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Abstract

The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based
model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The
model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global
interaction. Each agent is endowed with a memory and plays the best reply against the opponent’s most frequent demand.
We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which
the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global
interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction
networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can
lead to new persistent regimes different from those found in previous research. In particular, community structure in the
intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the
hindering diffusion effect of fluctuating agents at their borders.
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Introduction

The role that norms play as regulator mechanisms of certain

aspects of social, economic and organizational behaviours has

been thoroughly studied in the social sciences [2,3]. Once a norm

has been established, it acts as a self-reinforcement mechanism of

behaviour. However, the emergence, diffusion and collapse of

social norms are, in general, exempt from explicit mechanisms of

control.

There are different kinds of norms depending on the type of

social interaction. Concretely, in the economics field, an important

research effort is focused on understanding the emergence of

norms that determine the property distribution in a community.

Thus, in contrast to the equity norm that leads to ‘‘distributive

justice’’ and fair division of goods in some communities, there is

also evidence of systematic persistence of discriminatory norms

that allocate different shares of a resource according to some

individual characteristic or group membership.

Evolutionary game theory is a powerful framework to analyse

this type of norms formally. In particular, the Nash bargaining

game [4] is often used as a simple archetypical model of economic

interaction and good distribution. Succinctly, the two-player Nash

bargaining game consists of two players that have to divide a sum

of money among them. The payoff for each player is the amount

of money they asked for, but if the sum of the demands exceeds the

total, they both obtain nothing.

If the game is played repeatedly among an infinite population of

players that are randomly paired up and change their strategy

according to the replicator dynamics then, given a particular initial

condition, it is possible to compute the distribution of strategies in

the population over time [5]. Notwithstanding, the influence of

such assumptions has proved very relevant for the results of

evolutionary game models [6]. This is particularly relevant given

that such assumptions are not always easy to justify.

In 2001, Axtell, Epstein and Young [1] proposed an agent-

based model (henceforth AEY’s model) to understand the transient

and the asymptotic dynamics of the Nash demand game in a finite

population. They simplified the analysis considering just three

possible demands: low (L), medium (M) and high (H). They proved

that different self-reinforcing norms can emerge spontaneously.

These emergent norms may be completely different from one

another even though all the agents of the population have exactly

the same behavioural rule. Which particular norm appears first

depends on initial conditions and on purely accidental events, such

as the specific pair of agents that happened to be (randomly)

paired at a certain time.

To obtain these conclusions Axtell et al. conduct their analysis

in two parts. Initially they study the dynamics of a population of

indistinguishable agents with the capacity to store in their

memories the strategies played by their opponents in the last

encounters. Each agent uses this information to form an

expectation about her opponent’s strategy, assuming that the

probability of the next demand equals the relative frequency of the

remembered experiences in the last encounters. Given that belief,

each agent responds with a ‘‘noisy best reply’’, i.e. a best reply with

a small probability of selecting a random demand. One of the
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norms that can emerge in this setting is the so-called ‘‘equity

norm’’, i.e. a self-fulfilling situation where everyone expects the

others to demand M and, as a consequence, everyone demands M;

this behaviour, in turn, confirms the expectations that everyone

already has, thus closing a self-consistent loop. Axtell et al. point

out that the ‘‘equity norm’’ is the unique stochastically stable state

of the game (see Young [7,8] for a comprehensive analysis of the

required conditions to obtain this conclusion), but they also find

other persistent stable fractious states, in which players play

repeatedly L or H, but never M.

More interestingly, in the second part of their analysis, Axtell

et al. endow each individual agent with one of two possible tags

(which can be recognised by all, but has no initial meaning) and

with the ability to remember both the past behaviour of her

opponents and their tag. In this second setting, they find that a

new stable state can endogenously emerge, in addition to the ones

previously observed. In this new state, agents behave differently

within and outside their own tag group, so the state was naturally

labelled ‘‘segregation’’. The implications of Axtell et al.’s finding

are astonishing: a discriminatory norm in which property is

unequally distributed based on observable characteristics that are

initially meaningless, may not only emerge but even perpetuate for

long, as a consequence of the self-reinforcing nature of the

dynamics. These results are very suggestive from a social point of

view when we associate the concept of tag in the model with some

social or cultural trait such as race, gender or age, which may

condition people’s behaviour in human societies. Using the model

as reference, the emergence of a rich variety of collective outcomes

can be explained. An example would be the situation where a

divided underclass is oppressed by a unified elite: this would

correspond in the model to a state where the elite group

systematically plays H against the oppressed group (who responds

optimally playing L) and plays equitable (M) among themselves,

while the discriminated group is stuck in a fractious state. The

replicator dynamics embeds two important assumptions: infinite

populations (which is the hypothesis relaxed by Axtell et al. [1])

and random pairings. The assumption that pairings are random

can be understood as an abstraction of persistent bargaining

interaction with strangers. However, in some contexts this may be

unrealistic; agents may interact only with just a small number of

other agents with which they are in direct contact [9,10]. In those

cases the global interaction assumption can be removed and we

can analyze the effect of a given social or spatial structure.

