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Abstract

Classification And Regression Tree (CART) and Random Forest techniques were proposed as
pattern recognition tools for classification of ultrasonic oscillograms of Resistance Spot
Welding (RSW) joints. The results showed that CART models produced an acceptable error rate
with high interpretability. These features may be used to understand and control the decision
processes, instruct other human operators, compare margins of safety or modify them
depending on the criticality of the industrial process. Compared with CART trees, random
forests reduced the error rate at the cost of decreasing decision interpretability. The use of the
agreement of the forest was proposed as a measure to reduce the workload of human
operators, who would only have to focus on the analysis of ultrasonic oscillograms that are
difficult to interpret.
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1 Introduction

Resistance Spot Welding (RSW) is, as reported by Jou (2003), a manufacturing process widely
used for joining sheet steel in the automotive industry, mainly because, as pointed out by
Martin et al. (2008), its high speed and adaptability for automation render it suitable for mass
production. Importantly, the number of RSW joints per vehicle is very high (3000—7000
according to Hamidinejad et al. (2012)) and there can be significant variability in the quality of
each of them. This is partly due to the fact that RSW is a complicated process that involves
interactions of electrical, thermal, mechanical and metallurgical phenomena, as indicated by
Moshayedi and Sattari-Far (2012). Raoelison et al. (2012) stated that the quality of RSW joints
is a function of the size of the weld nugget, which is formed from the solidification of the
molten metal after a heating by Joule effect. Thus, quality control of the RSW joints has been a
longstanding challenge which, as pointed out by Martin et al. (2006), would significantly
benefit from the design of cost-effective decision support tools. Furthermore, the tendency in
the highly competitive automobile industry is to reduce the number of RSW joints per vehicle;
this fact reinforces the interest in a tool capable of assisting in the quality control of RSW joints
because the fewer the RSW joints per vehicle, the stronger the requirements for each of them.

Chen et al. (2009) indicated that ultrasonic non-destructive testing is a promising technology
for estimating the quality of the RSW joints in automotive industry. In the same line, Spinella et
al. (2005) reported that this testing technique represents a cost-reduction opportunity in the
quality control of RSW joints but they also noted that it requires that human operators have
some degree of training. Nonetheless, Rupin et al. (2014) stated that a complex material
microstructure may disturb the ultrasonic wave propagation and, consequently, the
interpretation of data coming from ultrasonic testing of welds can be a challenge; Zhang
(2011) and Thornton et al. (2012) agreed that ultrasonic A-scan depends heavily on the human
operator’s experience and Barrera et al. (2001) indicated that there may be problems in the
assessment of ultrasonic oscillograms, either because the oscillograms are difficult to
interpret, or because the task of repeatedly interpreting oscillograms for a long period of time
may compromise the human operator’s efficiency. Consequently, a tool that could effectively
assist the human operator with the interpretation and classification of ultrasonic oscillograms
would significantly improve the performance of the quality control conducted using ultrasonic
non-destructive testing of RSW joints. Martin et al. (2007) developed a tool based on artificial
neural networks (ANNs) for the classification of ultrasonic oscillograms with good results, but
with the drawback that the ANNs are “black boxes”, i.e. they lack explanatory power. The
underlying knowledge captured by the network during its training is not transparent to the
user; consequently, ANNs used as classifiers do not offer any interpretability of the results.

Two tools based on classification trees were proposed as decision support systems in welding
quality control. Initially, Classification And Regression Trees (CART), which is one of the best
known decision tree learning algorithms, was used. As a starting point, ultrasonic oscillograms
obtained by ultrasonic non-destructive testing were classified by a human operator. This
training dataset fed the algorithm and allowed approximating the decision rules used by the
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human operator. Afterwards, an ensemble technique developed by Breiman (2001), namely
random forests, was analysed in order to increase the classification power.

2 Experimental Procedure
2.1 Materials and equipment

The material welded by the RSW process was sheet steel, whose chemical composition and
mechanical properties are respectively shown in Table 1 and Table 2. The thickness of the
sheet steel was 1 mm.

Table 1. Chemical composition of the sheet steel (wt. %).

