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Abstract

This study presents a novel version of the Visualization Induced Self-Organizing
Map based on the application of a new fusion algorithm for summarizing the
results of an ensemble of topology preserving mapping models. This algorithm
is referred to as Weighted Voting Superposition (WeVoS). Its main feature is the
preservation of the topology of the map, in order to obtain the most truthful
visualization of datasets under study as possible. To achieve this, a weighted
voting process takes place between the units of the maps in the ensemble in
order to determine the characteristics of the units of the resulting map. In
order to present a thorough study of its capabilities, several di�erent quality
measures have been applied and analysed under this novel neural architecture
called WeVoS-ViSOM. To complete the study,it has also been compared with
with the well-know SOM and its fusion version, the WeVoS-SOM and with two
other previously devised fusion algorithms - Fusion by Euclidean Distance and
Fusion by Voronoi Polygon Similarity - based on the analysis of the previous
same quality measures in order to present a thorough study of its capabilities.
All three summarization methods were applied to three widely used datasets
from the UCI Repository and after a rigorous performance analysis, it is clearly
demonstrated that the novel fusion algorithm outperformed the other single and
summarization methods in terms of visualization of the datasets.
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1. Introduction

Among the great variety of visualization tools for multidimensional datasets,
one of the most well-known are the Topology Preserving Maps. The ViSOM
Yin [34, 33] is a very interesting extension of the well-known Self-Organizing
Map (SOM) Kohonen [18], Kohonen et al. [21], Kohonen [19] characterized by
being capable of representing quantitatively the similarity between the data it
is analysing.

This family of models allow the representation of high-dimensional datasets
into 2-dimensional maps and facilitate to the human expert the interpretation
of the internal structure of data. They are also characterized by the use of
unsupervised and competitive learning.

The main problem of all the neural network algorithms in general is that,
they are rather unstable Heskes [13], Bakker and Heskes [3]. Running the same
algorithm, even using the same parameters; can lead to quite di�erent results.
The use of ensembles is one of the most spread techniques for increasing the
stability of an analysis model Schwenk and Bengio [29], Johansson et al. [15].
This meta-algorithm consists in training several slightly di�erent models over
the same data set and relying on their combined results, rather than in the
results of a single model. This is based in the intuitive idea that a committee
of experts working to solve a particular problem would come up with a more
reliable solution than a single expert working in the same problem.

This technique is used in a great number of studies, applied mainly to clas-
si�cation problems. In this study, however the desired result is to obtain the
most reliable as possible representation of a multidimensional data set on a 2-
dimensional map. Therefore, the classical ensemble summarization techniques
are not directly applicable in this case.

Several algorithms for topographic maps summarization have been previ-
ously proposed Petrakieva and Fyfe [23], Georgakis et al. [10], Saavedra et al.
[28], although there are some characteristics of the topology preserving models
that have not been taken into account. In this research it is presented and anal-
ysed a novel fusion version of the ViSOM called the WeVoS-ViSOM and it is
compared with the single SOM and ViSOM and its WeVoS fusion version. The
study reports the application of these algorithms to three of the most widely-
known datasets of the UCI web repository Asuncion and Newman [1]: Iris, Wine
and Wisconsin Breast Cancer.

The rest of this study is organized as follows: Section 2 introduces the Topol-
ogy preserving mapping. Section 3 presents �ve quality measures, previously
proposed in literature, used to evaluate di�erent properties of topology preserv-
ing mapping algorithms in general. Section 4 includes a brief description of
the ensemble meta-algorithms and several previously proposed algorithms for
summarizing SOM ensembles. Section 5 describes in detail the novel proposed
summarization method: the Weighted Voting Superposition ViSOM (WeVoS-
ViSOM). Section 6 describes the evaluation of the properties of the summaries
obtained by the WeVoS-ViSOM algorithm and compares them with those cal-
culated for the maps generated by the single models and other summarization
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methods. Finally, in Section 7 �nal conclusions and future lines of research are
outlined.

2. Topology Preserving Maps

Topology preserving maps Kohonen et al. [21], Kohonen [20] comprises a
family of techniques with the target of producing a low dimensional represen-
tation of the training samples while preserving the topological properties of the
input space. The best known technique among them is the Self-Organizing
Map (SOM) model Kohonen [19]. It is based on a type of unsupervised learning
called competitive learning; an adaptive process in which the units in a neural
network gradually become sensitive to di�erent input categories, sets of samples
in a speci�c domain of the input space. The main feature of the SOM algo-
rithm is its topology preservation. When not only the winning unit but also
its neighbours on the lattice are allowed to learn, neighbouring units gradually
specialize to represent similar inputs, and the representations become ordered
on the map lattice.

One interesting extension of this algorithm is the Visualization Induced SOM
(ViSOM) Yin [34], Gou et al. [11], proposed to directly preserve the local dis-
tance information on the map, along with the topology. The ViSOM constrains
the lateral contraction forces between units and hence regularises the inter-unit
distances so that distances between units in the data space are in proportion
to those in the input space. The ViSOM does not only take into account the
distance between a unit's weights and the input data entry for the update of a
unit's weights, but also the distance between that unit and the best matching
unit of the whole map.