Introducing structure in the population implies that the

probability of interaction between two agents depends on the

specific pair of agents. The structure of the population can be

usefully represented by means of a graph or network that describes

the interaction connectivity. Ohtsuki et al. [11,12] argue that in a

general case, the structure should be described by two graphs, one

representing the interaction of the game played and a second one

representing the interaction of the adoption or learning mecha-

nism. Usually both graphs are considered the same. The effect of

many different types of graphs in games has been investigated,

examples of which include the analysis of iterated 262 games such

as the Prisoner’s Dilemma on regular lattices [13–15], Erdos-

Renyi [15–17], small-world [15,18], scale-free [16,17,19–23] or

real networks [24,25], the analysis of the snowdrift game on

lattices [26,27], small-world [28,29] or scale-free [19–21]

networks, and n-person games such as public good games on

lattices [30–33] or the minority game on small world networks

[34,35] (some reviews can be found at [6,36,37]). In this article we

have extended the analysis of norm diffusion in a population

considering AEY’s model as a framework. We have studied the

influence of the topology on the results of the game. To this aim,

we have considered the spatial dimension of the game by

introducing a regular spatial structure. We have also modified

the original model by adding a new behavioural rule that requires

less cognitive abilities than those required in the original paper.

When agents use this behavioural rule, the segregation norm

emerges more frequently, and a richer space of solutions is

observed.

This work is organized as follows: first, we briefly explain the

extensions and modifications that we have performed on AEY’s

original model. Next, we describe the results that we have obtained

when agents are randomly assigned a tag. At the end of this section

we discuss some cases where several persistent regimes can

simultaneously emerge, and their relation with some mesoscopic

topological properties. We then finish with the conclusions of this

work.

Methods

Agent-based Model of Bargaining in a Regular Lattice
In this section we describe an agent-based model of bargaining

in regular lattices based on the original tag model proposed by

Axtell et al. [1]. Our model introduces a spatial restriction in the

structure of interactions: agents are embedded on a regular lattice

and they can only bargain with their spatial neighbours. In each

time period of the model, each agent selects one of her neighbours

at random to play the Nash demand game. When playing the

game, each agent considers three possible demands of a pie (which

is a metaphor of something that is going to be shared between two

persons), i.e. low (L) or 30%, medium (M) or 50% and high (H) or

70%. The agents get the chosen demand if the sum of their

demands does not exceed 100 percent of the pie; otherwise they

both get nothing (see the payoff matrix in the Table 1). The Nash

demand game represented in Table 1 has exactly three pure-

strategy Nash equilibria, corresponding to the pairs (L, H), (M, M),

and (H, L). These are called the equilibria of the one-shot

bargaining game.

As in Axtell et al. [1], the population of agents is divided into

two groups of equal size whose members share a recognizable

characteristic which has no a priori social meaning, i.e. a tag.

These tags are used by the agents to select their demand in the

one-shot game. To be precise, the agents’ decision rule, which is

identical for all individuals, is based on the agents’ capacity to

remember their opponent’s demand in the m most recent

interactions with opponents with the same tag (i.e. intratype

interaction) and the m most recent interactions with opponents

with the other tag (i.e. intertype interaction). These experiences

constitute the agent’s intratype and intertype memories. In the

AEY model, an individual chooses the best reply that maximizes

the expected demand considering their past experiences with

similar opponents, i.e. those with the same tag. In contrast, in our

model we consider a simpler decision rule, henceforth the mode

rule, which dictates that individuals choose the best reply against

the most frequent demand with similar opponents (ties are

Table 1. Payoff matrix of the Nash demand game.

H M L

H (0,0) (0,0) (70,30)

M (0,0) (50,50) (50,30)

L (30,70) (30,50) (30,30)

doi:10.1371/journal.pone.0017661.t001

Mesoscopic Effects: ABM Model in Regular Lattices
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resolved randomly without any bias). The mode rule is cognitively

less demanding than AEY’s and, naturally, it induces different

results than those obtained with the original rule [38].

The stochastic version of the game considers that agents may

make mistakes in their decisions (or simply experiment from time

to time). Hence, with probability (12e) an individual chooses the

best reply and with probability e she chooses one of the three

possible demands at random (low, medium or high with the same

probability).

The model has been implemented in Netlogo (http://ccl.

northwestern.edu/netlogo/) and can be downloaded at this url:

http://ingor.ubu.es/models/aeygrid).

