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Abstract 

This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to 

analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be 

obtained using this approximation, we present two illustrative examples which are meant to serve as 

methodological references for researchers exploring this area. Finally, we prove some convergence results 

for simulations of a family of evolutionary games, namely, intra-population imitation models in n-player 

games with arbitrary payoffs. 
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1 Introduction 

This paper is intended to be useful for researchers that are interested in the relation 

between a computer simulation of a discrete-time stochastic process and the expected 

move of such stochastic process, also called its mean dynamic or mean-field 

deterministic approximation. Specifically, we show how stochastic approximation 

theory can help to understand the dynamics of various computer simulations. Here we 

focus on models that can be formulated as Markov chains, complementing other more 

basic Markov-based techniques for the analysis of computer simulations [1, 21, 28].  

The principle underlying the use of a mean-field approximation to analyse the behaviour 

of a system is to develop a simplified model based on the average or expected value of 

some of the variables or magnitudes in the system, ignoring or partially ignoring the 

fluctuations of that magnitude around its average. Under the umbrella of such a broad 

principle, or even when considering slightly more restrictive frameworks, there are 

many different mean-field approximation techniques [39]. The particular one that we 

study in this paper derives from Stochastic Approximation Theory (SAT), and presents 
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some differences with the technique derived from Statistical Physics known as Mean 

Field Theory (MFT). For the sake of clarity, we devote here a few lines to clarify the 

main differences between these two approaches.  

Mean-field approximations were introduced in physics in the early 1900s through the 

work of Weiss on magnetism [49]. This technique approximates the simultaneous effect 

–or field– that a number of interacting neighbouring particles of different types (or in 

different states) create at a given location, by considering some average value or mean 

field which may depend only on the total number of neighbouring particles at the site 

and on the global –rather than local– prevalence of each type of particle.  

This kind of mean-field approximation has proved to be very useful in a large number 

of fields, from physics to sociology [19, 26], and has given rise to an enormous number 

of variants and improvements, including dynamical extensions –especially to study 

strongly correlated electronic systems [31]. In particular, the technique has been 

usefully applied to study dynamics in networks [2] and evolutionary games on graphs 

(see [46] and [42] for a review).  

The starting point of the mean-field approach in Stochastic Approximation Theory is 

very different. SAT studies recursive algorithms such as γγγ γ nnn YXX ⋅+=+1 , where γ is 

a positive real parameter which can be –or become– small, and where γ
nY  is a vector of 

random variables (i.e. a stochastic term) whose distribution may depend on the value of 
γ
nX . In this framework, “mean-field approximation” or “mean dynamic”[44] refers to a 

model in which the stochastic term γ
nY  is approximated by its expected value )( γ

nYE  at 

any point xX n =γ , and in which the equation in differences γγγ γ nnn YXX ⋅+=+1  is 

approximated by a deterministic differential equation x = f(x). In the context of 

recursive stochastic algorithms, this method was introduced in 1977 by Ljung [36], and, 

for stochastic learning models, it can be traced back to the work of Norman in the 1960s 

[40, 41]. Besides mean-field approximation, mean-field equations  or deterministic 

approximation [7, 13], the method has also received several other names, such as mean 

dynamic [44], approximate mean value equation [46] or the (ordinary differential 

equation) ODE method [33]. In contrast to the Statistical Mechanics approach described 

above, in the stochastic approximation case there is no averaging of concurrent effects. 

Instead, averaging (or expectation) in SAT is done across time rather than space, and a 

large number of small sequential steps (small values of γ ) will be needed for the 
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approximation to be valid. In fact, as illustrated in some of the examples we will discuss 

later, there may be no interacting particles at all, and the technique can be applied to a 

single particle subject to a random external field. 

As to the relevance of the number of components or particles in a system, it is not rare 

that, when modelling some real systems, the step parameter γ in the recursive equation 
γγγ γ nnn YXX ⋅+=+1 is a decreasing function of the number of interacting agents in the 

system (often in the form of inverse proportion) [6]. In those particular cases, a large 

number N of particles –or agents– will also be the key condition (as is usually the case 

in Mean Field Theory) for the SAT mean-field approximation to be valid, but, in 

contrast to the usual MFT case, it may be the case that only 2 particles or agents are 

interacting at each step. The important point for the stochastic approximation in SAT to 

be valid is that the “global state” of the population varies very little between consecutive 

time steps (i.e. many steps should take place before the “global state” can change 

significantly); this condition is often satisfied when the population is very large, the 

global state of the population can be characterised by the number of agents of each type, 

and only a few agents can change their state at each time step. In contrast, in MFT, the 

important condition is usually that a sufficiently large (but possibly small, e.g. greater 

than four) number of particles interact simultaneously with any given one [22]. The 

stochastic approximation will usually get gradually better as the population size N 

increases, and very large values of N may be needed for the approximation to be a good 

description of the dynamics of the system over a limited period of time (steps).  

In a real system, both the SAT and MFT approaches can lead to the same set of 

equations for the dynamics of some average value in the population, but then the MFT 

approach will usually be interpreted as the dynamics of the corresponding continuously 

varying variable under some homogeneity assumption in an infinite population [2], 

while the SAT approach will be providing an approximation to the actual stochastic 

trajectory of the variable in a finite but large population, when that variable changes 

very little between consecutive steps.     

From now on, in this paper we will use the name mean dynamic to refer to the ODE 

method derived in Stochastic Approximation Theory. Our approach is threefold:  

First, we intuitively discuss the type of models for which the mean dynamic can be a 

useful tool. Then we present some technical conditions that guarantee the validity of 

this approximation. These are selected results from the theory of stochastic 
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approximation, which we have appropriately simplified for the objectives of this paper. 

And finally, as an illustration of the possible applications of the theory, we provide 

examples and proofs of convergence for simulations of various 2x2 and n-player 

evolutionary games.  

We do not provide new theorems in stochastic approximation: most of the theoretical 

results in this paper can be derived from a general theorem in Stochastic Approximation 

Theory proved by Norman [40]. In this sense, the first part of the paper is mainly an 

introduction to the mean dynamic as a tool to understand computer simulations, and the 

added value of this paper is that it selects and adapts those results that we consider most 

useful for understanding the dynamics of simple simulation models, and presents the 

corresponding technical requirements in a simpler way than the original sources.  

A second goal of this paper is to provide the reader with the intuition that underlies the 

mean dynamic. This is valuable because –as illustrated below– the mere intuition is 

often sufficient to significantly enhance our understanding of the dynamics of various 

computer simulations. Furthermore, it turns out that the intuition is often useful even in 

cases where the precise mathematical theorems that back such intuition formally have 

not yet been developed (and the theory of stochastic approximation is a very dynamic 

field, so today’s intuitions may become tomorrow’s theorems). We also discuss precise 

technical conditions that guarantee the formal validity of the mean dynamic, but the 

value of comprehending the intuition should not be underestimated.  

Mean dynamic approximations of stochastic models have been widely and successfully 

applied to analyse a diverse range of models in e.g. learning game theory [10, 18, 24, 

27, 29, 48], evolutionary game theory [4, 5, 7, 9, 14, 30] and diffusion processes in 

social networks [19, 37, 47]. As a particular application of the theory, we show in this 

paper some agent-based models of social interactions which present completely 

different dynamics depending on the number of agents included in the model (this is 

already a well-known fact), and we explain how these qualitatively different behaviours 

can be characterised. 