C Mn Si P S Al

0.05 0.26 0.02 0.012 0.011 0.033

Table 2. Mechanical properties of the sheet steel.

Yield strength Tensile strength Total elongation Hardness
(MPa) (MPa) (%) (HV)
192 301 40 104

The steel sheets were welded in a single-phase alternating current (AC) 50 Hz equipment by
using water-cooled truncated cone RWMA Group A Class 2 electrodes with 16 mm body
diameter and 5 mm face diameter.

The ultrasonic testing of the RSW joints employed a transducer that uses a captive water
column delay and a replaceable rubber membrane with the aim of achieving good coupling
with the surface of the RSW joint, which may have an indentation caused by the electrodes, as
Fig. 1 shows. The frequency and the diameter of the transducer were respectively 20 MHz and
4.5 mm.

Indentation 1000 pm

Fig. 1. Macrograph of a cross-sectioned RSW joint, whose contact surface with the electrodes has an indentation.
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2.2 Welding conditions

A total of 438 joints were obtained by the RSW process. The controlled RSW parameters were
welding time, welding current and electrode force which, as indicated by Aslanlar (2006), are
the most important welding parameters in RSW. The values of these parameters are shown in
Table 3. The values recommend in McCauley et al. (1971) were taken as reference but, whilst
the electrode force was kept constant for all RSW joints, the welding time and the welding
current took different values with the aim of achieving not only the quality level “good weld”
but also the other three quality levels which were considered for classifying RSW joints and
which will be explained later.

Table 3. RSW parameters and their respective values.

Welding time Welding current Electrode force
(s) (kA RMS) (N)
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.4

980.7

0N O UL b

2.3 Ultrasonic testing of RSW joints

The pulse-echo method with A-scan data presentation was used for ultrasonic testing. Zhang
(2011) stated that the ultrasonic oscillogram obtained by the A-scan technique is a plot of
wave amplitude versus time; the ultrasonic beam is reflected when it encounters an interface
and then a series of echoes, which is associated with the quality of the RSW joint, is obtained:
(i) the location of a reflecting interface is defined by the echo positions; and (ii) the height of
the echoes depends on the sound attenuation which, in turn, depends on the microstructure
of the weld nugget of the RSW joint.

2.3.1 Ultrasonic oscillograms data

A representative vector of each ultrasonic oscillogram must be obtained with the aim of
processing the data obtained by ultrasonic testing. In order to be representative, a vector must
contain information about the main factors that characterize an ultrasonic oscillogram. These
factors are, according to Mansour (1991), the attenuation of the ultrasonic beam and the
presence of one-layer echoes between principal echoes. It is also important that the vector
does not contain redundant information. The criterion that determines the vector size is the
number of echoes that are considered in the oscillogram: too few echoes give rise to vectors
that may not be sufficiently representative, but too many echoes result in a vector with
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redundant information. Martin (2004) developed a program that obtains a 10-component
vector that uses only the first six echoes, where:

— The first five components of the vector are the relative heights of the echoes. Specifically,
the n™" component (with n=1, . . ., 5) is the height of the [n + 1] echo (h,.1) divided by the
height of the 1% echo (h;). Due to the role of the first echo in obtaining the vector, the
ultrasonic testing equipment settings were adjusted so that the first echo displayed on the
oscillogram was the first backwall echo.

— The last five components of the vector are the distances between consecutive echoes: the
n™ component (with n=6, . . ., 10) is the distance between the [n-4]"" echo and the [n-5]"

echo (dp-s).

2.3.2 RSW quality levels

The quality level of each RSW joint was determined from its ultrasonic oscillogram. According
to Moshayedi and Sattari-Far (2012), weld nugget size is the most important parameter among
those that determine the mechanical behaviour of the RSW joint; therefore, the quality level
estimated by ultrasonic testing must be a function of the weld nugget size. Mansour (1991)
indicated that, indeed, the oscillogram depends on the effect of weld nugget size on the
ultrasonic beam for two reasons: (i) the weld nugget —which has melted and solidified— has a
cast microstructure with coarse and columnar grains, as it is shown in Fig. 2; the weld nugget
produces higher attenuation than the parent metal and, hence, the greater the thickness of
the weld nugget, the higher the attenuation; (ii) the interface between the two sheets gives
rise to the reflection of the ultrasonic beam; and one-layer echoes appear between principal
echoes if the weld nugget diameter is smaller than the ultrasonic beam width.

