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Abstract

Metanorms is a mechanism proposed to promote cooperation in social dilemmas. Recent experimental results show that
network structures that underlie social interactions influence the emergence of norms that promote cooperation. We
generalize Axelrod’s analysis of metanorms dynamics to interactions unfolding on networks through simulation and
mathematical modeling. Network topology strongly influences the effectiveness of the metanorms mechanism in
establishing cooperation. In particular, we find that average degree, clustering coefficient and the average number of
triplets per node play key roles in sustaining or collapsing cooperation.
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Introduction

A social dilemma is a situation where the interest of the

individual conflicts with the preference of the collective [1]. Each

person entangled in a social dilemma has rational arguments to

follow a behavior that in the aggregate leads to unfavorable

outcomes for the collective. Social dilemmas are found in diverse

contexts. For example, economic social dilemmas include

problems associated with the provision of public goods such as

national security, public health and environmental protection,

where individuals can make investments into a common pool to

provide a costly, non-excludable asset that benefits all regardless of

how much they contribute to creating it [2–5]. Such ‘‘collective

action’’ problems [6–8] are not limited to human social behavior.

Biology abounds with examples of social dilemmas. Foraging yeast

cells secrete enzymes to lyse their environment, producing a

valuable common good that can be used by other cells [9]; groups

of meerkats take turns as sentinels and give eventual alarm calls to

the group [10]. Given the relevance of a large number of situations

that correspond to the definition of social dilemma, the scientific

community has expended significant capital to model and propose

solutions to social dilemmas.

In the most common formalization, social dilemmas are

modeled as games in which players follow different strategies.

Social dilemma games are characterized by the presence of at least

one deficient equilibrium: a situation that is an equilibrium, so no

player has incentives to change his behavior individually, but it is

not Pareto optimal, because there exists at least another possible

outcome that every player prefers to the current one. Often the

strategy that is collectively preferred is considered cooperative;

therefore cooperators provide a benefit to the group at some cost

while defectors exploit the group by reaping the benefits without

bearing the costs of cooperation.

Proposed methods of avoiding the generally undesirable

outcomes of social dilemmas vary widely and frequently depend

on context. Kollock [11] classifies these methods based on whether

players are assumed egoist and whether they can change the rules

of the game. His classification divides solutions to social dilemmas

into motivational [12–16], strategic [17–20] or structural

[2,12,21–32] (See Figure 1). In motivational solutions like moral

persuasion, a player gives some weight to the results other players

obtain. In strategic solutions such as reciprocity, conditional

association and grim triggers, an egoistic player influences other

players’ behavior by expanding the range of strategies he

considers. Neither solution requires coordinated or top-down

modifications of the rules of the game. In structural solutions such

as sanctions, central authority or privatization, the rules of the

game are changed to solve the dilemma.

A mixed structural-strategic solution proposed to obtain

collectively rational outcomes in social dilemmas is a sanction

system in which each player can punish other players that deviate

from cooperation. This type of self-imposed norm has the crucial

advantage of giving the players the opportunity to sanction norm

deviants selectively [33]. Behaviorally, ‘‘a norm exists in a given

social setting to the extent that individuals usually act in a certain

way and are often punished when seen not to be acting in this

way’’ [34]. This notion of norms is based on social norm as

opposed to legal norms, moral norms, private norms, habits or

fads [35]. [36,37] contain more extensive reviews of the meaning

of social norms, and [38,39] discuss the sociological and economic

foundations of norms while [40] couches social norms in

evolutionary game theory. Nevertheless, this mechanism to

promote cooperation can be riddled with difficulties if punishment

is costly. The punisher usually assumes the cost of promoting

punishment or vigilance. This punishment cost instigates a second

order ‘‘instrumental dilemma’’ in which players have incentives to

not punish, hence causing the solution to the first ‘‘elemental

dilemma’’ to collapse [41].

Second-order norm deviance has been studied experimentally

[41]. For instance, in a controlled experiment subjects were given
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the option to learn of others’ contributions to a public good before

deciding to punish them. This mechanism mitigated the free-rider

problem to some extent [3], but it created other problems like

punishing high contributors [42]. A plethora of other ideas have

been suggested as solutions. The threat of expulsion or ostracism

seems to improve the cooperation in providing public goods [43].