The rest of the paper is structured as follows: section 2 explains the difference between 

transient and asymptotic behaviour in the context of Markov models. In section 3 we 

informally discuss the conditions under which the mean dynamic can be useful to 

understand the transient dynamics of a computer simulation. As mentioned above, it is 

important to note that mean dynamic methods can shed light on the dynamics of 

stochastic processes even in cases where there are still no readily available convergence 



 5 

theorems that can prove the formal validity of the approximation. Section 4 provides a 

set of formal results and sufficient conditions that guarantee the validity of the mean 

dynamic. These results are adapted mainly from Norman [40]. Section 5 discusses in 

practical terms the type of analysis that can be conducted on computer simulations using 

stochastic approximation theory. In particular, we provide two illustrative examples of 

how to analyse computer simulations of simple models combining the theory of Markov 

chains with the theory of stochastic approximation. At the end of this section we 

provide generalised results for simulations of some 2x2 and n-player evolutionary 

games. Finally, section 6 summarises our conclusions.  

The paper also includes an Appendix which provides some notes on the relation 

between a deterministic difference equation of the form )( nn xfx ⋅=∆ γ  and its 

corresponding differential equation x = f(x). Some readers may find these notes useful 

before embarking on the analysis of the stochastic case. 

2 Markov Chains. Transient and asymptotic behaviour 

This section briefly revisits some of the techniques that can be used to study Markov 

chains. The main objective of this section is to set the scope of applicability of the mean 

dynamic approximation, namely the study of the transient behaviour of systems with 

large transition matrices (or with an infinite state space). The reader familiar with 

Markov chains may wish to skip this section. 

We centre our discussion on discrete-time stochastic processes that can be formalised as 

Markov chains, i.e. processes in which, in every time-step n, a vector of state variables 

Xn can condense all the past information of the process that is relevant for its future. In a 

way, the values of such variables depict a “complete and accurate snapshot” of the 

current situation of the system. Thus, the value of the vector of state variables Xn is 

often called “the state of the system in time-step n”. The current state of the system, 

together with the state transition probabilities, determine the probability distribution 

over the possible states of the system for every future time-step. Slightly more formally, 

given some initial state X0 = i, we can calculate the probability distribution of the state 

of the system after n time steps: P(Xn = · | X0 = i). 

The study of Markov processes is usually divided into transient and asymptotic 

behaviour. The transient behaviour is characterised by the probability distribution of the 
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state vector Xn in a given time-step n. The asymptotic behaviour is characterised by the 

limit of the distribution of Xn as n goes to infinity, when this limit exists. 

After a sufficiently long period of time, a Markov process –and, consequently, a 

computer simulation of the process– is likely to be evolving very closely to what its 

asymptotic behaviour (stochastically) predicts; as a result, many studies of Markov 

processes focus on their asymptotic dynamics. Techniques to characterise the 

asymptotic behaviour of Markov chains can be found in introductory textbooks [32]. 

However, “a sufficiently long period of time” may be too long, i.e. it may be 

unattainable in practical terms (e.g. it may require years of computation) or, simply, it 

may be significantly longer than the time scope we are actually interested in. In many 

cases, as it happens so often in life, the journey may be more interesting than the final 

state.  

Thus, let us now turn to the transient behaviour. Consider a Markov chain with s 

possible states. In simple words, we are after an s-dimensional vector a(n) = [a1
(n), … , 

as
(n)] containing the probability of finding the process in each of the s possible states in 

time-step n. The ith element of a(n) is ai
(n) = P(Xn = i), and it denotes the probability that 

the system is in state i at time-step n. To calculate a(n) we must first introduce the 

transition matrix P. Let pi,j denote the probability that the system moves from state i to 

state j in one time-step: pi,j = P(Xn+1 = j | Xn = i). The probabilities pi,j are called 

transition probabilities and they are often arranged in a matrix, namely the transition 

matrix P. This matrix P characterises the stochastic process.  

If the transition matrix P of a Markov chain is known and tractable, computing the 

transient behaviour of the system is straightforward: the probability distribution of the 

state of the system in time-step n is characterised by a(n) = a(0) · Pn. (Naturally, in 

general the distribution of the state of the system in time-step n depends on the initial 

conditions a(0).) 

If the state transition matrix is either unknown or intractable, the situation is not so 

simple. In some cases, given some initial conditions a(0), computer simulations can 

approximate the distribution of the state of the system in time-step n, and the statistical 

accuracy of these approximations can be assessed [28]. Unfortunately, the nature of the 

parameter space of many models means that obtaining good approximations for their 

transient behaviour in the general case (i.e. for any parameterisation and all initial 

conditions) is often too demanding in computational terms. When this is the case, can 

we still say something about the expected behaviour of the Markov process before it 
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gets close to its asymptotic behaviour? This paper shows that sometimes we can, by 

using stochastic approximation theory. The following sections explain how the mean 

dynamic can be useful to understand the transient dynamics of some simple simulation 

models formulated as Markov chains.  

3 The mean dynamic: Intuition 

A simulated example can illustrate the conditions under which the mean dynamic can be 

useful to understand a computer simulation. Consider one agent situated at a point in a 

bounded 2-dimensional space. In each time-step this agent takes one step in one of the 

four cardinal directions. The agent’s movement is stochastic and slightly biased towards 

the North: a northward step is twice more likely than a step in any of the other three 

cardinal directions. Suppose that we place several agents like this one in the middle of a 

small area, such as a garden, and several others in the middle of a very large area, such 

as a desert (see applet for Fig. 1 at http://luis.izqui.org/models/gardendesert/).   

If we observe the behaviour of the agents in the garden before they leave it, it will 

probably look quite random, with the agents leaving the garden through all its different 

sides. In contrast, if we observe the behaviour of the agents in the desert, they will seem 

quite determined to advance northwards, and with high probability they will all be 

leaving the desert through its northern border. When the number of steps required to 

cover some distance is very large, the randomness of the agents’ movement averages 

out, and the agents will seem to be following their expected move northwards. This is 

the basic idea of the mean dynamic. 

Figure 1. The applet shows two independent areas: a small (8x8) green garden on the left, and a large 

http://luis.izqui.org/models/gardendesert/�
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(200x200) yellow desert on the right. For each area, an iteration of the model implies (a) the creation of 

one agent in the middle of the area, and (b) that each agent within the area advances one step: upwards 

(with probability 0.4), leftwards (with probability 0.2), rightwards (with probability 0.2) or downwards 

(with probability 0.2). Agents that reach the border of their corresponding area cannot return. The button 

“Clear” initialises the model. Applet at http://luis.izqui.org/models/gardendesert/.   

 

Loosely speaking, a requisite for the mean dynamic to be useful is that any two 

consecutive states of the process are “very close” to each other –according to some 

measure of distance in the space of states– so the process needs to take a large number 

of time-steps in order to advance a significant distance in that space. Simply put, time 

proximity must imply space proximity. Consequently, we need to work with some 

measure of distance between different states. As in the previous example, we will 

assume that the state variables of the stochastic process –the agents’ position in our 

example– take real values within a closed and bounded subset of d-dimensional 

Euclidean space Rd . 

Going back to our northward-biased random walker, suppose that the length of his step 

is γ, and let the 2-dimensional vector γ
nX  be his position vector in the grid at time n. 

Note that the law of motion of an agent with step size γ is nn YX ⋅=∆ γγ , where Yn is a 

random vector which may take the value [0, 1] (northwards) with probability 0.4 or the 

values [1, 0], [-1, 0] or [0, -1] with probability 0.2 each. Note also that the expected 

move of γ
nX  is )()( nn YEXE ⋅=∆ γγ  = γ [0, 0.2] (i.e. northwards). The mean dynamic 

relates the actual (stochastic) move of γ
nX  with its (deterministic) expected move, for 

low values of the step size γ. 

In the previous example the probability distribution of the random “jumps” Yn is the 

same at every position γ
nX  and for every step size γ.  More generally, consider a family 

of time-homogeneous Markov processes γ
nX  which take values within d-dimensional 

Euclidean space Rd  and such that γγ γ nn YX ⋅=∆ , where γ
nY  is a vector of random 

variables whose distribution may depend on the particular value of γ
nX  = x and on γ, i.e.  

