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A set of designed experiments, involving the use of a pulsed Nd:YAG laser system milling 316L Stainless Steel, serve to study the
laser-milling process of microcavities in the manufacture of drug-eluting stents (DES). Diameter, depth, and volume error are
considered to be optimized as functions of the process parameters, which include laser intensity, pulse frequency, and scanning
speed. Two different DES shapes are studied that combine semispheres and cylinders. Process inputs and outputs are defined
by considering the process parameters that can be changed under industrial conditions and the industrial requirements of this
manufacturing process. In total, 162 different conditions are tested in a process that is modeled with the following state-of-the-
art data-mining regression techniques: Support Vector Regression, Ensembles, Artificial Neural Networks, Linear Regression, and
Nearest Neighbor Regression. Ensemble regression emerged as the most suitable technique for studying this industrial problem.
Specifically, Iterated Bagging ensembles with unpruned model trees outperformed the other methods in the tests. This method can
predict the geometrical dimensions of the machined microcavities with relative errors related to the main average value in the range
of 3 to 23%, which are considered very accurate predictions, in view of the characteristics of this innovative industrial task.

1. Introduction

Laser-milling technology has become a viable alternative to
conventional methods for producing complex microfeatures
on difficult-to-process materials. It is increasingly employed
in the industry, because of its established advantages [1].
As a noncontact material-removal process, laser machining
removes smaller and more precise amounts of material,
applies highly localized heat inputs to the workpiece, min-
imizes distortion, involves no tool wear, and is not subject
to certain constraints such as maximum tool force, buildup
edge formation, and tool chatter. Micromanufacturing pro-
cesses in the field of electronics and medical and biological
applications are a growing area of research. High-resolution
components, high precision, and small feature size are needed
in this field, as well as real 3D fabrication. Thus, the use
of laser machining to produce medical applications has
become a growing area of research, one example of which

is the fabrication of coronary stents. This research looks
at the fabrication and performance of the DES. Some of
these DES are metallic stents that include reservoirs that
contain the polymer and the drug [2], such as the Janus
TES stent [3] which incorporates microreservoirs cut into its
abluminal side that are loaded with the drug. The selection
of the laser system and the process parameters significantly
affects the quality of the microfeature that is milled and
the productivity of the process. Although there are several
studies which deal with the effect of the process parameters
on the quality of the final laser-milled parts, few of them
study this effect on a microscale. The literature contains many
examples of experimental research looking at the influence
of scanning speed, pulse intensity, and pulse frequency on
the quality and productivity of laser milling in different
materials on a macroscale [4-7]. There are many works on
microscale machining that have investigated laser-machining
processes in laser microdrilling [8-10], laser microcutting



[11-13], and laser micromilling in 2D [14, 15]. However, there
is little research on laser 3D micromilling. Pfeiffer et al.
[16] studied the effects of laser-process parameters on the
ablation behaviour of tungsten carbide hard metal and steel
using a femtosecond laser for the generation of complex 3D
microstructures. Karnakis et al. [17] demonstrated the laser-
milling capacity of a picoseconds laser in different materials
(stainless steel, alumina, and fused silica). Surface topology
information was correlated with incident power density, in
order to identify optimum processing. Qi and Lai [18] used a
fiber laser to machine complex shapes. They developed a ther-
mal ablation model to determine the ablated material volume
and the dimensions and optimized the parameters to achieve
maximum efficiency and minimum thermal effects. Finally,
Teixidor et al. [19] studied the effects of scanning speed, pulse
intensity, and pulse frequency on target width and depth
dimensions and surface roughness for the laser milling of
microchannels on tool steel. They presented a second-order
model and a multiobjective process optimization to predict
the responses and to find the optimum combinations of
process parameters.

Although the manufacturing industry is interested in
laser micromilling and some research has been done to
understand the main physical and industrial parameters that
define the performance of this process, the conclusions show
that analytical approaches are necessary for all real cases
due to their complexity. Data-mining approaches represent a
suitable alternative to such tasks due to their capacity to deal
with multivariate processes and experimental uncertainties.
Data-mining is defined in [20] as “the process of discovering
patterns in data” and “extracting’ or ‘mining’ knowledge from
large amounts of data” [21]. “Useful patterns allow us to make
nontrivial predictions on new data” [20] (e.g., predictions on
laser-milling results based on experimental data). Many arti-
ficial intelligence techniques have been applied to macroscale
milling [22-24], but there are few examples of the application
of such techniques to laser micromilling [25]. Artificial neural
networks (ANNs) have been proposed to predict the pulse
energy for a desired depth and diameter in micromilling [26]
and the material removal rate (MRR) for a fixed ablation
depth depending on scanning velocity, pulse frequency [27],
and cut kerf quality, in terms of dross adherence during
nonvertical laser cutting of 1mm thick mild-steel sheets
[28]. Finally, regression trees have been proposed to opti-
mize geometrical dimensions in the micromanufacturing of
microchannels [29]. Neither of these studies used ensembles
for process modeling, a learning paradigm in which multiple
learners (or regressors) are combined to solve a problem.
A regressor ensemble can significantly improve the gener-
alization ability of a single regressor and can provide better
results than an individual regressor in many applications
[30-32]. Ensembles have demonstrated their suitability for
modeling macroscale milling and drilling [33-36], especially
because they can achieve highly accurate prediction with
lower tuning time of the model parameters [35]. In view of
the lack of published research on modeling the laser milling
of 3D microgeometries with ensembles, the objective of this
work is to study the modeling capability of these data-mining

Journal of Applied Mathematics

TABLE 1: Sphere geometry dimensions.