The di�erence between the SOM and the ViSOM hence lies in the update
of the weights of the neighbours of the winner unit as can be seen from Eq. 1
and Eq. 2. Update of neighbourhood units in SOM:

wk(t+ 1) = wk(t) + α(t)η(v, k, t)(x(t)− wk(t)) (1)

Update of neighbourhood units in ViSOM:

wk(t+1) = wk(t)+α(t)η(v, k, t)

[
(x(t)− wv(t)) + (wv(t)− wk(t))

dvk −4vkλ

4vkλ

]
(2)

where x is the input to the network, wk is the weight vector associated
with neuron k, while wv is the weight vector associated to the winning unit
in the lattice, also called Best Matching Unit (BMU), α(t) is the learning rate
of the algorithm; η(v, k, t) is the neighbourhood function (usually a Gaussian
function), where v represents the position of the BMU for the particular x of
time t and k the positions of the units in the neighbourhood of this one. λ is a
�resolution� parameter, dvk and 4vk are the distances between the units in the
data space and in the map space respectively.
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3. Features to Analyse

Several quality measures have been proposed in literature to study the re-
liability of the results displayed by topology preserving models in representing
the data set that have been trained with Polani [24], Pozlbauer [25]. There is
not a global and uni�ed one, but rather a set of complementary ones, as each of
them asses a speci�c characteristic of the performance of the map in di�erent
visual representation areas. Five of them are brie�y presented in the following
section. These measures have been chosen with the objective of measuring as a
wide range of these characteristics as possible.

As stated in the introduction, the aim of the novel model presented (WeVoS-
ViSOM) is to obtain a truthful representation of the data set in a map to obtain
the best possible visualization of the internal structure of a data set. Thus, the
most important features to evaluate in this case are the neighbouring relation-
ship of the units of the map and the continuity of the map. These features
are assessed by topographic error, distortion and to some extent goodness of
map. The two remaining measures, (classi�cation accuracy and mean square
quantization error) complete the comparison of the models in this research.

Topographic Error . Kiviluoto [17] is calculated by �nding the �rst two best
matching units for each entry of the data set and testing whether the second is
in the direct neighbourhood of the �rst or not. This measure, although suitable
for an approximation of the quality of a map, is considered somehow simplistic
and therefore not completely reliable in some cases by several studies Pozlbauer
[25].

Distortion . Vesanto et al. [31] : When using a constant radius for the neigh-
bourhood function of the learning phase of a SOM; the algorithm optimizes a
particular function. This function can be used to quantify in a more trustful
way than the previous one the overall topology preservation of a map by means
of a measure called distortion measure in this work. Special attention is paid to
this measure in this research due to its relation with visualization properties.

Classi�cation Accuracy . Topology preserving models can be easily adapted
for classi�cation of new samples using a semi-supervised procedure Vesanto
[30]. Once the network training is completed, the same data set used in the
training stage is presented once again to the network. Each unit of the map is
labeled with the class it has most consistently recognized. When a new sample
is presented to the network, it is classi�ed by the class associated to the unit
that is activated at that time. A high value in the classi�cation accuracy rate
implies that the units of the map are reacting in a more consistent way to the
classes of the samples that are presented. As a consequence, the map should
represent the data distribution more precisely.

Mean Square Quantization Error . can be calculated for any algorithm per-
forming vector quantization. In this case, it indicates how well the units of the
map approximate the data on the data set. Or in other words, it measures
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the closeness of the units composing the map to the di�erent data entries they
recognize (i.e., are considered as the BMU for that entry); in the input space.

Goodness of Map . Kaski and Lagus [16] combines two of the previous error
measures: the square quantization error and the distortion. It takes account of
both the distance between the input and the BMU and the distance between
the �rst BMU and the second BMU in the shortest path between both along
the grid map units, calculated solely with units that are direct neighbours in
the map. Thus, it measures both the continuity of the mapping from the data
set to the map grid and the accuracy of the map in representing the set.

4. Topology Preserving Mapping Fusion

4.1. Use of Ensemble Meta-Algorithms

The use of an ensemble of similarly trained models or algorithms is intended
to improve the performance of classi�cation algorithms Breiman [7]. It has been
observed that, although one of the classi�ers in an ensemble would yield the best
performance, the sets of patterns misclassi�ed by the di�erent classi�ers would
not necessarily overlap. As a conclusion, di�erent classi�er designs potentially
o�er complementary information about the patterns to be classi�ed and could
be harnessed to improve the performance of the selected classi�er. The aim is
not to rely on a single decision making scheme, but rather use all the designs
or their subsets for decision making, by combining their individual opinions to
derive a consensus decision Ruta and Gabrys [27], Henriques et al. [12].

The main problem of competitive-learning-based networks is that are in-
herently unstable due to the random nature of their learning algorithm. The
leading idea of this research is that the e�ect of this instability may, however, be
minimized by the use of ensembles Ron and Gunnar [26], Wang et al. [32]. The
learning algorithm of the topology preserving maps family trains their compos-
ing units (or neurons) to specialize during the algorithm iterations in recognizing
a certain type of patterns, which determines also the topology of the map. In a
similar way to the classi�cation process, it can be inferred that the map regions
that do not accurately represent the nature of the data set do not necessarily
overlap. Therefore, the visualization of a single map might be improved by
adapting each of the composing units of a map in the best possible way to the
data set under study by using ensemble techniques, as they o�er complementary
visualizations of the data set.

