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Abstract 

 

The optimization of a GC-MS analytical procedure which includes derivatization, Quick Easy 

Cheap Effective Rugged and Safe (QuEChERS) and programmed temperature vaporization 

(PTV) using design of experiments is performed to determine 2,6dichlorobenzonitrile 

(dichlobenil) and 2,6dichlorobenzamide (BAM) in onions, using 3,5dichlorobenzonitrile 

and 2,4dichlorobenzamide as internal standards. The use of a central composite design and 

two D-optimal designs, together with the desirability function, makes it possible to 

significantly reduce the economic, time and environmental cost of the study. The usefulness 

of PARAFAC2 for solving problems as the interference of unexpected derivatization artifacts 

unavoidably linked to some derivatization agents, or the presence of coeluents from the 

complex matrix, which share m/z ratios with the target compounds, is shown. The limits of 

decision (CC) of the optimized procedure, 5.00 g kg
-1

 for dichlobenil and 1.55 g kg
-1

 for 

BAM (=0.05), are bellow the maximum residue limit (MRL) established by the EU for 

dichlobenil (20 g kg
-1

) in this commodity. 

 

Keywords: PTV-GC-MS; D-optimal design; parallel factor analysis; desirability function; 

Dichlobenil; SANCO/12495/2001. 

 

 

1. Introduction 

 

Dichlobenil is an herbicide which is heavily applied world-wide. Toxicological reference 

values were established for both 2,6dichlorobenzonitrile or dichlobenil (DIC) and 

2,6dichlorobenzamide (BAM), its main metabolite in plant and livestock matrices, in the 

framework of Directive 91/414/EEC. Considering that the use of dichlobenil is not longer 

authorised within the UE [1], that no codex maximum residue limits are established and no 

import tolerances were notified to European Food Safety Authority (EFSA), this authority 

concludes [2] that residues of dichlobenil are not expected to occur in any plant or animal 

commodity. It concludes also that BAM is the only relevant residue for enforcement against a 

potential illegal use of dichlobenil. But it is noted that BAM is also a metabolite of 

fluopicolide, which is an authorised pesticide. For that reason, specific maximum residue 

limits (MRLs) for BAM have not yet been established to enforce against the potential illegal 
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use of dichlobenil. But EFSA recommends the setting of MRLs for BAM when the review of 

MRLs for fluopicolide will be carried out. 

 

Many papers have been published about determination of dichlobenil and BAM using GC 

analysis in different types of water sources [3]. Analyses of dichlobenil in food commodities 

have also been reported (in fish and shellfish [4] and cabbage and radish [5]), but applications 

are hardly found where both pesticide and metabolite are simultaneously determined in 

complex matrices by GC. For example, Pang et al. [6] determined both compounds in animal 

tissues together with many other pesticides by GC-MS, and reported LOQs for dichlobenil 

and BAM of 5 and 50 g kg
-1

 respectively, without quantification of false positive and false 

negative probabilities. Like most transformation products of pesticides, BAM is more polar 

and less volatile than dichlobenil, so it might require a previous derivatization step to 

improve the gas chromatographic behaviour of the amide and to increase the sensitivity [7]. 

 

Among the reagents used for derivatization, trialkylsilyl reagents form thermally stable 

derivatives with polar compounds containing hydrogen atoms bound to electronegative 

elements (for example, oxygen, nitrogen or sulphur), so they are so versatile reagents. But the 

derivatization reagent (trialkiylsilyl) can form unexpected derivatives as silylation artifacts 

resulting from reactions with itself, organic solvents, etc. [8,9] which not always can be 

avoided [10]. These artifacts lead to unexpected components and to confusion about the 

number of components present even in standard solutions and therefore about the 

unequivocal identification of the analytes. Chemical interferences resulting in unwanted 

artifacts are a relevant issue in analytical chromatography. 

 

PARAFAC2 model [11,12] has been shown to be very useful in determining target 

compounds in food commodities [13,14,15,16,17] by solving problems with co-eluting 

interferents, little shifts in the retention time, low signal-to-noise ratios, etc., which are usual 

worries to tackle in chromatographic determinations [16,15]. This three-way technique of 

analysis makes discrimination possible from co-eluting matrix components; this is the 

“second-order advantage” of the PARAFAC2 algorithm. In addition, unlike parallel factor 

analysis (PARAFAC), the PARAFAC2 model does not assume parallel proportional profiles, 

but only that the matrix of profiles preserves its 'inner product structure' from sample to 

sample [12]. In this way, the PARAFAC2 model may be used to model chromatographic data 

with retention time shifts that are usual in GC analysis. These shifts must be within the 

tolerance intervals permitted by regulations and no alignments problems are expected in MS 

data, so in this context the GC-MS data provide usually trilinear models. 

 

In this work, PARAFAC2 model is used in the simultaneous determination of DIC and BAM 

in onions by programmed temperature vaporization (PTV)GCMS. Target compounds are 

extracted from onions with a QuEChERS modified procedure which involves a dispersive 

solid phase extraction (dSPE) step, and subsequently extracts are derivatized with BSTFA 

(N,Obis(trimethylsilyl)trifluoroacetamide) and injected into the chromatographic system 
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through the PTV inlet. When this experimental procedure is applied to complex matrices, it is 

common to find co-eluting unexpected interferents and little shifts in the retention time [13], 

so PARAFAC2 decomposition turns out to be a very useful tool for this kind of data. 

 

Optimization of some experimental parameters of the steps implied in the chromatographic 

analysis is approached using the experimental design methodology, response surface and D-

optimal designs. Several examples can be found in the literature on the use of this 

methodology to optimize some step of chromatographic determinations (as extraction or 

derivatization) [18,19], and other where it is coupled to second-order calibration techniques 

for giving a powerful tool of analysis [13,20,21,22,23]. In addition, the Derringer’s 

desirability function [24,25,26], a multiobjective optimization technique, is used to 

simultaneously optimizing multiple responses because of its user flexibility in selecting 

optimum conditions for analysis. The use of these chemometric tools makes it possible to 

significantly reduce the experimental effort the time of analysis, the economic and 

environmental cost. 

 

Firstly, a central composite design and two D-optimal designs coupled to PARAFAC2 model 

are used to select the best conditions of the derivatization (time, reagent volume and 

temperature), to analyse the effect over extraction and clean up of 7 factors and also other 8 

factors related with the PTV injection step. The use of the PARAFAC2 model allows 

unequivocal identification of target compounds according to document SANCO/12495/2011 

(in all cases, relative retention time and at least the relative abundance of 3 diagnostic ions 

are within the corresponding tolerance intervals). The EU established a maximum residue 

level (MRL) of 50 g kg
-1

 of dichlobenil in bulb vegetables as onion in Reg. (EC) No 

149/2008. This Regulation was still of application for products which were lawfully produced 

before 26 April 2013 when it was amended by Reg. (EU) No 899/2012, which establishes a 

new MRL of 20 g kg
-1

. The detection limits (CC) found in this work are below the latter 

MRL. 

 

 

2. Theory 

 

2.1 Modelling three-way GC-MS data by means of PARAFAC2 

 

PARAFAC2 is a method that decomposes a GC-MS data tensor, X, into trilinear factors 

[11,12] according to the structural model: 
 

,k
T

kkk
T

kkk EBHDPEBDAX  K , 1, k   (1) 
 

where the matrix Xk is the k-th slab of dimension I  J (J diagnostic ions acquired at I times 

during the elution of the analytes), Ak is the loadings of the chromatographic mode estimated 

for the k-th sample, Dk is a diagonal matrix that holds the k-th (see this notation below) row 
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of the sample mode, B is the loading matrix of the spectral mode, Ek is the matrix of the 

residuals, Pk is an orthogonal matrix of the same size as Ak, and H is a small quadratic matrix 

with dimension equal to the number of components. 

 

PARAFAC2, unlike PARAFAC [27] does not assume that Ak is the same for all k, but the 

cross-product matrix Ak
T
Ak, which allows some deviation in the chromatographic profiles. It 

is very rare to have alignment problems with MS data, but changes in retention times are very 

usual in chromatography [12,21,28]. When the correlation between the retention times is the 

same in all samples, PARAFAC2 model has the second-order advantage. 

 

2.2 Design of experiments for chromatographic optimization 

 

A whole chromatographic procedure depends on several experimental factors that have to be 

optimized. The methodology of the experimental design makes it possible to adapt the 

experimentation needed to optimize the procedure in the most efficient way. In any case: (i) 

An experimental domain, D, is defined at which the k factors represented by the codified 

variables (x1, x2,…xk) will vary. (ii) A linear model, with p+1 coefficients, is proposed to 

relate the experimental response to be optimized, y, with the k factors through the p variables 

(p  k),  
 

 0 1 1 2 2 k k k+1 k+1 p py    x   x   ... x x ...  x   β β β β β β           (2) 

 

where 
k+1 k+2 px ,x ,..., x  are the cross-products and powers of the k factors, 1 2 kx , x ... x , that are 

the codified factors,  is a random variable which follows a normal distribution with zero 

mean and constant standard deviation . The form of the model of Eq. (2) depends on the 

kind of variables (continuous or discrete) and on the aim of the experimentation. 

 

Given an experimental design  with N experiments and the measured responses yj (j = 1, 2, 

..., N) in each combination of factors, the model in Eq. (2) can be expressed in matrix form as 
 

 y Xβ ε  (3) 

 

where y is the N response vector; X is the model matrix, a N × (p+1) matrix where the 

experiments are defined, expanded to incorporate the model in Eq. (2); β is the p+1 vector of 

coefficients; and   N(0, 
2
I) denotes the N residual vector. Therefore, matrix X contains the 

information about the experiments to be done (the design) and the model to be fitted, Eq. (2), 

and it is worth highlighting that it does not depend on the responses obtained i.e. on the 

values in y. 

 

The least squares estimator of  
T

0 1, ,..., p   β  is  T T
1

b = X X X y  and the variance-

covariance matrix of coefficient estimates is  
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     T 2 2

ijCov s c s


 
1

b X X  (4) 

 

where s
2
 is the residual mean square of the regression, an estimate of 

2
. The  

1
T



X X  matrix 

is the ‘dispersion matrix’ with elements cij. Provided that the error variance 
2
 is constant, the 

main diagonal of the dispersion matrix determine the quality (in terms of precision) of the 

estimated coefficients, while the remaining elements of the matrix, the covariance, are thus 

related to the correlation between each pair of coefficient estimates. 

