Profesor: Rafael Aguado Bernal

Esta obra está licenciada bajo una Licencia Creative Commons

Reconocimiento-NoComercial-SinObraDerivada 3.0 España Attribution-NonCommercial-NoDerivs 3.0 Unported CC BY-NC-ND 3.0

 ${\it http://creative commons.org/licenses/by-nc-nd/3.0/es/}$

Relación entre estructura y propiedades

Profesor: Rafael Aguado Bernal

- * Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998. **Capítulo 4.**
- * Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4^a Ed., Harper Collins, 1993. Capítulo 8.

* DeKock, R. L.; Gray, H. B., "Chemical Structure and Bonding", University Science Books, 1989. Capítulo 7.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Introducción – Efectos de las fuerzas químicas

Aspecto y estructura dependen de la estructura y fuerza de cohesión entre partículas.

Grafito:

Sólido, negro, frágil, untuoso al tacto, conductor eléctrico que no funde al calentarse. Insoluble en agua, con gran capacidad para absorber otras sustancias, incluso en grandes proporciones.

- * Consta de átomos de carbono unidos por enlaces entre sencillo y dobles, dispuestos en láminas paralelas unidas entre sí por fuerzas V.d.W relativamente débiles. Es fácil deslizar una lámina con respecto a otra, *Untuoso*.
- * Debido a su delocalización electrónica en las láminas, es un *conductor eléctrico*.
- * Absorbe todas las radiaciones electromagnéticas de la región del visible, *color negro*.
- * La insaturación de los carbonos permite la inclusión entre láminas de cationes, aniones, moléculas, etc, ... generando compuestos interlaminares de grafito, *Absorbente*.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Introducción – Efectos de las fuerzas químicas

Sus propiedades pueden darle mayor o menor interés industrial y posibles aplicaciones.

- * Absorbente, utilizado como moderador en centrales nucleares.
- * Conductor a elevada temperatura sin fundir, se utiliza como electrodo en procesos electrolíticos.
- * Untuoso, utilizado como lubricante de maquinaria pesada en condiciones de presión y temperatura relativamente extremos.

Conocer la relación estructura / propiedades resulta importante. Permite seleccionar, o incluso diseñar, sustancias con propiedades concretas para aplicaciones específicas.

- Punto de vista técnico: H₂SO₄ es un líquido incoloro, viscoso, denso, muy corrosivo, soluble en agua de modo muy exotérmico.
- Punto de vista científico: lo importante es conocer "los por qués" de todas estas cualidades.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Introducción – Efectos de las fuerzas químicas

Las propiedades dependen del tipo de estructura del compuesto:

Moleculares

Fuerzas de interacción intrínsecamente débiles

Gases, líquidos o sólidos con puntos de fusión bajos En sólido son cristalinos y frágiles

Sus propiedades son básicamente las de las moléculas constitutivas, y su interés reside en su potencial como precursores de otras sustancias.

No moleculares

Fuerzas de interacción fuertes, son sólidos, muchas veces con puntos de fusión elevados.

Muchos de ellos son materiales de alto interés tecnológico debido a sus propiedades mecánicas: SiC, Aleaciones Ti-Al, Silicio, ...

Polímeros

Son un mundo "aparte" con un grado de variedad y propiedades extraordinariamente amplio y variado.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 127.**

Sustancias Moleculares

La fusión y ebullición implican la separación entre moléculas, sin que ello implique la ruptura de ningún tipo de enlace, sólo de interacciones intermoleculares, que son intrínsecamente débiles, por lo que los puntos de fusión y ebullición suelen ser bajos.

Son volátiles, gases y líquidos, o sólidos de bajo punto de fusión.

		$T^a_f(^{\circ}C)$	T^{a}_{eb} (°C)
N_2	gas	-210	-195,8
BBr_3	líquido	-46	91,3
Fósforo blanco P ₄	sólido	44,1	280,5

T^a_f y T^a_{eb} son una medida de la intensidad de las fuerzas de cohesión entre las moléculas, variando sensiblemente dependiendo de la naturaleza de las interacciones.

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

Química Inorgánica

Tema 3: El enlace en las fases condensadas

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 127.**

Sustancias Moleculares

Moléculas Apolares: La única interacción presente es V.d.W., las más débiles de todas, los puntos de fusión y ebullición más bajos. Aumentan al aumentar su peso y tamaño.