Fig. 2. Micrograph of the weld nugget of a RSW joint, which has a cast microstructure with coarse and columnar
grains.
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According to Krautkrdmer and Krautkramer (1990), and taking into account the effect of weld
nugget on the ultrasonic beam behaviour, four quality levels were considered for classifying
RSW joints: (i) good weld; (ii) undersize weld; (iii) stick weld; (iv) no weld. The tensile-shear test
was performed on the different quality levels according to ISO 14273:2000, and the results are
provided in Fig. 3.

8
6 .
z
— Stick weld
= 4
= (6.675 kN)
S
2 Undersize weld (3.960 kN) Good weld
) (7.675 kN)
No weld (2.430 kN)
0 - . . .

0 2 4 6 8

Displacement (mm)

Fig. 3. Load vs. displacement curves and tensile shear load bearing capacities obtained from the tensile-shear test
performed on the different quality levels.

2.3.2.1 Good weld

The weld nugget thickness is large and its diameter is greater than the ultrasonic beam width.
Therefore, as Fig. 4 shows: (i) the span of the sequence of echoes is short due to the high
attenuation caused by the coarse microstructure of a thick weld nugget; and (ii) the distance
between consecutive echoes is the sum of the thickness of each of the two sheets because the
ultrasonic beam reflections occur at the bottom surface of the lower sheet.
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Fig. 4. Reflections of the ultrasonic beam for a good weld (top), ultrasonic oscillogram of a good weld (lower left)
and its representative vector (lower right).

2.3.2.2 Undersize weld

Mansour (1991) indicated that the ultrasonic beam width must be approximately equal to the
smallest allowable weld nugget diameter which, according to Kamiski (1997), should be at
least four times the root of the thinner sheet thickness. Hence, the smallest allowable weld
nugget diameter was set at 4.5 mm —a RSW joint was classified as undersize weld if its weld
nugget diameter was smaller than 4.5 mm-— and, consequently, the selected transducer
diameter was 4.5 mm.

As it is shown in Fig. 5, since the weld nugget diameter is smaller than the ultrasonic beam
width: (i) the part of the ultrasonic beam that passes through the weld nugget leads to
principal echoes associated with the ultrasonic beam reflections which occur at the bottom
surface of the lower sheet; whilst (ii) the part of the ultrasonic beam that does not pass
through the weld nugget, and whose reflections occur at the interface between the two
sheets, gives rise to one-layer echoes between principal echoes.
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Fig. 5. Reflections of the ultrasonic beam for an undersize weld (top), ultrasonic oscillogram of an undersize weld
(lower left) and its representative vector (lower right).

2.3.2.3 Stick weld

The criterion used for classifying a RSW joint as stick weld was based, as reported by Zhang
(2011), on the heat input and on the attenuation that the weld nugget, melted by this heat
input, causes in the ultrasonic beam. A stick weld is originated by a low heat input that gives
rise to a weld nugget with an adequate diameter (i.e. larger than the ultrasonic beam width)
but with a smaller thickness and —according to Lancaster (1999) and Ozyiirek (2008), which
indicated that finer microstructures of the weld metal correspond with lower heat inputs—
with a finer microstructure than that of a good weld. Hence, a stick weld, as it can be seen in
Fig. 6: (i) produces lower attenuation than a good weld and the span of the sequence of
echoes is longer; and (ii) the distance between consecutive echoes is the sum of the thickness
of each of the two sheets because the ultrasonic beam reflections occur at the bottom surface
of the lower sheet.
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Fig. 6. Reflections of the ultrasonic beam for a stick weld (top), ultrasonic oscillogram of a stick weld (lower left) and
its representative vector (lower right).