  

The scaled diagonal elements of dispersion matrix, cjj , are called variance inflation factors, 

VIF, and defined as 
 

   
2

VIF j jj ij ji
b c x x   (5) 

 

where xij are the elements of the column j of X and 
jx  their mean. The D-criterion takes 

account of the behaviour of the volume of the join confidence region for the p+1 coefficients. 

It is computed as  

1

T

p
D

N 


X X
 (6) 

Therefore, two different designs can be compared regarding their precision in the estimation 

of the individual coefficients, by means of their VIFs, or the precision when the estimates are 

jointly considered by means the D value. In the former case, shorter confidence intervals are 

preferable and in the latter the interest is on the smallest joint confidence region.  

 

The experimental design methodology consists of determining the experiments of the domain 

D that have to be realized in order to have the coefficients and the response estimated with the 

model as accurate as possible, taking into account the experimental variability. 

 

2.2.1 Response surface methodology 

This is the suitable strategy for looking for the experimental conditions, defined by 

continuous variables, which lead to an optimum. A review can be found in [26]. Usually, a 

polynomial is proposed as model. In the case of a complete seccond-degree polynomial 

model, Eq. (2) becomes Eq. (7): 
 

2 2 2

0 1 1 2 2 k k 11 1 22 2 kk

12 1 2 1k 1 k k-1,k k 1 k

y    x   x   ...  x   x   x  ...  x  

 x x ...  x x ...  x x   

kβ β β β β β β

β β β 

         

      
 (7) 

 

Once established the experimental domain D (number of factors and rank of values of each of 

them) and proposed a polynomial model experimental designs exist, i.e. sets of experimental 

conditions, which provide the estimates of less variance for coefficients and response. Central 
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composite, Dohelert and Box Benken designs are widely used and allow the researcher to 

choose the one most suitable for approaching the optimization problem. The minimum 

number of experiments required increases exponentially with the number of factor, even if 

complete second-order polynomials are used. Therefore, these designs are used with few 

factors. 

 

After completed the experiments, the proposed model is fitted and its suitability for the 

experimental data is checked. To that end, it is checked that: (i) The model significantly 

explains the variance of the response (significance test and percentage of explained variance); 

(ii) There is no lack of fit (lack of fit test), which requires that replicates in at least one point 

of the domain are available; (iii) The residuals follows a normal distribution and are 

homoscedastic, the latter only if replicates in several experimental conditions are available. 

Sometimes the model of Eq. (7) must be modified, either transforming the response or 

removing or adding terms. There are well known strategies in both cases [26]. 

 

Once the model is validated, the experimental conditions or values of factors which optimize 

the response are obtained. For this task, the canonical analysis of the surface and also the 

ridge analysis (or optimum path method) are used. The last one graphically describes the 

behaviour of the factors around the maximum, with the advantage that the method is not 

limited by the number, p, of factors studied. The optimum path of the response surfaces is 

performed by building spherical surfaces, centred on the center point of the experimental 

domain with grown radius, R, and calculating on each of these spherical surfaces the 

maximum, maxŷ (R), or the minimum, minŷ (R), of the response fitted depending on whether 

the optimum is a maximum or a minimum respectively [29,30]. The optimum trajectory 

allows the determination of the global optimum and of the values of the factors at which it is 

reached, as well as its evolution around the optimum of the response. 

 

2.2.2 Desirability function.  

When there are t responses, y1, y2,…, yt, as in the case of properties related to several analytes 

in a chromatographic analysis, it is possible that different conditions for the optimum are 

reached for each of them, these conditions even could be opposite. This situation can be seen 

clearly by comparing the optimum paths. Therefore it is important to find the compromise 

optimum. The multi-objective optimization can be approached through the Derringer 

desirability function, d, [24,25,26] which is based on building an individual desirability 

function, di, for each response and on calculating the weighted geometric average of the t 

individual functions that is 
 

 1 2

1 2 t        tpp prd d d d      (8) 

 

where pi is the weighting of the i-th response and 
1

  
t

ii
r p


 . Through the individual 

desirability functions the specifications that each response must fulfil can be introduced. Each 
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individual desirability function, di, varies from zero (undesirable response) to 1 (desirable 

response). The researcher decides in each problem the values of the response from which a 

value of 1 or 0 will be assigned as well as the convexity and the curvature grade of the 

function between them. 

 

2.2.3 Factors with discrete values 

In some cases the experimental factors are discrete, such the kind of derivatizating reagent. 

But when there are many continuous factors they are being treated as they are discrete, e.g. 

the experimental factors involved in a injection step with a PTV in a GC-MS analysis. From a 

practical point of view, two possibilities can be considered: case 1, where all the factors have 

two levels, generally codified as -1 and +1; and case 2, where some of them have three or 

more levels, are distinguished. It is not possible to identify curvatures in the response as 

effect of changing the level of the factor in case 1; for that it is necessary that the factor for 

which a non-linear response is expected has at least three levels. The existence of interactions 

between factors can be studied by including the corresponding term in the model in both 

cases. 

 

For case 1, with k factors the model of Eq. (2) becomes the complete factorial model: 
 

0 1 1 2 2 k k 12 1 2 1k 1 k

k-1,k k 1 k 123 1 2 3 k-2,k-1,k k 2 k 1 k 1,2,...k 1 2 k

y    x   x  ...  x   x x   ...  x x   

 x x  ...  x x x ...  x x x   x x ...x   

β β β β β β

β β β β  

        

       
 (9) 

 

where xi (I = 1, 2,..., k) are binary variables equal to -1 when the i-th factor is at the low level 

and +1 when is at the high level, 0 is the intercept, i are the coefficients of the principal 

effects, and i,j,…,h are the coefficients to estimate all possible interactions. In sum, the model 

has 2
k
 coefficients, so this is the minimum number of experiments to estimate all coefficients, 

which increases exponentially with the number of factors. 

  

In case 2, Eq. (2) becomes the presence-absence model of Eq. (10) for k factors, each one at 

n1, n2, …., nk levels, 
 

1 1 2 2 1 1 1 1 2 2 2 2

1 1 2 2 k

' ' ' ' ' ' '

0 1A 1A 1A 1A 1A 1A 2A 2A 2A 2A 2A 2A

' ' '

kA kA kA kA kA kA

    x  x  ... x  x  x  ... x ....

...  x  x  ... x  P'  

n n n n

nk n

y β β β β β β β

β β β

         

      
 (10) 

  

where xij (i = 1, 2, ..., k and j = A1,…, Ani ) are binary variables equal to 1 when the i-th factor 

is at the j-th level, and 0 in any other case, P’ is the sum of all first-order cross-product of the 

variables xij, 0

'β  is the intercept, and 
'

ijβ are the coefficients of the model. The model of Eq. 

(10) includes all the levels of each factor, so each coefficient estimates the effect of the level 

of the factor or the interaction between levels on the response. However, the coefficients of 

Eq. (10) cannot be estimated by least squares since for each i it is that 
1

1
in

ijj
x


 , i.e. the 

predictor variables are linearly related and the system is ill-conditioned. To avoid this issue 
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the presence-absence model of Eq. (10) is converted into an equivalent reference-state model 

that depends on the reference level chosen. For example, if the highest level of each factor, 

An1, An2, …, Ank, is used as reference level, the model of Eq. (10) becomes 
 

1 1 2 2 1 1 1 1 1 1 2 2 2 1 2 1

1 1 2 2 1 k-1

0 1A 1A 1A 1A 1A 1A 2A 2A 2A 2A 2A 2A

kA kA kA kA kA kA

   x  x ... x  x  x ... x ...

....  x  x  ... x  P   

n n n n

nk n

y β β β β β β β

β β β

   



         

      
 (11) 

 

where xij (i = 1, 2, ..., k and j = A1,…, Ani-1) are binary variables equal to 1 when the i-th 

factor is at the j-th level, and 0 in any other case, P is the sum of all first-order cross-product 

of the variables xij, 0 is the intercept, and ij are coefficients of the model which estimate the 

effect of changing each factor i from the highest level to the j-th level. Evidently with this 

model the interpretation of the results is more difficult and in addition the Eq. (11) depends 

on the level chosen as reference level. 

 

2.2.4 Ad-hoc designs. D-optimal criterion 

When a full design cannot be used because the number of experiments chosen is too large D-

optimal designs can be applied [31]. These designs require a lower number of experiments to 

estimate the parameters of the model with the same precision as the full design. D-optimal 

designs are based on the D-criterion of Eq. (6), so good quality experimental matrices can be 

found. Firstly the search space is established, formed by Ns experiments of the domain D and 

Ns being higher than the number of coefficients, p+1, of the model. Next, for each N between 

p+1 and Ns the design which provides the less value of D is chosen. This is performed by 

means of an exchange algorithm. As a result, for each N there is the design with the joint 

confidence region for the coefficients of the model with the smallest volume [30,25]. And 

finally the design is chosen, when using the models in Section 2.2.3, in such a way that the 

maximum of the VIFs is close to 1, which is the optimum value of this parameter to 

guarantee the smallest possible variance for the calculated coefficients. However, if response 

surface designs (Section 2.2.2) are used, the better precision of the studied response is 

considered, G-criterion, to choose the final design. 

 

2.3 Figures of merit 

 

Some figures of merit, such accuracy, trueness and capability of detection are usually 

calculated when an analytical procedure is being developed. The study of accuracy is based 

on fitting a regression model between calculated and true concentrations [32], called accuracy 

line. Trueness is determined by checking the joint hypotheses “the slope is 1 and the intercept 

is 0”. It is usual to show the joint confidence estimated regions (confidence ellipse) for slope 

and intercept; if the point (1,0) is inside the ellipse then the trueness is guaranteed for the 

analysis of the compounds. The area of this confidence region allows comparing graphically 

the precision of the method for different analytes, the lower the precision the higher the area 
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of the ellipse. The standard deviation of the accuracy line (syx) can be considered as an 

estimation of the intermediate repeatability in the analysed concentration range [33]. 

 

According to the ISO 11483-2 [34] the limit of decision (CC in other European regulations 

as the European Decision 2002/657/EC) is defined by the critical value (at zero) of the net 

concentration, as ‘the value of the net concentration the exceeding of which leads, for a given 

error probability , to the decision that the concentration of the analyte in the analysed 

material is larger than that in the blank material’. And the capability of detection (CC) for 

a given probability of false positive, , is ‘the true net concentration of the analyte in the 

material to be analysed, which will lead, with probability 1-, to the correct conclusion that 

the concentration in the analysed material is larger than that in the blank material’. 