Geometry Depth (ym) ¢ (pm) Volume (ym?)
Sphere 1 (el) 50 166 721414
Sphere 2 (e2) 70 140 718377
Sphere 3 (e3) 90 124 724576

TaBLE 2: Cylinder geometry dimensions.

Geometry Depth (um) ¢ (um) Length (um) Volume (um?)
Cylinder 1 (c1) 50 130 55 723220
Cylinder 2 (c2) 70 110 46 721676
Cylinder3(c3) 90 100 36 725707
TABLE 3: Factors and factor levels.

Factors Factor levels
Scanning speed (SS) (mm/s) 200 400 600
Pulse intensity (PI) (%) 60 78 100
Pulse frequency (PF) (kHz) 30 45 60

techniques through the different inputs and outputs that may
be considered priorities from an industrial point of view.

2. Experimental Procedure and
Data Collection

The experimental apparatus described in this study gathered
the data needed to create the models. The experimentation
consisted of milling microcavities in a 316L Stainless Steel
workpiece using a laser system. A Deckel Maho Nd:YAG
Lasertec 40 machine with a 1,064 nm wavelength was used
to perform the experiments. The system is a lamp-pumped
solid-state laser that provides an ideal maximum (theoret-
ically estimated) pulse intensity of 1.4 W/cm?® [14], due to
the 100 W average power and 30 ym beam spot diameter.
The SS316L workpiece material was selected because it is a
biocompatible material commonly used in biomedical appli-
cations and specifically for the fabrication of coronary stents.
Two different geometries were used for the experiments. The
first geometry consisted of a half-spherical shape defined
by depth and diameter dimensions. The second geometry
was a half-cylindrical shape with a quarter sphere on both
sides, defined by depth, diameter, and length dimensions.
Both geometries and an example of a laser-milled cavity are
presented in Figure 1. The geometries were fabricated with
different combinations of dimensions, while maintaining the
same volume. Tables 1 and 2 present the three combinations of
dimensions for the spherical and the cylindrical geometries,
respectively. These geometries and dimensions were selected,
because they provide sufficient space to machine the cavities
of these cardiovascular drug-eluting stent struts, which is an
important part of their manufacturing process.

A full factorial design of experiments was developed, in
order to analyze the effects of pulse frequency (PF), scanning
speed (SS), and pulse intensity levels (PI, percentage of the
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FIGURE 1: Cavity geometries used in the experiments.

ideal maximum pulse intensity) on the responses. Some
screening experiments were performed to determine the
proper parametric levels. Three different levels were selected
from the results of each input factor, which are presented
in Table 3. This design of experiments resulted in a total of
162 experiments: 27 combinations for each geometry under
study. All the experiments were machined from the same
316L SS blank under the same ambient conditions. The
response variables were the cavity dimensions (depth and
radius) and the volume of removed material. A confocal
Axio CSM 700 Carl Zeiss microscope was used for the
dimensional measurements and for characterization of the
cavities. Moreover, negatives of some of the samples were
obtained with surface replicant silicone, in order to obtain 3D
SEM images.

Having performed the experimental tests, the inputs and
outputs for the datasets had to be defined, to generate the
data sets for the data-mining modeling. On the whole, the
selection of the inputs is easy, because they are set by the
specifications of the equipment: the inputs are the parameters
that the process engineer can change in the machine. They are
the same as those considered to define the experimental tests
explained above. Table 4 summarizes all the selected inputs,
their units, ranges, and the relationship that they have with
other inputs.

The definition of the data set outputs takes different inter-
ests into account that relate to the industrial manufacturing of
DES. In some cases, a productivity orientation will encourage
the process engineer to optimize productivity (in terms of the
MRR) keeping geometrical accuracy under certain acceptable
thresholds (by fixing a maximum relative error in geometrical
parameters). In other cases, the geometrical accuracy will be
the main requirement and productivity will be a secondary

objective. In yet other cases, only one geometrical parameter,
for example, the depth of the DES, will be critical and the
other geometrical parameters should be kept under certain
thresholds, once again by fixing a maximum relative error for
these geometrical parameters. Therefore, this work considers
the geometrical dimensions and the MRR that is actually
obtained as its output, their deviance from the programmed
values, and the relative errors between the programmed and
the real values. Table 5 summarizes all the calculated outputs,
their units, ranges, and the relationship they have with other
input or output variables. In summary, the 162 different
laser conditions that were tested provided 14 data sets of 162
instances each with 9 attributes and one output variable to be
predicted.

3. Data-Mining Techniques

In our study we consider the analysis of each output variable
separately, by defining a one-dimensional regression problem
for each case. A regressor is a data-mining model in which
an output variable, y, is modelled as a function, f, of a set of
independent variables, x, called attributes in the conventional
notation of data-mining, where m is the number of attributes.
The function is expressed as follows:
yestimated = f (x) > x € Rm’ y €R. (1)
The aim of this work is to determine the most suitable
regressor for this industrial problem. The selection is per-
formed by comparing the root mean squared error (RMSE) of
several regressors over the data set. Having a data collection
of n pairs of real values {x;, yi}ﬁi’f, the RMSE is an estimation
of the expected difference between the real and the forecasted
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TABLE 4: Input variables.