),( xYY nn γγγ = . Let the mean dynamic for γ
nX  be the (deterministic) differential 

equation x  = g(x), where g(x) = )|(lim 0 xXYE nn =→
γγ

γ . Informally, the vector field 

g(x) provides the expected direction of the “jump” of γ
nX  at the particular but generic 

http://luis.izqui.org/models/gardendesert/�
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point γ
nX = x when the step size γ goes to zero: the local direction of the expected move 

of γ
nX  when γ is small. The question then is: under what conditions can one legitimately 

expect that the original stochastic process will tend to move roughly in the local 

direction of its expected (deterministic) move? 

Intuitively, if the vector field g(x) associated to the local expected move of the 

stochastic process varies smoothly with x and the process γ
nX  is such that it takes a 

large number of steps for γ
nX  to leave a neighbourhood of any given point x, then we 

could expect that stochasticity somewhat averages out, and that γ
nX  will tend to 

advance in the local direction of its expected move, closely following a trajectory of the 

differential equation x = g(x). 

Thus, the mean dynamic can be helpful to understand the dynamics of a simulation of a 

Markov process when it is not possible or practical to work with the state transition 

matrix directly and:  

i) The considered process is such that the distance between any two consecutive states is 

small, or decreases as the process advances. More generally, the probability that the 

state of the process makes a large jump to a distant area of the state space in a small 

number of steps must be (or become) negligible.  

ii) The process is such that, if state x’ can be reached from state x in a small number of 

steps, then the vectors g(x) and g(x’) that characterise the expected move of the system 

at those states are also very close.  

These two conditions are basically “hints” or “signals” that suggest that the mean 

dynamic will probably be useful to understand the dynamics of the process under 

investigation. Some examples of Markov processes where the conditions required for 

the mean dynamic to be useful are usually met are: 

- Dynamic models of large populations where in every time-step at most k individuals 

may change their strategy (i.e. their behaviour) within a finite set of strategies. This 

change of strategy could happen by death and birth, imitation, or other adaptation 

processes. If the evolution of the process depends only on the proportion of agents in 

the population following each possible strategy i, i.e. if those proportions fully 

characterise the state of the system, then the distance between two consecutive states 

gets small for large population sizes N, and therefore the conditions for the usefulness of 

the mean dynamic are satisfied. (Formally, let vector Xn, with components Xi,n, denote 
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the proportion of individuals following strategy i in time-step n. Then:  ΔXi,n ≤ k/N.) 

Furthermore, the conditions may also be met if the number of individuals that may 

change their behaviour in time-step n follows a distribution with finite mean and 

sufficiently light tails [34].  

- Learning processes in social interactions where the parameters that regulate an agent’s 

behaviour vary slowly –the so-called “slow learning” [5, 40]. This may happen because 

the learning model assumes that experienced agents react less and less to new 

observations as time goes by –as it happens in stochastic fictitious play [17, 18, 24] and 

in Erev and Roth’s reinforcement learning model [15, 25]–, or simply because the 

agents are assumed to be changing their parameters by small steps, as in the Bush-

Mosteller reinforcement learning model [10, 27, 29]. In this latter case the dynamics of 

the state of the process can be expressed as nn YX ⋅=∆ γγ , where the distribution of Yn 

depends only on the value of γ
nX , and where γ is a constant and small step size. 

4 Formal results 

The propositions in this section are adapted from Norman [40, 41], who analyses 

Markov processes that advance by small steps. This is actually a particular case within 

the more general theory of stochastic approximation [34]. The exposition we present 

here is intended to be easier to understand than the original sources: it can be considered 

a corollary of Norman [40] that focuses only on selected results and tries to present 

them together with the underlying intuition, and with an emphasis on those aspects that 

can be useful to interpret the dynamics of computer simulations. 

We are considering families of Markov processes whose state vector γ
nX  takes values 

within d-dimensional Euclidean space Rd and evolve according to the relation 
γγ γ nn YX ⋅=∆ , where: 

-  ],0( Maxγγ ∈ is a positive real number that regulates the distance between consecutive 

states. We focus on the dynamics of these processes for small values of γ (i.e. small 

steps). 

- γ
nY  is a vector of random variables that usually corresponds to some observed 

variables of the system and whose distribution may depend on the particular values of 
γ
nX  and γ.  
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For any (row) vector y let |y| = Tryy ⋅ , where Tr indicates transposition, and for any N 

× N matrix A = [ai,j]NxN  let |A| = ∑ =

N

ji jia
1,

2
, . 

The required conditions are: 

Assumption 1 

Intuitively, this condition states that the transition probabilities of the Markov process 

do not depend on the time-step index n (stationarity), that the state of the process takes 

values within a convex set I of Rd and that, as the step size γ goes to zero, the state 

space “fills” the set I, in the sense that the state of the process may be arbitrarily close to 

any point x in the set I.   

Formally: For every γ, { γ
nX }n≥0  is a Markov process with stationary transition 

probabilities and state space a subset γI  of  Rd. Let I be the smallest closed convex set 

of Rd including all γI . We assume that γI  approximates I as 0→γ  in the sense that, 

for any ||inflim, 0 xxIx Ix −∈ ∈→ γγ γγ
= 0 .  

Assumption 2 

Intuitively, this condition requires the existence of the mean-field function g(x), which 

provides the direction of the mean field at any point Ix∈   when the step size γ goes to 

zero. It also requires some regularity conditions on  g(x). 

Formally: Let g(x,γ) be the expected value of γ
nY  when γ

nX = x , i.e., g(x,γ)  = 

)|( xXYE nn =γγ . Because of stationarity, this function does not depend on n. We assume 

that: 

i)  g(x,γ)  converges to a function  g(x) as  γ →0  and this convergence is such that g(x,γ)  

= g(x) + )(γO  uniformly in γIx∈ .1

ii) g(x)  is differentiable on I and its (matrix) derivative g’(x)   is bounded and Lipschitz 

continuous on I: 

  

∞<
−
−

≠
∈ ||

|)(')('|sup , yx
ygxg

yx
Iyx .  

                                                 
1 A function f(x,γ) is )(γO as  γ →0 uniformly in Ix∈  iff ∃ δ > 0, ∃M > 0 such that | f(x,γ) | ≤ M·|γ|  
for |γ| < δ and for every Ix∈ , where δ, M are constants (independent of x).  
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Assumption 3 

Let  s(x, γ)  be the conditional covariance matrix of γ
nY  when γ

nX  = x, i.e., s(x, γ)  = 

]|)),(()),([( xXxgYxgYE nn
Tr

n =−⋅− γγγ γγ . We assume that, as γ →0,  s(x, γ)   

converges uniformly in γIx∈  to a Lipschitz continuous function s(x) on I.  

Assumption 4 

)||(| 3 xXYE nn =γγ  is uniformly bounded in γIx∈ , ],0( Maxγγ ∈ .  

 

The mean limit ordinary differential equation for this kind of processes is the 

differential equation x = g(x). This equation plays an important role in understanding 

the dynamics of the process for small values of γ. Basically, with the previous 

conditions: 

i) For any Ix ∈0 the ordinary differential equation (ODE) x = g(x) with initial condition 

x(t = 0) = x0  has a unique solution with trajectory x(t, x0) ∈ I  for all t ≥ 0.  

ii) For low values of γ, the stochastic process γ
nX  with initial state γ

0X  =  x0 tends to 

follow the trajectory  x(t, x0)  of the mean limit ODE x = g(x).  