Costly signaling, may result in advantageous alliances, since

cooperation constitutes an honest signal of the member’s quality as

a coalition partner or competitor [44,45]. Hypocritical coopera-

tion, that is, defecting at the first level while urging others to

cooperate through participation in the sanctioning system, creates

more robust second-order cooperation [46]. Conformism as a

psychological bias toward copying the majority can also help to

stabilize cooperation [47]. group selection mechanisms, competi-

tion at two different levels, within groups and between groups

[48,49] or indirect reciprocity, the idea that good reputation will

be rewarded by others, [50] have also proven to promote

cooperative behavior.

The insufficiency of selective punishment as a condition to

promote cooperation in social dilemmas prompted Axelrod to

propose metanorms, that is, norms about how individuals follow

other norms, as a mechanism to support collective cooperation in

social dilemmas in evolutionary contexts [34]. Although contro-

versial [51,52], metanorms are touted as a mechanism for

sustainable cooperative strategies in which players adhere to

norms, punish defectors, and punish those who do not punish

defectors [33,38] . Mathematical analysis coupled with extensive

simulation has shown that metanorms can induce both collectively

and individually rational stable equilibria and that the efficiency of

metanorms as a solution to social dilemmas depends on the

structure of the payoff matrix. Incentives for not following norms

can counterintuitively enhance the preservation of the cooperative

solution; decay in punishment can cause the norm to collapse; and

the details of the evolutionary algorithm, for example more

explorative strategies denoted by higher levels of mutation noise,

can help to preserve the norm [53]. These results suggest that

metanorms as a solution to social dilemmas cannot be considered

universal, because the context of the specific problem can

influence its efficacy.

All theoretical research on metanorms conducted so far has

assumed an evolutionary game played on a global interaction

network where every player interacts with all other players.

However, a more realistic view of social interactions entails

embedding players in social networks that differ markedly from a

completely connected interaction graph [54]. Network structures

that underlie social interactions affect outcomes of such interac-

Figure 1. Examples of methods of solving social dilemmas based on Kollock’s ontology [11]. Solutions to social dilemmas can be
classified as motivational, strategic or structural depending on whether players are assumed egoist and whether the rules of the game can be
changed.
doi:10.1371/journal.pone.0020474.g001
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tions; therefore shape solutions to social dilemmas. Some

experimental research has sought to account for the effect of

network structure on social dilemmas [55,56]. Furthermore,

experimental works on dynamics of norm enforcement and

metanorms suggest that characteristics of social relations, espe-

cially interdependence, influence the emergence of norms

significantly [57–61]. This finding implies that we may overlook

relevant aspects of the problem by focusing on the direct

consequences of sanctioning norm deviance without accounting

for the properties of social relations over which norms and

metanorms are defined. Consequently, understanding the role of

network structures is essential for explaining norm enforcement.

Given that different topologies or structures of social networks can

influence outcomes of social interactions [54], we adapt the

metanorms game to arbitrary interaction networks and analyze the

influence of network topology on the emergence of cooperation

through mathematical analysis and computer simulation This hybrid

methodological approach has proven to be useful in analyzing

complex social models [62,63] and extends the growing literature on

games on networks [64–77] that is currently evolving from stylized

network structures to more general interaction topologies.

The paper is organized as follows. First, we extend the

metanorms game to play on networks. We then examine the

dynamics and stability of a simplified version of the metanorms

game mathematically. Next, we present simulation results to

confirm some of the conclusions obtained analytically. Finally we

present the conclusions of the work.

Methods

Metanorms Games on Networks
We set up the metanorms game on networks by embedding 50

agents on a network developed by a network generation algorithm.

We use 50 agents instead of 20 in Axelrod’s default setting to make

higher-order network statistics more interpretable. We used the

Barabási-Albert algorithm to generate networks with discrete Pareto

degree distributions [78], the Watts algorithm [79] with different

values of rewiring probability (b) that smoothly interpolates between

extreme cases of a regular lattice and a random network, traversing

‘‘small world’’ networks [80] along the way, and the Erdös-Rényi

random networks [55]. A link between two agents represents an

opportunity for direct interaction between them. A set of all direct

links to an agent is the neighborhood of the agent. To explore the

effect of clustering in the networks more clearly, we have also

considered agents with a distance or radius of two where radius is

defined as the minimum number of edges that it takes to link one

agent to another (See Figure 2).