Variable Units Range Relationship
X Programmed depth pm 50-90 Independent
X, Programmed radio ym 50-83 Independent
X, Programmed length um 0-55 Independent
X4 Programmed volume 10° x ym’ 718-726 4/3mx + 1/2x3x,
X Intensity % 60-100 Independent
X6 Frequency KHz 30-60 Independent
X, Speed mm/s 200-600 Independent
Xg Time s 9-24 Independent
X, Programmed MRR 10° x ym’/s 30-81 EWES

TABLE 5: Output variables.
Variable Units Range Relationship

Y1 Measured volume 10° x ym’ 130-1701 Independent
Y2 Measured depth um 25-230.60 Independent
Vs Measured diameter um 118.50-208.80 Independent
Ya Measured length pym 0-70.20 Independent
¥s Measured MRR 10° x ym’/s 12-121 e
Yo Volume error 10° x ym3 -980-596 X4 =W
Y, Depth error pm -180.60-56.90 X, — X,
Vs Width error ym -62.80--16.63 2%, — ¥
Yo Length error um —25.50-208.80 X3 = Y,
Yio MRR error 10° x ym?*/s —-61-66 Xg = Vs
Yu Volume relative error Dimensionless -1.36-0.82 Vel X4
Yiz Depth relative error Dimensionless -3.61-0.63 ¥71%,
Y13 Width relative error Dimensionless —-0.55-0.10 sl (2x,)
Via Length relative error Dimensionless -0.71-0.15 Vol X5

output by a regressor. It is expressed as the square root of
the mean of the squares of the deviations, as shown in the
following equation:

RMSE = \/Z?_l (J’t - f (xt))z. (2)

n

We tested a wide range of the main families of state-of-
the-art regression techniques as follows.

(i) Function-based regressors: we used two of the
most popular algorithms, Support Vector Regres-
sion (SVR) [37] and ANNs [38], and also Linear
Regression [39], which has an easier formulation that
allows direct physical interpretation of the models.
We should note the widespread use of SVR [40], while
ANNGs have been successfully applied to a great variety
of industrial modeling problems [41-43].

(ii) Instance-based methods, specifically their most rep-
resentative regressor, k-nearest neighbors regressor
[44]: in this type of algorithm, it is not necessary
to express an analytic relationship between the input
variables and the output that is modeled, an aspect
that makes this approach totally different from the
other. Instead of using an explicit formulation to

obtain a prediction, it is calculated from set values
stored in the training phase.

(iii) Decision-tree-based regressors: we have included
these kinds of methods because they are used in the
ensembles as regressors, as explained in Section 3.2.

(iv) Ensemble techniques [45] are among the most pop-
ular in the literature. These methods have been
successfully applied to a wide variety of industrial
problems [34, 46-49].

3.1. Linear Regression. One of the most natural and simplest
ways of expressing relations between a set of inputs and an
output is by using a linear function. In this type of regressor
the variable to forecast is given by a linear combination of the
attributes, with predetermined weights [39], as detailed in the
following equation:

k
(1) _ (1)
yestimated - Z (wJ x xj )’ (3)
j=0

where y. denotes the output of the ith training instance
7 estimated

and x;’) the jth attribute of the ith instance. The sum of the

squares of the differences between real and forecasted output
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FIGURE 2: Model of the measured volume with a regression tree.

is minimized to calculate the most adequate weights, w
following the expression given in the following equation:

j)

n

Z Vi) —

i=0 j

R

(wj X x;i)) ) (4)
0

We used an improvement to this original formulation, by
selecting the attributes with the Akaike information criterion
(AIC) [50]. In (5), we can see how the AIC is defined, where
k is the number of free parameters of the model (i.e., the
number of input variables considered) and P is the probability
of the estimation fitting the training data. The aim is to obtain
models that fit the training data but with as few parameters as
possible:

AIC = —21n (P) + 2k. (5)

3.2. Decision-Tree-Based Regressors. The decision tree is a
data-mining technique that builds hierarchical models that
are easily interpretable, because they may be represented
in graphical form, as shown in Figures 2 and 3, with an
example of the output measured length as a function of the
input attributes. In this type of model, all the decisions are
organised around a single variable, resulting in the final hier-
archical structure. This representation has three elements:
the nodes, attributes taken for the decision (ellipses in the
representation), the leaves, final forecasted values (squares),

and these two elements being connected by arcs, with the
splitting values for each attribute.

As base regressors, we have two types of regressors, the
structure of which is based on decision trees: regression trees
and model trees. Both families of algorithms are hierarchical
models represented by an abstract tree, but they differ with
regard to what their leaves store [51]. In the case of regression
trees, a value is stored that represents the average value of
the instances enclosed by the leaf, while the model trees have
a linear regression model that predicts the output value for
these instances. The intrasubset variation in the class values
down each branch is minimized to build the initial tree [52].

In our experimentation, we used one representative
implementation of the two families, reduced-error pruning
tree (REPTree) [20], a regression tree, and M5P [51], a model
tree. In both cases we tested two configurations, pruned
and unpruned trees. In the case of having one single tree
as a regressor for some typologies of ensembles, it is more
appropriate to prune the trees to avoid overfitting the training
data, while some ensembles can take advantage of having
unpruned trees [53].