Analogous definitions have also been established for other concentration levels such as the 

MRL; in this case,  and  are the probabilities of false non-compliance and false compliance 

at the MRL respectively. 

 

In the case of multi-way calibrations, CC and CC, are estimated from the accuracy line 

[35,32]. 

 

 

3. Experimental 

 

3.1 Reagents 

 

Ethyl acetate (SupraSolv) was purchased from Merck (Darmstadt, Germany). Dichlobenil 

(DIC) and BAM (PESTANAL grade), and sodium sulphate anhydrous (p.a.) were obtained 

from Sigma-Aldrich (Madrid, Spain). As internal standards, 3,5dichlorobenzonitrile (97%) 

(ISDIC) and 2,4dichlorobenzamide (98%) (ISBAM) were purchased from Aldrich 

(Steinheim, Germany), and BSTFA from Supelco (PA, USA). 2 mL DisQuE clean-up tubes 

containing 150 mg anhydrous magnesium sulphate plus 50 mg PSA sorbent and 50 mg C18 

were purchased from Waters (Milford, MA, USA).  

 

3.2 Instrumental 

 

The analyses were carried out on an Agilent (Agilent Technologies, Wilmington, DE, USA) 

7890A gas chromatograph coupled to an Agilent 5975 Mass Selective Detector (MSD). The 

injection system consisted of a septumless head and a PTV inlet (CIS 6 from Gerstel, 

Mülheim an der Ruhr, Germany) equipped with an empty multi-baffled deactivated quartz 

liner. Injections were carried out using a MultiPurpose Sampler (MPS 2XL from Gerstel) 

with a 10 μL syringe. Analytical separations were performed on an Agilent DB-5ms (30 m  

0.25 mm i.d., 0.25 μm film thickness) column. A Velp Scientifica RX3 Vortex shaker (Milan, 

Italy) was used. To control the temperature in the derivatization step, a water bath equipped 
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with a Digiterm 200 immersion thermostat (JP Selecta S.A., Barcelona, Spain) was 

employed. To centrifuge the extracts, a Sigma 2-16K refrigerated centrifuge (Osterode, 

Germany) was used. A miVac DUO centrifugal concentrator (Genevac Ltd., Ipswich, UK) 

operating at low pressure was used for faster evaporation.  

 

3.3 Chromatographic procedure 

 

The onions were cut with a knife and put into freezer overnight. Each onion was blended 

while frozen until it reaches homogeneous texture. Next, 10 ± 0.1 g of the sample was 

transferred to a 50 mL centrifuge tube (tube 1) and extracted with 10 mL ethyl acetate in the 

presence of 10 g of sodium sulphate, followed by vortex mixing for a certain time (tmix1). The 

homogenate was centrifuged at a rotational speed (scentr1) for a time (tcentr1) at 4ºC. 1.2 mL of 

the extract was transferred into the DisQue clean-up (tube 2). The tube 2 was shaken for a 

time (tmix2) and next centrifuged at 10000 rpm for a time (tcentr2) at 4ºC. 0.8 mL of the 

supernatant was transferred into a tube and evaporated to dryness under vacuum in a 

centrifugal concentrator during a time (tevap) at a certain temperature (Tevap). The final 

parameters for the extraction of the analytes after optimization were as follows: the tube 1 

was vortex mixing for 2 min, centrifuged at 3000 rpm for 10 min; the tube 2 was vortex 

mixing for 30 s and centrifuged for 1 min; and the extract was evaporated during 10 min at 

50ºC. The residue was reconstituted with 0.8 mL of ethyl acetate; i.e. the extraction 

procedure gave a final solution representing 12.5 g of the commodity per mL of extract. 

 

Solutions were derivatized (standards directly, and onion extracts and matrix matched 

standards after extraction) in a 2 mL screw cap vial by addition of a volume of BSTFA 

(VBSTFA) to 80 L of sample, next the vial was capped, shaken vigorously and allowed to 

stand at a certain temperature (Temperature) for a certain time (Time) by placing the mixture 

in a water bath. The final procedure for derivatization, as applied after optimization, was: 56 

L of BSTFA was added to 80 L of the reconstituted extract; the vial was closed and placed 

in a water bath at 44.5 ºC for 42 min. 

 

After the derivatization, the standards and extracts were injected into the GC-MS system. The 

PTV was operated in the solvent vent mode. A volume of 2 L was injected at a certain 

controlled speed (sinj). During injection, the inlet temperature was held at an initial 

temperature (TPTVinit) for a time (tPTVinit), while the column head pressure was fixed to a 

pressure (Pinit) and the flow rate through the split vent was set at a certain value (ventflow). At 

a solvent vent time (venttime) the split valve was closed. Next, the inlet temperature was 

ramped at a rate (rPTV) up to an end temperature (TPTVend), which was held for 5 min. The split 

valve was re-opened 1 min after injection to purge the inlet at a vent flow of 60 mL min
-1

. 

The final parameters for the injection step after optimization were as follows: sample was 

injected at 50  s
-1

 while the PTV was held at 40 ºC for 0.5 min and the column head was at 9 

psi with a flow rate of 100 mL min
-1

. At 0.3 min the split valve was closed. Next, the PTV 

was ramped at 10 ºC s
-1

 up to 280 ºC. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Codifications and levels of the optimized experimental variables or factors are in Tables 1, 2 

and 3. Details of the optimization procedures will be given in the Results and discussion 

Section. 

 

The oven temperature was maintained at 40ºC for 1 min and ramped at 120 ºC min
-1

 up to 

120 ºC, which was maintained for 1 min and next ramped at 8 ºC min
-1

 to the end temperature 

of 200 ºC. A post-run step was performed for 4 min at 280 ºC. After 4.5 min (solvent delay), 

the mass spectrometer was operated in electron ionization mode at 70 eV in selected ion 

monitoring (SIM) mode, with two acquisition windows. 5 ions (ion dwell time of 80 ms) 

were detected for each peak: 100, 136, 171, 173 and 175 for DIC and ISDIC; and 145, 173, 

175, 246, and 248 for BAM and ISBAM. The transfer line temperature was set at 280 ºC, the 

ion source temperature at 230ºC, and the quadrupole at 150 ºC. The electron multiplier was 

set at 1671 V and the source vacuum at 10
-5

 torr. The carrier gas was maintained at a constant 

flow rate of 1.1 mL min
-1

. 

 

3.4 Standards, matrix-matched standards and samples 

 

Stock solutions of DIC, BAM, ISDIC and ISBAM, were prepared in acetone (to contain 2000 

mg L
−1

 of each compound) and stored in a refrigerator at 4ºC. Intermediate and final standard 

solutions were prepared in ethyl acetate to each contain the appropriate concentration of each 

compound. 

 

Matrix-matched standards were prepared by adding the appropriate volume of the 

intermediate standards to blank onion samples which were subsequently treated according to 

the experimental procedure described in Section 3.3. 

 

Eight onion samples (T1, T2,…, T8) were purchased from local food stores. Blank samples, 

fortified samples and matrix-matched standards were prepared following the experimental 

procedures described in each case in Section 3.3. 

 

3.5 A chemometric approach to develop a GC-MS procedure 

 

Step 1. Unequivocal identification of target compounds 

For the identification of the analytes it is necessary to have their reference GC-MS signal, i.e. 

the spectra for calculating the tolerance intervals for the relative abundances and the 

chromatogram for building the tolerance intervals for the relative retention time. For that, it 

has to be taken into account that this determination is regulated by the Document 

SANCO/12495/2011, where tolerances for relative retention time and relative abundance for 

diagnostic ions are established.  

 

With this aim, several standards were prepared with increasing concentrations of each analyte 

and internal standards; a data tensor X was obtained for each analyte that afterwards was 
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decomposed using PARAFAC2. In this way, as long as the model is trilinear, which 

guarantees the second-order advantage, a unique mass spectrum is extracted from the 

decomposition of the data tensor X, avoiding the subjective choice of a reference mass 

spectrum [22]. The tolerance interval for each diagnostic ion is calculated with this spectral 

profile. The tolerance interval for the relative retention time is established from the 

chromatographic profile obtained for each sample. Next, the criteria for the unequivocal 

identification are applied to the chromatographic and spectral profiles to identify the factor 

related to the target compound [16].  

 

Step 2. Optimization of derivatization 

Provided that all the samples had to be derivatized, the first task was to optimize the 

derivatization step. Three experimental variables which may influence the derivatization 

reaction were studied: the volume of BSTFA (VBSTFA), and the time (Time) and the 

temperature (Temperature) of the water bath. The objective of this optimization was to 

determine the derivatization conditions for which the highest chromatographic responses for 

the compounds of interest are obtained with the least experimental effort. 

 

The three factors were optimized by using a central composite design; five replicates of the 

central point were performed to estimate the experimental error. The raw data provided by 

the experimental plan were going to be used to fit a complete second-order model, so the Eq. 

(7) becomes Eq. (12) where k = 3 and p = 10.  
 

  xx xx xx  x  x  x  x  x  x   y 322331132112

2

333

2

222

2

1113322110  ββββββββββ  (12) 

 

Once the model was fitted for each response, it was validated using the significance and lack 

of fit tests as is detailed in Section 2.2.1, and the values of VBSTFA, Time and Temperature of 

the water bath which optimize each response were determined. Each response was studied 

around the optimum by means of the analysis of the optimum path, and when necessary the 

conflict is solved by defining the corresponding individual and overall desirability functions.  

 

Step 3. Optimization of extraction and clean-up 

In this step, the extraction and clean-up procedure for onions detailed in Section 3.3 was 

optimized. Seven variables that may impact on the procedure were optimized. These 

variables were tmix1, scentr1, tcentr1, tmix2, tcentr2, Tevap and tevap. The mathematical model proposed 

to study the seven factors at two levels, i.e. case 1 of Section 2.2.3, and a possible interaction 

between the last two factors, temperature and time of evaporation was: 
 

   xx x  x  x  x  x  x  x   y 7667776655443322110 βββββββββ   (13) 

 

A full factorial design would require 128 experiments to estimate the coefficients of the 

model, which is an excessively great number of experiments. As the model has p=9 

coefficients, the minimum number of experiments to estimate the model is 9. Appling the D-
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optimal criterion described in section 2.2.4, only 10 experiments (plus two replicates of one 

of the experiments) had to be performed in order to estimate the model, the quality of the 

estimates being guaranteed because the VIFs of the coefficients ranged from 1.08 to 1.20. 