We can summarize the model as follows: there is a population of

N agents randomly distributed in a regular 2-dimensional toroidal

lattice of LxL = N cells, each one inhabited by one and only one of

the N agents. The population is divided exactly into two groups

whose members have a distinctive tag. The number of agents is

chosen satisfying simultaneously two conditions: (1) it is even, so

the population can be divided exactly into two groups, (2) and its

square root is an integer, so the regular lattice is square too. Each

agent is endowed with two memories of length m to keep the

demands of the two classes of tags. Memories are initialized at

random. In each time period t, each agent randomly selects one of

her 8 neighbours (radius-1 Moore neighbourhood) to play the

game. The agent observes her opponent’s tag and decides the best

reply against the most frequent demand in her corresponding

memory (i.e. intratype or intertype). However, with a small

probability e an agent decides randomly between the three

possible demands. Afterwards both agents update their memories.

Figure 1 shows the different interaction networks of a particular

spatial distribution of tagged agents in a 464 lattice.

Results

Understanding the dynamics of the model
Before our computational exploration of the model, we have

conducted a brief analysis within the framework of Markov Chains

[39] to gain some insights about the expected dynamics and

behaviour of the model. Fortunately, some aspects of this formal

analysis have already been carried out for the AEY model by

Axtell et al [1], and for the evolutionary model of bargaining by

Young [7,8]. In terms of markovian properties, our model shares

many characteristics with these models. To represent the model as

a time-homogeneous Markov Chain (THMC), we define the state

Figure 1. Example of a spatial distribution and its corresponding interaction networks. The spatial distribution, depicted in the centre,
consists of 16 agents randomly distributed in a regular 2-dimensional toroidal lattice of 464 cells. The corresponding set of interaction networks are
shown in the corners: (i) the complete interaction network (upper left corner), (ii) the intertype interaction network (upper right corner), (iii) the ‘‘black
tag’’ intratype interaction network (bottom left corner), and (iv) the ‘‘white tag’’ intratype interaction network (bottom right corner).
doi:10.1371/journal.pone.0017661.g001
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of the system in a time period t as a N-dimensional vector

Xt = {X1
t, X2

t,…, XN
t} of 2m-tuples Xi

t, each one corresponding

to agent i’s memory of both intratype and intertype encounters (it

is not necessary to use all m values of the agents’ memory to

represent the state space, since knowing only the memory length

and two of the frequencies of each possible demand {L,M,H} is

enough). Note that the spatial distribution of tags conditions the

chances of intratype/intertype encounters in each period, but the

possible changes that may occur in each interaction are only

dependent on the particular form of the two m-tuple memories

that are involved in the interaction.

The characteristics of the system dynamics are strongly

determined by the presence or absence of errors (mutations in

evolutionary terminology) in agents’ decisions. In the absence of

decision errors, i.e. the unperturbed model, the system has absorbing

states in which sooner or later it will be trapped (if we run the

model for long enough). These absorbing states are directly related

with the three pure-strategy Nash equilibria of the Nash demand

game, giving rise to the equity norm (EQ) and the inequity norm (IQ).

The former happens when everyone in the population expects the

others will demand M, and consequently everyone demands M, so

the system ends reaching an absorbing state for both intratype and

intertype bargaining processes, which is equitable because all

agents get equal payoffs, and is also efficient (in Pareto sense)

because no agent can be made better off without making another

agent worse off. Apart from this, in the AEY model without spatial

restrictions [1], there are also IQ absorbing states for the intertype

bargaining game. An IQ equilibrium corresponds to a state in

which tagged agents coordinate in one of the two asymmetric

pure-strategy Nash equilibria. Whenever agents of one tag expect

the others will demand L and hence they will demand H, and

simultaneously the others will expect and demand the comple-

mentary decisions, the system reaches an absorbing state, which in

this case is efficient but not equitable in the proportions obtained

by each agent.

Interestingly, additional absorbing states show up as a

consequence of the imposed spatial structure. For example, a

spatial distribution of 464 tagged agents like the one depicted in

Figure 2 allows an IQ absorbing state in both intratype bargaining

games, i.e black-black and white-white.

When randomness is introduced in agents’ decisions (motivated

by the possibility of mistakes or by a simple desire for exploration),

the system becomes ergodic. In this case, there is a unique limiting

distribution over the state space which determines the probability

of finding the system in each of its states in the long run (e.g.