3.3. Ensemble Regressors. An ensemble regressor combines
the predictions of a set of so-called base regressors using a
voting system [54], as we can see in Figure 4. Probably the
three most popular ensemble techniques are Bagging [55],
Boosting [56], and Random Subspaces [53]. For Bagging and
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FIGURE 3: Model of the measured volume with a model tree.

Boosting, the ensemble regressor is formed from a set of
weak base regressors, trained by applying the same learning
algorithm to different sets obtained from the training set.
In Bagging, each base regressor is trained with a dataset
obtained from random sampling with replacement [55] (i.e.,
a particular instance may appear repeated several times or
may not be considered in any base regressor). As a result,
the base regressors are independent. However, Boosting uses
all the instances and a set of weights to train each base
regressor. Each instance has a weight pointing out how
important it is to predict that instance correctly. Some base
regressors can take weights into account (e.g., decision trees).
Boosting trains base regressors sequentially, because errors
for training instances in the previous base regressor are
used for reweighting. The new base regressors are focused
on instances that previous base regressors have wrongly
predicted. The voting system for Boosting is also weighted by
the accuracy of each base regressor [57].

Random Subspaces follow a different approach: each
base regressor is trained in a subset of fewer dimensions
than the original space. This subset of features is randomly
chosen for all regressors. This procedure is followed with the
intention of avoiding the well-known problem of the curse of
dimensionality that occurs with many regressors when there
are many features as well as improving accuracy by choosing
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base regressors with low correlations between them. In total,
we have used five ensemble regression techniques of the state
of the art for regression, two variants of Bagging, one variant
of Boosting, and Random Subspaces. The list of ensemble
methods used in the experimentation is enumerated below.

(i) Bagging is in its initial formulation for regression.

(ii) Iterated Bagging combines several Bagging ensem-
bles, the first one keeping to a typical construction and
the others using residuals (differences between the
real and the predicted values) for training purposes
[58].

(iii) Random Subspaces are in their formulation for
regression.

(iv) AdaBoost.R2 [59] is a boosting implementation for
regression. Calculated from the absolute errors of
each training example, I(i) = |fz(x;) — ¥,l, the so-
called loss function, L(i), was used to estimate the
error of each base regressor and to assign a suitable
weight to each one. Let Den be the maximum value
of I(i) in the training set; then three different loss
functions are used: linear, L;(i) = I(i)/Den, square,
Lg(i) = [1(i)/Den]?, and exponential, Lp(i) = 1 —
exp(—I(i)/Den).

(v) Additive regression is this regressor that has a learn-
ing algorithm called Stochastic Gradient Boosting
[60], which is a modification of Adaptive Bagging, a
hybrid Bagging Boosting procedure intended for least
squares fitting on additive expansions [60].

3.4. k-Nearest Neighbor Regressor. This regressor is the most
representative algorithm among the instance-based learning.
These kinds of methods forecast the output value using stored
values of the most similar instances of the training data [61].
The estimation is the mean of the k most similar training
instances. Two configuration decisions have to be taken:

(i) how many nearest neighbors to use to forecast the
value of a new instance?

(ii) which distance function to use to measure the simi-
larity between the instances?

In our experimentation we have used the most common
definition of the distance function, the Euclidean distance,
while the number of neighbors is optimized using cross-
validation.

3.5. Support Vector Regressor. This kind of regressor is based
on a parametric function, the parameters of which are
optimized during the training process, in order to minimize
the RMSE [62]. Mathematically, the goal is to find a function,
f(x), that has the most deviation, €, from the targets that
are actually obtained, y;, for all the training data, and at the
same time is as flat as possible. The following equation is an
example of SVR with the particular case of a linear function,
called linear SVR, where (:,-) denotes the inner product in
the input space, X:

fx)=(w,x)+b withweX, beR. (6)
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FIGURE 4: Ensemble regressor architecture.

The norms of w have to be minimized to find a flat func-
tion, but in real data solving this optimization problem can be
unfeasible. In consequence, Boser et al. [37] introduced three
terms into the formulation: the slack variables &, £* and C, a
trade-off parameter between the flatness and the deviations
of the errors larger than €. In the following equation, the
optimization problem is shown that is associated with a linear
SVR:

minimize —||w|| +CZ & +&)

i=1

s.t. —(w,x;) ~b<e+§ 7)

(wx;)+b-y; <e+&
§.87 >0

We have an optimization problem of the convex type
that is solved in practice using the Lagrange method. The
equations are rewritten using the primal objective function
and the corresponding constraints, a process in which the so-
called dual problem (see (8)) is obtained as follows:

!
maximize - % Z (oc - )<x,,xj>
I !
_62(“i+a;)+zyi(‘xi_“i*)
i i1 (8)
!
s.t Z o —oc
i=1

o, €[0,CJ.

From the expression in (8), it is possible to generalize
the formulation of the SVR in terms of a nonlinear function.

Instead of calculating the inner products in the original
feature space, a kernel function, k(x, x'), that computes the
inner product in a transformed space was defined. This kernel
function has to satisfy the so-called Mercer’s conditions [63].
In our experimentation, we have used the two most popular
kernels in the literature [40]: linear and radial basis.