Algorithms to combine classi�ers can be divided into two broad classes. The
simpler variety of algorithms Breiman [7] merely combines, by averaging in some
way, the results of each of the classi�ers into a �nal result. More complex types
of algorithms Dietterich [9], Kuncheva [22] try to combine not only the results,
but the whole set of classi�ers; in an attempt to construct a single one that
should outperform its individual components. Its main advantage is that it
combines an improvement on the classi�cation quality with the simplicity of
handling only one classi�er.
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This perspective of a single �summary� or �synthesis� of the patterns stored
within the whole ensemble is the one followed in the present research to improve
the model performance. The main intention is to obtain a unique map capable
of representing the di�erent features contained in the di�erent maps of the
ensemble in the clearest and most reliable way as possible.

4.2. Summary of the Topology Preserving Map Ensemble

The models used in this study are mainly designed as visualization tools.
Constructing ensembles of classi�er models is a viable option when trying to
boost their classi�cation capabilities, stabilizing its learning algorithm and avoid-
ing over�tting; but when dealing with its visualization feature an ensemble is
not directly displayable. Representing all the maps in a simple image can be
useful when dealing with only 1-dimensional maps Petrakieva and Fyfe [23], but
is unmanageable when visualizing 2-D maps. As a part of this research, a novel
ensemble combination algorithm has been devised to overcome this problem, by
generating a unique map representing the information contained in the di�er-
ent maps composing the ensemble. This combination algorithm is intended to
generate an accurate and stable representation of data for visual inspection.

This part of the study encompasses several approaches inspired by previously
developed work regarding SOM combination Baruque et al. [5, 6]. The study
also includes previously presented methods centred on the generation of a �nal
map summarizing the contents of several maps Georgakis et al. [10], Saavedra
et al. [28] for comparison purposes. Hereafter this process is called �Fusion�. The
main characteristics of two of those methods are brie�y described in Section 4.2.1
and their performance results are showed and discussed in Section 6.

Then, a novel approach to the fusion of maps is presented in this work
(WeVoS-ViSOM). It is fully described in Section 5 and its performance is com-
pared with previous devised algorithms in Section 6.

4.2.1. Previous Work: Fusion of SOMs

In this study the presented model is compared with the two fusion algorithms
previously presented for this same pourpose known by authors. Although these
algorithms have been developed by di�erent authors and for di�erent tasks, both
employ a similar approach to this task; but di�erent from the one introduced in
this work. Therefore, in this case both previous approaches are considered two
variants of the same `parent' algorithm, while the WeVoS-ViSOM is considered
a di�erent one.

The previous Fusion of SOM meta-algorithm involve comparing the maps
unit by unit in the input space. That is, units that are considered `near enough'
one to the other are fused to obtain a unit in the �nal fused map. This is done
by calculating the centroid of the weights of the units to fuse:

wc =
1

|Wk|
∑

wi∈Wk

wi (3)
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being Wk the characteristic vectors of the set of units to fuse. That process
is repeated until all units in all trained maps are fused into a unique �nal one.
The criteria to determine which units are `near enough' to be fused is what
determines the two variants of the main algorithm.

Criterion 1: Voronoi Polygons Saavedra et al. [28]. . Each unit in a Self-
Organizing Map can be associated with a portion of the input data space called
the Voronoi polygon Aurenhammer and Klein [2]. That portion of the multi-
dimensional input space contains data for which that precise unit is the BMU
of the whole map. It is therefore logical to conclude that units related to similar
Voronoi polygons can be considered similar between them, as they should be
situated relatively nearby in the input data space.

To calculate the dissimilarity between two units, a record of which data
entries activated each unit as the BMU can be stored by associating a binary
vector to the unit which length is the size of the data set. The vector will contain
ones (1) in the positions where the unit was the BMU for that sample and zeros
(0) in the rest of positions. The dissimilarity (i.e. the distance) between units
can therefore be calculated as in Eq. 4:

ds(br, bq) =

∑
XOR(br, bq)∑
OR(br, bq)

(4)

being r and q the units to determine their dissimilarity and br and bq the binary
vectors relating each of the units with the data samples recognized by it.

The main problem with this proximity criterion is that it depends on the
recognition of data by the map, rather than on the map itself. This means that
a unit that does not react as the BMU for any data could be considered similar
to another unit in the same condition, although they can be relatively far from
each other in the input data space. To overcome this problem, all units with a
reacting rate lower than a threshold are removed before calculating the similari-
ties between the remaining units. This implies that the neighbouring properties
of the whole map are no longer considered. The similarity criteria must be used
again to keep a notion of neighbouring between the units of the fused map. Units
whose dissimilarity is below a given threshold will be considered as neighbours
in the fused map.

This characteristic can be very useful when the objective of the analysis is
to learn and represent the topology of the data set, as the remaining units will
approximate the data set in the input space very well, enhancing the vector
quantization feature of the SOM. Its drawback is that it is not possible to
represent that structure in a 2D map, as a lot of neighbouring information
between units is disregarded. The process is fully described in Algorithm 1.