	F_2	Cl_2	Br_2	I_2
$T^a_f(^{\circ}C)$	-218,6	-101,0	-7,25	113,6
$T_{eb}^{a}(^{o}C)$	-188,1	-34,0	59,5	185,2
Estado	gas	gas	líquido	sólido

T^a_f y T^a_{eb} son menores al aumentar la simetría de la molécula

	$T^a_{\ f}$	T^a_{eb}
$n-Si_4H_{10}$	-89,9	108
$i-Si_4H_{10}$	-99,1	101

Moléculas Polares: Existe además interacción dipolo-dipolo, por lo que la cohesión es mayor y los puntos de fusión y ebullición aumentan.

	ClF	BrF	IC1	IBr
$T_{f}^{a}(^{\circ}C)$	-155,6	-33	27,2	41
$T_{eb}^{a}(^{o}C)$	-100,1	20	98	116
Estado	gas	líquido	sólido	sólido

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

Química Inorgánica

Tema 3: El enlace en las fases condensadas

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición Sustancias Moleculares

Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

En algunos compuestos que contienen hidrógeno se encuentran **interacciones por puente de hidrógeno**, sensiblemente más intensas que cualquiera de las anteriores, con lo que sus puntos de fusión y ebullición aumentan notablemente.

	H_2O	H_2S	H_2Se	H_2 Te
$T_f^a({}^{\rm o}{\rm C})$	0	-85,6	-65,7	-51,0
$T_{eb}^{a}(^{o}C)$	100	-60,3	-41,3	-4,0
Estado	líquido	gas	gas	gas

Puentes de hidrógeno > Polaridad mayor o menor > Van der Waals mayor o menor

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 127.**

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Metálicos: Atomos unidos por interacciones tipo Enlace Metálico, intrínsecamente fuerte, puntos de fusión y ebullición elevados. Excepciones:

Hg (
$$T_f^a = -38.9 \,^{\circ}\text{C}$$
)
Ga ($T_f^a = 29.78 \,^{\circ}\text{C}$)

 $T^a_f y T^a_{eb}$ varían conforme la hace la intensidad de la interacción enlace metálico. En un grupo/familia, al bajar en la familia, \uparrow distancia, \downarrow cohesión, \downarrow $T^a_f y \downarrow T^a_{eb}$

	Li	Na	K	Rb	Cs
$T_{f}^{a}(^{\circ}C)$	180,5	97,8	63,2	39,0	28,5
T^a_{eb} (°C)	1347	881,4	765,5	688	705
ΔH_{at} (kJ/mol)	162	110	90	88	79

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

Química Inorgánica

Tema 3: El enlace en las fases condensadas

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 127.**

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Iónicos: Iones unidos por interacciones tipo electrostático, intrínsecamente fuerte, puntos de fusión y ebullición elevados.

T^a_f y T^a_{eb} varían conforme lo hace la intensidad de la interacción electrostática del enlace iónico.

$$U_r = \frac{Z^+ \cdot Z^-}{r^+ + r^-}$$
 NaF CaF₂ MgO
 $\frac{T^a_f (^{\circ}C)}{T^{\circ}C}$ 995 1418 2800

$T_f^a(^{\circ}C)$	Li	Na	K	Rb	Cs
F	848	995	856	775	682
Cl	610	808	772	717	645
Br	550	755	748	682	636
I	469	661	[↓] 677 <u> </u>	642	<u> </u>

Polarización

Para casa

Pensadlo y explicadlo con todo detalle por escrito

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 127.**

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Covalentes: Atomos unidos por enlaces covalentes, intrínsecamente fuerte, la fusión implica romper los enlaces covalentes, puntos de fusión y ebullición elevados.

$$SiO_2 (T_f^a = 1713 \, ^{\circ}C)$$

Sólidos reales, intermedios entre iónico-covalente-metálico Interpretación aproximada, considerar el carácter iónico covalente del enlace.