limtR‘P(Xt = i)). Such probabilities are strictly positive and

independent of the initial conditions. This limiting distribution

can be estimated sampling just one simulation run for a sufficiently

long time, by computing the fraction of the time that the system

spends in each state, i.e. the occupancy distribution [39]. In

contrast to what one may expect, when the tagged model for a

finite population and global interaction is asymptotically analysed,

this limiting distribution concentrates only on one of the two

absorbing states of the unperturbed model, the EQ. The formal

demonstration of this relies on the concept of stochastic stability

[8]. When some small noise exists, the EQ state is stochastically

stable while IQs are not. This implies that, in the long run and for

sufficiently unlikely perturbations, the system tends to spend most

of the time at the EQ state. Nevertheless, Axtell et al. [1] make an

interesting contribution turning the attention from the asymptotic

to the transient dynamics, and showing that there are other

relevant states in which the system spends a considerable fraction

of the time, henceforth persistent regimes. In the transient evolution of

the global interaction model, sometimes the system is temporarily

trapped in a particular regime, called fractious regime (FR), in which

agents alternate their demands between H and L, making the

emergence of the equity norm very difficult (We keep the word

fractious for consistency with the original AEY’s model; but it may

be worth noting that other names, such as ‘‘fluctuating agents’’

[16,40], have been used in the literature for essentially the same

concept, i.e. agents that intermittently change their strategy).

Moreover, they show that the transition time between this

fractious regime FR to the stochastically stable state EQ can be

enormously long and this time grows exponentially with the

number of agents and their memory length -i.e in their

terminology: ergodicity is broken.

Formally, the system is completely characterised by the vector

Xt, which can be graphically represented using a 2-simplex of the

agents’ states (see Figure 3). Each of the two agent i’s memories

keeps track of the demands made by her opponents in the m most

recent intratype (or intertype) encounters, and can be represented

by a vector of the relative frequencies of these demands Xi = {nL/

m, nM/m, nH/m}, where nL denotes the number of times that

agent i’s opponent demanded L in the m most recent intratype (or

intertype) interactions. This vector corresponds in the simplex with

the point nL=mznH=2m,
ffiffiffi
3
p

nH=2m
� �

. Since the memory of an

agent is made by two partitions, corresponding to the past

demands of the two classes of opponents, we can use two separated

simplexes to represent each one.

Most Frequent Persistent Regimes
If, following the approach in Axtell et al [1], we focus our

analysis on the transient dynamics of the spatial model, the

complexity of the system makes us to resort to computer

simulation as methodology. We have designed a set of experiments

Figure 2. Toroidal grid of 464 cells with 8 white and 8 black
agents distributed in the way shown. In this particular spatial
distribution the system may reach the IQ state in both intratype games
whenever similar tagged agents placed in the same column demand
exactly the complementary quantity (L or H) of their neighbours of
columns just next to them. This result is true if the intratype network is
bipartite, i.e. there are no odd-length cycles.
doi:10.1371/journal.pone.0017661.g002

Mesoscopic Effects: ABM Model in Regular Lattices

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e17661



to discover and understand the persistent regimes that emerge in

the model.

The parameterization of all cases mentioned in this paper

corresponds to a model of N = 100 agents randomly distributed in

a regular lattice of 2-dimensional grid of 10610 cells, each one

keeping one of the N agents. Each agent is endowed with two

memories of length 10 for intratype and intertype bargaining

games, initialized at random. In each time period t, each agent

selects one of her 8 neighbours (Moore neighbourhood) at random

and decides the best reply against the most frequent demand in her

memory for the type of opponent. However, with a small

probability e= 0.01 an agent decides randomly between the three

possible demands {L,M,H}. Note that each time period consists of

N matches, and consequently it is probable that an agent bargains

more than once in each time period. We have sampled 10.000

simulation runs during Tf = 30.000 time periods.

The system state at the end of the simulation time can be

summarized as a 3-tuple of the regimes reached by the intertype

and the two intratype bargaining games {Intra-whiteregime, Intra-

blackregime, Interregime}. Taking into account the characterization

of the types of stable and persistent regimes described in the

previous section, we may expect that if we let the system run for

long enough, it will reach one of the 33 possible combinations, i.e.

{EQ,EQ,EQ}, {EQ,EQ,FR}, …. We define a set of simple

conditions, henceforth C1 stop conditions, for reaching each of the

persistent regimes according to their nature: the EQ state is

considered reached whenever all agents in the corresponding

bargaining process have at least (12e)6m instances of M in their

memories (note that the memory vector has a finite number of

instances, so we approximate (12e)6m to the lower integer and

e6m to the higher integer), the IQ and the FR regime are

considered reached whenever all agents have at most e6m

instances of M and, moreover, in the case of the IQ state a group

of agents have (12e)6m instances of L and the rest have (12e)6m

of H, and in the case of FR all agents have a combination of

(12e)6m instances of both L and H. In short, a simulation run

stops when either it satisfies one of the C1 stop conditions or it

reaches the final time period Tf.