Criterion 2: Euclidean Distance Georgakis et al. [10]. . This method involves
comparing the maps unit by unit in the input space, which implies that all
the maps in the ensemble must have the same size. Firstly, it searches for the
units that are closer in the input space (selecting only one unit in each map of
the ensemble) then it �fuses� them to obtain the �nal unit in the �fused� map
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Algorithm 1 Map Fusion by Voronoi Polygon Similarity

Input: Set of trained topology-preserving maps: M1...Mn,
usage threshold: θu , fusion threshold: θf , connection threshold: θc
Output: A �nal fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging (re-sampling with replacement)

meta-algorithm : Mn

3: let θu, θf and θc be the usage, fusion and connection thresholds respectively
4: procedure Fusion(M1...Mn)
5: for all Mi ∈Mn do . for all maps in the ensemble
6: for all wj ∈Wi do . for all neurons in each map

. accept neurons with a recognition rate higher than a given threshold
7: Wfus ← wi if

∑
i br(i) > θu

8: end for

9: end for

10: for all wi ∈Wfus do

11: calculate dissimilarity between wi and ALL neurons in Wfus (Eq. 4)
12: Di ← ds(wi, wk)∀wk ∈Wfus

13: end for

14: group into di�erent sub-sets (Wsn) the neurons that satisfy the condi-

tions of

{
ds(br, bq) < θf ∀r, q ∈Wsn

ds(br, bq) > θf ∀r, q /∈Wsn
15: for all Wsn do

16: calculate the centroid (wc) of the set by using Eq. 3
17: add the centroid to the set of nodes of the �nal map (W ∗fus)
18: end for

19: for all wr ∈W ∗fus do . for all neurons in the fused map
20: Connect wr with any other neuron in W ∗fus , if they satisfy

min
br∈Wsk,bq∈Wsl

ds(br, bq) < θc
21: end for

22: end procedure
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(see Eq. 3). This process is repeated until all the remaining units have been
fused. The high computational complexity of the algorithm is approached by
using dynamic programming. The �nal fused map is initialized by calculating
the fusion of only two of the maps composing the ensemble. Then, the same
calculation is repeated between the resultant fused map and another one of the
maps composing the ensemble. The process continues until all the maps of the
ensemble have been included in the calculation of the fused map.

The di�erence with the previous criteria is that, in this case, a pair wise
match of the units of each map is always possible, so the �nal fused map has
the same size as each of its constituent ones. This also implies that a cer-
tain global neighbouring structure can be maintained and reconstructed in the
fused network. The algorithm that employs this criterion is fully described in
Algorithm 2.

Algorithm 2 Map Fusion by Euclidean Distance

Input: Set of trained topology-preserving maps: M1...Mn

Output: A �nal fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging (re-sampling with replacement)

meta-algorithm : Mn

3: procedure Fusion(Mn)
4: initialise Mfus with the weight vectors of the �rst map: Mfus ←M1

5: for all M ∈Mn do

6: for all w′i ∈Mfus do

7: calculate Eucl. Dist. between w′i and ALL neurons of map Mi

. let w∗ be the closest neuron in map Mi to the one selected in Mfus

8: w∗ ← argmini (ED(w′i, wi))
9: wc ← w′i + w∗/2 . applying Eq. 3 to two neurons
10: w′i ← wc . replace wi by the centroid (wc)
11: end for

12: end for

13: end procedure

5. Weighted Voting Superposition for ViSOM

The idea behind this novel fusion variant presented in this study �WeVoS-
ViSOM� is to obtain the �nal map in a unit by unit basis. However, instead of
aiming for the best position for a single unit, as the two previously explained
methods, this approach aims to obtain the best position for a unit and their
neighbours. As a consequence, the �nal map obtained keeps one of the most
important features of this type of algorithms: its topological ordering. This is an
interesting characteristic having into account that the principal characteristic of
the ViSOM is the enhance of the data visualization. Also, the modi�ed weights
update of the ViSOM, which provides the units with more freedom to adapt to
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the data set, potentially adds instability to the training. The WeVoS-ViSOM,
because of its acknowledge of the neighbouring of units in its process, seems to
be the most suitable fusion algorithm to diminish this e�ect.

The WeVoS scheme is an improved version of an algorithm presented in
several previous works: superposition Corchado et al. [8]. It has been applied to
the simple SOM in previous works Baruque and Corchado [4] with interesting
results.

The �rst step in this meta-algorithm is to calculate the �quality� of each
of the units composing each map, in order to rely on some kind of informed
decision for the fusion of neurons. This �quality� (or error) measure can be
any of the many quality of map measures existing in literature on Topology
Preserving Maps; provided that it may be calculated on a unit-by-unit basis.