	%	CI		
	$T_{f}^{a}(^{o}C)$			
KC1	772	3s ² 3p ⁶ Iónico		
CaCl ₂	770	3s ² 3p ⁶ Iónico	un poco más polarizante (poco)	
$ZnCl_2$	275	$3s^2 3p^6 3d^{10}$	d ¹⁰ son más pequeños No es gas noble, más polarizante	fuerte polarización
GaCl ₃	77,8	Ga ₂ Cl ₆ dímero	Apolar, mayor V.d.W.	•
$GeCl_4$	-49,5	Td	Apolar, menor V.d.W.	

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

Química Inorgánica

Tema 3: El enlace en las fases condensadas

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Covalentes: En ocasiones la fusión implica el paso de Sólido No Molecular a Sólido Molecular, por formación de especies moleculares discretas en las que existen enlaces covalentes. En estos casos el punto de fusión baja.

"AlCl₃" octaédrico, funde generando especies diméricas Al₂Cl₆ (T^a_f = 193 °C)

En los Sólidos No Moleculares, la $T_f^a \downarrow$ al aumentar la posibilidad de formar especies moleculares discretas en el líquido fundido.

En los Sólidos Iónicos esto resulta más fácil al aumentar el grado de covalencia, % CC \uparrow $T_f^a \downarrow$.

KF KCl KBr	858 °C 772 °C 734 °C	$3s^2 3p^6$	Gas noble, menos polarizante	
AgF AgCl AgBr	435 °C 445 °C 432 °C	Во М	d ¹⁰ son más pequeños No es gas noble, más polarizante eCl ₂ , MgCl ₂ , CaCl ₂ , SrCl ₂ , BaCl ₂ (≈ [2+ familia ↓, r ²⁺ ↑, polarizante ↓, % [2+ familia ↑, r ²⁺ ↓, polarizante ↑, %	$_{0}$ CC \downarrow T $_{f}^{a}$ \uparrow
		X	aF ₂ , CaCl ₂ , CaBr ₂ , CaI ₂ , (\approx 1500 familia \downarrow , r \uparrow , polarizable \uparrow , % C familia \uparrow , r \downarrow , polarizable \downarrow , % C	$CC \uparrow T^a_f \downarrow$

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 307.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estado de agregación: Puntos de fusión y ebullición

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 127.**

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Polímeros: Caso particular, "particularmente" complejos dada su variedad de casuísticas.

Sólidos de elevado peso molecular, no se trata de sólidos cristalinos, estado amorfo "vidrio", a lo sumo de sólidos que puntualmente pueden tener un cierto "grado de cristalinidad".

 $T^a \uparrow$, agitación térmica \uparrow , desorden \uparrow , grado de cristalinidad \downarrow , rotación y vibración de las cadenas poliméricas, sin traslación, *Sin fusión*

Al fundir dan lugar a líquidos viscosos, tanto más cuanto mayor sea el peso molecular del polímero.

 $T^a = T_1$, Estado elástico (no fundido) donde las moléculas presentan una cierta movilidad. Elástico \neq fluido elasticidad \neq fluidez

Temperatura de Transición Vítrea, T_g <<< T^a_f

T^a > T_g elástico, cierta elasticidad (caucho, gomas)

T^a < T_g pierde esas propiedades elásticas

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 127.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 307.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

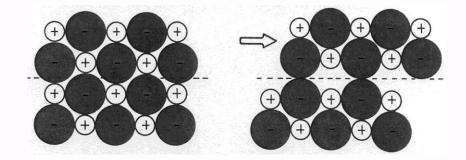
Propiedades Mecánicas

Sustancias Moleculares

Las propiedades mecánicas de los sólidos son consecuencia directa de la estructura interna de los mismos, del tipo de partícula y de la interacción entre partículas.

En los Sólidos Moleculares, se trata de moléculas unidas por interacciones intermoleculares, débiles, por lo que sus propiedades mecánicas serán malas. Frágiles, se rompen con facilidad.

La variación de estas propiedades mecánicas sigue la misma tónica que los puntos de fusión y ebullición, variando con la fortaleza de las interacciones intermoleculares.