3.6. Artificial Neural Networks. We used the multilayer per-
ceptron (MLP), the most popular ANN variant [64], in our
experimental work. It has been demonstrated to be a univer-
sal approximator of functions [65]. ANNs are a particular case
of neural networks, the mathematical formulation of which
is inspired by biological functions, as they aim to emulate
the behavior of a set of neurons [64]. This network has three
layers [66], one with the network inputs (features of the data
set), a hidden layer, and an output layer where the prediction
is assigned to each input instance. Firstly the output of the
hidden layer, ;4. is calculated from the inputs, and then the
output, ¥},;4.» is obtained according to the expressions shown
in the following equation [66]:

Yhide = fnet (Wlx + Bl)

)
youtput = foutput (Wthide + BZ) >

where W, is the weight matrix of the hidden layer, B, is the
bias of the hidden layer, W, is the weight matrix of the output
layer (e.g., the identity matrix in the configurations tested), B,
is the bias of the output layer, f, is the activation function
of the hidden layer, and f,, is the activation function of
the output layer. These two functions depend on the chosen
structure but are typically the identity for the hidden layer and
tansig for the output layer [66].
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TABLE 6: Methods notation.

Bagging BG
Iterated Bagging IB
Random Subspaces RS
Adaboost.R2 R2
Additive Regression AR
REPTree RP
MS5P Model Tree Ms5P
Support Vector Regressor SVR
Multilayer Perceptron MLP
k-Nearest Neighbor Regressor kNN
Linear Regression LR

4. Results and Discussion

We compared the RMSE obtained for the regressors in
a10 x 10 cross-validation, in order to choose the method that
is most suited to model this industrial problem. The experi-
ments were completed using the WEKA [20] implementation
of the methods described above.

All the ensembles under consideration have 100 base
regressors. The methods that depend on a set of parameters
are optimized as follows:

(i) SVR with linear kernel: the trade-off parameter, C, in
the range 2-8;

(ii) SVR with radial basis kernel: C from 1 to 16 and the
parameter of the radial basis function, gamma, from
107 to 107%

(iii) multilayer perceptron: the training parameters
momentum, learning rate, and number of neurons are
optimized in the ranges 0.1-0.4, 0.1-0.6, and 5-15;

(iv) kKNN: the number of neighbours is optimized from 1
to 10.

The notation used to describe the methods is detailed in
Table 6.

Regarding the notation, two abbreviations have been used
besides those that are indicated in Table 6. On the one hand,
we used the suffixes “L;” “S,” and “E” for the linear, square, and
exponential loss functions of Adaboost.R2, and, on the other
hand, the trees that are either pruned (P) or unpruned (U)
appear between brackets. Tables 7, 8, and 9 set out the RMSE
of each of the 14 outputs for each method.

Finally, a summary table with the best methods per output
is shown. The indexes of the 39 methods that were tested are
explained in Tables 10 and 11, and in Table 12 the method
with minimal RMSE is indicated, according to the notation
for these indexes. In the third column, we also indicate
those methods that have larger RMSE, but, using a corrected
resampled t-test [67], the differences are not statistically sig-
nificative at a confidence level of 95%. Analyzing the second
column of Table 12, among the 39 configurations tested,
only 4 methods obtained the best RMSE for one of the 14
outputs: Adaboost.R2 with exponential loss and pruned M5P
as base regressors—index 26—(5 times), SVR with radial
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basis function kernel—index 6—(4 times), Iterated Bagging
with unpruned M5P as base regressors—index 15—(4 times),
and Bagging with unpruned RP as the base regressor - index
9—(1 time).

The performance of each method may be ranked. Table 13
presents the number of significative weaker performances of
each method, considering the 14 outputs modeled. The most
robust method is Iterated Bagging with unpruned M5P as
base regressors - index 15 -, as in none of the 14 outputs was
it outperformed by other methods. Besides selecting the best
method, it is possible to obtain some additional conclusions
from this ranking table.

(i) Linear models like SVR linear—index 5— and LR—
index 3—do not fit the datasets in the study very well.
Both methods are ranked together at the middle of the
table. The predicted variables therefore need methods
that can operate with nonlinearities.

(ii) SVR with Radial Basis Function Kernel—index 6—
is the only nonensemble method with competitive
results, but it needs to tune 2 parameters. MLP—index
7—is not a good choice. It needs to tune 3 parameters
and is not a well-ranked method.

(iii) For some ensemble configurations, there are dif-
ferences in the number of statistically significative
performances between the results from pruned and
unpruned trees, while in other cases these differ-
ences do not exist; in general, though, the results
of unpruned trees are more accurate, specially with
the top-ranked methods. In fact, the only regressor
which is not outperformed by other methods in
any output has unpruned trees. Unpruned trees are
more sensitive to changes in the training set. So,
the predictions of unpruned trees, when their base
regressors are trained in an ensemble, are more likely
to output diverse predictions. If the predictions of all
base regressors agreed there would be little benefit in
using ensembles. Diversity balances faulty predictions
by some base regressors with correct predictions by
others.

(iv) The top-ranked ensembles use the most accurate base
regressor (i.e., M5P). All M5P configurations have
fewer weaker performances than the corresponding
RP configuration. In particular, the lowest rank was
assigned to the AR - RP configurations, while AR M5P
U came second best.

(v) Ensembles that lose a lot of information, such as RS,
are ranked at the bottom of the table. The table shows
that the lower the percentage of features RS use, the
worse they perform. In comparison to other ensemble
methods, RS is a method that is very insensitive to
noise, so it can point to data that are not noisy.