2.3.2.4 No weld

There is no melted and solidified metal; thus, the grain is not as coarse as the grain of a cast
microstructure and the attenuation of the ultrasonic beam is lower than that of a RSW joint
with weld nugget. Therefore, as it is shown in Fig. 7: (i) the span of the sequence of echoes is
longer than that of a RSW joint with weld nugget; and (ii) the distance between echoes equals
the thickness of one sheet because, since there is no weld nugget, there is no continuity
between the two sheets.
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Fig. 7. Reflections of the ultrasonic beam for a no weld (top), ultrasonic oscillogram of a no weld (lower left) and its
representative vector (lower right).

3 Theoretical background

A tree is a collection of nodes and links hierarchically organized in which every node —with the
only exception of the root— has one incoming link. A decision tree is a non-parametric model
typically used to make regression (i.e. quantitative prediction) or classification (i.e. qualitative
prediction). When the tree is used for classifying, each node denotes a certain test. The input
case to be classified starts at the root of the tree (i.e. the upper-most node), and goes down
the tree following a path which is determined by the result of the tests conducted at each of
the nodes in the way. The nodes in the path send the input to the appropriate leaf (child node)
until the process reaches a terminal node. Terminal nodes usually associate the input with an
output; this output may be a certain class label or a probability distribution over all possible
classes.

There are several tree-based methods used for classification, although the most commonly
used are C4.5 by Quinlan (1993) and CART trees by Breiman et al. (1984). In this work CART
trees were initially used. Succinctly, a CART classification tree is built from a set of training or
learning data. This setisa N x(M +1) matrix, where N denotes the number of RSW joints or

examples of the set, M is the number of features or attributes X; that defines each example,

and the additional dimension includes the class ¢ €C in which each case falls.

The tree is built top-down according to a splitting rule in each node. Here, binary trees with
rules involving one single variable were considered. In such trees, a rule is just a question of
the form: “x; >0 ?”, i.e. a test that checks whether the value of one specific attribute x; of the
input case is greater than a certain number @, or not. Thus, the definition of a rule requires
selecting both a certain feature x; and a dividing value €. The aim of the algorithm is to divide

10
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the learning sample into subsets such that most observations within each subset belong to the
same class (or as few classes as possible).

The process formally consists in selecting —recursively and greedily— the variable X; —among

the M attributes— and the value @ that best splits the set at each step according to a given
metric. The metrics used to quantify how well classes have been separated are generically
called impurity measures. As reported by Hastie et al. (2009) and Rokach and Maimon (2008),
the two most popular impurity measures used to build trees are “information gain” and the
“Gini index”. The performance of both were analysed in this work.

Information gain is based on the concept of Shannon entropy. Entropy is a magnitude that
tries to measure how mixed the data is with respect to a certain target variable (i.e. the class
to which it belongs, in the present case). Thus, if all classes are equally represented in the
dataset (maximal mixture), then the entropy is maximal; conversely, if all observations in the
dataset belong to one single class (minimal mixture), the entropy of the dataset is O.
Therefore, for the present classification purposes the aim is to reduce the entropy as much as
possible.

Specifically, given a set S of training examples that reach a node and its empirical distribution
over classes p(c), the Shannon entropy associated to the data S can be calculated as:

H(S)=-2_ . P(c)-log(p(c)) (1)

where p(c) is the proportion of input cases that are classified in class c. (In the case of p(c)=0
for any class, the value of 0:log(0) is considered to be 0, consistently with the limit of the
expression when p approaches 0.) After the node, two distributions S* and S?, with their
respective entropies H(S'), are obtained. Thus, the entropy after the split can be defined as the
weighted average of the entropies of the resulting distributions S* and §?, where the weights
account for the number of cases in each of the distributions (see the last term in equation 2
below). Finally, the expected reduction in entropy —or information gain— can be defined as the
difference between the entropy before the split, H(S), and the entropy after the split:

s
I = H(S)_Zue{Lz}%H (S) (2)

Naturally, the algorithm tries to find the rule that maximizes the information gain, or expected
reduction in entropy.