More formally, for any finite t (0 ≤ t ≤ T), as  γ →0, the stochastic process γ
nX   in time-

step n = int(t/ γ) converges in probability to the point  x(t, x0) of the trajectory.  

iii) If, as t increases, the trajectory  x(t, x0) approaches an asymptotically stable point 

(ASP), then, for low enough values of γ and in a sufficiently long simulation, the 

stochastic process γ
nX  with initial state γ

0X  =  x0  will tend to approach and linger 

around the ASP.   

More formally, for any large enough finite T > Tδ  the probability of finding the process 
γ
nX  in time-step n = int(T/ γ) within a small neighbourhood Bδ  of the ASP goes to one 

as  γ →0.  

iv) For any fixed value of γ, the process γ
nX  will eventually approach its asymptotic 

behaviour, which –as will be shown later– cannot be characterised by the mean limit 

ODE in the general case [3, 14].  

 

The results of Norman [40, 41] on learning by small steps can be considered a particular 

case of stochastic approximation theory. In a more restrictive framework (i.e. games 

with a finite number of strategies where at most one player may change her strategy 
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simultaneously), Benaim and Weibull [7] provide sharp results for the relationship 

between some evolutionary game theory Markov models and their mean dynamics. 

Convergence theorems for Markov processes that take values on the integer 

multidimensional lattice can also be found in Rozonoer [43]. General results, still within 

Markov processes, are provided by Ethier and Kurtz [16]. Kushner and Yin [34] present 

an even more general framework for the topic of stochastic approximation, but when the 

assumptions are relaxed the results may not be as sharp. Two other very useful general 

references for stochastic approximation are Benveniste, Priouret and Métivier [8], and 

Borkar [11]. Finally, it is worth pointing out that the theory of stochastic approximation 

also encompasses the analysis of processes with non-constant (decreasing) values of γ, 

while here we have focused on processes with constant and small γ.  

5 Case studies 

This section presents an overview of how to usefully apply the deterministic mean 

dynamic approximation of a stochastic process for the analysis of a system. This is 

stated in abstract terms first, and then illustrated with two specific examples. Finally, 

the selected theoretical results of section 4 are used to prove convergence results on 

simulations of a broad family of evolutionary games. 

When a process meets the conditions for the mean dynamic to be useful, the dynamics 

of the state of the process tend to follow a trajectory of the mean limit ODE. As 

indicated before, in these models there is usually some distance-regulating parameter 

(e.g., the number of agents or some learning rate) that controls the maximum distance 

between any two consecutive states and, in general, the shorter this distance, the closer 

to a trajectory the dynamics of the system will tend to be.  

Given that the transient dynamics of the model will tend to concentrate around the 

trajectories of the mean limit ODE, it is useful to represent the map of trajectories of the 

corresponding ODE, if at all possible. It is also useful to look for cycles and critical 

points, particularly asymptotically stable points with large domains of attraction. 

Asymptotically stable points can be conceived as attractors of trajectories of the mean 

field. For suitable values of the distance-regulating parameter (which is usually the 

number of interacting elements in the simulation, or a variable denoting their sensitivity 

to new stimuli, or a parameter that modulates their speed of learning), asymptotically 

stable points act as attractors of the state of the system, and computer simulations are 
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likely to show dynamics that approach and spend long periods of time around these 

points2

Thus, the study of differential equation models of this type usually follows this 

approach [20, 45]:  

. 

i) Identification of the critical points (i.e., the solutions of x  = 0, also called equilibria 

or stationary states) and limit sets;  

ii) Linear stability analysis, to study the local stability of the critical points; 

iii) Global stability analysis, to find global attractors or basins of attraction of the 

critical points.  

Numerical simulations of the ODE can also help to analyse its behaviour. The following 

two cases illustrate the usefulness of the mean dynamic to understand the behaviour of 

some computer simulations.  

5.1. An imitation model in a Hawk-Dove game 

Consider a population of N individuals who, in every time-step, are randomly matched 

in couples for an interaction that can be modelled as a symmetric 2×2 game (N is an 

even integer). The possible strategies in the interaction are H (for Hawk) or D (for 

Dove). The preferences over outcomes for the row player are summarised in the 

following payoff matrix: 

 

 H D 
H 0 3 
D 1 2 

 

where higher numbers denote higher preference. At the end of every time-step one 

randomly selected player revises her strategy, and her revision rule is as follows: “I look 

at another (randomly selected) individual in my population; if and only if I prefer her 

last outcome to my last outcome, I adopt her strategy”. 

                                                 
2  See for instance the Self Correcting Equilibria (SCEs) described by Macy and Flache [38] and 

characterised as asymptotically stable points of the mean field by Izquierdo et al. [27]. 
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STEP 1: Preliminary simulations 

Let Xn be the fraction of the population using strategy H at the beginning of the 

corresponding interaction. Figure 2 shows the evolution of Xn in two simulations with 

10 players, for different initial number of H-strategists in the population. 

   

 

Figure 2. Evolution of Xn in two simulations with 10 players and different initial number of H-

strategists in the population. Interactive figure at 

http://demonstrations.wolfram.com/AnImitationModelInTheHawkDoveGame/. Generalised version at 

http://demonstrations.wolfram.com/AnImitationModelFor2x2SymmetricGames/. 

 

If simulations are run for long enough, we can observe that all of them end up in the 

(absorbing) situation Xn = 1. The reader can confirm this fact by running simulations 

with the interactive version of figure 2. It is also clear in the simulations that, when the 

initial number of H-strategists in the population is fairly low, the system tends to spend 

a significant amount of time in the neighbourhood of Xn = 0.5. 

 

STEP 2 Markov formulation 

This model can be formalised as a Markov process whose state in time-step n is 

characterised by the value of Xn, i.e. the fraction of the population using strategy H at 

the beginning of the corresponding interaction. There are N + 1 possible values for the 

state, depending on the number of individuals using strategy H (this number ranges 

from 0 to N).  

STEP 3 Absorbing states and limiting distribution 

This imitation model has 2 absorbing states only: Xn = 0 and Xn = 1, corresponding to 

the situations in which everyone plays H or everyone plays D.  

http://demonstrations.wolfram.com/AnImitationModelInTheHawkDoveGame/�
http://demonstrations.wolfram.com/AnImitationModelInTheHawkDoveGame/�
http://demonstrations.wolfram.com/AnImitationModelFor2x2SymmetricGames/�
http://demonstrations.wolfram.com/AnImitationModelInTheHawkDoveGame/�
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The preliminary simulations suggested an asymmetry between the 2 absorbing states Xn 

= 1 and Xn = 0. In fact, the absorbing state Xn = 0 is not reachable from any other state, 

because one single H-strategist in a population of D-strategist will obtain the maximum 

payoff and consequently will not change her strategy to D. Regardless of the number of 

individuals, the absorbing state Xn = 1 is reachable from every state other than Xn = 0, 

while the absorbing state Xn = 0 cannot be reached from any other state. 

Using the standard theory of Markov chains it is straightforward to check that, unless 

the process starts without any H-strategist, it will necessarily end up absorbed in Xn = 1, 

i.e. sooner or later the population will be composed of H-strategists only.  

STEP 4 Transient behaviour 

Let us now calculate the state transition matrix for this model. Consider a population of 

size N and let N
nH  be the number of H-strategists in the population in time-step n.  

Then, for k natural, 0 ≤ k ≤ N, and given the probabilities of events defined by the 

revision rule of the model, we can derive the following transition probabilities: 

P ( N
nH 1+  = k + 1| N

nH  = k) =
11 −

−
−

−
N

kN
N

k
N

kN =  2

2

)1(
)(

−
−

NN
kNk  

Note that the probability above, i.e. the probability that the number of H-players 

increases by 1, corresponds to the probability that the revising individual is a D-player 

who compares her result with that of an H-player matched with a D-player. 