Figure 4 plots the frequency distribution of the stop conditions

reached by all simulations we run. As one may expect, the system

reaches one of the persistent regimes previously defined in the

majority of the cases (80.98% of the runs). A relevant result is that

Figure 3. 2-simplex representation of the state space used in
both intratype and intertype bargaining games. The shaded
regions correspond to the state subspaces in which an agent always
decides one of the three possible demands {L,M,H}. For example, the
light grey area at the bottom-left of the triangle represents a set of
states in which the majority of the items in the memory are L, and
therfore the agent will demand H. The opposite happens in the dark
grey area at the top. Finally the M demand dominates the agents’
memories in the white area, so the response of the agent in that area is
also M. Note that with the mode-decision rule, the centre of the
triangle, which is equidistant from the three vertices, corresponds to
the indifferent state in which any of the three demands is equally
possible.
doi:10.1371/journal.pone.0017661.g003

Figure 4. Frequency distribution of the stop conditions reached by 10.000 simulation runs. C1 represents the relative frequency of runs
that reached one of the C1 stop conditions defined in section ‘Most Frequent Persistent Regimes’. C2 represents the frequency of runs that reached
the C2 stop conditions defined in section ‘Isolated Bargaining Clusters’. This stop criterion extends the C1 conditions to disconnected interaction
components that can randomly appear in the spatial distribution of agents on the grid. Finally C3 gathers the rest of the runs, which are analysed in
section ‘Other Persistent Regimes’.
doi:10.1371/journal.pone.0017661.g004
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even when the assumption of regular spatial structure of

interaction, all the persistent regimes obtained in the global

interaction case are also reached. Figure 5 illustrates graphically

the most frequent states and regimes through a set of simplexes of

some representative runs. The regime is characterized by the

corresponding pair of simplexes of both intertype and intratype

bargaining. Some of these states can be interpreted from a social

perspective as a divided underclass oppressed by a unified elite, as

class distinctions, discriminatory regimes, etc. (see [1] for a deeper

insight on some interpretations).

Isolated Bargaining Clusters
Although the analysis of the simulation results described in the

previous section explains more than 80 percent, it still leaves out a

significant set of them. A preliminary visual exploration of some

anomalous cases gives us a possible answer: the presence of

disconnected groups of agents which play the bargaining game

isolated from other groups. In the initialization of the model,

agents are randomly distributed and consequently most of spatial

distribution samples have agents of both tags dispersed in the

lattice, but close enough to make the dynamics interdependent.

However, sometimes this randomness produces the formation of

two or more isolated groups, i.e. groups of agents who decide their

(intertype or intratype) demands without any direct or indirect

influence from the agents that belong to other groups. This

possibility had not been considered when we defined the C1 stop

conditions, so when this event happens the simulation may reach

the final time period if groups evolve to different regimes. It is

important to notice that the intratype and intertype interaction

networks are formed in the random initialization process and are

fixed until a stop criterion is reached. Other relevant research in

coevolving games does not assume fixed interaction networks but

instead the structure dynamically emerges as a consequence of the

game. Some of these coevolutionary rules have been used to model

Figure 5. Most frequent persistent regimes of the transient dynamics for the intertype and intratype bargaining games. The
bargaining between different groups (intertype) can reach the EQ state (top-left simplex), the IQ state (middle-left simplex) or the FR regime (bottom-
left simplex). In the bargaining within groups (intratype) we have shown the combination of {EQ,EQ} when both groups coordinate in the EQ state
(top-right simplex), {EQ,FR} when one group is in the EQ state but the other is in the FR regime (middle-right simplex), and when both groups stay in
the FR regime (bottom-right simplex).
doi:10.1371/journal.pone.0017661.g005

Mesoscopic Effects: ABM Model in Regular Lattices
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mechanisms of learning [41], conditional dissociation [42],

unilateral and mutual choice in group dynamics [43,44],

reputation-based partner choice [45] or the formation and

deletion of strategy-independent links [46–48].

We illustrate these cases with one of the runs that exhibits this

type of spatial distribution (see Figure 6). In particular, the

example run has two disconnected white-tagged groups that reach

different final regimes. In order to discriminate this sort of cases we

define the C2 stop conditions which are exactly the same conditions

as C1 but applied at the level of disconnected groups -or

components, in the terminology of network theory that we will use

in the next section-, instead of at the level of the whole population,

as we do to define C1 conditions.

Introducing the C2 stop conditions, the number of runs that end

in some of the persistent regimes described so far increases until it

reaches more than 89 percent of them (see Figure 4). The

remaining set of runs, which end without reaching any of the

expected regimes, i.e. C3 stop conditions, are analysed in detail in

the next section.

Introducing the C2 stop conditions, the number of runs that end

in some of the persistent regimes described so far increases until it

reaches more than 89 percent of them (see Figure 4). The

remaining set of runs, which end without reaching any of the

expected regimes, i.e. C3 stop conditions, are analysed in detail in

the next section.