Once agents are embedded on the underlying network

structure, they play a repeated game that consists of three

decisions or stages:

1. Agents decide whether to cooperate or defect. A defecting

agent obtains Temptation payoff (T = 3) and inflicts on each of

the remaining agents in the population Hurt payoff (H = 21).

If agents cooperate, no one’s payoff is altered. Here we assume

that the spillover cost of defection is global.

2. Agents observe other agents in their neighborhood who

defected in stage 1 with a certain probability. For each

observed defection, agents decide whether to punish the

defector or not. Punishment is costly: one must pay

Enforcement cost (E = 22) to impose Punishment cost

(P = 29) on the defector. The opportunity to observe defection,

and hence the possibility to punish it, is conditional on the

existence of a link connecting defectors and punishers.

3. The third step includes the concept of metanorms: agents who

fail to punish observed defection should be punished. Similar to

the previous step, an agent who fails to punish an observed

defection may not be caught. The probability of being seen not

Figure 2. Examples of network topologies obtained with the network generation algorithms. Six sample networks with N = 50 and k̄ = 2.
For Watts’ small world network, rewiring probability b was set to 0.2. Subfigures A—C on the upper panel represent networks with radius 1.
Subfigures D—E on the lower panel have neighborhoods expanded to radius 2.
doi:10.1371/journal.pone.0020474.g002
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punishing a defecting agent given that defection is observed is

the same as the probability of observing such defection.

Network topology plays a critical role in this step: it determines

who can see unpunished defection. Observing a defection

requires links among the defector, un-punishing agent and

metapunisher. A metapunisher pays Meta-enforcement cost

(ME = 22) to meta-punish (MP = 29) an agent who decided

not to punish a defector.

Parameters boldness and vengefulness characterize an agent’s

strategy. Boldness is an agent’s propensity to defect, and

determines the outcome of the first stage of the game. An agent

that can defect will defect, if its boldness is greater than a

random probability of being observed. Vengefulness is an

agent’s propensity to punish agents that it has observed

defecting in the second stage of the game and to meta-punish

agents that it has observed not punishing a defecting agent in

the third. An agent punishes observed defectors or observed un-

punishers with a probability equal to vengefulness. Following

the original implementation by Axelrod, boldness and venge-

fulness are set as 3-bit strings denoting eight evenly distributed

values from 0 to 1 (0/7, 1/7, …,7/7). Initial values of agents’

boldness and vengefulness are determined randomly at the

beginning of each simulation run and updated by an

evolutionary mechanism.

The game is played four rounds called a generation. At the

beginning of each generation, agents’ payoffs are set to zero; at

the end of a generation all payoffs for each round are

accumulated and computed for each agent, and agents can

change their strategies according to evolutionary forces of

selection and mutation. We have adapted to local network

structures a variant of selection mechanisms called roulette

wheel in which the most successful agents in a given generation

are the most likely to spread [81]: an agent picks a strategy

played by other agents in its neighborhood with probability

proportional to the other agents’ fitness where an agent’s fitness

is equal to the difference between its payoff and the minimum

payoff obtained in the neighborhood. Whenever an agent

replicates a bitstring by invoking the selection mechanism,

every bit of the bitstring has a certain probability of being

flipped from 0 to 1 and vice versa called mutation rate. The game

continues with a new generation playing with new agent

strategies.

Results

Mathematical analysis
Given a specific network structure, the state of the game is a

certain realization of agents’ joint strategies, so the number of

possible game states is 6450 corresponding to 64 strategies that any

of the 50 players may choose. For any positive mutation rate, the

model is an irreducible positive recurrent and ergodic discrete-

time finite Markov chain [63], since the mutation operator

guarantees the non-zero probability of transition from any state to

any other state in one single step. This observation means that in

the long run, the probability of finding the metanorms game in

any of its states is non-zero and independent of the initial

conditions of the game. This result guides our simulation

experiments, because it guarantees that if we run simulations for

long enough the limiting distribution approximates to the

occupancy distribution.