In the case of using the Gini index function instead of using Eq. 1, the index of a set S can be
calculated as:

G(S)=-2.. . P(c)-(1-p(c) (3)

The Gini impurity is a measure of how often a case would be misclassified if cases were
stochastically assigned to classes according to the distribution of classes in the dataset. As with

11
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entropy, the Gini impurity is a metric to be minimized, so an analogous optimization is
performed.

Once an impurity measure is selected, the algorithm used for learning the tree considers every
possible € in the whole space of features of the training data set to find the optimal division.
Every split separates the data in two leaves and the process is repeated recursively, finding the
best split according to the impurity measure each time. Although, as pointed out by Criminisi
et al. (2011), other splits different from linear functions in one variable (x; > €) could be
considered to train trees, they can increase the computational cost to find the optimum and
hinder the interpretation of the decision rules of each node.

If the algorithm continues recursively, it builds a maximum tree with terminal nodes that
contain observations of one class only. However, maximum trees suffer from a number of
drawbacks: they are usually very complex and hence difficult to interpret, and when used with
new data they do not work particularly well, since they often learn patterns that are specific to
the training set but are not general for the problem, i.e. they “overfit”. Consequently,
maximum trees have to be optimized by cutting off irrelevant nodes and subtrees, i.e. they
have to be “pruned”. Among the different pruning strategies available, cost-complexity
pruning using 10-fold cross validation has been used. This technique is based on the
misclassification rate of the tree when applied to new data.

Classification trees built in this way show several desirable features, namely: they can
effectively handle both continuous and discrete variables, they are non-parametric, invariant
to monotonic transformations, robust with regard to outliers in learning data, and amenable to
interpretation and understanding of the classification patterns. These advantages, together
with reasonable classification performance in many contexts, justify their use in different fields
such as industrial settings (applied by Georgilakis et al. (2007) for the selection of winding
material in power transformers), medicine (used by Zhang and Li (2012) in the discrimination
of melanoma from other benign affections), or ecological data analysis (see e.g. the use of
trees by De’Ath and Fabricius (2000)). Notwithstanding, CART also presents some
disadvantages, especially problems of high variance (i.e. tendency to overfit).

A powerful approach proposed by Breiman (1996) to reduce variance in machine learning,
especially in high-variance, low-bias methods such as trees, is the use of bagging or bootstrap
aggregation. Given a data set of N elements, the basic idea of bootstrapping involves creating
m new datasets of the same size as the original one (i.e. N elements). Each of the new sets is
obtained by sampling the original set with replacement. Bagging consists in fitting m unbiased
but potentially noisy classification models, called weak learners, using the aforementioned
bootstrap samples as training set, and combining them together to form a strong learner that
is used to obtain a more robust classification (see Hastie et al. (2009) for more details).

Breiman (2001) adopted and modified the idea of bagging using partially uncorrelated trees to
create random forests. The random forest algorithm to create a forest with ntree trees from a
training set of N instances is as follows:

1) Fort=1to ntree

12
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a. Bootstrap a sample of size N from the training set
Build a maximum (i.e. not pruned) tree T: from the bootstrapped data, by
recursively repeating the following steps for each terminal node of the tree,
until the minimum node size nmin is reached
i. Select mtry variables at random from the M variables
ii. Pick the best variable/split-point among the mtry
iii. Split the node into two leaves with their corresponding nodes

2) Output the ensemble of ntree trees {T,}"

In order to classify a new datum x, let C,(x) be the class prediction of the t-th tree of the

random forest. Then the classification given by the random forest is obtained using the
majority rule, i.e. every tree votes, and the classification provided is the one with the highest

ntree
1

number of votes within the forest C"(x) = majority vote{ét (x)}

The reduction of variance combining trees via voting comes from the assumption that the
trees are different from each other; naturally, the more similar the trees, the less
advantageous is to combine them. Breiman (2001) obtained the needed de-correlation among
trees injecting two sources of randomness in the process. First, each tree is built based on a
different training dataset as a consequence of using the bootstrapping process. A second
source of randomness is also added since splits are based on randomly selected attributes.
This second process involves a trade-off. If mtry is close to M, the strength of each individual
learner increases since they can operate using more information to classify; however, using
high values of mtry also increases correlation among trees, thus reducing the advantage of
combining weak learners. Brieman (2001) suggested testing with three possible values for mtry

(%N, JM, 2JM ) and choosing the one with the best performance, but the optimal balance

may depend on the problem and should be determined through experimentation.