This model was fitted by least squares and validated using the significance and lack of fit 

tests detailed in Section 2.2.1. 

 

Step 4. Optimization of the chromatographic injection 

As the chromatographic system was equipped with a PTV inlet, it was necessary to optimise 

the injection parameters too. PTV initial temperature and pressure (TPTVinit and tPTVinit), initial 

column head pressure (Pinit), vent flow rate (ventflow), solvent vent time (venttime), and PTV 

ramp rate and final temperature (rPTV and TPTVend) were studied at two levels, and injection 

speed (sinj) at three levels. Therefore k=8 experimental variables were considered in the 

optimization study, and the adaptation of the reference-state model, Eq. (11) of case 2 in 

Section 2.2.3, was Eq. (14): 
 

0 1A 1A 2A 2A 3A 3A 4A 4A 5A 5A 6A 6A 7A 7A

8A 8A 8B 8B

y    x   x   x   x   x   x   x   

   x   x   

β β β β β β β β

β β 

        

 
 (14) 

 

In this case, if a full factorial design had been used in the study, a total of 384 experiments 

would be needed to estimate the mathematical model which only has 10 coefficients. The 

methodology of D-optimal experimental designs was applied again to reduce the 

experimental effort, in such a way that the number of experiments was reduced to only 13 

plus 3 replicates. The VIFs of the coefficients of the reduced model ranged from 1.06 to 1.49, 

against the VIFs of the coefficients of the full factorial design, which ranged between 1.00 

and 1.33); which meant precise estimates for the coefficients of the model with the reduced 

design. This model was that fitted by least squares and validated. 

 

The presence-absence model related to the reference-state model, Eq. (14), is the following 

version of Eq. (10) of case 2 (Section 2.2.3): 
 

' ' ' ' ' ' '

0 1A 1A 1B 1B 2A 2A 2B 2B 3A 3A 3B 3B

' ' ' ' ' '

4A 4A 4B 4B 5A 5A 5B 5B 6A 6A 6B 6B

' ' ' ' '

7A 7A 7B 7B 8A 8A 8B 8B 8C 8C

    x   x   x   x   x   x   

   x   x   x   x   x    x   

   x   x   x   x   x   

y β β β β β β β

β β β β β β

β β β β β 

       

     

    

 (15) 

 

The coefficients of Eq. (15) significantly different from zero allow choosing the levels of the 

8 factors that lead to the best response. 

 

For each experimental condition in steps 2-4 a data tensor was built, and its decomposition 

makes the unequivocal identification of the target analyte by applying step 1 possible. Once 

the factor is identified as that corresponding to the analyte, the loading of the sample mode 

(or the standardized loading) is taken as the response of each experimental condition. The 
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property of second-order of PARAFAC2 guarantees that the effect on the chromatographic 

response of the factors is not masked by possible coeluents. 

 

In this work, a PARAFAC2 model is fitted for the data tensor, X, separately obtained for 

each analyte and internal standard by applying the ALS algorithm with unimodality and non-

negativity constrains in the chromatographic mode and non-negativity constraint in spectral 

and sample modes respectively. The PARAFAC2 model decomposes each X into several 

data tensors, each corresponding to a factor characterised by a chromatographic, spectral and 

sample profile; these specific profiles make it possible to unequivocally identify which factor 

is related to a target compound.  

 

Validation of the PARAFAC2 models obtained is performed by means of the variance 

explained, and the samples with values of Q residual and Hotelling’s T
2
 exceeding the 

corresponding threshold at a confidence level of 99% are considered outliers. Also the 

consistency diagnostic (CORCONDIA), which is an index that measures the degree of 

trilinearity of the data tensors which was developed by Bro and Kiers [36, 37], is computed. 

The closer to 100% is the CORCONDIA index the more assumable is the trilinearity 

hypothesis for the data tensor, but this index is not used as the only measure of the models 

complexity, the coherence of loadings with the experimental knowledge is also investigated. 

 

3.6 Software 

 

MSD ChemStation E.02.01.1177 (Agilent Technologies, Inc.) and Gerstel Maestro 1 (version 

1.3.20.41/3.5) were used for data acquisition and processing. The experimental designs were 

built and analysed with NEMRODW [30]. PARAFAC2 models were performed with the 

PLS_Toolbox [38] for use with MATLAB version 7.10 (The MathWorks). The least squares 

regression models were fitted and validated with STATGRAPHICS Centurion XVI [39] and 

the least median of squares (LMS) regression models were fitted with PROGRESS [40]. 

Decision limit, CC, and capability of detection, CC, were determined using the 

DETARCHI program [41], and CC and CC at the maximum residue limit (MRL) were 

estimated using NWAYDET (a program written in-house that evaluates the probabilities of 

false non-compliance and false compliance for n-way data). 

 

 

4. Results and discussion 

 

An onion sample was fortified with 50 g kg
-1

 of DIC, BAM, ISDIC, and ISBAM. Next, the 

pretreatment procedure described in Section 3.3 (except the derivatization step) was applied 

and the extract was directly injected into the chromatographic system. Fig. 1a shows the total 

ion chromatogram (TICs) obtained (ions acquired for non derivatized BAM and ISBAM were 

145, 173, 175, 189 and 191) after baseline correction. But when the extract was derivatized 
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previously to the chromatographic analysis (then the concentration of all the compounds in 

the vial was 29.4 g kg
-1

), the chromatogram obtained was that showed in Fig. 1b. 

 

It can be observed that DIC and ISDIC were not affected by the presence of the sylilation 

agent; the retention times (peaks 2 and 1 respectively) matched in the two chromatograms 

and the size of the chromatographic peaks obtained when the derivatization was performed 

was smaller as expected by the dilution effect. On the other hand, BAM and ISBAM, were 

derivatized in the presence of BSTFA, therefore the chromatographic peaks (peaks 4 and 3) 

appeared at different retention times in both cases since they corresponded to the elution of 

different chemical species (non-derivatized and derivatized compounds). Non-derivatized 

compounds had shorter retention time. However, higher sensitivity was achieved for BAM 

when the derivatization was performed since the chromatographic peaks of the derivatized 

compounds (Fig. 1a) had similar areas to the others (Fig. 1b) in spite of the fact that the 

concentration in the vial was almost the half in that case. Therefore, the derivatization step 

described in Section 3.3 was included in the pretreatment procedure.  

 

4.1 Spectral mass identification with reference samples using PARAFAC2 

 

There were shifts in the retention times and many coeluents due to both unexpected silylation 

artifacts and the relatively dirty extracts obtained with the extraction procedure (as can be 

seen in Fig. 1b). This leads to unexpected components and to confusion about the number of 

components present and therefore about the unequivocal identification of the analytes, which 

can cause false negatives during analyte identification, since the maximum permitted 

tolerances for relative ion abundances established in document SANCO/12495/2011 will not 

be fulfilled for at least 3 diagnostic ions (as it is stated for DIC, since an MRL has been 

established for it in onions).  

 

To calculate the permitted tolerance intervals, step1 of Section 3.5, a set of seven standards 

(used as reference standards) with concentrations 5, 10, 20, 30, 40, 50 and 70 μg L
−1

 of DIC, 

BAM, ISDIC and ISBAM in ethyl acetate were prepared and their corresponding GC-MS 

signals were acquired and arranged in a data tensor. Next, a PARAFAC2 model with one 

factor was obtained for each compound (explained variance values higher than 99.34% were 

achieved). Table 4 (4
th

 column) shows the permitted tolerance intervals calculated. 

 

4.2 Optimization of the derivatization step: response surface design 

 

Injections of a blank onion extract reconstituted with 800 L of ethyl acetate containing 50 

μg L
−1

 of DIC, BAM, ISDIC and ISBAM were performed according to the experimental plan 

in Table 1 to fit the model of Eq. (12). In addition to the 19 fortified onion extracts of the 

experimental plan, a set of 6 standards (containing 0, 30, 40, 50, 60 and 70 μg L
−1

 of DIC and 

BAM, and 50 μg L
−1

 of the internal standards, in ethyl acetate) was included in the 

decomposition step in order to achieve more precise estimations of the PARAFAC2 models. 
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And 2 blank onion extracts were added also to the three-way analysis in order to check the 

absence of the analytes in the sample.  

 

Therefore, a total of 27 samples were injected into the GC-MS system and the abundance of 5 

diagnostic ions of each compound was acquired. The dataset was divided into smaller parts 

and a range of I times around the retention time of each analyte of interest was considered, in 

such a way that a data tensor of dimension I527 was obtained for the chromatographic 

peak of each analyte after base line correction (in the case of BAM and ISBAM, only 26 

chromatographic signals were available since anomalous chromatographic peaks were 

obtained for experiment 14 and then they were rejected). The first dimension of the data 

tensors refers to the number of scans (I was 16, 20, 22 and 19 for DIC, BAM, ISDIC and 

ISBAM respectively), the second to the number of ions acquired, and the third to the number 

of objects or samples. 

 

Table 5 shows the characteristics of the models fitted. Two factors were necessary in the 

PARAFAC2 models for DIC and ISDIC, for BAM a one-factor model was necessary, 

whereas ISBAM needed three-factors. In all cases the variance explained by the PARAFAC2 

models ranged from 99.4 to 99.8%. The CORCONDIA index was always greater than 98.9%, 

which indicated that the trilinearity hypothesis was assumable in all the cases.  

 

As an example, Fig. 2 shows the loadings of chromatographic, spectral and sample modes 

obtained for DIC (the loadings of the chromatographic mode in PARAFAC2 models are 

referred throughout the paper to loadings scaled by the last mode loadings [38]). In this case, 

the model with two factors explained a 99.8% of variance and had a CORCONDIA index 

equal to 99.3. The spectral loadings of the second factor were coherent with DIC. For the 

unequivocal identification, the ratios of the loadings of the spectral profile of 4 diagnostic 

ions were calculated (expressed as a percentage of the loading of each ion with respect to the 

highest loading, which corresponds to the base peak); they are shown in Table 4 (5
th

 column). 

Then, the ratios were checked to see if they were within the tolerance intervals established for 

the relative ion abundances with respect to a “standard” according to the document 

SANCO/12495/2011 (at least three ratios or relative ion abundances must be within the 

tolerance intervals when working with a standard mass resolution detector in the SIM mode 

for analytes for which a MRL has been established). 