Puentes de hidrógeno > Polaridad mayor o menor > Van der Waals mayor o menor

Profesor: Rafael Aguado Bernal

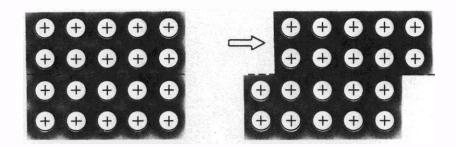
Propiedades Mecánicas

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

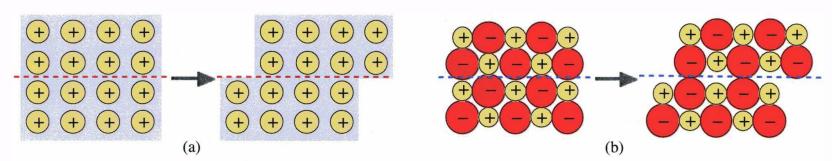
Sólidos Iónicos: Iones unidos por interacciones tipo electrostático, intrínsecamente muy fuertes, pero un ligero desplazamiento (media celta unidad) transforma las atracciones en repulsiones produciendo la fractura. Eran duros, pero son relativamente frágiles.

En ocasiones, es posible que se produzca la ruptura según ciertas direcciones preferenciales.

El yeso, CaSO₄·2H₂O, es fácilmente exfoliable en láminas dada su estructura en capas unidas entre sí por débiles interacciones de puente de hidrógeno entre las moléculas de agua de hidratación.


3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal


Propiedades Mecánicas

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Metálicos: Atomos unidos por interacciones fuertes no direccionales, enlace metálico, donde un ligero desplazamiento no afecta a las interacciones. Tienen muy buenas propiedades mecánicas.

Duros, Fáciles de trabajar, Dúctiles (hacer hilos), Maleables (hacer láminas)

(a) El desplazamiento del cristal metálico según un plano no produce grandes fuerzas de repulsión. (b) El desplazamiento de un cristal iónico según un plano produce intensas fuerzas de repulsión y distorsión del cristal.

Profesor: Rafael Aguado Bernal

Propiedades Mecánicas

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Covalentes: Atomos unidos por interacciones fuertes direccionales, enlace covalente. Pueden llegar a ser frágiles. El diamante (muy duro) puede ser cortado según diversos planos dando lugar a los tallados complejos que son el fundamento de la joyería.

Polímeros: Las propiedades mecánicas de los polímeros pueden ser tan amplias y variadas como su propio número. Esto es precisamente lo que les hace tan interesantes desde el punto de vista industrial.

- * Resistencia al estiramiento y/o compresión.
- * Resistencia a la torsión.
- * Resistencia al desgaste, al desgarro, al impacto, a la fatiga de materiales ("*Kevlar*").
- * Resistencia química.
- * Resistencia térmica.

Primer lanzamiento Columbia 1981

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Propiedades Mecánicas

Química Inorgánica

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Sólidos Covalentes: Atomos unidos por interacciones fuertes direccionales, enlace covalente. Pueden llegar a ser frágiles. El diamante (muy duro) puede ser cortado según diversos planos dando lugar a los tallados complejos que son el fundamento de la joyería.

Polímeros: Las propiedades mecánicas de los polímeros pueden ser tan amplias y variadas como su propio número. Esto es precisamente lo que les hace tan interesantes desde el punto de vista industrial.

Transbordador Coumbia (1-II-2003)

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 134.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Solubilidad (Líquidos o sólidos en líquidos)

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 135.**

Sustancias Moleculares

Disolución implica separación de las moléculas de soluto por interacción con las moléculas de disolvente ⇒ mismo "*tipo*" de interacciones.

"Semejante disuelve a semejante"

Interacción soluto-disolvente > interacción soluto-soluto ⇒ Se disolverá Interacción soluto-disolvente < interacción soluto-soluto ⇒ Insoluble

Soluto Apolar	I_2	(V.d.W)	Se disuelve fácilmente
Disolvente Apolar	CCl_4	(V.d.W)	Soluble
		·	
Soluto Apolar	I_2	(V.d.W)	Distinto tipo de interacciones
Disolvente polar	H_2O	(Puente Hidrógeno)	Insoluble
Disolvente Apolar	CCl_4	(V.d.W)	Distinto tipo de interacciones
Disolvente polar	H_2O	(Puente Hidrógeno)	Disolventes inmiscibles

El motor del proceso de disolución es el aumento de entropía asociado al mismo.

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 135.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 310.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Solubilidad (Líquidos o sólidos en líquidos)

Carriedo, G. A., "*Introducción a la Química Inorgánica*", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, **pp 135.**

Sustancias Moleculares

Disolución implica separación de las moléculas de soluto por interacción con las moléculas de disolvente ⇒ mismo "*tipo*" de interacciones.