Analogously,  

P ( N
nH 1+  = k – 1| N

nH  = k) = 2)1(
))(1(

−
−−

NN
kNkk  

P ( N
nH 1+  = k | N

nH  = k) = 
)1(

)1(2

−
−−+

NN
kNNk  

These transition probabilities completely determine the state transition matrix. For 

instance, for a population of six individuals, and numbering the states from 0 to 6 

according to the number of H-strategists, the state transition matrix P is 
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P = 





























1000000
150/5150/125150/200000
0150/16150/110150/24000
00150/27150/105150/1800
000150/32150/110150/80
0000150/25150/1250
0000001

 

It is then fairly easy to calculate, given the initial conditions, the probability of finding 

the process in any of its possible states in any time-step. For instance, starting with half 

the population of H-strategists, the probability that in time-step 100 the system has 

reached the absorbing state made up by H-strategists only is 0.4568 for a population of 

6 individuals, while this probability is 0.0062 for a population of 12 individuals. 

When the number of states is large, it may not be feasible to work with the state 

transition matrix, and it is in this case that the mean dynamic can be very useful to 

understand the dynamics of the system. Note that in the example we are analysing, the 

following relation holds:  

γγ γ n
N
nn YH

N
X ⋅=∆=∆

1 , 

where γ = N-1  is a scalar and N
nn HY ∆=γ  is a random variable that may take the values –

1, 1 or 0. Let us now check that this model fulfils the conditions outlined in section 4: 

1.- For every N, γ
nX  takes values in }1,1,...,2,1,0{

N
N

NN
I −

=γ , i.e. within the closed 

convex set I = [0, 1]. The transition probabilities for γ
nX  do not depend on n. The 

minimum distance from any given point in [0, 1] to some point in γI  is strictly less than 

N-1, and consequently it goes to zero as N grows.  

2.- Let x = 
N
k be the proportion of H-strategists in the population. From the previously 

calculated probabilities for N
nH∆ , the expected value of N

nn HY ∆=γ

  when γ
nX = x is 

g(x,γ)  = )|( xXYE nn =γγ  = )|( kHHE N
n

N
n =∆  = 2)1(

)12)((
+

+−−
NN

kNkNk  =  

= )]121)(1([
)1( 2

2

N
xxx

N
N

+−−
−

 = )]21)(1([
1

1
2 γ

γ
+−−

−
xxx  
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Thus, considering that the term in square brackets is bounded on I, we have that, for 

γ→0, g(x,γ)  = x (1 – x)(1– 2x) + )(γO  = g(x) + )(γO  uniformly in γIx∈ . 

The function g(x)  = x (1 – x)(1– 2x) is a polynomial, and therefore it is differentiable on 

the compact set I and its derivative  g’(x)   is bounded and Lipschitz on I.  

3.- The function s(x, γ)  = ]|)),([( 2 xXxgYE nn =− γγ γ  can be calculated from the 

distribution of  γ
nY  as a sum of products of polynomials, each of which uniformly 

converges as γ→0 to a polynomial on x. Consequently, s(x) is a polynomial, so it is 

Lipschitz on I.  

4.- The function )||(| 3 xXYE nn =γγ  is uniformly bounded, since 1 is an upper bound for 

| γ
nY | = | N

nH∆ | for every γIx∈  and for every γ.  

Therefore the results described in section 4 apply.  

Consider the associated limit mean ODE for Xn: the differential equation 

x = x (1 – x)(1– 2x)   

with initial condition x(t = 0) = x0 ∈[0, 1].  

Figure 3 shows the solution of this differential equation from time t = 0 to time t = 10 

corresponding to an initial condition  x(t = 0) = 0.2. It also shows the results of some 

simulations of the discrete time process γ
nX  with γ

0X  = 0.2 for different population 

sizes (N) and from time-step 0 to time-step n = 10·N. For each of these simulations, the 

horizontal separation (in the t-axis) between consecutive states is N-1. It can be seen that, 

as the population size N gets larger, i.e. as the step size γ =  N-1  gets smaller: 

i) The representation of the state γ
nX  of the simulated systems with initial state γ

0X  = x0  

tends to follow the solution of the ODE with initial condition  x(t = 0) = x0.  

ii) For any real t > 0, the state γ
nX  of the simulated systems in time-step n = int(t·N) 

with initial state γ
0X  = x0 tends to approach the value at time t of the solution of the 

ODE with initial condition  x(t = 0) = x0. 
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Figure 3. Evolution of Xn in four simulations with different number of players N. The initial proportion 

of H-strategists in the population is 0.2. The figures show the trajectory of the differential equation that 

describes the expected move of Xn for large values of N, which can be seen to approach x = 0.5. For large 

values of N the process tends to follow the associated trajectory of the mean field, while for small values 

of N, it tends to be quickly absorbed in the unique absorbing state Xn = 1. Interactive figure at 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelInTheHawkDoveGame/. 

Generalised version at 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelIn2x2SymmetricGames/ 

 

The reader can replicate the results presented in figure 3 using its interactive version. 

The differential equation  x = x (1 – x)(1– 2x) has three zeros: x = 0, x = 1 and x = 0.5. 

By calculating the sign of x  in the domain [0, 1], it is easy to check (see Figure 4) that x 

= 0.5 is an asymptotically stable point whose basin of attraction is the open interval (0 

1). This means that, for large N and any initial state that is neither 0 nor 1, we can 

expect the state of the system to approach the surroundings of x = 0.5 and linger in that 

area for long.  

 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelInTheHawkDoveGame/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelInTheHawkDoveGame/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelIn2x2SymmetricGames/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelInTheHawkDoveGame/�
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Figure 4. Representation of the function x = x (1-x) (1-2x). The value of the time derivative is positive for 

0 < x < 0.5 and negative for 0.5 < x < 1. 

 

Even though the process will be absorbed in the state Xn = 1 with probability one if 

simulated indefinitely (assuming an initial state X0 ≠ 0), the probability of reaching such 

absorbing state in any given finite time (say, for instance, 3 years running a simulation) 

can be negligible for a large enough N. This is so even if the simulation time is 

proportional to the number of agents N: for any given positive constant c, the 

probability that, after c·N days of computing time, a simulation of the process has 

reached the absorbing state Xn = 1 goes to zero as N grows (assuming an initial state X0 

≠ 1). This example illustrates the difference between the long run (a possibly very long 

but finite time) and ultralong run (the limit as t →∞) behaviour of a system [9, 50]. 

5.2. An intra-population imitation model in a two-population Hawk-Dove 
game 

Let us now suppose that the Hawk-Dove game of example 5.1 is played by individuals 

belonging to 2 different populations A and B. To keep things simple in this example, let 

us assume that in each population there are N (≥ 2) individuals and that in time-step n 

all individuals are randomly matched in couples made up by one individual from 

population A and one individual from population B. 
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At the end of every time-step, one randomly selected player from each population 

revises her strategy, and her revision rule is as follows: “I look at another (randomly 

selected) individual in my population; if and only if I prefer her last outcome to my last 

outcome, I adopt her strategy”. 

STEP 1: Preliminary simulations 

For population size N, consider the step size γ =  N-1. Let γ
nAX ,  be the fraction of 

individuals in population A (of size N) using strategy H at the beginning of interaction 

n, and define γ
nBX ,  likewise. Figure 5 shows the evolution of γ

nAX ,  and γ
nBX ,  in two 

simulations with N = 10, for different initial number of H-strategists in each population. 

 

Figure 5. Evolution of the fraction of individuals using strategy H in each population in two simulations 

with population size = 10 and different initial number of H-strategists in the populations. Interactive 

figure at 

http://demonstrations.wolfram.com/AnIntraPopulationImitationModelInTheTwoPopulationHawkDoveGa

m/. Generalised version at 

http://demonstrations.wolfram.com/AnIntraPopulationImitationModelForInterPopulation2x2Symmetri/   

 

Most simulations with this model show a quick convergence to a situation in which all 

individuals in population A play one of the strategies (H or D) and all individuals in 

population B play the other strategy. The reader can confirm this fact by running 

simulations with the interactive version of figure 5.  