 

Taking into account the permitted tolerance intervals calculated in Section 4.1, four of the 

ratios calculated from the spectral loadings were within the tolerance intervals for BAM, 

ISDIC and ISBAM, and three for DIC (Table 4). In addition, the relative retention time of the 

chromatographic profile (which is the ratio of the retention time of the chromatographic 

profile of each analyte to that the one of its internal standard) obtained for each sample 

corresponded to that the one of the reference samples for DIC with a tolerance of ±0.5%, as 

the document SANCO/12495/2011 estates. This involves the three-way method successfully 

extracting the information related to DIC in the second factor and differentiating it from the 
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first factor, related to another compound with shared ions. It was also confirmed that the 

relative retention times were within the tolerance intervals for the rest of compounds under 

study. Therefore, spectral and chromatographic profiles matched those of the reference 

standards and the analytes and internal standards were unequivocally identified in all cases. 

 

Similarly, the second factor of the sample profile in Fig. 2c follows the expected pattern for 

DIC. The loadings of the last six samples (the six standards) increase with the concentration 

of DIC. The first of these six samples (sample 22, with 0 μg L
−1

 of DIC) and the two previous 

samples (samples 20 and 21, blank onions) have negligible loadings since no DIC was 

present in them (this confirms that this factor is solely related to DIC). The first 19 samples in 

Fig. 2c show the distribution of the loadings for the experiments of the central composite 

design. On the other hand, the loadings of the first factor have similar values both in onion 

extracts and standards (just prepared in ethyl acetate), so this factor is probably related to 

some silylation artifact. 

 

As different volumes of BSTFA (VBSTFA) were added to the reconstituted extracts following 

the experimental plan, the sample loadings had to be corrected by the volume, and these 

corrected loadings were the responses of the experimental design showed in Table 1. These 

responses were used to fit the model of Eq. (12) for the four compounds (although the term 

x2x3 had to be excluded of the models for BAM and ISBAM in order to obtain significant 

regression surfaces). Experiment 12 was outlier for BAM and ISBAM; after its elimination, 

the maximum of the variance inflation factors (VIFs) of the coefficients of these two models 

was just increased from 1.03 to 1.25 (very close to 1 too, which guaranteed precise estimates 

for the coefficients of the model). Table 6 shows the parameters and the statistics of the 

models fitted for the four compounds (experiments 12 and 14 were also excluded from the 

models of DIC and ISDIC in order to consider the same experimental domain for the four 

analytes). The analysis of the variance, Section 2.2.1, allows one to affirm that the fitted 

models explained significantly at a 5% the experimental responses (p-values < 0.05). There 

was not evidence of lack of fit (p-values > 0.05) at a significance level of 5% in any case. The 

coefficients of determination ranged from 0.778 to 0.847. 

 

In order to study the response surfaces fitted, as it has been indicated in Section 2.2.1, a study 

of the optimum path was carried out. Fig. 3 shows the study of the optimum path for DIC 

(Fig. 3a) and BAM (Fig. 3b); the radius R in abscissas (distance from the center of the 

design) and the maxŷ (R) in ordinates. The optimum path of the responses shows that the 

maximum response is reached at the boundary of the experimental domain in both cases, at 

distances R  1.7 from the center of the experimental design. Ordinate axis in Figs. 3c and 3d 

has the values x1, x2 and x3 of experimental factors, in coded variables, which define each 

point of the experimental domain where maximum can be reached for DIC and BAM, 

respectively.  
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For example, the analysis of Fig. 3c for values of R  1.7 shows that the maximization of the 

response for DIC is highly sensitive to the variation of the temperature of the water bath and 

of the volume of derivatization reagent, and practically insensitive to variations in the 

derivatization time. That is, to reach the maximum of the response, the temperature of the 

water bath has to take the lowest value analysed, the volume of derivatization reagent an 

intermediate value between the corresponding to the center point and the lowest value 

analysed in the experimental domain, and the derivatization time a value corresponding to the 

center of the experimental domain. The coordinates for the maximum for DIC, Fig. 3c, 

transformed into real variables correspond to a derivatization temperature of 42ºC, a volume 

of derivatization reagent of 44 L, and a derivatization time of 31 min. Similar conditions 

were found for ISDIC. 

 

On the contrary, the analysis of Fig. 3d shows that the maximization of the response for BAM 

is highly sensitive to variations in the derivatization time (to reach the maximum value of the 

response, the derivatization time has to take the highest value analysed), less sensitive to the 

variation of the temperature of the water bath (it has to take an intermediate value between 

the highest value analysed and the center of the experimental domain) and practically 

insensitive to the variation of the volume of derivatization reagent (it has to take a value 

corresponding to the center of the experimental domain). The coordinates for the maximum, 

Fig. 3d, transformed into real variables correspond in this case to a derivatization time of 42 

min, to a volume of derivatization reagent of 84 L, and to a derivatization temperature of 

60ºC. Similar conditions were also found for ISBAM. 

 

These optimum conditions are well different for DIC and BAM, the target analytes, and then 

it is important to find the compromise optimum, in this case using the Derringer desirability 

function, as it has been described in Section 2.2.2. In both cases, the individual desirability 

function was defined in such a way that values higher or equal to 90% of the maximum 

response were acceptable (desirability 1), whereas values lower than 60% of the maximum 

response found were unacceptable (desirability 0). In this way, the threshold values were 

17147 and 25720 for DIC, and 15226 and 22839 for BAM, respectively. For values of the 

responses between the threshold values, the individual desirability function ,di, varies linearly 

between 0 and 1. To obtain the overall desirability function, d in Eq. (8), p1 = p2 = 1 were set, 

which means that the two individual desirability functions were equally weighted. The 

maximum of the overall desirability function was found for a temperature of 44.65ºC, a time 

of 43 min, and a volume of BSTFA of 56 L. This solution fulfils the specifications imposed 

and reaches an overall and individual desirability of 1.  

 

The variations in d values in the experimental design are represented graphically in Fig. 4, 

which corresponds to the three dimensional representations and the contour lines of the 

overall desirability function in the space of the experimental variables. These are only partial 

representations since the variable not represented in each case remains constant at the value 

corresponding to the optimum of the overall desirability function. Therefore, the 
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experimental domain it is reduced to a circle as small as far is the fixed value of the domain 

center. The analysis of the desirability function only is valid in that circle that is different for 

each parameter fixed as can be seen in Fig. 4 d), e) y f). A study of the sensitivity if this 

maximum to variations in the derivatization conditions shows that variations of a 10% of 

codified variables around the optimum leads to individual desirabilities between 0.8 and 1, 

which points out the stability of the optimum found.  

 

Instead of the optimum derivatization time found, 43 min, this factor was fixed at 42 min, 

because run 12 in Table 1 was considered as outlier, and it is mandatory to avoid 

extrapolations outside the experimental domain. In these conditions the overall desirability is 

1, as for the optimum of 43 min found. 

 

4.3 Optimization of the extraction and clean-up step: first D-optimal design 

 

Table 2 shows the experimental plan and the levels considered for the seven experimental 

factors studied. The low level of each variable corresponds to the lowest values in Table 2, 

whereas the highest values correspond to the high level. All coefficients of the model of Eq. 

(13) were estimated by least squares.  

 

Pretreatments were performed according to this experimental plan on blank onions fortified 

with 50 g kg
-1

 of each compound, and next the 12 extracts were derivatized in the optimum 

conditions found in Section 4.2 and injected into the gas chromatograph. Table 2 also 

contains the responses of the design, which are the loadings of the sample mode calculated 

through PARAFAC2 models obtained from the decomposition of the corresponding data 

tensors (unimodality and non-negativity constrains in the chromatographic mode and non-

negativity constraint in spectral and sample modes were imposed). For obtaining those 

responses, the GC-MS data from injections of the D-optimal experiments were arranged 

analogously to that in Section 4.2 in four data tensors, together with the data of 3 standards 

(containing 30, 50 and 70 μg L
−1

 of DIC, BAM, ISDIC and ISBAM, in ethyl acetate) which 

were included to achieve more precise estimations of the three-way models. The size of the 

data tensors and the characteristics of the PARAFAC2 models are shown in Table 5.  

 

Only one factor was necessary in the PARAFAC2 models for DIC and BAM, whereas the 

models for ISDIC and ISBAM had 3 factors. Explained variance was always over 98.7% and 

CORCONDIA index higher than 99.10%. No outlier was detected. As an example, Fig. 5 

shows the loadings of chromatographic, spectral and sample modes obtained for BAM. In 

this case, the model explained a 99.78% of variance and led to the unequivocal identification 

of BAM according to the requirements of legislation regarding both the relative retention 

time tolerances and the maximum permitted tolerances for the relative ion abundances. The 

identification was performed for the four analytes using the same reference standards as in 

Section 4.2 (see Table 4, 6
th

 column). The four ratios calculated were within the tolerance 

intervals, so the four compounds were unequivocally identified. The loadings of the sample 
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mode (Fig. 5c) of the last three samples (the standards) increase with the concentration of 

BAM as expected, and the rest of the loadings are the responses of the D-optimal design for 

this analyte shown in Table 2. 

 

The loadings of the four analytes were used in each case to fit the model of Eq. (13), the term 

67 6 7x x  β had to be excluded of the model of BAM to fit a significant regression model. Run 2 

was outlier in the model fitted for DIC and run 4 in the models fitted for BAM and ISBAM, 

so both experiments were removed of the corresponding models. The VIFs of the coefficients 

of those models were between 1.06 and 1.14 after the elimination of outliers, and between 

1.04 and 1.14 when the interaction term was also eliminated, so the good quality of 

estimations is not lost. The fitted models were acceptable because its coefficients of 

determination ranged from 0.957 to 0.998 and all of them were significant at 5% and did not 

have lack of fit at a 5% significance level.  

 

Fig. 6 shows the graphic study of the effects of the different pretreatment conditions on the 

standardized loadings of the sample mode of the four analytes. The significant effects (in 

light orange) nearly follow the same pattern in all the cases. They were significant in some 

cases the temperature and time of evaporation (coefficients of Tevap and tevap, i.e. 6 and 7), 

together with the times of the vortex mixing steps (coefficients of tmix1 and tmix2, i.e. 1 and 4) 

and of the centrifugation steps (coefficients of tcentr1 and tcentr2, i.e. 2 and 5). Alternative 

analyses of the effects (graphs of normality and Bayesian approach [25]) show these 

coefficients to be significant too. The centrifugation speed (coefficient of scentr1, i.e. 3) as 

well as the interaction between temperature and time of evaporation (67), had no significant 

influence on the responses in the experimental domain studied. 