Random forests are fast and parallelizable, very resistant to overfitting, and they often obtain
good results in different contexts. As indicated by Criminisi et al. (2011), all these features are
contributing to their popularity. They also offer two additional relevant aspects based on the
concept of “Out-Of Bag” (OOB) data. Note that each tree of the forest uses a different
bootstrap sample from the original data set. About one third of the original data is not used in
the construction of each tree, and these unused data is the so-called out of bag data. OOB data
may be used as a test dataset to estimate misclassification error. The process is conducted
classifying each datum only with those classifiers that have not been trained using such
particular datum, and comparing them with its real class. OOB error is the proportion of
misclassified data. Although still controversial, as pointed out by Mitchell (2011), OOB error
has been proposed as an unbiased estimate of the true prediction error and, consequently, a
cross-validation alternative for random forests. A second interesting analysis obtained from
OOB data consists in determining the relative importance of each variable to classify data. For
each tree, OOB sample is used to permute the j-th € M feature of these data at random. Then,
OOB error of the tree is computed with these modified data. The importance of the j-th
feature is the increase of OOB error obtained as a consequence of the permutation. The higher
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the increase of the OOB error, the more important is the variable to achieve a correct
classification.

In order to analyse and compare the predictive power of each technique and how the results
generalize to an independent data set, cross-validation was used in each of the different
approaches followed in this work. Cross-validation can be performed partitioning available
data into two complementary sets, i.e. a set for training and a set for cross-validation. When
the subsets do not contain a large number of instances, a strategy to reduce variability in
cross-validation results is to perform multiple rounds of cross-validation using different
partitions and to calculate the results averaging over the rounds. One approach to do this is
the so-called k-fold cross-validation: the original data are randomly partitioned into k subsets
of equal size, k-1 subsets are used to train and the remaining data is used to test. The process
is rotated k times and results are averaged. The extreme case of k-fold validation is Leave-One-
Out Cross-Validation (LOOCV), in which k is equal to the number of examples in the original
data. This strategy implies using a single observation as validation set and the remaining data
to train the model and repeat the process as many times as the number of original instances
(see Fig. 8). LOOCV involves more computational calculations but implies training with more
data.

{2 X3 ... Xy} 1x1} €
e
/2/, (X7 X3... Xy} (x5} ey —_ * 1 N
Xy e=—>Y e,
\: : : / N j=1 7
N x; BN Y1 B £ ey
. . P N
Training set Cross- Error e €{0,1}

validation set

Fig. 8. Scheme of the LOOCV cross-validation technique. The expected level of accuracy of the model is measured by
the average of the classification errors in all N rounds.

4 Results and discussion

4.1 Decision trees

The results of CART trees using maximum and pruned trees, and considering Gini index and
information gain splitting rule strategies, were analysed. CART trees were implemented with
the R package “rpart”, developed by Therneau and Atkinson (1997), with the parameters
Cp=0.001 and MinSplit=1. The pruned trees using the complete data set of 438 examples are
presented in Fig. 9 for the case of information gain (Eg. 1) and in Fig. 10 for the Gini index (Eq.
2).
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Fig. 9. Pruned classification tree using information gain strategy. Supplementary table 1 related to this figure can be found, in the online version, at
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In the figures, the ovals denote decision nodes and the rectangles denote end nodes. The text
label of the node shows the most frequent class of the data set that has reached each node.
Under each decision node there is a condition that separates the data into two sets: on the
left, the data that satisfies the condition, and on the right, the data that does not satisfy the
condition. The histograms represent the number of data of each class of the training set that
meet all conditions until this node. Each bar of the histograms represents a class, meaning G:
Good, N: No Weld, S: Stick, U: Undersize.