The size of the state space of the game makes calculating the

transition matrix of the Markov chain infeasible. We have to resort

to other strategies to gain insights from a mathematical analysis of

the model. In this section we propose a simpler mathematical

abstraction of the metanorms game that is amenable to

mathematical analysis and graphic visualization. This abstracted

model suggests areas of stability and basins of attraction in the

model and illustrates the expected dynamics of the metanorms

graphically. We should stress that the conclusions of this analysis

come from the simplified model, not the original one, so they must

be verified by simulation.

Let’s begin formalizing the model. Assume an undirected

network C~(N,L) defined by a set of agents N~ 1,2,:::,nf gas

nodes and a set of unweighted links among them L(N|N. The

payoff of agent i playing the metanorms game is defined by:

Payoffi~Defi
:Tz

Xn

j~1
j=i

Defj
:Hz

Xzi

j~1

j[Ni

Punij
:Ez

Xzi

j~1

j[Ni

Punji
:Pz

Xzi

j~1

j[Ni

Xzj

k~1

k[Ni\k[Nj

ME:Defk
:(1{Punjk):Punijz

Xzi

j~1

j[Ni

Xzj

k~1

k[Ni\k[Nj

MP:Defk
:(1{Punik):Punji

ð1Þ

where T, H, E, P, ME, MP are the payoffs of the model, n is the

number of agents, and Ni: j [ N : ij [ Lf g is the set of agents

linked to any given i [ N. This set defines the neighborhood of i.

zi: Nij j denotes the number of neighbors or degrees for agent i.

Two indicator functions are also used:

Defi ~
1 If agent i defects Prob (Defi:1)~bi

0 If agent i cooperates Prob (Defi:0)~1{bi

�

Punij ~
1 If agent i punishes agent j Prob (Punij:1)~bj

: bj

�
2

� �:vi

0 If agent i does not punish agent j Prob (Punij:0)~1{bj
: bj

�
2

� �:vi

(

and vengefulness and boldness for each agent is denoted as vi and

bi. Using vengefulness and boldness we calculate the expected

payoff of agent i in one round as:

Exp(Payoff )i~bi
:TzH

Xn

j~1
j=i

bjzE
vi

2

Xzi

j~1

j[Ni

b2
j zP

b2
i

2

Xzi

j~1

j[Ni

vjz

ME
vi

4

Xzi

j~1

j[Ni

Xzj

k~1

k[Ni\k[Nj

:b3
k
:(1{vj)z

MP
1{vi

4

Xzi

j~1

j[Ni

Xzj

k~1

k[Ni\k[Nj

b3
kvj

ð2Þ

Eq. 2 depends on the exact realization of the network topology

and exact strategies of each agent in the network. Let us now
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rewrite the Eq. 2 in terms of common statistics of the network

topology.

First, let p(k)~
1

n
i [ N : zi~k
� ��� �� be the first-order degree

distribution of network C. The clustering of an agent i with at least

two neighbors is defined as:

Ci:
jk [ L : ij [ L ^ ik [ Lf gj j

zi(zi{1)

2

We define clustering coefficient for a degree in a given network

as:

C(k)~

Pn
i~1

zi~k

Ci

i [ N : zi~k
� ��� ��

Assuming homogeneity in vengefulness and boldness

Vi [ N,v
i
~�vv and b

i
~�bb in the population, we can simplify the

expected payoff of agent i as follows:

Exp(Payoff )i~bi
:TzH(n{1)bzE

vi

2
b

2:kz

P
b2

i

2
v:kzME

vi

4
b

3
(1{v)

Xn{1

d~1

p(ki~d):C(d):d:(d{1)z

MP
1{vi

4
b

3
v
Xn{1

d~1

p(ki~d):C(d):d:(d{1)

ð3Þ

Eq. 3 expresses expected payoffs of homogeneous agents on a

given network as a function of the first degree distribution,

clustering distribution and the average degree k of the network.

INCONN(C)~
Xn{1

d~1

p(ki~d):C(d):d:(d{1) represents the aver-

age number of triplets per agent in network C. We call this statistic

interconnectedness of network C. In other words, the dynamics and

expected outcomes of the metanorms game may be highly

influenced by the agents’ average number of interactions and a

certain measure of clustering of these interactions.