Other Persistent Regimes
The results above do not capture all persistent regimes in the

game. As evidence of intensive simulation in the spatial game with

random configurations, we find that there are still situations that

need a much longer time to stop with one of the two criteria (C1

and C2). This fact could suggest the appearance of some other

basins of attraction beyond the original AEY regimes that we have

found in section ‘Most Frequent Persistent Regimes’ and the

mentioned combinations of isolated states of section ‘Isolated

Bargaining Clusters’. This implies that there are additional

situations where the transient dynamics of the system differs from

the long-run behaviour of the system.

A visual inspection of the tag spatial distribution of these cases

puts forward some effects of the topology of interaction that could

explain additional regimes. This happens when there are

connected clusters of agents with the same tag who play different

types of intratype coordination in each of the clusters. The key

difference with the cases analysed in the previous section is that

such clusters are indeed connected.

It seems clear that the structure of interaction has an influence

on the game dynamics. We can consider the structure of intratype

interaction as an undirected network where each player represents

a node and there is a link between two nodes if both players can

play the intratype game (i.e. they are spatial neighbours and they

have the same tag). Our hypothesis is that the behaviour of the

system is affected by the topological properties in the mesoscale,

between the individual and the whole population, of this

underlying interaction network.

One of the most relevant mesoscopic characteristics in a network

is the property of community structure. Informally, a community in

a network consists of a subset of nodes that are relatively densely

connected to each other but sparsely connected to other dense

groups [49]. This type of local structure can be easily identified in a

variety of social contexts: families, friendship circles, virtual groups

in the Internet, neighbourhoods, etc. In fact, there is a very rich and

growing literature of networks that present community structure,

going from the networks of committee and subcommittee

assignments in the United States House of Representatives [50],

scientific collaboration networks [51], to networks of e-mail

interactions between university employees [52] or the collaboration

network of jazz musicians [53]. We presume that in connected

networks that present strong community structure, different

communities can reach different persistent regimes, and the spread

of one of the regimes to the whole connected group can be

obstructed if the inter-community connectivity is low.

We illustrate the intuition of this phenomenon in the following

idealized case. In Figure 7 we represent a certain configuration of

tags and the underlying intratype interaction network of white-

Figure 6. An example case that shows two disconnected
groups in the white tag intratype interaction network. Upper
figure: spatial distribution of agents with two disconnected groups
within white-tagged agents. Lower figure: the corresponding white tag
intratype interaction network in which the partition of the network is
easily seen (the 51–53 couple vs the rest of white agents). Although it
has not been mentioned, note that it is not difficult to identify two
other disconnected groups within black agents in this example (the 60–
89 couple vs the rest of the black agents).
doi:10.1371/journal.pone.0017661.g006
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tagged players. Intuitively there are two communities in the network

(depending on the algorithm used to identify communities, there

may be other partitions in communities different to the presented in

the example). If we play this game repeatedly a frequent result is

showed in Figure 8. Each community reaches a different regime,

stays trapped in it for a long time, and the diffusion of a general

homogeneous behaviour in the game is hindered.

If we want to extend these results to more general conditions in

the lattice game, we need to specify exactly how to define the

concept of community beyond the intuitive and vague idea of

some nodes very connected among them and sparsely linked with

other communities. As a matter of fact, the problem of detecting

communities is very challenging for two reasons: first, the number

of possible partitions is huge for non-trivial networks, and second,

but no less important, the concept (and hence the preferred

definition of communities) may be domain-specific, depending on

the field of application. Given this, it is not surprising that

nowadays there is a wide plethora of methods based on different

techniques and ideas to define and to identify communities in

networks (see some recent reviews in [49,54–57]).

Figure 7. Idealized case of white-tagged players and the underlying intratype interaction network. We have analysed the effects that
appear in the stylized configuration showed on the left of the figure. On the right, we represent the underlying interaction structure for the intratype
game of white-tagged players.
doi:10.1371/journal.pone.0017661.g007

Figure 8. Partition in communities of the idealized case and final regimes. On the right, we can observe two different persistent regimes in
the intratype game of white-tagged players depicted in Figure 7. The different regimes correspond exactly to the different communities showed on
the left.
doi:10.1371/journal.pone.0017661.g008
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In our analysis of the spread or lock-in of the persistent regimes,

the idealized case gives us a hint to select the identifying

community algorithm. We see that the edges that separate

communities act as bottlenecks that enable or put obstacles to

the flow of strategies. Based on this idea, Girvan and Newman [51]

defined the concept of betweenness of an edge generalizing the

concept of betweenness of a node by Freeman [58]. The

betweenness of an edge is calculated as the number of geodesic

(i.e. shortest) paths between node pairs that run through it,

normalized dividing by the number of pairs of nodes. The

betweenness of an edge gives us an idea of the importance of the

link to stop the flow of information in the network.