 

The bars show the coefficients estimated in Eq. (13); their interpretation is as follows: for 

example, if the temperature of evaporation, x6, changes from 40ºC to 50ºC significantly 

increases the responses, especially for the less volatile analytes (BAM and ISBAM), so 

evaporation should be done at 50ºC. On the contrary, a highest evaporation time, x7, 

decreases the responses, mainly for the most volatile analytes (DIC and ISDIC), so 

evaporation time should be maintained at 10 min. Therefore, the optimum conditions 

ultimately found for the extraction and clean-up procedure were: tmix1 = 2 min; tcentr1 = 10 

min; scentr1 = 3000 rpm; tmix2 = 30 s; tcentr2 = 1 min; Tevap = 50ºC and tevap= 10 min. 

 

4.4 Optimization of the injection step: second D-optimal design 

 

The experimental plan followed to optimize the injection step is shown in Table 3 

(experiments 10, 11 and 12 are replicates). Level A of each factor are the lowest values in 

Table 3 and the highest values correspond to level B in all the cases except for the injection 

speed (sinj), for which level B is the intermediate values (the highest is level C), therefore Eq. 

(14) and Eq. (15) are used. 
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A blank onion fortified with 50 g kg
-1

 of the four analytes was extracted and derivatized 

using the procedures optimized above. Next the extract was injected into the chromatographic 

system according to the experimental plan in Table 3. The GC-MS data were acquired for the 

16 experiments of the design and for 3 standards which contained 30, 50 and 70 μg L
−1

 of 

DIC, BAM, ISDIC and ISBAM in ethyl acetate. The signals were arranged in four data 

tensors that were decomposed using a PARAFAC2 model (details about the data tensors and 

the three-linear models are shown in Table 5) in order to obtain the responses of the design 

i.e. the loadings of the sample mode shown in Table 3.  

 

The PARAFAC2 models had the same number of factors for the four compounds than in the 

previous study (Section 4.3), since similar interferences on the signals were expected in both 

cases because the experimental procedure was similar (fortified onion samples were 

extracted, derivatized, evaporated and reconstituted with ethyl acetate to be injected into the 

chromatograph). More than 99.10% of the variance was explained always. In all cases the 

analytes were unequivocally identified according to Document SANCO/12495/2011 as 

previously (Table 4, 7
th

 column). 

 

As an example, Fig. 7 shows the loadings obtained with the three-factor PARAFAC2 model 

for ISDIC. The third factor was unequivocally identified as ISDIC through the loadings of the 

chromatographic and spectral modes of Fig. 7a and b as above. The first and second factors 

were related to interferents from the matrix, as can be seen in the loadings of the sample 

mode shown in Fig. 7c; both factors were practically not significant for standards (samples 

17, 18 and 19) but only for the experiments of the D-optimal design that corresponded to 

different injections of an extract of onion.  

 

The loadings of the first 16 samples of the third factor in Fig. 7c were the responses of the 

experimental design (samples 9 to 12 are replicates) for ISDIC; together with the loadings 

obtained for the rest of analytes, they were used to fit the model of Eq. (14). The four models 

fit were significant at 5% level and did not have lack of fit a 5% significance level. In this 

case, the coefficients of determination were between 0.948 and 0.995. As it has been 

mentioned above, Section 2.2.3, the coefficients of the reference-state model were estimated 

by least squares and depend on the reference state chosen; as this can make difficult the 

interpretation of the effects, to avoid this issue the presence-absence model of Eq. (15) was 

fitted.  

 

Fig. 8 shows the graphic study of the effects of the different injection conditions on the 

responses. The bar diagram shows the expected change of the responses as effect of changes 

of the levels of each factor. The significant effects are those that are not within the interval 

depicted by the dash-dotted lines (at 5% significance level). More significant effects were 

found for the less volatile compounds (BAM and ISBAM), but whether the effects were 

significant or not, they followed the same pattern for all the compounds.  
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Vent flow rate (ventflow or x4), solvent vent time (venttime or x5) and PTV ramp rate (rPTV or x6) 

were always significant. In all the cases the coefficients for both ventflow and venttime had a 

positive sign for level A, which means that the highest responses were obtained when 

injection was performed at level A of these factors, 100 mL min
-1

 and 0.3 min respectively. 

On the contrary, the coefficient of rPTV had a positive sign for level B, i.e. the highest 

responses were achieved when this factor was set at 10 ºC s
-1

. The rest of factors were only 

significant for BAM and/or ISBAM (except TPTVend, x7, which was never significant). In the 

case of the injection speed (sinj, i.e. x8), the intermediate level gave the best responses. The 

plot shows that the effect of the injection speed is nonlinear; this could not have been seen if 

only two levels had been studied. 

 

In the end, taking into account all the effects, the optimized conditions for optimization were: 

TPTVinit = 40 ºC, tPTVinit = 0.5 min, Pinit = 9 psi, ventflow = 100 mL min
-1

, venttime = 0.3 min, rPTV 

= 10 ºC s
-1

, TPTVend = 280 ºC and sinj = 50 L s
-1

. 

 

4.5 Determination of DIC and BAM in onions 

 

In the optimized conditions, the analysis of DIC and BAM in onions was performed. Eight 

onion samples (test) of diverse cultivars (white, grain, sweet, “reina chata”,…) purchased in 

different food stores were analysed twice (all the steps of the experimental procedure were 

repeated). A common approach used for calibration in the analysis of complex matrices is to 

prepare the calibration standards in blank matrix and to subject the calibration standards to 

the entire pretreatment that is used for the test samples; these standards are known as matrix-

matched standards. European guidelines recommend the use of matrix-matched standards to 

minimize errors related to enhancement/diminishment of the response induced by matrix 

effects [42], so a matrix-matched calibration was carried out. 

 

Together with the test set, a set of 15 matrix-matched standards (from 0 to 35 g L
-1

 of DIC 

and BAM) and a set of 7 samples for recovery studies (a blank sample and 6 samples of 

onion fortified with 20 μg L
−1

 of DIC and BAM) were analysed. In all these cases, a 

concentration of 20 g L
-1

 was set for the internal standards, ISDIC and ISBAM. In addition, 

a set of 6 standards (containing 5, 10, 20, 30, 40 and 50 μg L
−1

 of DIC, BAM, ISDIC and 

ISBAM in ethyl acetate) was measured and included in the data tensor as above. Therefore, a 

data tensor of dimension I544 was obtained for the chromatographic peak of each 

compound after base line correction (the values of I are detailed in Table 5). The first 15 

objects corresponded to the matrix-matched standards, the next 7 objects to the samples for 

recovery studies (the first one was a blank sample), the next 16 objects to the 8 onion samples 

analysed in duplicate, and the last 6 objects to the standards. 

 

Four PARAFAC2 models were fitted analogously to the previous ones from the data tensors. 

The core consistencies and the explained variance of the models are seen in Table 5. Three-

factor PARAFAC2 models were calculated for ISDIC and ISBAM, as above. However, the 
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models built for DIC and BAM had higher number of factors than the previously obtained 

models. This was because of the fact that onions of different varieties and origins were 

included in the dataset, so more different interferents were also included in the analysis. By 

way of example, Figure 9 shows the estimated loadings of the three-factor model calculated 

for BAM; in the previous cases a one-factor model was obtained. 

 

The 3
rd

 factor was unequivocally identified with BAM as above through the loadings of the 

chromatographic and spectral modes (Figs. 9a and 9b, and Table 4). Whereas the other two 

factors were related to compounds of which the chromatographic peaks appeared on the right 

(1
st
 factor, blue continuous line) and on the left (2

nd
 factor, green dashed line) of the peak of 

BAM (the second one was more overlapped with it) in Fig. 9a. Although the severe 

interference of these other compounds on the diagnostic ions of BAM (Fig. 9b), the 

PARAFAC2 model has been capable of successfully extracting the contribution of BAM to 

the signal in the 3
rd

 factor. That is, the second-order advantage of the PARAFAC2 model 

allowed the determination of BAM in those samples where unknown interferents were 

present without being necessary to calibrate them. Moreover, if a three-way method did not 

have been used, the unequivocal identification of BAM could not have been performed 

according to regulations because matrix interferents contributed a lot to three of the five 

diagnostic ions of BAM (Fig. 9b), i.e. the diagnostic ions (their relative abundances) would 

probably not have been verified the compliance. 

 

The loadings of the sample mode (Fig. 9c) also show that the 1
st
 and 2

nd
 factors (blue points 

and green triangles, respectively) were related basically to the tests samples (samples 23 to 

38) because neither for standards or matrix-matched standards they were significant. In fact, 

the 1
st
 factor (blue points) was related to four concrete samples (samples 25, 26, 37 and 38 in 

Fig. 9c); which were replicated measurements of two test samples. Those samples also 

corresponded to the four clear chromatographic peaks of the 1
st
 factor in Fig. 9a, that confirm 

the fact that the 1
st
 factor was related to some compound which was only present in both 

onion samples. 

 

Fig. 9c shows that the loadings of the sample mode of the 3
rd

 factor (in squares) followed the 

pattern expected for BAM; the higher the concentration of BAM in standards and matrix-

matched standards the higher the loadings estimated, whereas the loadings for the standards 

with no BAM (samples 1 and 16) or for the test samples were practically zero. 

 

As usual in chromatography, ISDIC and ISBAM were used as internal standards for 

quantitative analysis. Standardized loadings were obtained by dividing the loadings of the 

sample mode of DIC and BAM by the loadings of the sample mode of ISDIC and ISBAM 

respectively (according to the procedure developed in Ref. [43,16]). The standardized 

loadings of the matrix-matched standards were used to fit by least squares a calibration line 

“standardized loading vs. concentration” for each analyte.  
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In the regression model fitted for BAM, an outlier (standard of 0.5 g L
-1

) was detected using 

the least median of squares (LMS) regression and removed because the absolute value of 

standardized residual was higher than 2.5, so a reweighted least squares (RLS) regression 

model was fitted with the rest of data. Table 7 shows the parameters of this regression model, 

which was suitably validated. The mean of the absolute value of the relative errors in 

calibration was 6.50%. The concentrations calculated for the eight onion test samples (Table 

7) shows that no residues of BAM were found since no significant concentration values were 

achieved. 