As an example, the first three nodes of each decision tree in Figs. 9 and 10 are studied. The
three features used are the following: (i) the distance between the second and third echoes
(d2), which allows knowing if there is continuity between the two sheets throughout the
ultrasonic beam width, splits the initial node into two leaves: one for good welds and stick
welds and the other for no welds and undersize welds; (ii) the relative height of the last
considered echo (hs_h1), which assesses the attenuation of the ultrasonic beam by considering
the longest period of time (i.e. the time it takes to record the sixth echo), splits the good weld
and stick weld node that follows the initial node into two leaves, one for good welds and the
other for stick welds; (iii) the relative height of the second echo (h;_h;) splits the no weld and
undersize weld node that follows the initial node into two leaves, one for no welds and the
other for undersize welds, since the second echo of an undersize weld is a one-layer echo
whose height is much smaller than that of a no weld.

Results obtained using LOOCV cross-validation are summarized in Table 4. The classification
rate of all techniques is similar, although better in the case of pruned trees, and higher than
93% for all of them. Note that the majority of misclassifications occurred between good weld
and stick weld. This result is consistent with the inherent difficulty, mentioned in Martin et al.
(2007), in differentiating border cases between good weld and stick weld.

Table 4. Confusion tables and classification rates of LOOCV results of CART trees using maximum and pruned trees
and Gini index and Information gain splitting rules. Human operator’s criterion is denoted as “original” while tree
classification is denoted as “predicted”.

Maximum tree - Gini index Maximum tree - Information gain
Predicted Predicted
Good  NoWeld | Stick | Undersize Good | NoWeld | Stick | Undersize
Good 208 O 12 1 Good 211 O 9 1
NoWeld 0 29 0 1 NoWeld 0 29 0 1
T | stick 0 1 53 1 S | stick 8 1 55 1
5 )
O | Undersize | 0 0 2 120 O | Undersize | 2 0 3 117
Classification Classification
rate 0.9361 rate 0.9406
Pruned tree - Gini index Pruned tree - Information gain
‘ Predicted Predicted
Good  NoWeld | Stick | Undersize Good | NoWeld | Stick | Undersize
Good 213 0 7 1 Good 212 O 8 1
NoWeld 0 29 0 1 NoWeld 0 29 0 1
T:‘ Stick 9 1 54 1 Té Stick 8 1 55 1
) )
O | Undersize | 0 0 2 120 O | Undersize | 2 0 3 117
Classification Classification
rate 0.9498 rate 0.9429
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4.2 Random forests

Random forests were implemented with the “randomForest” R package (Liaw and Wiener,
2002). In Fig. 11 OOB error and LOOCV cross-validation are presented in order to make the
results comparable with the CART trees. Although results in both cases are comparable, the
computational effort to obtain OOB error is much lower. The influence of the parameters ntree
(number of trees in the forest) and mtry (number of features used in each node, out of the M
possible features) were analysed.

0.052 —O— 1-100 trees 0.052 —O— 1-100 trees
= 101-200 trees o I == 101-200 trees
201-300 trees g 201-300 trees
== 301-400 trees == 301-400 trees
5 0.048 S/~ 401-500 trees % 0.048 —V 401-500 trees
j=1
3 : 8 |\1 I
> 0.044 0.044 1 I
8 . :’0 i I\//IL./I\\I/I )
= 1 ] A
Q o0 NI~y I T/[’—i‘/i 2 0040 \ I z/ 4
N e e S / < o 1 T /
&\Q ] / = Nht\; T
M\_}_ﬁ_ﬂn% o \—11__‘%____:____:/:
0.036 T 0.036
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
mitry mitry
Fig. 11. Effect of mtry in LOOCV misclassification error (left) and in OOB misclassification error (right) depending on

the number of the trees of the forest. Vertical bars show the standard errors.

The experiments showed that the higher the number of trees in the forest, the better the
results obtained; however, results did not improve significantly beyond 300 trees. The best
results were obtained for mtry equal to 6. This value corresponds approximately to 2</M . In
this case OOB error was about 0.03653.