The algorithm of Girvan and Newman requires calculating the

betweenness of all edges in the network and removing the one with

the highest betweenness, repeating the whole process until no

edges remain (in case of tie, one can be randomly removed, or all

can be simultaneously removed). The logic of the algorithm is

based on the idea that the edges connecting communities will have

comparatively high betweenness and hence, by removing them

iteratively, we will separate the different components of the

network that reveal the hidden community structure of the graph.

The result of this algorithm is a dendrogram where horizontal

cross-sections represent different possible community divisions,

depending on the desired number of communities. Since the

method does not provide the appropriate number of communities

to split the network, the same authors [59] proposed to evaluate

the divisions using the concept of modularity as the fitness

function. The modularity of a partition is an index that aims to

quantify how good a partition is. Partitions with high values of

modularity are those in which there are dense internal connections

between the nodes within clusters but only sparse connections

between different clusters. Modularity compares the number of

links inside a community with the expected number of links that

one would find in the community if the network were randomly

generated keeping the degree of every node (i.e. the number of

links), but linking them randomly. Following Newman [60], the

modularity Q of an unweighted and undirected network

partitioned into communities can be computed as:

Q~
X

i

eii{b2
i

� �
ð1Þ

where eii denotes the fraction of all edges that have both ends in

community i, and bi is the fraction of edges that have one or two

ends in community i.

Given that this algorithm to partition the network formalizes the

idea of information flow, we hypothesize that some additional

persistent regimes can appear when each community adopts a

coordinated regime except for potentially some border agents with

other communities that can present a fluctuating behaviour

depending on the community with which they play, and hence

act as bottlenecks for the diffusion of norms between communities.

In order to check our hypothesis we have analysed the instances

where simulations have not reached any of the persistent regimes

considered in the previous sections: the simulations that stopped

because they reached the final time period Tf, i.e. stop condition

C3. In each one of these cases we have recorded the final state of

each player in the intratype game according to the definitions of

section ‘Isolated Bargaining Clusters’. If the agent did not reach

any of the predefined states based on her memory, we classify her

as ‘‘regime not established’’.

In those games, we have also exported the topology of each

component of the underlying intratype interaction network and

applied the Girvan-Newman algorithm maximizing the modularity to

identify the different communities. We can compare the partition given

by the algorithm with the final behavioural state of the players in the

game. If the mesoscopic topology conditions the spread and diffusion of

strategies in the lattice, the state of the players should be homogeneous

in each community except for potentially some nodes that are at the

border of the community. We define a node as border in a community

if she has a link to another player that belongs to a different

community. When two connected communities stabilize in a different

regime, the agents that are at the border should present a flipping

strategy, as a consequence of their exposure to different regimes. In

fact, given the construction of the Girvan-Newman algorithm, the

interaction of an agent that is at the border of a community with the

neighbour community is done by means of links of high betweenness.

In general, the frequency of interaction of those agents with players in

the neighbour community is going to be lower than with players in

their own community. In terms of diffusion of regimes this fact is

crucial, since in order to change their strategy they would need to play

very often with players from the other communities, which is against

the chances imposed by the topology. Agents at the border act as

buffers and stabilizers of the diffusion of regimes.

Figure 9. Number of components analysed that have a given percentage of explained nodes (i.e. nodes that have a homogeneous
strategy with their communities, or border nodes with a different strategy to that in their community).
doi:10.1371/journal.pone.0017661.g009
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In the 1007 components from simulations that finished with the

C3 criterion, we have computed the number of nodes that have a

homogeneous strategy with the community where they belong,

and the number of border players that have a different behaviour.

The number of nodes in this category accounts for 91.7%. We

represent in Figure 9 the percentage of nodes explained in the final

state of the 1007 components.

Our community analysis of the 1007 networks has identified

6,366 communities. We have also computed the number of players

within a community proposed by the algorithm that have a

discordant behaviour according to our hypothesis. Results are

presented in Figure 10. As we can see more than 60% of the

communities have exactly the expected behaviour.

The 8% of nodes that present a strategy discordant with the

expected behaviour can be explained by different reasons. First of

all, it is important to notice that the model is stochastic, and hence

some randomness is going to be present. This randomness may

introduce important inertia in the analysis of the state of the players.

Another factor could be that we are stopping the simulations after

30 000 ticks, which for some complex topologies may be insufficient

to converge to a complete persistent regime. Apart from that, we

should keep in mind that the topologies analysed are obtained from

complete random initialization of agents in the lattice which may

produce strange topologies. The partition in communities of such

topologies can be different depending on the algorithm used. The

Girvan-Newman algorithm is very appealing to explain diffusion

processes because it is based on a centrality measure but other

algorithms are better at maximizing the modularity [54]. It is

possible, therefore, that other algorithms give us other partitions

that improve the explanation based on the Girvan-Newman

algorithm. In any case, this study has shown the significant effect

of the mesoscopic interaction structure in the spatial diffusion of

strategies of the game in the lattice.