 

For DIC, a calibration line with high relative errors in the calculated concentrations (from -35 

to 265%) for the lowest concentrations was obtained when the 15 matrix-matched standards 

were taken into account. Then, a regression model was fitted with the matrix-matched 

standards from 0 to 5 g L
-1

 and it was not significant (p-value = 0.070) at a significance 

level of 5%, which meant that there was not a linear relation between the standardized 

loadings and the concentration in this concentration range. So a calibration line was fitted 

with the matrix-matched standards from 5 to 35 g L
-1

. Two outliers (standards of 6 and 15 

g L
-1

) were detected and removed; Table 7 shows the parameters of the RLS regression 

model. In this case, the p-value for the test on significance of the regression was less than 5 

10
-5

, thus the calibration model was significant at a significance level of 0.05. The calculated 

concentrations of DIC for the test samples are seen in Table 7; none of them was non-

compliant, i.e. the MRL was exceeded in no case. The mean of the absolute value of the 

relative errors in calibration was 4.62%. 

 

Some figures of merit of the optimized procedure were calculated according to that indicated 

in Section 2.3. The parameters of the accuracy lines are shown in Table 7. Fig. 10 shows the 

joint confidence estimated regions for slope and intercept; both regions included 1 and 0 

respectively, so the trueness was guaranteed for the analysis of both compounds although the 

analysis of DIC was a little less precise (the dotted ellipse was wider). The standard deviation 

of these regressions (syx), i.e. the intermediate repeatability in the analysed concentration 

range was 0.89 g L
-1

 for DIC and 0.80 g L
-1

 for BAM. 

 

Recovery was calculated from the 7 fortified onion samples (samples 16 to 22 in Fig. 9c, for 

BAM). The first was a blank sample and the next 6 samples were onion samples fortified to 

contain 20 g L
-1

 of DIC and BAM. The recovery rates found for DIC and BAM was 92.71 

and 97.75% respectively. The repeatability of the analytical procedure was calculated as the 

standard deviation of the concentration calculated for those 6 fortified samples; values of 

repeatability of 0.75 g L
-1

 for DIC and 1.27 g L
-1

 for BAM were obtained. 

 

For the studied procedure, decision limits at zero (x0 = 0 g kg
-1

) were 5.00 g kg
-1

 for DIC 

and 1.55 g kg
-1

 for BAM. And the decision limit at the MRL (x0 = 20 g kg
-1

) were 21.38 

g kg
-1

 for DIC and 21.51 g kg
-1

 for BAM, although no MLR has not yet been established 
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for BAM, the analysis was made analogous to that of DIC. In both cases,  was equal to 0.05.  

The value of 5.00 g kg
-1

 was taken as CC for DIC (which corresponded to the lowest 

matrix-matched standard of the calibration line) because the value calculated was below the 

calibration range. That is, the optimized procedure allowed the determination of a minimum 

of 5.00 g kg
-1

 of DIC and 1.55 g kg
-1

 of BAM, values that were well below the MRL 

established for DIC. Detection capabilities at zero were 5.37 g kg
-1

 for DIC and 3.03 g kg
-1

 

for BAM, and detection capabilities at the MRL were 23.53 g kg
-1

 and 22.95 g kg
-1

 for 

DIC and BAM respectively. In both cases for = 0.05.  

 

 

5. Conclusions 

 

Using the experimental design methodology in the optimizations steps made it possible to 

study the effect of a large number of experimental variables (18 experimental factors in all) 

on different responses with a reduced number of experiments. The use of the D-optimal 

designs reduced significantly the number of experiments from 128 to 10 (a 92% reduction) in 

the optimization of the extraction and cleaning step and from 384 to 13 (almost a 97% 

reduction) in the optimization of the injection step; while maintaining the quality of 

estimates. Using the desirability function made it possible to solve the conflict between the 

optimization of different responses. 

 

The combination of PARAFAC2 modeling and experimental design methodology is a 

powerful tool in the optimization of procedures in the analysis of complex matrices because 

of the second-order advantage of PARAFAC2. Without this property, an experimental 

calibration would have been necessary at each experimental condition studied for each 

analyte, i.e. 38 calibrations versus the 3 calibration performed in this work. In addition, the 

unequivocal identification of the analytes could not have been performed according to 

regulations because they shared diagnostic ions with coeluent derivatization artifacts and 

matrix interferents, in such a way that their relative abundances would probably not have 

been verified the compliance. 

 

The analytical procedure optimized in this work allows the determination of DIC and BAM 

in onions at levels below the MRL established for DIC in this commodity. 

 

 

6. Acknowledgements 

 

The authors thank the financial support through projects of Ministerio de Economía y 

Competitividad (CTQ2011-26022) and Junta de Castilla y León (BU108A11-2). 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 1 Experimental plan and responses (loadings of the sample mode of the 

PARAFAC2 models) for the optimization of the derivatization step. 

 

Run 
 Experimental plan  Responses (loadings) 

 Temperature Time VBSTFA  
DIC BAM ISDIC  ISBAM 

 (ºC) (min) (L)  

1  48 18 36  23233 16420 24795 13697 

2  72 18 36  16079 18176 18060 15061 

3  48 42 36  24347 20958 25965 20132 

4  72 42 36  15878 18051 18448 15232 

5  48 18 84  17595 16714 20885 15879 

6  72 18 84  25801 21603 28329 19715 

7  48 42 84  21615 21734 23823 20982 

8  72 42 84  25904 25377 28128 22335 

9  40 30 60  28578 18232 31071 17267 

10  80 30 60  18617 18501 21441 14089 

11  60 10 60  18477 20617 21179 19803 

12  60 50 60  16387 18424 18753 19598 

13  60 30 20  15891 14354 18159 12575 

14  60 30 100  24028  27230  
15  60 30 60  17598 16427 19383 15685 

16  60 30 60  21947 20190 23709 19661 

17  60 30 60  21651 21501 22517 21298 

18  60 30 60  19656 17633 20825 16562 

19  60 30 60  21173 20946 23016 20930 
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Table 2 Experimental plan and responses (loadings of the sample mode of the PARAFAC2 models) for the optimization of the 

extraction and clean-up procedure. Factors: time of the 1
st
 vortex mixing step (tmix1); time and rotational speed of the 1

st
 

centrifugation step (tcentr1 and scentr1); time of the 2
st
 vortex mixing step (tmix2); time of the 2

nd
 centrifugation step (tcentr2); 

and temperature and time of evaporation (Tevap and tevap). 

 

Run 

 Experimental plan  Responses (loadings) 

 tmix1 tcentr1 scentr1 tmix2 tcentr2 Tevap tevap  
DIC BAM ISDIC ISBAM 

 (min) (min) (rpm) (s) (min) (ºC) (min)  

1  1 10 6000 30 1 40 10  10856 13984 10109 13469 

2  2 5 3000 60 5 40 10  6083 10548 5518 10251 

3  2 5 3000 60 5 40 10  9027 11878 7376 11098 

4  2 5 3000 60 5 40 10  8845 13270 7009 13379 

5  2 5 3000 30 1 50 10  10742 15249 8319 14232 

6  1 10 3000 60 5 50 10  10020 14058 8245 13127 

7  2 5 6000 60 5 50 10  9540 12082 7178 11544 

8  2 10 3000 60 1 40 15  6697 13305 3850 12605 

9  1 5 6000 30 5 40 15  5863 9965 3564 9066 

10  1 5 3000 60 1 50 15  5385 13258 2347 12523 

11  2 10 6000 60 1 50 15  8470 15627 4731 15354 

12  2 10 3000 30 5 50 15  9652 15806 4878 14937 
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Table 3 Experimental plan and responses (loadings of the sample mode of the PARAFAC2 models) for the injection step. 

Factors: PTV initial temperature and pressure (TPTVinit and tPTVinit); initial column head pressure (Pinit); vent flow rate 

(ventflow); solvent vent time (venttime); PTV ramp rate and final temperature (rPTV andTPTVend); and injection speed (sinj). 

 

Run 

 Experimental plan  Responses (loadings) 

 TPTVinit tPTVinit Pinit ventflow venttime rPTV TPTVend sinj  
DIC BAM ISDIC ISBAM 

 (ºC) (min) (psi) (mL min
-1

) (min) (ºC s
-1

) (ºC) (L s
-1

)  

1  40 0.6 8.1 150 0.45 5 260 1  2411 3856 1947 4078 

2  50 0.5 9.1 150 0.45 10 260 1  7008 8299 7718 6900 

3  40 0.6 8.1 100 0.3 10 260 1  8925 12805 7943 11657 

4  50 0.5 8.1 100 0.45 5 280 1  3190 6654 2522 4601 

5  50 0.6 9.1 100 0.3 5 280 1  3002 6740 2381 5697 

6  40 0.5 9.1 150 0.3 10 280 1  11585 13911 12090 12856 

7  40 0.5 9.1 100 0.45 5 260 50  5086 12174 3800 10778 

8  50 0.6 9.1 150 0.3 5 260 50  2078 6954 1615 5250 

9  40 0.5 8.1 100 0.3 10 280 50  16745 14094 16414 13778 

10  40 0.5 8.1 100 0.3 10 280 50  17132 15061 16684 14456 

11  40 0.5 8.1 100 0.3 10 280 50  17953 15659 17922 15000 

12  40 0.5 8.1 100 0.3 10 280 50  18839 13590 18781 13741 

13  50 0.6 8.1 150 0.45 10 280 50  3813 5739 4082 4166 

14  50 0.5 8.1 150 0.3 5 260 100  2650 8027 2112 5733 

15  50 0.6 9.1 100 0.45 10 260 100  5368 8800 5816 7016 

16  40 0.6 9.1 150 0.45 5 280 100  2587 6351 2059 5602 
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Table 4 Detected ions (the most base peaks are in bold), relative abundances and tolerance intervals calculated from the PARAFAC2 

models estimated from the data tensors including the 7 reference standards, and relative abundances calculated with the 

loadings of the spectral profiles of the PARAFAC2 models estimated in the optimization of derivatization, of extraction and of 

injection steps, and in the quantitative and qualitative determination step. 