(vi) In R2 M5P ensembles, the loss function does not
appear to be an important configuration parameter.

(vii) IB M5P U is the only configuration that never had
significant losses when compared with the other
methods.
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TABLE 7: Root mean squared error 1/3.
Volume Depth Width Length MRR
RP 216482.27 26.89 5.81 5.79 17166.73
M5P 210773.29 23.01 4.51 5.53 16076.33
LR 197521.89 23.84 7.04 14.73 15015.93
kNN 193756.62 23.57 5.42 6.84 15842.42
SVR linear 197894.5 24.19 7.07 16.23 14800.32
SVR radial basis 200774.24 18.85 4.38 5.35 14603.37
MLP 207646.99 22.98 4.7 5.39 16292.43
BGRPP 200212.92 21.49 4.97 5.08 15526.79
BGRPU 205290.8 19.98 4.66 4.9 15603.89
BG M5P P 200636.57 20.61 4.43 5.27 15293.92
BGM5P U 197546.75 19.5 4.31 5.38 15022.1
IBRP P 202767.85 22.05 4.87 5.14 15677.57
IBRPU 219388.93 21.7 5.01 511 15911.96
IB M5P P 197833.83 20.8 4.42 4.88 15318.01
IB M5P U 195154.16 19.65 4.3 4.78 14830.83
R2-LRP P 191765.23 22.27 4.94 5.07 15788.47
R2-LRPU 206369.82 21.71 525 5.29 17004.31
R2-L M5P P 186843.92 20.81 4.37 4.84 15031.37
R2-L M5P U 181587.4 20.51 4.34 4.84 15209.01
R2-SRP P 193908.39 23.03 5.1 5.18 16007.43
R2-SRP U 200453.21 21.21 511 5.31 16401.24
R2-S M5P P 173117.72 20.83 4.49 4.71 15070.05
R2-SM5P U 173914.36 20.87 4.52 4.72 15245.81
R2-ERP P 192529.31 22.59 5.02 5.07 15854.03
R2-ERP U 205920.86 21.44 522 5.21 17318.45
R2-E M5P P 171056.22 21.25 4.53 4.66 15078.01
R2-E M5P U 172948.95 21.32 4.55 4.67 15090.23
ARRPP 215750.39 25.51 5.42 5.56 17249.82
ARRP U 27446743 24.71 5.83 6.15 18628.28
AR M5P P 208805.84 22.27 4.44 5.08 16076.5
ARM5P U 194572.79 19.58 4.51 4.94 15538.29
RS 50% RP P 200526.36 26.58 5.68 7.74 15854.27
RS 50% RP U 201946.24 25.33 5.35 754 15669.28
RS 50% M5P P 201013.27 26.6 538 15.42 15402.77
RS 50% M5P U 199166.84 25.65 5.39 15.45 15349.84
RS 75% RP P 199270.03 23.33 5.27 5.98 15861.58
RS 75% RP U 207845.67 21.61 5.04 6.25 16251.64
RS 75% M5P P 199648.96 23.55 4.65 8.29 15227.87
RS 75% M5P U 197420.35 22.11 4.6 8.39 15295.71

Once the best data-mining technique for this industrial
task is identified, the industrial implementation of these
results can follow the procedure outlined below.

(1) The best model is run to predict one output, by
changing two input variables of the process in small
steps and maintaining a fixed value for the other
inputs.

(2) 3D plots of the output related to the two varied inputs
should be generated. The process engineer can extract
information from these 3D plots on the best milling
conditions.

As an example of this methodology, the following case
was built. Two Iterated Bagging ensembles with unpruned
MS5P as their base regressors are built for two outputs, the
width and the depth errors, respectively. Then, the models
were run by varying two inputs in small steps across the
test range: pulse intensity (PI) and scanning speed (SS). This
combination of inputs and outputs presents an immediate
interest from the industrial point of view because, in a
workshop, the DES geometry is fixed by the customer and
the process engineer can only change three parameters of the
laser milling process (pulse frequency (PF), scanning speed,



10 Journal of Applied Mathematics
TABLE 8: Root mean squared error 2/3.
Volume error Depth error Width error Length error MRR error