The �nal map is obtained again in a unit by unit basis. Firstly, the units
of the �nal map are initialized by calculating the centroids of the units in the
same position of the map grid in each of the trained maps. Then, a recalculation
of the �nal vector of that unit is done using the information associated to the
units in that same position in each map of the ensemble. For each unit, a sort
of voting process is performed as seeing in Eq. 5:

Vp,m =

∑
bp,m∑M

i=1 bp,i
·
∑
qp,m∑M

i=1 qp,i
(5)

where, Vp,m is the weight of the vote for the unit included in map m of the
ensemble, in its in position p, M is the total number of maps in the ensemble,
bp,m is the binary vector used for marking the dataset entries recognized by unit
in position p of map m, and qp,m is the value of the desired quality measure for
unit in position p of mapm. The weights of the units are fed to the �nal network
as it is done with data inputs during the training phase of a topology preserving
map, considering the homologous unit in the �nal map as the BMU. The weights
of the �nal unit will be updated towards the weights of the composing unit. The
di�erence of the updating performed for each homologous unit in the composing
maps depends on the quality measure calculated for each unit: the higher the
quality (or the lower the error) of the unit of the composing map, the stronger the
updating of the unit of the summary map towards the weights of that particular
unit. A single measure or a linear combination of several quality measures can
be used for the determination of the �nal quality of a unit. The number of data
inputs recognized by each unit is also taken into account in the quantization of
the �most suitable� unit among those voting for the same position in the �nal
map.

In short, the summarization algorithm considers the weights of a composing
unit �more suitable� to be the weights of the unit in the �nal map according to
both the number of inputs recognized and the quality of adaptation of the unit.
The steps of this algorithm are fully described in the Algorithm 3.

Its interesting to note that the WeVoS scheme leans in the base algorithm
used to update the �nal units and its neighbourhood. That means that although
very similar, the WeVoS-SOM is di�erent form the WeVoS-ViSOM algorithm.
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Algorithm 3 Weighted Voting Summarization algorithm

Input: Set of trained topology-preserving maps: M1...Mn, training data set: S
Output: A �nal fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging meta-algorithm : M1...Mn

3: procedure WeVoS-ViSOM(M1...Mn)
4: for all map Mi ∈Mn do

5: calculate the quality/error measure chosen for ALL neurons in the
map

6: end for

. These two values are used in Eq. 5
7: calculate an accumulated total of the quality/error for each position Q(p)
8: calculate recognition rate for each position B(p).
9: for all unit position p in Mi do

10: initialize the fused map (Mfus) by calculating the centroid (wc) of
the neurons of all maps in that position (p) Eq. 3

11: end for

12: for all map Mi ∈Mn do

13: for all unit position p in Mi do

14: calculate the vote weight (V p,Mi) using Eq. 5.
15: feed the weights vector of neuron wp into the fused map (Mfus)

as if it was an input to the network.
The weight of the vote (V p,Mi

) is used as the learning rate (α).
The position of that neuron (p) is considered as the position of the

BMU (v). . This causes the neuron of the fused map (w∗p)
to approximate the neuron of the composing ensemble (wp,m) according to
the quality of its adaptation.

16: end for

17: end for

18: end procedure
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Figure 1: Final adaptation of units in WeVoS-ViSOM

When the step of ��ne tunning� of units according to composing maps is per-
formed, the WeVoS-SOM uses the SOM updating (Eq. 1) while the WeVoS-
ViSOM uses the ViSOM updating (Eq. 2).

An schema representing how the �nal update of units in the WeVoS-ViSOM
is performed is shown in Fig. 1. As can be seen, when the update of the �nal
unit on the left is performed according to the homologous unit of the �rst map,
its neighbour (�nal unit on its right) is also updated according to its distance
with the unit being updated (in this case the one in the right) contracting (or
expanding) the grid as is done in the ViSOM algorithm. This is repeated for all
units of each composing map. This di�erence can be empirically appreciated in
the experiments presented in Section 6.

6. Experiments and Results

Several experiments have been designed and performed to investigate the
capabilities of the WeVOS-ViSOM and also to compare it versus the other two
di�erent algorithms for obtaining a fused map from an ensemble. These ex-
periments made use of three of the most popular datasets included in the UCI
machine learning repository Asuncion and Newman [1]: Iris, Echo-Cardiogram
and Wine datasets. Experiments were performed using both ViSOM and SOM
models over the three datasets to train ensemble of di�erent sizes, using the
classical cross-validation method in order to select testing and training parts of
the corresponding dataset.
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6.1. Test Procedure

For all the experiments involving this combination of maps the procedure
is the following: A simple n-fold cross-validation is used in order to employ
all data available for training and testing the model and to calculate an aver-
age of its performance. An ensemble of maps is calculated in each step of the
cross-validation. The way the ensemble is trained does not a�ect the way the
combination is computed. In the case of this study this has been done using
the bagging Breiman [7] meta-algorithm. Each individual map of an ensemble
is trained on one of the re-sampled subsets (n − 1 folds of the whole dataset)
initialized in the same way and using exactly the same parameters for train-
ing. This generates n di�erent trained networks which can be combined into
a �nal network that is expected to outperform each of them individually. The
combination of maps is done once all the maps composing the ensemble have
�nished their training. Then, the data fold that was left out of the training re-
sampling, is used to test all models trained: each of the networks that compose
the ensemble as well as the combinations that they generate.

6.2. Visualization Results

In this sub-section a few examples of the most interesting visualization results
obtained by the di�erent models discussed in this research are presented.