"Semejante disuelve a semejante"

Un caso particular son las sustancias con enlaces N–H y O–H, donde pueden formarse interacciones por Puente de Hidrógeno. Son solutos polares que se disuelven en disolventes polares. HF, NH₃, HNO₃, B(OH)₃, PO(OH)₃ son muy solubles en agua.

En ocasiones, no se trata de un simple proceso de disolución, sino que implica la transferencia de protones y la formación de especies iónicas – soluto ácido / base respecto al agua.

$$HNO_3$$
 (ácido) + $H_2O \longrightarrow NO_3^- + H_3O^+$

$$NH_3$$
 (base) + $H_2O \longrightarrow NH_4^+ + OH^-$

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 135.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 310.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Solubilidad (Líquidos o sólidos en líquidos)

Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 135.

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Covalentes: B, SiO₂, Diamante, SiC

Metálicos: Fe, Cd

Prácticamente insolubles en líquidos como H₂O y ROH

Algunos metales solubles en Hg ⇒ Amalgamas (fuerzas de cohesión similares)

Alcalinos (sodio) algo solubles en poliéteres y muy solubles en NH₃ líquido

Muchas veces la disolución de un sólido no es tal, sino una reacción química con el disolvente

$$SiO_2$$
 en HF \longrightarrow $H_2SiF_6 + H_2O$

Sólidos Iónicos solubles en disolventes polares, especialmente agua.

Todas las sales de los alcalinos son solubles en agua salvo contadas excepciones: $K[B(C_6H_5)_4]$

Disolución en agua es realmente una solvatación de los iones

$$MX (s) \text{ en } H_2O \longrightarrow M^+(ac) + X^-(ac)$$

$$Li^+, Na^+, K^+ (rel. pequeños) \qquad NC = 4 H_2O$$

$$Rb^+, Cs^+ (rel. grandes) \qquad NC = 6 H_2O$$

Sólidos Iónicos, la solubilidad aumenta con la diferencia de radios r⁺ y r⁻

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 135.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 310.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Solubilidad (Líquidos o sólidos en líquidos)

Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 135.

Sustancias No Moleculares (Metálicos, iónicos y covalentes)

Reglas generales cualitativas:

- * NO₃⁻ Todos los nitratos son solubles
- * SO₄²⁻ Todos los sulfatos son solubles excepto: Ca²⁺, Sr²⁺, Ba²⁺, Ra²⁺, Hg²⁺, Pb²⁺, Ag⁺
- * MCl (M = metal del grupo I, Li, Na, ...) Todos los cloruros son solubles MCl₂ (M = metal del grupo II, Be, Mg, ...) Excepto Tl⁺ MCl₃ (M = metal del grupo 13, B, Al, ...)
- * MCl insolubles (blancos) Hg_2^{2+} , Pb^{2+} , Ag^+
- * CO₃²⁻ Todos los carbonatos son Insolubles excepto los alcalinos y el Tl⁺
- * OH⁻ Todos los hidróxidos son Insolubles excepto los alcalinos, Sr²⁺ y Ba²⁺
- * Casi todas las sales de los metales alcalinos son solubles salvo contadas excepciones
- * Todas las sales de amonio (NH₄⁺) son solubles
- * Todas las sales de Ca^{2+} , Sr^{2+} , Ba^{2+} son solubles, salvo F^- , CO_3^{2-} , SO_4^{2-} y PO_4^{3-}

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 135.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 310.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estabilidad

Frente a qué, y en qué condiciones

Estabilidad termodinámica, cinética, ...

SF₆ estable frente a la hidrólisis a 100 °C, incluso en medio fuertemente básico

$$SF_6 + 3 H_2O \longrightarrow SO_2 + 6 HF \qquad \Delta G = -301 \text{ kJ/mol}$$

 ${\rm SF}_6$ vida media de 2000-3000 años Efecto invernadero 10 veces superior al ${\rm CO}_2$

Podemos hablar de estabilidad en términos de reactividad:

- * Compuestos inestables, serán muy reactivos
- * Compuestos estables, serán muy poco reactivos o inertes

Atmósfera y condiciones de trabajo habituales en un laboratorios

- * Estabilidad térmica
- * Estabilidad frente a la oxidación (O₂)
- * Estabilidad frente a la hidrólisis (H₂O)

Tema 3: El enlace en las fases condensadas 3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estabilidad

Estabilidad Térmica: Posible descomposición por efecto de la temperatura.