To characterize the long run outcomes of the game, we use the

concept of evolutionary stable state (ESS) to identify the stability points

of the game. This notion is inspired by the ideas proposed by

Maynard Smith and Price [82] and developed by Weibull [83] and

Colman [84]. An ESS in the metanorms game [53] is a state where:

N Every agent in the population H receives the same expected

payoff, so evolutionary selection pressures will not lead the

system away from the state,

Exp(Payoffi)~Exp(Payoffj) Vi, j [H

.

N Any agent m that changes its strategy with bm as its new

boldness and vm its new vengefulness, receives a strictly lower

expected payoff than any other agent in the incumbent

population I ; H-{m}, so if a single mutation occurs, the

mutant agent will not be able to invade the population:

Exp(Payoffm)vExp(Payoffj) Vm [H; Vi [ I(m 6 [ I)

.

N Once a single agent m has changed its strategy, all other agents

in the incumbent population I receive the same expected

payoff, so a single mutant cannot distort the composition of the

population except maybe by random drift:

Exp(Payoffi)~Exp(Payoffj) Vm [H; Vi, j [ I(m 6 [ I)

.

These three conditions above are enough to expect that any

mutant will be removed from the game, providing strong

restriction for stability in the dynamics of the model. If the system

is not homogeneous, these conditions are not sufficient to

guarantee in general that, if they are fulfilled in a certain state,

the system will tend to revert to such a state after a single mutation.

If the three conditions prevail in a certain state, we expect any

mutant to be removed from the game, but the specific strategy

among the incumbent population that will replace the mutant

depends on the selection mechanism.

At this point we can establish two necessary conditions for a

state to be evolutionary stable by assuming continuity in agent

properties in Eq. 3. Let m be an arbitrary, but potentially mutant,

agent with bm as its boldness and vm as its vengefulness in a given

population of agents H. Let I be the set of incumbent agents in the

population H excluding m. The following equation is a necessary

condition for the population of agents to be in ESS. This condition

can be easily grasped by realizing that if every agent has the same

expected payoff as the necessary condition for ESS, and Eq. 4 does

not hold for some agents m and i, the potentially mutant m can get

a differential advantage over incumbent i by changing its boldness

bm, meaning that the state under study cannot be evolutionary

stable:

LExp(Payoffm)

Lbm

~
LExp(Payoffi)

Lbm

Vi [ I

OR bm~1AND
LExp(Payoffm)

Lbm

§

LExp(Payoffi)

Lbm

Vi [ I

	 


OR bm~0AND
LExp(Payoffm)

Lbm

ƒ

LExp(Payoffi)

Lbm

Vi [ I

	 


8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
Vm [ H ð4Þ

Similarly, we can obtain another necessary condition by

substituting vm for bm in Eq. 4.

LExp(Payoffm)

Lvm

~
LExp(Payoffi)

Lvm

V i[ I

OR vm~1AND
LExp(Payoffm)

Lvm

§

LExp(Payoffi)

Lvm

Vi [ I

	 


OR vm~0AND
LExp(Payoffm)

Lvm

ƒ

LExp(Payoffi)

Lvm

Vi [ I

	 


8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
Vm [ H ð5Þ

(4)

(5)
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We can use Eq. 3 to evaluate the necessary derivatives:

LExp(Payoff )m

Lbm

~TzP:b:v:k

LExp(Payoff )i

Lbm

~Hz
E:v:b:k

n{1
z

INCONN(C):(ME
3v

4(n{1)
b

2
(1{v)z

MP
3(1{v)

4(n{1)
b

2
v)

ð6Þ

LExp(Payoff )m

Lvm

~
E

2
b

2:kz

INCONN(C):(ME
b

3
(1{v)

4
{MP

b
3
v

4
)

LExp(Payoff )i

Lvm

~P
b

2

2(n{1)
kz

INCONN(C):(MP
1{v

4(n{1)
b

3
{ME

v

4(n{1)
b

3
)

Generalizing the demonstration provided in [53], it can be

proved that the system may have two different ESS, one where the

norm collapses (bi = 1, vi = 0 for all i) and eventually another where

the norm is established. This last ESS only appears depending on

the relation between the average degree and the average number

of triplets by agent, features that are determined by the network

topology of the game.

