never before, the Project settings are entered (“Properties”):

i Bk rET] Bt

Scibatsom Exploser =82
JalalA
F| A sohtion veowors L prejec
|+ (T elowon

2 Etemal Dependancies
4 L3 Heades Fies

e When reaching the project configuration options proceed as follows:

1. Set the new additional include folder.

e propiedades de HelloWorld LB -
racién: | Active{Debug) | Plataforms: | Active(Win32) *| | Administrador de configuracion.. |
ipiedades comunes ~| | -I:'Jir-ectorio:.d.e inr.ﬁu:iin acllli::iénalt: cmrammumummws SDK:-\MI‘NM-IW
ipiedades de configurac| Resclhver referencias Susing
General Formato de la informacién de depuracién Base de datos de programa para Editar y continuar (/Z1)
D’fPUfﬂfié" Compatible con Common Language Runtime
Directorics deVC++ Suprimir la pancarta de inicio Si {/nologo)
CiC++ Nivel de advertencia Level3 UW3)

General Tratar advertencias como errores Mo (/WiK-)

Optimizacion b e

Compilacitn multiprocesador
Preprocesador

3 | Usar Unicode para la lista del ensamblador
Generacion de codi|

Idioma £
Encabezados precoy
Archivos de salida
Informacion de exai
Avanzadas
Linea de comandos,
Vinculador
General
Entrada

2. Similarly set the new lib folder. Under lib choose the folder that matches your
development (x86 for 32 bit applications or x64 for 64 bit ones).

47

Appendix C: Configuration of MS - MPI LABORATORY GUIDE

Paginas de propsedades de HelloWorld s < |
Configuracin: | ActiveiDebug) | Plataforma: | Active(Win32) =| [Administrador de configuracion.. |
« Propiedades comunes x| Arehive de calida S{OwtDir) 5 (TargetMarme)S{TargetExt)
4 Propiedades de configurac Maostrar progreso 5an establecer
General Verzién
Depuracion Habilitar vinculacidn incrermental 5i UTNCREMENTAL)
Directorios de VC++ Suprimir | pancarta de inicio §i (/NOLOGO)
4 C/Cee Omitir biblioteca de importacion MNo
Geneml Registrar resultados MNe
Optimizacién Redireccidn por usuano Mo
:‘:::‘:::":: ” Divectorios de bibkotacas adicionalis C\Program Files %28xB6%29\Microsoft SDKs\MPT\Libxd
ldioma 3 Vincular dependencias de buhlio‘tac:a Si
Usar entradas de dependencia de biblioteca Mo

Encabezados precos
Archrvos de salida
Infarmacién de exa
Avanzadas

Lines de comandos Forzar salida de archivo

Estado de vinculo
Impedir enlace de archreos DLL
Tratar advertencia del vinculader come un efror

4 Vinculador Crear imagen a la que aplicar una revisadn activ
General Especificar atributos de seccion
Entrada
Archive de manifier
Depuracidn
Sisterna
Optimizacién
IDL incrustado Archive de sabida
Fymndas = | | Laopcién fOUT invalida &l nombre y la ubicacién predeterminados del programa que crea e vinculador.

Al o n e s
€]]

=3

3. Set also the new library file.

Paginas de propiedades de HelloWaorld

Configuracién: ’Active(Debug] v] Plataforma: | Active(Win32) VI E
» Propiedades comunes - Dependencias adicionales msmpi.lib;%(Additionall
4 Propiedades de chfigurEC_ Omitir todas las biblictecas predeterminadas

General Omitir biblictecas predeterminadas especificas
Depuracién Archivo de definicién de médulos
Directerios de VC++ Agregar médulo al ensamblado
4 C/Ces Incrustar un archivo de recursos administrade
General

o Forzar referencias de simbolos
Optimizacién Archivos DLL de carga retrasada
Preprocesador

Generacién de cadi

Recurso de vincule de ensamblado

m

Idioma

Encabezados precol

Archivos de salida

Informacian de exal

Avanzadas

Linea de comandos
4 Vinculador

General

Entrada

Archive de manifies |

Depuracian
Sisterna

Optimizacién

4. When all these parts have been configured the solution can be built as usual. In order
to execute the program, the .exe file and MPI’s launcher must be in the same folder
or either the path configured accordingly. The launcher is mpiexec.exe and is placed
in Program Files > Microsoft MPI > bin. Write down mpiexec —n np program.exe,
where np is the number of processes to be launched.

48

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

B C\Windows\system32\cmd.exe
C=“\Program Files>cd Microsoft HMPI
C:~Program Files icrosoft MPI>»dir
‘1l wolumen d nidad C no tiene etigueta.

El nimero de serie del volumen es: 7ABE-AS15

Directorio de C:wProgram Files“Hicrosoft HFPI

3 <{DIR> .
3 {DIR> -
6 <{DIR Bin
3 £ >

3

3 License
5:3: Redis

B archi] B hytes

5 dirs 4408.235.368.448 bytes libhres

C:“Program Files“Microsoft HPI>*cd bin

:isProgran FilessMicrosoft MPINBin>mpiexec -n 4 HelloWorld.exe

0 y 3 de 4: Hola Mundo?

1 de 4: Hola Mundo?

2 de 4: Hola Mundo?

Soy el proceso B de 4: Hola Hundo?

Program Files“Microsoft MPINBin»

49

Lo | B s |

	Speed-up graphs
	Mpiexec tab
	Credential Store Tab.
	Cluster tab