SiO₂, H₂O tienen gran estabilidad térmica

 $PbCl_4$ muy inestable – descompone en $PbCl_2$ y Cl_2 a $T^a > 0$ °C Tiene que almacenarse en frigorífico.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estabilidad

Estabilidad frente a la oxidación (O_2) : Posible descomposición por efecto del oxígeno. Se sobreentiende la facilidad o dificultad con que se produce la oxidación bajo las condiciones ambientales de un laboratorio.

El fósforo blanco reacciona muy fácilmente (expontáneamente se inflama al aire) con el oxígeno para dar P_4O_{10} . Debe manipularse bajo agua.

Medida de la estabilidad termodinámica frente al oxígeno, dada por el calor de combustión.

$$H_2N-NH_2 (liq) + O_2 (g) \longrightarrow N_2 (g) + 2 H_2O (liq) \Delta H^0 = -622 kJ/mol$$

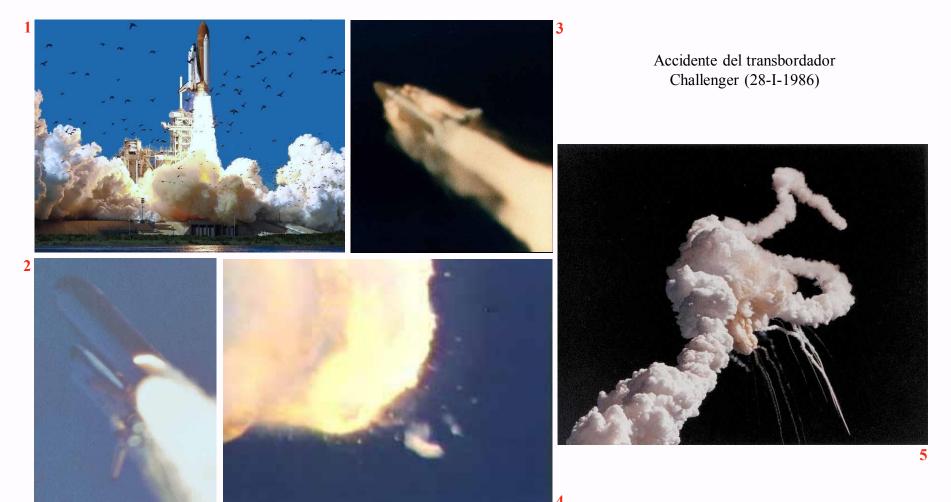
Muy rápido y exotérmico. Uno de los primeros combustibles utilizado como propelente de cohetes.

Algunas reacciones precisan de una inducción para poder comenzar.

 $H_2(g) + O_2(g)$ requieren chispa o concentración.

H₂ (liq) + O₂ (liq) no requieren inducción ninguna (Shuttle Challenger 28-I-1986)

Química Inorgánica


Tema 3: El enlace en las fases condensadas

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estabilidad

Estabilidad frente a la oxidación (O_2) : Posible descomposición por efecto del oxígeno. Se sobreentiende la facilidad o dificultad con que se produce la oxidación bajo las condiciones ambientales de un laboratorio.

^{*} Carriedo, G. A., "Introducción a la Química Inorgánica", 2ª Ed., Servicio de Publicaciones Universidad de Oviedo, 1998, pp 139.

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estabilidad

Estabilidad frente a la Hidrólisis (H₂O): Posible descomposición por efecto del agua. Referida a la facilidad con que una sustancia reacciona con ella.

Na reacciona violentamente con H_2O para dar H_2 y NaOH (ac) (Na muy reductor, $E^o <<< 0$)

Haluros de boro muy inestables frente a la hidrólisis $BX_3 + 3 H_2O \longrightarrow B(OH)_3 + 3 HX$

Estabilidad termodinámica o cinética, frente a estos tres agentes, depende drásticamente de su composición, estructura y enlace. No es fácil pero en ocasiones se pueden hacer algunas predicciones al respecto.