Evaluating gradients from Eq. 6 for any network topology and

population characteristics leads to gradient maps of predicted

population movements. The legend for these maps is described on

Figure 3. For any constant value of average degree, the theoretical

analysis suggests that the higher the average number of triplets, the

more likely a cooperative ESS is to emerge and the bigger the size

of its basin of attraction. On the contrary, for a constant average

number of triplets, the higher average degree, the less likely a

cooperative ESS is to emerge. Moreover, we can numerically

calculate the minimum average number of triplets for each

average degree in order to have an ESS in the area of norm

establishment and compare it with different network topologies

(Figure 4).

Simulation
The results derived from the previous section are suggestive but

we should keep in mind that they could have been obtained as

consequences of simplifying assumptions not directly from the

model explained in section two, since we abstracted the

evolutionary mechanisms and the details of network topology,

imposed continuity on agent properties, and worked only in terms

of expected behavior. We need to verify if the suggested hypotheses

in the equation-based approach can be generalized to the original

metanorms game. Since that model, and especially when it is

played on networks, is very complex, we have to resort to extensive

simulation to gain insights on how it evolves. All simulations can

be replicated with the source code of the model provided at

http://josema.galan.name/models.

In the experiment designed to verify the behavior of the

metanorms mechanism, we use the same payoff matrix, mutation

rate and number of rounds per generation as in Axelrod’s original

paper (see Table 1).

We used the network generation algorithms mentioned in the

previous section to create a sample of 6000 networks. The density

of the sampled networks is plotted in Figure 5, projected onto the

average degree against clustering coefficient of the network and

the square root of the interconnectedness spaces. Note that

clustering, interconnectedness and the average degree are not

independent variables.

The results obtained from simulations allow us to perform two

types of analyses, an analysis of the long-run limiting behavior of

metanorms, and an analysis of the dynamics to compare with the

expected dynamics predicted by the simplified theoretical model.

To study the influence of the network topology on the long-run

behavior of the model, recall that when mutation rate is greater than

zero, the metanorms game on networks is a time-homogeneous

Markov chain (THMC) in which the limiting distribution coincides

with the occupancy distribution as the long-run fraction of the time

that the THMC spends in each state. Therefore, we can

approximate the limiting distribution by computing the frequency

of simulation in each state. We have defined the following zones:

N Norm Collapse: the simulation is in states where the average

boldness is at least 6/7 and the average vengefulness is no

more than 1/7.

Figure 3. Legend for gradient maps. The map applies to both
analytic and simulated gradient landscapes. The axes represent the
average boldness and vengefulness of the population as its strategic
characteristics. For each point, we measure the direction and speed of
population drift. For analytical landscapes, we will also pinpoint the
expected location of the evolutionary stable states. For simulation
landscapes, we will be measuring the time that the simulation spends in
each of the two key regions: norm emergence and norm collapse zones.
Sample maps for different network topologies are shown in Figure 7.
doi:10.1371/journal.pone.0020474.g003
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N Norm Establishment: the simulation is in states where average

boldness is no more than 1/7 and average vengefulness is at

least 6/7.

We have computed the time that a single simulation is in either

zone. In Figure 6 we have measured the long-run fraction of time,

averaged over runs and over network topologies that the

simulation is in cooperative norm emergence and collapse zones

as a function of average degree and root square of interconnec-

tedness and as function of average degree and clustering coefficient

of the network. First, these results suggest that the ESS obtained

analytically in the simplified model are in fact the only ESS in the

system since the time that the simulation is out of these two zones

is not significant.

Second, we observe that on average the influence of average

degree, the number of triplets and clustering coefficient behave as

predicted analytically. The higher the average number of triplets

the more time the simulation spends in norm establishment zone;

on the contrary, for a given average number of triplets, the higher

average degree of the network, the lower the probability of finding

the simulation in the norm establishment zone. These results

suggest that an important part of the limiting behavior of the game

can be explained by two simple statistics of the network topology.

Last, we have found some variance in the results. For example,

we do find the norm establishment in sparser networks that are

analytically predicted not to reach the norm establishment zone.