Discussion

In this work we have addressed the effect of a regular spatial

structure on the Nash bargaining game in a finite population of

tagged agents. We have showed that all the transient regimes

proposed by Axtell et al [1] can also be present in the lattice game.

More interestingly, depending on the particular tag distribution of

agents through the grid we have found some topological properties

that explain the diffusion of the agent’s strategies in the lattice. We

have showed that isolated clusters of intra or inter type of interaction

can reach different persistent regimes. Moreover, we have proved

the influence of the topology in understanding new stable regimes

different from those found by Axtell et al [1]. To explain their

appearance and persistence, we have based our analysis on the

mesoscopic properties of the interaction structure, concretely in the

community structure of the network of interaction. Using the

Girvan-Newman algorithm based on the edge betweenness and the

concept of modularity to identify communities, we can understand

the behaviour of many of the nodes of the simulation that do not

reach any of the previous described regimes. Although the results

can be dependent on the rules of the game, they may explain the

emergence of different norms of economic interaction and resource

allocation among different spatial groups, not only if the groups are

isolated and do not communicate among them, but also if the

interaction among groups has community structure.

The findings of these mesoscopic effects in a property distribution

game strongly corroborate the relevance of the arguments

previously exposed by authors like Lozano et al. [24,25] in the

evolutionary Prisoner’s Dilemma, Roca et al. [61] and Tomassini

and Pestelacci [62] in cooperation dilemmas, and similar phenom-

ena also described by Castelló et al. [63,64] in the context of

dynamical models of competing options. Although the game played

on the spatial substrate is different from the games explored by these

authors, the mechanism that prevents the homogenization of a

general strategy in the population is very similar. They use the idea

of topological traps [61,63,64] (i.e. links between nodes of different

degrees in regions with few or no redundant paths) to explain why

‘‘homogeneous strategy waves’’ do not propagate over the network

uniformly. Since we are partitioning the network using a

methodology based on the concept of betweenness, we are indirectly

detecting the notion of topological traps in the borders between

communities, as our results show.
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network reciprocity as a phase transition in evolutionary cooperation. Physical

Review E - Statistical, Nonlinear, and Soft Matter Physics 79(2). doi: 10.1103/
PhysRevE.79.026106.

41. Skyrms B, Pemantle R (2000) A dynamic model of social network formation.
Proceedings of the National Academy of Sciences of the United States of

America 97(16): 9340–9346. doi: 10.1073/pnas.97.16.9340.

42. Izquierdo SS, Izquierdo LR, Vega-Redondo F (2010) The option to leave:
Conditional dissociation in the evolution of cooperation. Journal of Theoretical

Biology 267(1): 76–84. doi: 10.1016/j.jtbi.2010.07.039.
43. Yamashita T, Izumi K, Kurumatani K (2005) An investigation into the use of

group dynamics for solving social dilemmas. Lecture Notes in Artificial

Intelligence 3415: 185–194. doi: 10.1007/978-3-540-32243-6_15.
44. Yamashita T, Axtell RL, Kurumatani K, Ohuchi A (2004) Investigation of

mutual choice metanorm in group dynamics for solving social dilemmas. Lecture
Notes in Artificial Intelligence 3012: 137–153. doi: 10.1007/978-3-540-24666-

4_9.
45. Fu F, Hauert C, Nowak MA, Wang L (2008) Reputation-based partner choice

promotes cooperation in social networks. Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics 78(2). doi: 10.1103/PhysRevE.78.026117.
46. Szolnoki A, Perc M (2009) Resolving social dilemmas on evolving random

networks. Europhysics Letters 86(3). doi: 10.1209/0295-5075/86/30007.
47. Szolnoki A, Perc M (2009) Emergence of multilevel selection in the prisoner’s

dilemma game on coevolving random networks. New Journal of Physics 11: doi:

10.1088/1367-2630/11/9/093033.
48. Wu B, Zhou D, Fu F, Luo Q, Wang L, Traulsen A (2010) Evolution of

cooperation on stochastic dynamical networks. PLoS ONE 5(6): e11187. doi:
10.1371/journal.pone.0011187.

49. Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Notices of
the American Mathematical Society 56(9): 1082–1097. doi: 10.1063/1.3194108.

50. Porter MA, Mucha PJ, Newman MEJ, Friend AJ (2007) Community structure in

the United States House of Representatives. Physica A: Statistical Mechanics
and its Applications 386(1): 414–438. doi: 10.1016/j.physa.2007.07.039.

51. Girvan M, Newman MEJ (2002) Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United States

of America 99(12): 7821–7826. doi: 10.1073/pnas.122653799.
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