STEP 2 Markov formulation 

For populations of size N, this model can be formalised as a Markov process whose 

state vector in time-step n (n = 1, 2, …) is γ
nX  = [ γ

nAX , , γ
nBX , ], where γ

niX ,  (i = A, B) is 

http://demonstrations.wolfram.com/AnIntraPopulationImitationModelInTheTwoPopulationHawkDoveGam/�
http://demonstrations.wolfram.com/AnIntraPopulationImitationModelInTheTwoPopulationHawkDoveGam/�
http://demonstrations.wolfram.com/AnIntraPopulationImitationModelInTheTwoPopulationHawkDoveGam/�
http://demonstrations.wolfram.com/AnIntraPopulationImitationModelInTheTwoPopulationHawkDoveGam/�
http://demonstrations.wolfram.com/AnIntraPopulationImitationModelForInterPopulation2x2Symmetri/�
http://demonstrations.wolfram.com/AnIntraPopulationImitationModelInTheTwoPopulationHawkDoveGam/�
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the fraction of individuals in population i using strategy H at the beginning of 

interaction n.  

There are (N + 1)2 possible states, depending on the number of individuals using 

strategy H in each population (this number ranges from 0 to N). 

STEP 3 Absorbing states and limiting distribution 

In this Markov chain there are precisely 4 absorbing states:  γ
nX  = [0, 0], γ

nX = [0, 1], 

γ
nX = [1, 0] and γ

nX  = [1, 1], corresponding to the four possible situations in which in 

each population everyone plays H or everyone plays D. It is straightforward to check 

that from any non-absorbing state it is possible to reach (at least) one of the absorbing 

states in a finite number of steps, so the process will necessarily end up in one of the 

absorbing states. The probability of ending up in each of the different absorbing states 

depends on the initial conditions, and these probabilities can be estimated by simulation, 

including confidence intervals [28]. If the state transition matrix is known, the exact 

probabilities can be calculated analytically. In this example, let N
niH ,  be the number of 

H-strategists in population i (i = A, B) in time-step n. Then, for 0 ≤ kA, kB ≤ N, where kA 

and kB are natural numbers, and given the probabilities of events defined by the revision 

rule of the model, we can compute the following transition probabilities: 

P ( N
nAH 1, + = kA + 1| N

nAH , = kA, N
nBH , = kB) = 

)1(
)()(

2 −
−−

NN
kNkkN BAA  

P ( N
nAH 1, +  = kA - 1| N

nAH , = kA, N
nBH , = kB) = 

)1(
)(

2 −
−

NN
kNkk ABA  

P ( N
nAH 1, +  = kA | N

nAH , = kA, N
nBH , = kB) = 

)1(
)1(2

−
−−+

NN
kNNk AA  

The formulas for N
nBH 1, +  are analogous. Considering these transition probabilities, for N 

= 3 and numbering the states from 1 to 16 according to the formula: state-number of 

[XA,n , XB,n] = 12·XA,n + 3·XB,n + 1, the state transition matrix is 
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The limiting distribution, given an initial state distribution p0, is p∞ = p0· ∞→nlim Pn, and  

∞→nlim Pn = 

























































1000000000000000
0001000000000000
0001000000000000
0001000000000000
0000000000001000

02471.00048549.00000000048549.00000431.0
00396.00084387.00000000014821.00000396.0

0001000000000000
0000000000001000

00396.00014821.00000000084387.00000396.0
00431.00048549.00000000048549.00002471.0

0001000000000000
0000000000001000
0000000000001000
0000000000001000
0000000000000001

 

 

which provides the probability of ending up in each of the absorbing states for every 

initial state distribution p0 (and in particular, for every initial state X0).  
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STEP 4 Transient behaviour 

If the state transition matrix P and the initial state X0 (or the initial state distribution) are 

known, it is easy to calculate the state distribution corresponding to any time step. 

However, the dimension of the state transition matrix P is (N+1)2 × (N+1)2 , so even for 

moderate values of N it can be unfeasible to work with the matrix P. For large values of 

N we can expect stochastic approximation theory to be useful. In our current case ∈γ
nX  

I = [0 1] × [0 1] and there is the relation:  

γγ γ n
N
nn YH

N
X ⋅=∆=∆

1  

where γ = N-1 is a scalar number that is small for large N, and γ
nY  = N

nH∆  is a random 

vector whose components ( N
nAH ,∆ , N

nBH ,∆ ) may take the values -1, 1 or 0 with a 

probability distribution (see step 3) that depends only on the current state γ
nX  and on the 

population size N (or, equivalently, on the step size γ =  N-1). Let us now check that this 

model fulfils the conditions outlined in section 4: 

1.- For every positive natural number N, the state space of the Markov process γ
nX  

belongs to the closed convex set I = [0, 1] × [0, 1], and the minimum distance from any 

fixed point in I to some point in the state space of γ
nX  goes to zero as γ goes to 0 (i.e., 

as N grows). 

2.- The expected value of γ
nY  conditioned on γ

nX = x = [xA, xB] is (omitting the 

superscripts in the variables): 

g(x,γ)  = ]),[|( BAnn xxXYE =  = ]),[|( BAnn xxXHE =∆  = 

= )]21)(1(),21)(1([
1 ABBBAA xxxxxx

N
N

−−−−
−

 = 

= )]21)(1(),21)(1()[
1

11( ABBBAA xxxxxx
N

−−−−
−

+  = 

= )]21)(1(),21)(1([ ABBBAA xxxxxx −−−−  + )1(
N

O  = 

= )]21)(1(),21)(1([ ABBBAA xxxxxx −−−−  + )(γO  

uniformly in x.
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The function g(xA, xB)  = [xA (1 –  xA) (1 –  2xB), xB (1 –  xB) (1 –  2xA)] is made up of 

polynomials, and therefore it is differentiable on the compact set I and its derivative 

matrix g’(x) is also made up of polynomials, so it is bounded and Lipschitz on I.  

3.- s(x, γ)  = ]|)),(()),([( xXxgYxgYE nn
Tr

n =−⋅− γγγ γγ  is made up of sums of products 

of polynomials, each of which uniformly converges to a polynomial in x. Consequently, 

s(x) is Lipschitz on I. 

4.- )||(| 3 xXYE nn =γγ  is uniformly bounded, because each component of | γ
nY | = | N

nH∆ | 

is bounded by 1. 

Therefore the results described in section 4 apply. 

Consider the associated limit mean ODE for γ
nX : the differential equation  

x = [xA (1 –  xA) (1 –  2xB), xB (1 –  xB) (1 –  2xA)]   

with 0 ≤ xA, xB ≤ 1.  

Figure 6 shows several trajectories for this differential equation. For large N (i.e. small 

γ), we can expect the state of the process γ
nX  to evolve closely to the trajectory of the 

ODE that goes through the initial state x0. We can also expect the state of the process in 

time-step n = int(t·N) to get close to the solution at time t of that same ODE. The reader 

can confirm this fact by running simulations with the interactive version of figure 6.  