RP 216875.74 30.66 5.91 5.62 16355.57
M5P 214500.91 19.8 6.19 5.09 16009.84
LR 197521.93 23.92 6.76 14.67 14963.09
kNN 193696.36 23.69 4.98 6.6 14636.51
SVR linear 197817.88 24.17 7.1 16.23 14784.77
SVR radial basis 200785.96 18.98 4.42 5.37 14504.61
MLP 206753.61 21.96 4.93 5.37 17382.69
BGRPP 20103757 23.18 4.62 4.98 15122.57
BGRPU 205341.53 21.6 4.4 4.87 15327.2
BG M5P P 200594.31 19.66 5.32 5.08 15162.5
BG M5P U 197575.49 19.19 5.22 5.15 14860.54
IBRP P 207848 23.05 4.78 5.18 15525.56
IBRPU 216631.14 23.79 4.79 5.2 16532.31
IB M5P P 201450.65 19.73 4.44 4.71 15177.67
IB M5P U 198261.22 19.44 4.33 4.58 14933.58
R2-LRP P 201365.5 24.08 4.64 5.03 15442.66
R2-LRP U 208500.97 23.95 4.87 5.38 16778.3
R2-L M5P P 184799.5 20.61 4.68 4.77 14732.4
R2-L M5P U 183740.85 20.71 4.7 4.81 14817.65
R2-SRP P 195592.43 24.75 4.65 5.24 16107.62
R2-SRP U 201017.69 22.87 4.71 5.39 15871.67
R2-S M5P P 17277515 21.09 4.53 4.72 14459.98
R2-S M5P U 173892.35 20.88 4.52 4.74 1449738
R2-ERP P 195657.69 24.26 4.62 512 15645.02
R2-ERPU 206275.71 24.38 4.82 5.35 16721.26
R2-E M5P P 172196.89 21.61 4.57 4.75 14324.48
R2-EM5P U 173356.89 21.61 4.58 4.79 14371.36
ARRPP 214978.3 27.77 5.49 5.43 16208.07
ARRP U 271926.55 27.43 5.29 6.1 20571.27
AR M5P P 211329.63 19.8 4.55 4.66 15995.84
ARMS5P U 195497.5 19.55 4.78 4.82 15448.38
RS 50% RP P 200775.17 28.54 5.41 6.93 15217.65
RS 50% RP U 202354.2 26.84 5.24 6.94 15074.78
RS 50% M5P P 201054.45 25.91 5.98 11.81 15387.34
RS 50% M5P U 199246.1 25.61 5.79 1.75 14940.89
RS 75% RP P 199501.89 25.86 4.9 5.73 15165.01
RS 75% RP U 206467.56 24.5 4.75 6.06 15743.5
RS 75% M5P P 200160.47 22.05 5.76 6.66 15185.2
RS 75% M5P U 197431.78 21.79 5.53 6.75 14729.75

and pulse intensity). In view of these restrictions, the engineer
will wish to know the expected errors for the DES geometry
depending on the laser parameters that can be changed.
The rest of the inputs for the models (DES geometry) are
fixed at 70 ym depth, 65 ym width, and 0 ym length, and

PF is fixed at 45 KHz. Figure 5 shows the 3D plots obtained
from these calculations, allowing the process engineer to
choose the following milling conditions: SS in the range of
325-470 mm/s and PI in the range of 74-91% for minimum
errors in DES depth and width.
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TABLE 9: Root mean squared error 3/3.

Volume relative error

Depth relative error

Width relative error Length relative error

RP 0.3 0.54 0.04 0.09
M5P 0.3 0.33 0.04 0.09
LR 0.27 0.43 0.05 0.13
kNN 0.27 0.38 0.04 0.1
SVR linear 0.27 0.44 0.05 0.15
SVR radial basis 0.28 0.29 0.04 0.1
MLP 0.29 0.34 0.04 0.1
BGRPP 0.28 0.4 0.04 0.08
BGRPU 0.29 0.36 0.04 0.08
BG M5P P 0.28 0.32 0.04 0.09
BGM5P U 0.27 0.31 0.04 0.09
IBRP P 0.29 0.38 0.04 0.09
IBRPU 0.3 0.38 0.04 0.09
IB M5P P 0.28 0.32 0.04 0.09
IB M5P U 0.28 0.3 0.04 0.09
R2-LRP P 0.27 0.39 0.04 0.08
R2-LRPU 0.29 0.38 0.04 0.1
R2-L M5P P 0.25 0.32 0.04 0.09
R2-LM5P U 0.26 0.32 0.04 0.09
R2-SRP P 0.27 0.39 0.04 0.09
R2-SRPU 0.28 0.38 0.04 0.1
R2-S M5P P 0.24 0.32 0.04 0.1
R2-S M5P U 0.24 0.33 0.04 0.1
R2-ERP P 0.27 0.4 0.04 0.09
R2-ERPU 0.29 0.38 0.04 0.11
R2-E M5P P 0.24 0.33 0.04 0.1
R2-E M5P U 0.24 0.33 0.04 0.1
ARRPP 0.3 0.47 0.04 0.09
ARRP U 0.38 0.44 0.05 0.11
AR M5P P 0.29 0.33 0.04 0.09
ARM5P U 0.27 0.29 0.04 0.09
RS 50% RP P 0.28 0.48 0.04 0.09
RS 50% RP U 0.28 0.44 0.04 0.09
RS 50% M5P P 0.28 0.43 0.04 0.09
RS 50% M5P U 0.28 0.42 0.04 0.09
RS 75% RP P 0.28 0.45 0.04 0.08
RS75% RP U 0.29 0.41 0.04 0.08
RS 75% M5P P 0.28 0.36 0.04 0.09
RS 75% M5P U 0.27 0.35 0.04 0.09
TaBLE 10: Index notation for the nonensemble methods. of microcavities for the manufacture of drug-eluting stents.
] > 3 1 5 6 - Experiments on 316L Stainless Steel have been performed to
RP M5P LR KNN SVRIinear SVRradialbasis MLP provide data for the models. The experiments vary most of

