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Abstract. An efficient methodology for the synthesis of a series of new fused polyclyclic indoles has 

been developed by Brønsted acid-catalyzed intramolecular FriedelCrafts reactions of properly 

designed indolyl alcohols. 
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Polycyclic fused indoles are considered “privileged structures” for drug discovery since they are 

present in numerous natural or synthetic bioactive compounds.1 So, the research community has 

devoted considerable efforts to develop sustainable and chemically efficient methodologies to prepare 

or functionalize such indole-based scaffolds.2 In this sense, dihydroindenoindoles3 have gained attention 

as crucial intermediates in the synthesis of BARAC reagents,4 as potential anticancer and antioxidant 

agents5 and as ligands for polymerization catalysts.6 Despite these significant applications, no general 

synthetic methods are available to build libraries of some derivatives such as 10-substituted 5,10-

dihydroindeno-[l,2-b]indoles.7,8 Thus, most of the reported protocols only permit monosubstitution at 

that carbon with limited groups.9 Likewise, methodologies to obtain other relevant fused tetracyclic 

indoles such as dihydrobenzo[b]carbazoles and indolo[1,2-b]isoquinolines having varied substitution at 

equivalent 11 position, are scarce.10 

On the other hand, alkylation of indoles by direct nucleophilic substitution reactions with alcohols has 

important advantages due to the wide availability of alcohols as well as the fact that water is the only 

byproduct of the process.11 Thus, different catalytic strategies have been reported over the last years 

mainly using Lewis acids,12 Brønsted acids,13 or transition metal complexes14 as catalysts. In this field, 

we pioneered the use of a simple Brønsted acid (PTSA) as a robust methodology for the intermolecular 

alkylaton of indoles with -activated alcohols (Scheme 1, eq 1).15 However, intramolecular 

FriedelCrafts alkylation reactions with alcohols are not so common although they represent an easy 

and efficient way for accessing (poly)cyclic structures.16 To the best of our knowledge, no examples of 

catalytic metal-free intramolecular dehydrative alkylation of indoles with alcohols have been previously 

described.17 

 

Scheme 1. Reported Direct Acid-catalyzed Alkylation of Indoles with Alcohols and Retrosynthetic 

Approach to Polycyclic Fused Indoles 
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In this scenario, we envisioned that indole derivatives bearing an activated alcohol in their structure 

could be feasible building blocks to access diverse polycyclic frameworks by Brønsted acid-catalyzed 

intramolecular FriedelCrafts alkylation reactions, with the remarkable advantage of the formation of 

water as the only stoichiometric byproduct (Scheme 1, eq 2). Herein we report our results in the 

application of this hypothesis to achieve a general and concise synthesis of C- and N-fused tetracyclic 

indoles with elusive substitution patterns, including thieno or indole fused cyclopenta[1,2-b]indoles that 

have been synthesized for the first time. 

To enact the proposed approach we selected alcohol derivatives 6-10 (Scheme 2) as suitable 

precursors to polycyclic fused indoles. The preparation of these substrates was performed by lithiation 

and subsequent carbonyl addition of indoles 1-5, which were easily obtained in gram scale by standard 

methodologies from commercially available starting materials. 

 

Scheme 2. Preparation of starting alcohol derivatives 6-10 
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We first investigated the Brønsted acid-catalyzed intramolecular alkylation of 2-arylindoles 6 

possessing diverse substitution patterns at the hydroxylic carbon, which would allow the preparation of 

5,10-dihydroindeno-[l,2-b]indoles 11. Pleasantly, using the reaction conditions developed in our group 

for the related intermolecular process (MeCN, 5 mol% PTSA, rt, open vessel),15 substrates 6a-h having 

a tertiary alcohol efficiently reacted to furnish the tetracyclic adducts 11a-h with varied substitution at 

carbon 10 (Table 1, entries 1-8). Some of the starting alcohols 6 were directly used after flash column 

chromatography, although not characterized due to non-removable impurities that didn´t significantly 

affect the yield of the cyclization step. It is worth pointing out that these tertiary alcohols react 

efficiently without any significant elimination process, even with alcohol 6c that is really prone to 