 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelInTheTwoPop/�
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Figure 6. This figure shows several trajectories of the differential equation that describes the expected 

move of Xn = [XA,n , XB,n] for large values of N (the mean field). In dashed red, the figure shows the 

trajectory x(t) with initial conditions x(t = 0) = [0.7 , 0.85], from t = 0 to t = 6. In white, the figure shows 

the results of a simulation of the stochastic process with N = 100 and initial conditions X0 = [0.7 , 0.85], 

from n = 0 to n = t·N = 600. Interactive figure at 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelInTheTwoPo

p/. Generalised version at 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelForInterPop/ 

 

5.3. Generalizations for arbitrary payoffs 

All the results in sections 5.1 and 5.2 about the transient behaviour of the imitation 

models in the Hawk-Dove game can be generalised to any 2x2 game. Consider, for 

instance, the symmetric case, with the notation shown below for the preferences over 

outcomes (payoffs) for the row player, with higher payoff denoting higher preference: 

http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelInTheTwoPop/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelInTheTwoPop/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelInTheTwoPop/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelForInterPop/�
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 H D 
H hh hd 
D dh dd 

 

Following the same reasoning as in example 5.1, the mean-field equation with arbitrary 

payoffs for the one-population model described in section 5.1 reads: 

g(x)  = x (1 –  x) [δ1 x2 + δ2 (1 – x) 2 + δ3 (1 – x) x] 

where x is the proportion of H-players in the population, 

δ1 = Sign(hh – dh), 

δ2 = Sign(hd – dd), and 

δ3 = Sign(hd – dh) + Sign(hh – dd). 

Some examples of these dynamics can be explored using the generalized versions of 

interactive figure 2 and interactive figure 3. 

Similarly, the mean-field equation with arbitrary payoffs for the two-population model 

described in section 5.2 reads:  

g(xA, xB)  = [g1(xA, xB), g2(xA, xB)] 

g1(xA, xB) = xA (1 –  xA) [δ1 xB
 2 + δ2 (1 – xB) 2 + δ3 (1 – xB) xB] 

g2(xA, xB) = xB (1 –  xB) [δ1 xA
 2 + δ2 (1 – xA) 2 + δ3 (1 – xA) xA] 

where xA is the proportion of H-players in population A and xB is the proportion of H-

players in population B. Some examples of these dynamics can be explored using the 

generalized versions of interactive figure 5 and interactive figure 6. 

In the following sub-section we prove convergence results to the mean dynamic for an 

even broader family of models, namely the intra-population imitation model in n-player 

games with arbitrary payoffs. In particular, this family encompasses all the models 

presented above.  

5.4. The intra-population imitation model in n-player games 

The results about convergence to the mean dynamic for the imitation stochastic 

processes described above can be extended to any n-player game with a finite number of 

strategies, either in one single population, or considering that each player’s position in 

the game corresponds to one individual selected from a different population.  

Assuming that the size of each population is Ni , with Ni proportional to the size N of the 

smallest population, and that, after each time-step, k random players (or ki players in 

each population, with ki ≤ k) are given the opportunity to revise their strategy according 

http://demonstrations.wolfram.com/AnImitationModelFor2x2SymmetricGames/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnImitationModelIn2x2SymmetricGames/�
http://demonstrations.wolfram.com/AnIntraPopulationImitationModelForInterPopulation2x2Symmetri/�
http://demonstrations.wolfram.com/ExpectedDynamicsOfAnIntraPopulationImitationModelForInterPop/�
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to the previous imitation rule, the process for a given N can be characterised as a 

Markov chain with a state vector γ
nX  that contains the proportions of each type of pure-

strategy-player in each population. 

The process is such that γγ γ nn YX ⋅=∆ , where γ = N-1  is a scalar number that is small for 

large N, and  γ
nY  is a random vector whose components may take bounded integer 

values (between – k and + k) with a probability distribution that depends only on the 

current state γ
nX = x and on the population size N. Note that: 

1.- For every positive natural number N, the state space of the Markov process γ
nX  

belongs to the closed convex polyhedron I: each component of the state vector belongs 

to [0, 1], and the components that correspond to the strategies available in each 

population add up to one. The minimum distance from any fixed point in I to some 

point in the state space of γ
nX  goes to zero as γ goes to 0 (i.e., as N grows). 

Considering that the probability that a player changes from one strategy to another is a 

function of the form Poly(x) + )1(
N

O  uniformly in x, and that, for Ix∈ , the sum of 

products of functions of this type is another function of this kind, we can state the 

following: 

2.- The expected value of γ
nY  conditioned on γ

nX = x is g(x, γ) = g(x) + )1(
N

O  

uniformly in x, where g(x) is made up by polynomials, and therefore it is differentiable 

on the compact set I and its derivative matrix g’(x) is also made up by polynomials, so it 

is bounded and Lipschitz on I.  

3.- s(x, γ)  = ]|)),(()),([( xXxgYxgYE nn
Tr

n =−⋅− γγγ γγ  is made up by sums of 

products of polynomials, each of which uniformly converges to a polynomial in x. 

Consequently, s(x) is Lipschitz on I. 

4.- )||(| 3 xXYE nn =γγ is uniformly bounded, because each component of | γ
nY | is 

bounded by k. 

Therefore the results described in section 4 apply. 
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6 Conclusions 

This paper has discussed the relation between the actual behaviour of computer 

simulations of some simple stochastic models and their expected deterministic 

behaviour where the inherent stochasticity of the model is replaced by a mean dynamic. 

We have presented selected results from stochastic approximation theory emphasising 

those aspects that can be particularly useful to understand the dynamics of computer 

simulations. The framework presented here can be useful to analyse relatively simple 

models with a large number of interacting individuals or where individuals modify their 

state by small steps, as in most of the referenced works. The potential of this technique 

has been illustrated through the analysis of two particular cases, which neatly show how 

the qualitative dynamics of simulated models of interacting elements can vary 

drastically with the number of elements in the system. Finally, we have provided 

convergence results for simulations of a broad family of models of evolutionary games. 
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Appendix. Approximation of difference equations by differential equations 

This appendix discusses the relation between a discrete-time difference equation of the 

form Δxn = γ f(xn), with initial point x0, and the solution x(t, x0) of its corresponding 

continuous time differential equation x = f(x) with x(t = 0) = x0.  

This relationship can be neatly formalised using Euler’s method [12]. If f(x) satisfies 

some conditions that guarantee convergence [23, 35], e.g. if f(x) is globally Lipschitz or 

if it is smooth on a forward-invariant compact domain of interest D, the difference 

between the solution x(t, x0) of the differential equation at time t = T < ∞ and the 

solution xn of the equation in differences at step n = int(T/γ) converges to 0 as the step-

size parameter γ tends to 0:  

),()( 0
0

)int(

0
0 xTxxfxx

T

i
in  →⋅+= →

=
∑ γ
γ

γ  

and, for every T, 0||),(||max 0,..,1,0  →− ∞→
=

N
nNn x

N
Tnxx  

As an example, consider a vector x = [x1, x2], the function f(x) = [x2, –x1], the differential 

equation x = f(x) and its associated (deterministic) equation in differences Δxn = γ f(xn). 

Figure 7 shows a trajectory map of the differential equation x = f(x), together with 

several values of discrete processes that follow the equation in differences Δxn = γ f(xn), 

for different values of γ and for the same initial value x0 = [x1, x2]0. It can be seen how, 

for decreasing values of γ and for a correspondingly increasing finite number of steps n 

= int(T/γ), the discrete process gets closer and closer to the trajectory of the differential 

equation that goes through x0. The reader can confirm this fact by running simulations 

with the interactive version of figure 7.  

 

http://demonstrations.wolfram.com/DifferenceEquationVersusDifferentialEquation/�
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Figure 7. Convergence of difference and differential equations for small step-size. Let x = [x1, x2] be a 

generic point in the real plane. Figure 7 shows a trajectory map of the differential equation x  = f(x) =[x2, 

–x1], together with several values of the discrete process that follow the equation in differences xn+1 – xn = 

γ f(xn), for different values of the step-size parameter γ and for a chosen initial value x0 = [x1, x2]0. The 

background is coloured using the norm of the expected motion, rescaled to be in the interval (0, 1). It can 

be seen how, for decreasing values of γ, the discrete process tends to follow temporarily the trajectory of 

the differential equation that goes through x0. Interactive figure at 

http://demonstrations.wolfram.com/DifferenceEquationVersusDifferentialEquation/.  