BX₃ son fuertemente aceptores (ácidos de Lewis), lo que les hace vulnerables frente a un centro con alta densidad electrónica y pares solitarios, como es el oxígeno del agua.

Análogamente, otras especies deficientes electrónicamente y ácidos de Lewis pueden sufrir ataques similares: PCl₃, SF₄, SOCl₂, Zn(CH₃)₂.

En la descriptiva de 2º curso, más

3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

Estabilidad

Qué sustancias podremos considerar estables?

- * Aquellos que puedan ser almacenados sin descomposición apreciable durante periodos largos de tiempo.
- * Y aquellos que pueden ser manipulados con facilidad bajo la atmósfera del laboratorio sin necesidad de adoptar precauciones especiales.

Qué sucede con los inestables? No se pueden utilizar?

* Si que se pueden utilizar, adoptando para cada uno las precauciones necesarias en base a su particular inestabilidad.

El fósforo blanco es inestable frente al oxígeno, pero puede manipularse sin problema bajo agua.

El Na (metal) es particularmente sensible a la humedad, pero puede utilizarse con relativa seguridad en benceno o éter de petróleo.

* En un laboratorio puede utilizarse atmósfera inerte, seca, desoxigenada, líneas de vacío, caja seca, ... teniendo siempre muy claro qué es lo que tenemos entre manos, su sensibilidad y su potencial peligrosidad.

QUIMICA GENERAL I Química Inorgánica

Tema 3: El enlace en las fases condensadas

3.6.- Relaciones entre estructura y propiedades

Profesor:	Rafael	Aguado	Berna
-----------	--------	--------	-------

	Sólidos Moleculares	Sólidos Iónicos	Sólidos Covalentes	Sólidos Metálicos
Unidad Estructural	Moléculas	Iones	Atomos	Atomos
Interacción	Atractivas	Atractivas y Repulsivas	Atractivas	Atractivas
Tipo de interacción	Intermoleculares Varias Van der Waals Puente de Hidrógeno	Electrostática. Enlace iónico	Enlace Covalente	Enlace metálico
Fortaleza Interacción	Débiles	Fuerte	Fuerte	Fuerte
Direccionalidad	No direccionales, salvo el Puente de hidrógeno	No direccional	Direccional Poliedro coordinación	No direccional
Electrónicamente		Transferencia neta de electrones localizados en los aniones	Compartición de un par electrónico entre dos átomos enlazados	Delocalización electrónica a lo largo de todo el cristal
Modelo Empaquetamiento	Moléculas con puentes de hidrógeno empaquetamiento de poliedros Moléculas sin puentes de hidrógeno empaquetamiento de moléculas de Kitaigorodskii	Empaquetamiento de esferas	Empaquetamiento de poliedros	Empaquetamiento de esferas

QUIMICA GENERAL I Química Inorgánica

Tema 3: El enlace en las fases condensadas 3.6.- Relaciones entre estructura y propiedades

Profesor: Rafael Aguado Bernal

	Sólidos Moleculares	Sólidos Iónicos	Sólidos Covalentes	Sólidos Metálicos
Punto de fusión y de ebullición	Bajo -272 / 400	Alto 600 / 3000	Alto 1200 / 4000	Amplia gama -39 / 3400
Dureza	Blando	Duros	Duros	Amplia gama
Propiedades mecánicas	Frágiles	Quebradizos	Nulas	Maleables y dúctiles
Propiedades eléctricas	Mala conductividad eléctrica	Aislantes en sólido Conductores fundidos o en disolución	Aislante o semiconductor	Buena conductividad eléctrica y térmica
Solubilidad	Solubles en disolventes apolares	Solubles en agua y disolventes polares	Insolubles en casi todos los disolventes	Prácticamente nula
Se presente en	Moléculas discretas que interactúan para formar sólidos	Elementos con EN muy distinta. Metal y no metal	Elementos de parecida electronegatividad. No metales	Elementos muy electropositivos. Metales y aleaciones metálicas
Ejemplos	O ₂ , He, C ₆ H ₆ , BrCl, SF ₄ , FH, H ₂ O, EtOH	NaCl. LiH, Na ₂ CO ₃	Diamante, SiO ₂ , Si	Na, Zn, Bronce, Latones