All the trained random forests with more than 100 trees produced better results than any
CART tree. Table 5 shows the confusion table of results of a random forest with mtry=6 and
ntree=500. The classification rate was increased in about 2% in comparison to CART models,
reaching an impressive 96%. Note that the most frequent misclassification was the
classification of stick welds as good welds.

Table 5. Confusion table and classification rate of LOOCV results for a random forest with mtry=6 and ntree=500.
Human operator’s criterion is denoted as “original”, while random forest classification is denoted as “predicted”.

Random Forest mtry=6 and ntree=500

‘ Predicted

Good ' NoWeld | Stick | Undersize
‘Good 218 0 3 0

‘ NoWeld 0 29 0 1
g ‘ stick 6 1 57 1
)
O | Undersize 4 0 0 118

Classification

rate 0.96347

The disaggregated misclassification rate using the OOB approach of a random forest with
mtry=6 was also analysed. The results are summarized in Fig. 12. In this case, errors were
stabilized for less than 200 trees, and it can be observed that a considerable source of error
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comes from the misclassification of stick welds. These results are consistent with those shown
in Table 5.

5 0.20 —— Total
E —— Stick
- —  (Good
2 0.15 ~—— No Weld
ES' ——— Undersize
(]
=
‘» 0.10
7))
=
Q
R
= 0.05
M
O I,
O 0.00
0 100 200 300 400 500

Number of trees

Fig. 12. OOB misclassification error of random forests with mtry= 6 and different number of trees depending on the
quality level of the RSW joint.

A measure of variable importance in a random forest with mtry=6 and ntree=500 is shown in
Table 6. The average difference over all trees between the error rate on the OOB portion of
the data and the error rate after permuting each predictor variable, normalized by the
standard deviation of the differences, was calculated. These results showed that the relative
heights of the second (h,_h;) and last (hs_h1) considered echoes, together with the distance
between the second and third echoes (d;) had a key influence in the classification. This is
consistent with the classification scheme followed by the decision trees shown in Figs. 9 and
10, where these three features were the first ones used in each decision tree.

Table 6. Variable importance of the features for classification accuracy.

Mean Decrease Accuracy  Error

hz_h; 50.24
hs_h 42.92
d> 35.10
hs_h; 31.98
ha_h; 24.68
ds 24.61
hs_h; 20.75
ds 18.83
ds 15.64
ds 13.12
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The degree of agreement, i.e. the consensus obtained by the random forest in the
classification of a datum, can be used to identify the most difficult situations in which the
interpretation of the ultrasonic oscillogram is least clear. This hypothesis was tested comparing
the classification rate as a function of the agreement of the most voted option. Fig. 13 shows
the results: 85% of the data had a consensus above 0.85 of agreement, with a classification
rate of 99% of correct classification. Lower levels of agreement decreased the overall
classification rate. An increase of the needed agreement of the most voted option decreased
the percentage of classified joints since the criterion to take a decision was more demanding;
as a consequence, the subset of classified joints had a higher classification rate.

1.0

0.9

0.8

0.7

0.6

Percentage

= %, Correct

05 O Classified

0.4

03 04 05 06 07 08 09 10
Agreement

Fig. 13. Percentages of RSW joints classified and correctly classified depending on the level of agreement of the
trees that constitute the random forest.

5 Conclusions
This work proposed CART and random forest techniques as pattern recognition tools for
classification of ultrasonic oscillograms of RSW joints. The major conclusions are:

(1) Tree-based approaches provide good classification performance and can be employed
as effective decision support tools to assist in quality control.

(2) CART trees bring to light a formal decision model compatible with the implicit
classification algorithm applied by the human operator. Their interpretability, make
trees very advantageous to understand and control the decision processes, instruct
other human operators, compare margins of safety used by different classifiers, and
establish new ones depending on the criticality of the industrial process.
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(3) A random forest can aggregate decision mechanisms of several human operators,
reduce overfitting and improve significantly the classification performance, although at
the cost of losing interpretability and understanding of the criteria used by the
decision algorithm.

(4) The democratic nature of the algorithm was applied to assess the certainty about the
classification. This feature is beneficial in control quality since it reduces the workload
of human operators by focusing only on controversial data which are hard to interpret.
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