 

Analyte Ion 

 Reference  Relative abundance (%) 

 
Relative abundance 

(%) 

Tolerance interval 

(%) 
 

Optimization of 

derivatization 

Optimization of 

extraction 

Optimization of 

injection 

Determination 

step 

 100  28.76 (24.44,33.07)  20.87 31.61 30.58 25.03 

 136  19.40 (15.52,23.28)  18.37 18.85 19.74 18.85 

DIC 171  100.00 -  - - - - 

 173  62.59 (56.33,68.85)  63.44 60.78 61.88 59.91 

 175  10.07 (8.05,12.08)  11.01 10.86 11.22 10.31 

 136  8.37 (4.19,12.56)  6.63 6.52 8.10 5.27 

 173  13.25 (10.60,15.90)  11.33 11.32 11.51 12.23 

BAM 175  7.40 (3.70,11.10)  7.25 7.35 6.31 6.65 

 246  100.00 -  - - - - 

 248  68.40 (61.56,75.24)  69.12 68.42 68.55 69.95 

 100  25.59 (21.75,29.43)  28.06 21.90 22.39 24.22 

 136  19.31 (15.45,23.17)  18.88 18.35 17.48 17.20 

ISDIC 171  100.00 -  - - - - 

 173  63.32 (56.99,69.65)  65.37 64.48 64.01 63.77 

 175  10.55 (8.44,12.66)  9.68 8.69 9.18 8.85 

 136  11.00 (8.80,13.20)  8.91 10.24 10.32 11.60 

 173  13.39 (10.71,16.06)  11.72 11.70 12.08 11.94 

ISBAM 175  7.12 (3.56,10.67)  7.40 7.24 7.14 8.23 

 246  100.00 -  - - - - 

 248  66.83 (60.15,73.51)  67.32 67.27 67.08 66.93 
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Table 5 Characteristics of the PARAFAC2 models built: number of factors, data 

tensor size, explained variance and CORCONDIA index. 

 

Study Analyte Factors 

Data tensor 

dimension
a
 

I  J  K 

Explained 

variance 

(%) 

CORCONDIA 

index 

(%) 

Response surface 

design  

to optimize the 

derivatization step  

DIC 2 16  5  27 99.82 99.32 

BAM 1 20  5  26 99.82 
 b
 

ISDIC 2 22  5  27 99.38 100.00 

ISBAM 3 19  5  26 99.84 98.93 

D-optimal design 

to optimize the 

extraction step  

DIC 1 16  5  15 98.74 
 b
 

BAM 1 20  5  15 99.78 
 b
 

ISDIC 3 22  5  15 98.95 99.10 

ISBAM 3 19  5  15 99.83 99.75 

D-optimal design 

to optimize the 

injection step  

DIC 1 16  5  19 99.10 
 b
 

BAM 1 20  5  19 99.80 
 b
 

ISDIC 3 22  5  19 99.52 95.45 

ISBAM 3 19  5  19 99.86 99.69 

Quantitative and 

qualitative 

determination 

DIC 2 16  5  44 99.22 100.00 

BAM 3 20  5  44 99.83 99.92 

ISDIC 3 20  5  44 99.37 99.39 

ISBAM 3 15  5  44 99.87 99.92 
(a)

 I refers to the number of scans, J refers to the number of ions, and K refers to the 

number of samples 
(b)

 There is not CORCONDIA index  
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Table 6 Statistics and parameters of the response surface models fitted for the 

optimization of the derivatization step. Significance of the regression and lack 

of fit mean the p-values of the significance of the regression and lack of fit 

tests performed for validating the regression models. R
2
 is the coefficient of 

determination. Coefficients b0 to b23 are the coefficients of the models fitted. 

 

 DIC BAM ISDIC ISBAM 

Significance of the regression
a
 0.037 0.048 0.033 0.043 

Lack of fit
b
 0.199 0.845 0.205 0.900 

R
2
 0.842 0.778 0.847 0.784 

b0 20380
*
 19329

*
 21880

*
 18830

*
 

b1 -1442 572 -1356 -266 

b2 746 1699
*
 582 1777

*
 

b3 1525 1526
*
 1767 1835

*
 

b11 1236 -299 1585
*
 -1126 

b22 -36 1566
*
 175 1393 

b33 -483 -792 -188 -1175 

b12 -648 -732 -486 -1083 

b13 3452
*
 1199 3192

*
 1081 

b23 398  146  
(a)

 Null hypothesis: the linear model is not significant 
(b)

 Null hypothesis: the regression model adequately fits the data 
(*)

 Coefficient significant with a significance of 0.05 
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Table 7 Parameters of the calibration and accuracy lines (intercept, slope, correlation coefficient () 

and standard deviation of regression (syx)); calculated concentrations (average of two 

replicates) and 95% confidence intervals for the test onion samples. 

 

  
DIC BAM 

 
Sample Variety 

Calculated concentration 

(g kg
-1

) 

   DIC BAM 

Calibration 

line 

Slope 0.1044 0.0481  T1 Sweet < CC
* 

1.20  1.86 

Intercept -0.0645 0.0192  T2 Unknown < CC
*
 0.54  1.86 

 0.9972 0.9976  T3 "Reina chata" < CC
*
 1.12  1.86 

syx 0.0925 0.0387  T4 White < CC
*
 1.44  1.85 

Accuracy 

line 

Slope 1.0000 1.0000  T5 Grain < CC
*
 0.96  1.86 

Intercept -0.0001 0.0002  T6 Unknown < CC
*
 1.21  1.86 

 0.9972 0.9976  T7 White < CC
*
 1.78  1.85 

syx 0.8864 0.8031  T8 Unknown < CC
*
 1.72  1.85 

(*)
 CC = 5 g kg

-1
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Highlights 

 

Determination of dichlobenil and BAM in onions by PTV-GC-MS according to SANCO 

12495 

 

Derivatization, extraction and PTV injection optimization with experimental designs 

 

Combination of experimental design methodology and PARAFAC2 models, a powerful tool. 

 

PARAFAC2 solves problems as the derivatization artifacts and matrix interferents. 
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FIGURE CAPTIONS  

 

Figure 1 Total ion chromatograms (TICs) from the injection of (a) an underivatized extract 

containing 50 g L
−1

 of DIC, BAM, ISDIC and ISBAM, and (b) a derivatized 

extract containing 29.4 g L
−1

 of the four compounds. Peak labels: 1, ISDIC; 2, 

DIC; 3, ISBAM; and 4, BAM. 

 

Figure 2 Loadings of the (a) chromatographic, (b) spectral, and (c) sample modes of the 

PARAFAC2 model fitted for DIC in the optimization of the derivatization step. 

First factor (blue) is in continuous line in the 1
st
 mode, solid bars in the 2

nd
 mode 

and points in the 3
rd

 one. And second factor (green) is in dashed line in the 1
st
 

mode, dashed bars in the 2
nd

 mode and triangles in the 3
rd

 one. 

 

Figure 3 Optimum path of the response surface fitted for (a) DIC and (b) BAM; in 

ordinates the response reached on the traced spheres for radius R indicated in 

abscissas. The coordinates (in coded variables) for each factor of the points of 

plots (a) and (b) are in plots (c) and (d) respectively. First factor (Temperature) in 

blue continuous line; second factor (Time) in green dashed line, and third factor 

(VBSTFA) in red dotted line. The squares refer to the boundary of the domain. 

 

Figure 4 Three-dimensional representations and contour lines of the global desirability 

function in the space of the variables Temperature vs. Time (plots a and d), 

Temperature vs. VBSTFA (plots b and e) and Time vs. VBSTFA (plots c and f). In each 

case, the variable not represented remains constant with the value corresponding 

to the optimum of the global function, i.e. VBSTFA = 56 L in the 1
st
 case, Time = 

43 min in the 2
nd

 case, and Temperature = 44.65 ºC in the 3
rd

 case. Circles show 

the experimental domain in each case. 

 

Figure 5 Loadings of the (a) chromatographic, (b) spectral, and (c) sample modes of the 

PARAFAC2 model built for BAM in the optimization of the extraction step. 

 

Figure 6 Graphic study of effects of factors of the extraction and clean-up procedure on the 

responses (loadings of PARAFAC2 models). Factors: vortex mixing 1, tmix1 (1); 

centrifugation time 1, tcentr1 (2); rotational speed, scentr1 (3); vortex mixing 2, tmix2 

(4); centrifugation time 2, tcentr2 (5); temperature of evaporation, Tevap (6); and time 

of evaporation, tevap (7). The dash dotted lines represent the confidence interval of 

the calculated effects at 95% confidence level. Significant effects are shown in 

light orange and non-significant effects in dark blue. 

 

Figure 7 Loadings of the (a) chromatographic, (b) spectral, and (c) sample modes of the 

PARAFAC2 model built for ISDIC in the optimization of the injection step. First 

factor (blue) is in continuous line in the 1
st
 mode, solid bars in the 2

nd
 mode and 

points in the 3
rd

 one. Second factor (green) is in dashed line in the 1
st
 mode, 

dashed bars in the 2
nd

 mode and triangles in the 3
rd

 one. And third factor (red) is in 

dotted line in the 1
st
 mode, pointed bars in the 2

nd
 mode and squares in the 3

rd
 one. 

 

Figure 8 Graphic study of effects of factors of the injection step on the responses (loadings 

of PARAFAC2 models). Factors: PTV initial temperature, TPTVinit (1); PTV initial 
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time, tPTVinit (2); initial pressure, Pinit (3); vent flow rate, ventflow (4); solvent vent 

time, venttime (5); PTV ramp rate, rPTV (6); PTV final temperature, TPTVend (7); and 

injection speed, sinj (8). The dash dotted lines represent the confidence interval of 

the calculated effects at 95% confidence level. Significant effects are shown in 

light orange and non-significant effects in dark blue. 

 

Figure 9 Loadings of the (a) chromatographic, (b) spectral, and (c) sample modes of the 

PARAFAC2 model calculated for BAM in the identification and quantification 

step. First factor (blue) is in continuous line in the 1
st
 mode, solid bars in the 2

nd
 

mode and points in the 3
rd

 one. Second factor (green) is in dashed line in the 1
st
 

mode, dashed bars in the 2
nd

 mode and triangles in the 3
rd

 one. And third factor 

(red) is in dotted line in the 1
st
 mode, pointed bars in the 2

nd
 mode and squares in 

the 3
rd

 one. 

 

Figure 10 Joint confidence ellipses, at a 95% significance level, for the slope and the 

intercept of the accuracy line. DIC: dotted line; BAM: solid line. 
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FIGURE 6 
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FIGURE 8 
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FIGURE 10 