This indicates that agent and network heterogeneity, for example

local ‘‘clumps’’ denser than the whole network by chance, and the

specifics of the evolutionary mechanism also play important roles

in norm establishment as they may allow for ‘‘seeding’’ the

cooperative norm in the network [67,85,86].

We have also analyzed data from simulation to determine the

match between gradient maps obtained in the simplified

mathematical analysis and simulation model dynamics. The first

Figure 4. Minimal interconnectedness necessary for a cooperative evolutionary stable state. Minimal interconnectedness necessary for a
cooperative evolutionary stable state to exist in the simplified analytical model for any given average degree of the network, compared to the
expected interconnectedness of different network topologies with radius 1. Default metanorms parameters are assumed.
doi:10.1371/journal.pone.0020474.g004

Table 1. Summary of parameters used in the experiment.

Parameter Value

Number of agents 50

Number of generations 50000

Mutation rate 0.01

Temptation payoff T = 3

Hurt payoff H = 21

Enforcement payoff E = 22

Punishment payoff P = 29

Meta-enforcement payoff ME = 22

Meta-punishment payoff MP = 29

doi:10.1371/journal.pone.0020474.t001
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Figure 5. Distribution of tested data points obtained by sampling network topologies with radius 1 and 2. The distribution of the
sampled network topologies, projected onto two dimensional views of key network statistics. The left panel shows sampled network topologies
projected onto the square root of interconnectedness and the average degree of the network, while the right panel describes the sample density in
the average degree and the clustering coefficient space.
doi:10.1371/journal.pone.0020474.g005

Figure 6. Proportion of time spent in the emergence and collapse zones. Proportion of time that the simulation spends in the norm collapse
and emergence zones as a function of key network statistics using similar projections as those in Figure 5. Color codes the fraction of simulation time
spent in each zone computed for each bin. Time spent outside either zone is insignificant.
doi:10.1371/journal.pone.0020474.g006
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column of Figure 7 represents the mathematically predicted

dynamics, whereas the second column presents simulated speed

and direction of population drift. We observe that in terms of

speed and direction of trajectories the predicted dynamics match,

especially for those cases where there is only one clear ESS or two

ESSs. The interesting result appears when there is only one

Figure 7. Predicted versus observed dynamics of the metanorms game for three networks. For simulated results, the mutation rate was
set to 0.01. Color codes the speeds of movement of the population, either computed analytically or measured from the simulation with blue being
the slowest and red the fastest. Figure 3 contains the legend for the graphs. In panel B, simulated population spends 95% of time in norm collapse
zone. In panel D, the proportion of time in the norm collapse zone drops to 50%. In panel E, the simulation spends 95% of time in the norm
emergence zone and 5% in the norm collapse zone.
doi:10.1371/journal.pone.0020474.g007
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predicted ESS but we are close to having another in the zone of

norm establishment. The observed dynamics show possible quasi-

stable states in norm emergence earlier than predicted by the

equation approach. This effect may be the consequence of

mutation rate and variance of selection mechanism that make it

difficult to escape from the norm establishment zone [53].

Discussion

We have adapted the theoretical model of metanorms to guide

agent interactions on static networks. Our analytical and

computational results show that the interaction structure influ-

ences the effectiveness of the metanorms mechanism. In particular,

we identified the average degree, clustering coefficient and

interconnectedness as the average number of triplets per agent

as key aspects that contribute to sustaining or collapsing norms of

cooperation in networked populations. Higher clustering coeffi-

cient and average number of triplets increases cooperative

behavior, suggesting that translating bilateral to trilateral interac-

tion promotes cooperation. Comparing the results of our simplified

mathematical analysis with those of computational modeling, we

have also shown that some evolutionary details influence in the

model dynamics that stabilize the zone of norm establishment.

The networks used for the analysis have been numerous and

diverse, nevertheless we have not analyzed all possible configura-

tions. Some recent studies [67,85–87] have proved that commu-

nity structure [88], subsets of nodes that are relatively densely

connected to each other but sparsely connected to other dense

groups, can be also an important parameter in the behavior of

games in networks, although the network generators used in our

analysis are not particularly designed to take into account this

effect. Further research may clarify the effect of more complex

topologies, particular evolutionary details or scale on the

effectiveness of metanorms as mechanism to sustain cooperation

in social dilemmas.
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