elimination, allowing the construction of fully substituted carbon centres.18 This acid-catalyzed protocol 

also succeeded with indoles 6i-o bearing a secondary alcohol (R3 = H), provided that the additional 

substituent R2 was an activating group. Thus, dihydroindenoindoles 11i-o bearing an (hetero)aromatic 

or an olefin group at 10 position, were efficiently synthesized (entries 9-15). All these acid-catalyzed 

reactions occurred in good to excellent yields to give the corresponding 5,10-dihydroindeno-[l,2-

b]indoles 11 mono- or disubstitued at carbon 10. Notably, and in contrast to previous synthesis of this 

tetracyclic skeleton,7,9 this substitution is quite general and includes alkyl, cycloalkyl, both electron 

donating and electron withdrawing aryl, heteroaryl, alkenyl and alkynyl groups. In addition, the reaction 
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tolerates the presence of free N-H indole moiety as it was demonstrated for substrates 6e,j,l,n (entries 5, 

10, 12 and 14). Indole derivatives holding secondary alcohols having a branched or linear alkyl R2 

group did not react under these reaction conditions, even heating under reflux. However, the less 

activated substrate 6p could be transformed into the corresponding indenoindoles 11p by heating it at 

50 ºC in 1,2-dichloroethane for 24 h in the presence of substoichometric amounts of FeCl3 (15 mol%) 

and AgSbF6 (45 mol%) (entry 16).19 

 

Table 1. Synthesis of indeno[1,2-b]indoles 11 

N

R1

N

R1

R2 R3

HO
R2

R3

PTSA (5 mol%)
MeCN, rt

6 11  

entry 6 R1 R2 R3 product 
yield 
(%)a 

1 6a Me Me Ph 11a 90 

2b 6b Me c-C3H5 Ph 11b 85 

3b 6c Me Et 2-Th 11c 80 

4b 6d Me Me c-C3H5 11d 63 

5b 6e H Me c-C3H5 11e 73 

6 6f Me Me (E)-PhCH=CH 11f 80 

7 6g Me Me 3-ThC≡C 11g 80 

8b 6h Me c-C3H5 PhC≡C 11h 88 

9b 6i Me 4-MeOC6H4 H 11i 97 

10 6j H 4-MeOC6H4 H 11j 80 

11b 6k Me 4-ClC6H4 H 11k 82 

12b 6l H 4-ClC6H4 H 11l 65 

13b 6m Me 5-Me-2-Fur H 11m 55 

14 6n H 2-Th H 11n 80 

15 6o Me (E)-PhCH=CH H 11o 79 

16c 6p Me n-Pr H 11p 69 
aYields of isolated products 11 based on the starting indole 6. bThe 
corresponding alcohol was used directly after flash column chromatography. 
cReaction conducted at 50 ºC in DCE in the presence of FeCl3 (15 mol%) 
and AgSbF6 (45 mol%). c-C3H5 = cyclopropyl. 5-Me-2-Fur = 5-methylfur-
2-yl. Th = thienyl. 
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To extend the versatility of the intramolecular acid-catalyzed alkylation we intended the construction 

of unknown polycyclic skeletons. Thus, substrates 7 and 8, where the aromatic ring linked to carbon 2 

of the starting indole is an heterocycle, reacted analogously to related alcohol derivatives 6 to produce 

indole or thieno fused dihydrocyclopenta[1,2-b]indoles 12 and 13 in high yields (Scheme 3).20 

Remarkably, to the best of our knowledge, these are the first examples of synthesis of such densely 

functionalized penta- or tetracyclic skeletons and further demonstrate the potential usefulness of the 

Brønsted acid-catalyzed intramolecular alkylation to synthesize novel polyheterocyclic compounds. 