 

http://demonstrations.wolfram.com/DifferenceEquationVersusDifferentialEquation/�
http://demonstrations.wolfram.com/DifferenceEquationVersusDifferentialEquation/�


 32 

References 
[1] Banisch, S., Lima, R., Araújo, T.: Agent based models and opinion dynamics as Markov chains. 

Social Networks (in Press)  

[2] Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge 

University Press (2008)  

[3] Beggs, A.W.: Large deviations and equilibrium selection in large populations. J. Econ. Theory 132(1), 

383-410 (2007)  

[4] Beggs, A.W.: On the convergence of reinforcement learning. J. Econ. Theory 122(1), 1-36 (2005)  

[5] Beggs, A.W.: Stochastic evolution with slow learning. J. Econ. Theory 19(2), 379-405 (2002)  

[6] Benaïm, M., Le Boudec, J.-.: A class of mean field interaction models for computer and 

communication systems. Perform Evaluation 65(11-12), 823-838 (2008)  

[7] Benaim, M., Weibull, J.W.: Deterministic approximation of stochastic evolution in games. 

Econometrica 71(3), 873-903 (2003)  

[8] Benveniste, A., Priouret, P., Metivier, M.: Adaptive algorithms and stochastic approximations. 

Springer-Verlag New York, Inc (1990)  

[9] Binmore, K.G., Samuelson, L., Vaughan, R.: Musical Chairs: Modeling Noisy Evolution. Games 

Econ. Behav. 11(1), 1-35 (1995)  

[10] Börgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics. J. Econ. Theory 

77(1), 1-14 (1997)  

[11] Borkar, V.S.: Stochastic approximation: a dynamical systems viewpoint. Cambridge University 

Press, New York (2008)  

[12] Borrelli, R.L., Coleman, C.S.: Differential equations: a modeling approach. Prentice-Hall, 

Englewoods Cliffs (1987)  

[13] Boylan, R.T.: Laws of large numbers for dynamical systems with randomly matched individuals. J. 

Econ. Theory 57(2), 473-504 (1992)  

[14] Boylan, R.T.: Continuous Approximation of Dynamical Systems with Randomly Matched 

Individuals. J. Econ. Theory 66(2), 615-625 (1995)  

[15] Erev, I., Roth, A.E.: Predicting How People Play Games: Reinforcement Learning in Experimental 

Games with Unique, Mixed Strategy Equilibria. Am. Econ. Rev. 88(4), 848-881 (1998)  

[16] Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in 

Probability and Statistics (2005)  

[17] Fudenberg, D., Kreps, D.M.: Learning Mixed Equilibria. Game. Econ. Behav. 5(3), 320-367 (1993)  

[18] Fudenberg, D., Levine, D.K.: The theory of learning in games. The MIT Press (1998)  

[19] Galán, J.M., Latek, M.M., Rizi, S.M.M.: Axelrod's Metanorm Games on Networks. PLoS ONE 6(5), 

e20474 (2011)  

[20] Gilbert, N., Troitzsch, K.G.: Simulation for the social scientist. McGraw-Hill (2005)  

[21] Gintis, H.: Agent-Based Models as Markov Processes: Theory and Application to the Dynamics of 

Market Exchange. ACM TIST (in Press)  

[22] Gleeson, J.P., Melnik, S., Ward, J.A., Porter, M.A., Mucha, P.J.: Accuracy of mean-field theory for 

dynamics on real-world networks. Phys Rev E. 85(2) (2012)  



 33 

[23] Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. 

Springer (1993)  

[24] Hofbauer, J., Sandholm, W.H.: On the global convergence of stochastic fictitious play. Econometrica 

70(6), 2265-2294 (2002)  

[25] Hopkins, E.: Two competing models of how people learn in games. Econometrica 70(6), 2141-2166 

(2002)  

[26] Huet, S., Deffuant, G.: Differential Equation Models Derived from an Individual-Based Model Can 

Help to Understand Emergent Effects. J. Artif. Soc. Soc. Simulat. 11(2), 10 (2008)  

[27] Izquierdo, L.R., Izquierdo, S.S., Gotts, N.M., Polhill, J.G.: Transient and asymptotic dynamics of 

reinforcement learning in games. Game. Econ. Behav. 61(2), 259-276 (2007)  

[28] Izquierdo, L., Izquierdo, S., Galán, J.M., Santos, J.I.: Techniques to Understand Computer 

Simulations: Markov Chain Analysis. J. Artif. Soc. Soc. Simulat. 12(1), 6 (2009)  

[29] Izquierdo, S.S., Izquierdo, L.R., Gotts, N.M.: Reinforcement learning dynamics in social dilemmas. 

J. Artif. Soc. Soc. Simulat. 11(2), 1 (2008)  

[30] Izquierdo, S.S., Izquierdo, L.R., Vega-Redondo, F.: The option to leave: Conditional dissociation in 

the evolution of cooperation. J. Theor. Biol. 267(1), 76-84 (2010)  

[31] Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A.: Electronic 

structure calculations with dynamical mean-field theory. Rev Mod Phys 78(3), 865-951 (2006)  

[32] Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall/CRC (1995)  

[33] Kushner, H.: Stochastic approximation: A survey. WIREs Computation Stat 2(1), 87-96 (2010)  

[34] Kushner, H.J., Yin, G.G.: Stochastic Approximation Algorithms and Applications. Springer-Verlag. 

New York (2003)  

[35] Lambert, M.F.: Numerical Methods for Ordinary Differential Systems. John Wiley & Sons Ltd, 

Chichester (1991)  

[36] Ljung, L.: Analysis of Recursive Stochastic Algorithms. IEEE T Automat Contr AC-22(4), 551-575 

(1977)  

[37] López-Pintado, D.: Diffusion in complex social networks. Game. Econ. Behav. 62(2), 573-590 

(2008)  

[38] Macy, M.W., Flache, A.: Learning dynamics in social dilemmas. Proc. Natl. Acad. Sci. U. S. A. 

99(3), 7229-7236 (2002)  

[39] Morozov, A., Poggiale, J.C.: From spatially explicit ecological models to mean-field dynamics: The 

state of the art and perspectives. Ecol. Complex. 10, 1-11 (2012)  

[40] Norman, M.F.: Markov Processes and Learning Models. Academic Press, New York (1972)  

[41] Norman, M.F.: Some convergence theorems for stochastic learning models with distance diminishing 

operators. J. Math. Psychol. 5(1), 61-101 (1968)  

[42] Perc, M., Szolnoki, A.: Coevolutionary games-A mini review. BioSystems 99(2), 109-125 (2010)  

[43] Rozonoer, L.I.: On deterministic approximation of Markov processes by ordinary differential 

equations. Math. Probl. Eng. 4(2), 99-114 (1998)  

[44] Sandholm, W.H.: Stochastic imitative game dynamics with committed agents. J. Econ. Theory 

147(5), 2056-2071 (2012)  



 34 

[45] Sandholm, W.H.: Deterministic Evolutionary Dynamics.In: Durlauf, S. N. and Blume, L. E. (eds.) 

The New Palgrave Dictionary of Economics v.2. Palgrave Macmillan (2008)  

[46] Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys Rep 446(4-6), 97-216 (2007)  

[47] Vega-Redondo, F.: Complex Social Networks. Cambridge University Press, Cambridge (2007)  

[48] Vega-Redondo, F.: Economics and the Theory of Games. Cambridge University Press, Cambridge 

(2003)  

[49] Weiss, P.: L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. de Phys. 6, 661-690 

(1907)  

[50] Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. 

Princeton University Press (1998)  

 

 