Figs. 2 and 3 represent how each map adapts its structure to represent the
data set analyzed. It depicts the lattices composing the maps embedded in a
2-dimensional input space. All �gures represent the Iris dataset projected over
its �rst 2 principal components Hotelling [14]. X-axis is the 1st PC and Y-axis
is the 2nd PC. Each of the �gures shows also a map trained over the dataset,
embedded into the input space formed by the principal components. As before,
all maps were training using the same parameters.

In Figs. 2a and 3a it can be seen the single model maps displayed over the
Iris dataset in the input space. The �rst displays a SOM grid, the later a ViSOM
grid. In Figs. 2b and 3b the result of performing the algorithm of the Fusion by
Euclidean distance is showed. It is easy to observe that this algorithm is focused
on distributing the units over the dataset the best as possible, but obtains a
map with a lot of twists and folds that does not preserve the topology very well.
In Figs. 2c and 3c we display the fusion of the same ensemble, but using the
fusion by Voronoi polygon similarity. Again, only the map training algorithm
changes in the two �gures. It can be observed that the topology preservation
is completely lost. Finally, Figs. 2d and 3d show the fusion of the ensemble,
using the model presented in this work: the WeVoS (WeVoS-SOM in the �rst,
WeVoS-ViSOM in the second �gure). It can be seen that the problems observed
previously are not present in this model.

The resultant maps that will be used to visually inspect the data obtained
for the single model and two of the di�erent summarization models described
in this study are displayed on Fig. 4 for both the SOM and ViSOM map
training algorithms. As explained before, the Voronoi Polygon Similarity Fusion
algorithm does not form a proper lattice, but rather a graph; and therefore it is
not suitable for data representation as the rest of them.
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(a) Single SOM map (b) Fusion of SOM maps using the Euclidean
Distance criterion

(c) Fusion of SOM maps using the Voronoi poly-
gon similarity criterion

(d) Fusion of �ve SOM maps using the WeVoS
algorithm

Figure 2: Comparison of the adaptation the discussed algorithms to input data
set using the SOM as base component for Iris data set.
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(a) Single ViSOM map (b) Fusion of ViSOM maps using the Euclidean
Distance criterion

(c) Fusion of ViSOM maps using the Voronoi
Polygon Similarity criterion

(d) Fusion of ViSOM maps using the WeVoS
algorithm

Figure 3: Comparison of the adaptation the discussed algorithms to input data
set using the ViSOM as base component for Iris data set.
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The six maps were trained using the iris data set. Ensemble fusion maps
were obtained from the summarization of the same 7 maps (except Figs. 4a and
4d that show the single map SOM and ViSOM versions). Each unit of the map
is represented according to the class it has recognized more consistently.

It can be seen from Fig. 4 that the ViSOM algorithm provides in general
a smoother map than the classic SOM algorithm. The WeVoS meta-algorithm
improves the Single and Fusion by Distance models by obtaining in general
more compact and more clearly separated groups than the other two. Compared
with the single model (Fig. 4a), the WeVoS-SOM (Fig. 4c) presents a much
separated group for class 1 (circles). While in the single map, class 1 appears
in a strip on the left corner on the map, leaving a considerable amount of dead
units between data and the border of the map; the WeVoS-SOM presents a
more separated group covering the top of the map. The Fusion by Distance
(Fig. 4b) summarization algorithm does not improve signi�cantly the single
map, regarding the data representation feature of the model, as it obtains a
map mixing the three classes in the top part of the map. The WeVoS-ViSOM
provides a better visualization compared with the single ViSOM model and the
other two summarization algorithms. The single ViSOM (Fig. 4d) represents
the iris dataset quite well, with a group of samples corresponding to class 1
clearly separated from the others. Although they also appear in a corner of
the map, the cluster of class 1 is more separated from the other cluster than
in the classic SOM model (Fig. 4a). The Fusion by Distance (Fig. 4e) map
also contains a group separated from the rest, but including samples of di�erent
classes. As explained before, the Fusion by Similarity is not suitable for 2-
dimensional map representation, as some units are disregarded from the �nal
model and therefore the topology preservation is lost. The WeVoS-ViSOM (Fig.
4f) clearly separates class 1 from the other two in a more compact group in the
top of the image. Even comparing this model with the rest of models presented
in Fig. 4, the WeVoS-ViSOM is the one that separates more clearly class 1 from
the rest. The other two classes, although not so clearly separated as the �rst
one, also appear unmixed between them and in a more compact group than in
the single ViSOM map (Fig. 4d).

6.3. Analytical Results

This sub-section includes complete results for the experiments performed
comparing the models previously discussed according to the analytical quality
measures presented in Section 3. Two di�erent sets of experiments were per-
formed to compare the performance of the models when varying two di�erent
aspects of the training.