5. Conclusions

In this study, extensive modeling has been presented with
different data-mining techniques for the prediction of geo-
metrical dimensions and productivity in the laser milling

the process parameters that can be changed under industrial
conditions: scanning speed, laser pulse intensity, and laser
pulse frequency; moreover 2 different geometries and 3 differ-
ent sizes were manufactured within the experimental test to
obtain informative data sets for this industrial task. Besides,
a very extensive analysis and characterization of the results
of the experimental test were performed to cover all the
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TaBLE 11: Index notation for the ensemble methods.
BG 1B R2-L R2-S R2-E AR RS 50% RS 75%
RP P 8 12 16 20 24 28 32 36
RPU 9 13 17 21 25 29 33 37
M5P P 10 14 18 22 26 30 34 38
M5P U 11 15 19 23 27 31 35 39
TABLE 12: Summary table. TABLE 13: Methods ranking.
Best L . Number
11 1
method Statistically equivalent Indexes Methods of
vl 2 3,4,5,6,7,11, 14,15, 16, 18,19 defeats
olume
20, 22, 23, 27, 31, 35, 38, 39 15 B M5PU 0
9,10, 11, 13, 14, 15, 17, 18, 19, 21, 22 3 ARMSPU !
, 10, 11,13, 14, 15, 17, 18, 19, 21, S
Depth 6 6,14,18,19, SVR radial basis, IB M5P P, R2-L M5P P, )
23,25, 31 22,23 R2-L M5P U, R2-S M5P P, and R2-S M5P
2,6,7,9,10,11, 12, 14, 18, 19, 22 U
Width 15
23, 26, 27, 30, 31, 39 11, 26, 27 BG M5P U, R2-E M5P P, and R2-E M5P U 3
4,6,9,12,13, 14,15, 16, 17, 18, 19 10, 30 BG M5P P and AR M5P P 4
Length 26 9 BGRP U 5
22,23, 24, 25, 27, 30, 31, 37
39 RS 75% M5P U 6
23,4,578,9,10,11,12,13 2,4,16, 38 MS5P, kNN, R2-L RP P, and RS 75% M5P P 7
MRR 6 14,15, 16,17, 18,19, 20, 21, 22, 23, 24 12,13,35  IBRP P IBRP U, and RS 50% M5P U 8
25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 39 LR, SVR linear, BG RP P, R2-L RP U,
3,5,8,17 20,
Volume . 3,4,5,6,10,11,15,18, 19, 22, 23 24,25 34 3 RZ-SRPP,R2-ERPPR2-ERP U, 9
error 27,31, 34, 35, 36, 38, 39 RS 50% M5P P, and RS 75 % RP P
2,10, 11, 14, 15, 18, 19, 22, 23, 26, 27 7,21, 37 MLP, R2-SRP U, and RS 75% RP U 10
Deptherror 6 3031 32,33 RS 50% RP P and RS 50% RP U 11
1,28 RP and ARRP P 12
. 6,8,9,12,13, 14, 16, 17, 18, 19, 20
Width error 15 29 ARRP U 14

21, 22, 23, 24, 25, 26, 27, 30, 37
4,8,9,14,16, 18,19, 22, 23, 26, 27

Length 15
30, 31
1,2,3,4,5,6,8,9,10,11, 12
MRR error 26 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36
37,38, 39
Volume 2 3,4,5,6,10,11, 15, 18,19, 22, 23

relative error 27) 31) 34) 35, 36, 38, 39

2,10, 11, 14,15, 18, 19, 22, 23, 26, 27

Depth

lati 6

relative error 30, 31

Width 15 2,6,7,9,10, 11, 14, 24, 30, 31, 38, 39
relative error

Length 0 1,2, 8,10, 11, 12, 13, 14, 15, 16, 20

relative error 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39

possible optimization strategies that industry might require
for DES manufacturing: from high-productivity objectives to
high geometrical accuracy in just one geometrical axis. By
doing so, 14 data sets were generated, each of 162 instances.

The experimental test clearly outlined that the geometry
of the feature to be machined will affect the performance
of the milling process. The test also shows that it is not
easy to find the proper combination of process parameters
to achieve the final part, which makes it clear that the
laser micromilling of such geometries is a complex process
to control. Therefore the use of data-mining techniques is
proposed for the prediction and optimization of this process.
Each variable to predict was modelled by regression methods
to forecast a continuous variable.

The paper shows an exhaustive test covering 39 regression
method configurations for the 14 output variables. A 10 x 10
cross-validation was used in the test to identify the methods
with a relatively better RMSE. A corrected resampled ¢-test
was used to estimate significative differences. The test showed
that ensemble regression techniques using M5P unpruned
trees gave a better performance than other well-established
soft computing techniques such as ANNs and Linear Regres-
sion techniques. SVR with Radial Basis Function Kernel
was also a very competitive method but required parameter
tuning. We propose the use of an Iterated Bagging technique
with an M5P unpruned tree as a base regressor, because its



Journal of Applied Mathematics

Forecast depth error: f(intensity, speed)

Forecast width error: f(intensity, speed)

x10°
4.5

2.5
600

90

80 .
“\iﬁ“s‘w

FIGURE 5: 3D plots of the predicted depth and width’s errors from
the Iterated Bagging ensembles.

RMSE was never significantly worse than the RMSE of any of
the other methods for any of the 14 variables.

Future work will consider applying the experimental
procedure to different polymers, magnesium, and other
biodegradable and biocompatible elements, as well as to
different geometries of industrial interest other than DES,
such as microchannels. Moreover, as micromachining is a
complex process where many variables play an important role
in the geometrical dimensions of the machined workpiece,
the application of visualization techniques, such as scatter
plot matrices and start plots, to evaluate the relationships
between inputs and outputs will help us towards a clearer
understanding of this promising machining process at an
industrial level.
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