All measures presented in this section, are error measures; so the desired
value is always as close to 0 as possible. The Classi�cation Error is presented
in percentage form, normalized between 0 and 1, while the rest of the measures
are absolute values. For the sake of clarity, the results for the Fusion by Voronoi
Polygon Distances have been let out of the comparative, as they are completely
di�erent from the rest and therefore, are not comparable.
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(a) Single SOM (b) Fusion by Distance applied to the SOM

(c) WeVoS-SOM (d) Single ViSOM

(e) Fusion by Distance applied to the ViSOM (f) WeVoS-ViSOM

Figure 4: Maps obtained for the single models and two of the di�erent sum-
marization models described in this study, for both the SOM and ViSOM map
training algorithms.
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(a) Mean Quantization Error (b) Distortion

(c) Topographic Error (d) Goodness of Map

Figure 5: Evolution of Iris data set results when increasing the number of maps
composing the ensemble.

6.3.1. Experiment 1

The �rst experiment consists in using the complete data set to train the en-
sembles; increasing the number of maps used to construct each of them, assessing
the e�ect of the modi�cation in the number of components of the ensemble.

Once the ensembles were trained, the fusion of the ensemble was computed
by using the two variations explained in Section 4 and the novel algorithm
presented in Section 5. In all cases, the weight of the vote for each unit in this
latter model was calculated according to the goodness-of-adaptation measure.
All the measures were calculated using the test part of the dataset, both for
the average measure for the ensemble and for all the variations of the fusions
of the ensemble. In the �gures shown, ordinate axes represent the value of the
error measure, while abscissa axes represent the number of composing models
are used by the fusion algorithm.

In the case of the iris data set (Fig. 5) the di�erent ensemble models do
not seem to introduce very interesting improvement for the quality measures
calculated. The exception to this is the Distortion (Fig. 5b), in which both the
WeVoS-SOM and WeVoS-ViSOM obtain better results than the single models
and the other fusion algorithms; although it is not a very signi�cant improve-
ment. In the Mean Quantization Error (Fig. 5a) and the Goodness of maps
(Fig. 5d) the best performing algorithms are the single models, being clearly
the ViSOM the best of the two.
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(a) Mean Quantization Error (b) Distortion

(c) Topographic Error (d) Goodness of Map

Figure 6: Evolution of Wine data set results when increasing the number of
maps composing the ensemble.
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(a) Mean Quantization Error (b) Distortion

(c) Topographic Error (d) Goodness of Map

Figure 7: Evolution of Echo-Cardiogram data set results when increasing the
number of maps composing the ensemble.

Regarding the Wine data set (Fig. 6), this situation changes. Although for
the quantization error (Fig. 6a) the best models seem to be the single ones,
for the other three measures (Figs. 6c, 6b and 6d) the ensemble algorithms are
the best performing ones, especially in the topographic error (Fig. 6c) and the
goodness of map (Fig. 6d). In this last measure, although the WeVoS-ViSOM
outperforms the single ViSOM, the best algorithm is clearly the single SOM.

For the Echo-Cardiogram data set (Fig. 7) the results seem to be similar
those of the Wine. The quantization error (Fig. 7a) is higher in the ensemble
fusion algorithms. For Distortion (Fig. 7b), ViSOM and WeVoS-ViSOM are
very close to each other although the single ViSOM seems to obtain slightly
better results. For the other two measures (Figs. 7c and 7d) the WeVoS-
ViSOM obtains the best results, also having low variations between results,
which indicates the stability of the algorithm.

6.3.2. Experiment 2

The second experiment consists in using a moderated number of ensemble
components but modifying the number of data samples used for the training
of the models. This emulates the addition of noise or instability to the data
sets, as when using less amount of data but maintaining its dimensionality the
training process becomes more di�cult.

Results for this experiment con�rm the results obtained in the previous one.
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(a) Mean Quantization Error (b) Distortion

(c) Topographic Error (d) Goodness of Map

Figure 8: Evolution of the Iris data set results when decreasing the size of the
samples set used of training.
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(a) Mean Quantization Error (b) Distortion

(c) Topographic Error (d) Goodness of Map

Figure 9: Evolution of the Wine data set results when decreasing the size of the
samples set used of training.

In the case of the Iris data set (Fig. 8) the WeVoS algorithm is not able to
improve Quantization Error results (Fig. 8a), but it outperforms single models
in the Distortion (Fig. 8b) and Topographic Error (Fig. 8c) measures, especially
the WeVoS-ViSOM is the one obtaining the lowest error. For the Goodness of
Map (Fig. 8d) all models -except Fusion by Distance algorithms- behave in a
very similar way, being di�cult to outline one model over the rest.

In the experiment performed with the Wine data set the results (Fig. 9) are
also better for the ensemble algorithms using the WeVoS. Except in this case,
although both the WeVoS-SOM andWeVoS-ViSOM algorithms outperform their
single homologous algorithm; the one obtaining lower error turns out to be the
WeVoS-SOM. This is especially true for the Goodness of Map (Fig. 9d) but to a
minor extent is similar to the Topographic Error (Fig. 9c). For the Quantization
Error (Fig. 9a), the ensemble algorithm still yields not as good results as single
models.

Finally, the last experiment, using the Echo-Cardiogram data set (Fig. 10),
is the one with more distinguishing results. In this case is clear that ensemble
models obtain higher Quantization Errors (Fig. 10a) than the single models.
This is expected, as it is consistently true in all experiments. For the Distortion
measure (Fig. 10b), clearly the best model is the WeVoS-ViSOM, although very
close to the regular ViSOM. On its hand the WeVoS-SOM clearly outperforms
the single SOM. For the Topographic Error (Fig. 10c), is the WeVoS-ViSOM
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(a) Mean Quantization Error (b) Distortion

(c) Topographic Error (d) Goodness of Map

Figure 10: Evolution of the Echo-Cardiogram data set results when decreasing
the size of the samples set used of training.
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the one which clearly obtains the best results. In the Goodness of Map measure
(Fig. 10d), the best performing models seem to be the single versions, especially
the single SOM, which shows in this case a lower error than the WeVoS-SOM.
The WeVoS-ViSOM and single ViSOM exhibit not such a good behaviour, but
similar one to the SOM; although ViSOM performs slightly better when the size
of the data set reduces to less than half of the original size.

6.4. Discussion

The results included show some clear conclusions about the Fusion of Topol-
ogy Preserving Mapping algorithms. One is that, although it sometimes the
Fusion by Euclidean Distance can show a better classi�cation performance than
the single SOM (as Georgakis et al. [10] demonstrates) this could rather be due
to the e�ect of the re-labeling of neurons than the improvement of its topolog-
ical characteristics. Also, as results show, the �nal structure obtained by this
fusion algorithm is clearly not suitable for best representation of the data set
structure, due to the twists appearing in the map grid. On the contrary, the
WeVoS scheme shows a much regular grid, which as can be seen in the example
presented with the iris (Fig. 2 and 3) can serve to better adjust the grid and
distribute its units on the data input space.

Regarding the analytical results obtained, all favour this idea that although
the Fusion by Distance can obtain better classi�cation results, the visualization
characteristics of the resulting maps are generally poor.

Among the models compared, the WeVoS-ViSOM is the one showing the
best adaptation to the Iris data set, spreading the grid in a wider way over the
data manifold. This translates into a better �nal visualization of the data set
structure -as can be seen in Fig. 4- due to the enhanced visualization capabilities
of the ViSOM and the added improvement of the WeVoS fusion algorithm.

For the WeVoS-ViSOM results prove some characteristics of the models that
are interesting to note. First, as all experiments point out, the reduction of the
quantization error is not the main interest of this algorithm. As is easy to see on
Figs. 2 and 3 -but also on each analytical result - the algorithm tries to better
spread its units along the input data space, rather than concentrate them to
where more amount of data is located to get a more informative representation
of the data space. This come to the cost of obtaining higher quantization error
than other models. Concerning the other quality measures, the most interest-
ing characteristic is that the usefulness of the WeVoS-ViSOM model for data
visualization depends on the data set. As can be in Fig. 5, results for the Iris
data set are not as good as for single models -with exception of the Distortion
measure-. On Fig. 6 can be seen that best performing models are WeVoS-SOM
(Distortion and Goodness of Map measures) and WeVoS-ViSOM (Topographic
Error measure). And, �nally, on Fig. 7 the WeVoS-ViSOM obtain some of best
results (especially Topographic Error and Goodness of Map). These results are
similar in the case of the second experiment (Figs. 8, 9 and 10).This points
to the idea that for the ensemble to be really useful, the data set must have
enough complexity from the point of view of an automated learning algorithm.
For example: Iris data set has 150 samples, but only 4 dimensions, while Wine
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data set has 178 samples and 13 dimensions and the Echo-Cardiogram data set
has 105 samples and 9 dimensions. In this case, as for classical classi�cation en-
sembles; when a single algorithm performs in a correct way for a given data set,
the ensemble fusion algorithms are not able to outperform it; while when the
data set is complex for the single model, the use on an ensemble meta-algorithm
is able to further improve the capabilities of the single one.

7. Conclusions and Future Work

In this research a novel topology preserving model called WeVoS-ViSOM
is presented, analysed and compared with other models. This model aims to
generate the most accurate visual representation of a multi-variable data set in
the form of a 2D map that summarizes visually the principal features of the
data set outlined by the di�erent trained maps composing the ensemble. Its
main objective is to obtain the most comprehensive visualization as possible,
sacri�cing the less as possible the topological presentation of the data, one of
the main qualities of the Self-Organizing Maps. The main characteristic of the
model is the smooth adaptation of to the input space of the data set, correcting
small defects that can arise on a single training; and therefore further improving
the visualization capabilities of the ViSOM algorithm. The present work has
included detailed descriptions of previously devised summarization algorithms
and compared them with the new model. The performance of the summaries
obtained by the WeVoS meta-algorithm has been analysed by means of a range
of quality measures; and the usefulness of the WeVoS-ViSOM has been proved
empirically, showing that provides clearer and smoother representation of the
inner structure of the data set under study. Although it does not outperform
single models regarding its classi�cation accuracy or quantization error, it suc-
ceeds in reducing the distortion error of single models, thus obtaining a more
truthful and organized representation of the data set. In the cases analysed,
the WeVoS-ViSOM has obtained lower errors than the WeVoS-SOM, proving a
very useful tool for data visualization. Future work will be focused on the ap-
plication of the WeVoS to other topology preserving models and to other cases
of study. Also some improvements on the way the ensemble is calculated, taken
from ensemble meta-algorithms most spread practices, will be tested in a wider
array of real-life problems.
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