 

Scheme 3. Synthesis of fused heterocyclic dihydrocyclopenta[1,2-b]indoles 12 and 13 
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Having verified the viability of the developed protocol to obtain polycyclic fused indoles 11-13 

through the creation of a five-membered ring, we further tested the synthetic value of our methodology 

to get other tetracyclic fused indoles by exploring the possibility of assembling six-membered rings. For 

that goal, we selected as targets the barely reported 6,11-dihydro-5H-benzo[b]carbazole 14 and 

indolo[1,2-b]isoquinoline frameworks 15 and, so, C2- and N-benzyl indoles 9 and 10 were used as 

starting materials. Reactions of representative benzylindole derivatives possessing a tertiary or an 

activated secondary alcohol at the appropriate position under the standard Brønsted acid-catalysis, 

afforded the desired C- and N-fused indole tetracycles 14 and 15 with elusive substitution at carbon 11 

(Schemes 4 and 5). Thus, diaryl, (hetero)aryl-(cyclo)alkyl, dialkyl as well as (hetero)aryl substituted 

polycycles 14,15 were synthesized in yields that were good to excellent for C-fused tetracycles and 

moderate for N-fused ones. Moreover, as in the case of indeno[1,2-b]indoles 11, N-H 
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dihydrobenzo[b]carbazoles 14a,f could be obtained under the same metal-free conditions (Scheme 4). In 

addition, reactions of C-3 substituted N-benzyl indoles 10d-g also occurred affording N-fused indole 

tetracycles 15d-g substituted at carbon 12 (Scheme 5). Not surprisingly (see reaction of 5p; Table 1, 

entry 16), N-benzyl indoles 10b,g did not react in the presence of PTSA. Therefore, the formation of the 

corresponding 11-alkyl mono- or di-substituted indolo[1,2-b]isoquinoline 15b,g was carried out under 

metal-catalyzed conditions (Scheme 5). 

 

Scheme 4. Synthesis of dihydrobenzo[b]carbazoles 14 
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Scheme 5. Synthesis of indolo[1,2-b]isoquinolines 15a 
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aAll the products were obtained using PTSA as catalyst with the expception of 15b and 15g that were 

synthesized in DCE at 50 ºC in the presence of FeCl3 (15 mol%) and AgSbF6 (45 mol%) 

 

In conclusion, we have outlined efficient Brønsted acid-catalyzed intramolecular dehydrative 

alkylation reactions of selected hydroxyl-functionalized indoles. The present metal-free procedure 

easily leads to the synthesis of a wide range of regioselectively substituted fused tetracyclic indole 

derivatives in high yields. The obtained scaffolds present high interest due to their potential biological 

and pharmaceutical activity and our strategy provides a practical way to construct them. 

 

Experimental Section 

General Methods. All common reagents, catalysts and solvents were obtained from commercial 

suppliers and used without any further purification. Solvents were dried by standard methods. Hexane 

and ethyl acetate were purchased as extra pure grade reagents and used as received. TLC was 

performed on aluminum-backed plates coated with silica gel 60 with F254 indicator; the chromatograms 

were visualized under ultraviolet light and/or by staining with a Ce/Mo reagent and subsequent heating. 

Rf values are reported on silica gel. Flash column chromatography was carried out on silica gel 60, 230-

240 mesh. Unless noted 1H NMR spectra were recorded at 300 or 400 MHz in CDCl3. Chemical shifts 

are reported in ppm using residual solvent peak as reference (CHCl3:  7.16). Data are reported as 
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follows: chemical shift, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd: doublet 

of doublets, dt: doublet of triplets, tt: triplet of triplets, dq: doublet of quartets, td: triplet of doublets, 

ddd: doublet of doublet of doublets, bs: broad singlet, at: apparent triplet), coupling constant (J in Hz) 

and integration. 13C NMR spectra were recorded at 75.4 MHz or 100.6 MHz using broadband proton 

decoupling and chemical shifts are reported in ppm using residual solvent peaks as reference (CDCl3: 

77.16). Carbon multiplicities were assigned by DEPT techniques. High resolution mass spectra 

(HRMS) were recorded on an instrument equipped with a magnetic sector ion analyzer using EI at 

70eV. Melting points were measured on a microscopic apparatus using open capillary tubes and are 

uncorrected. GC-MS and low resolution mass spectra (LRMS) measurements were recorded on an 

instrument equipped with a HP-5MS column. 

Synthesis of Indole Derivatives 1-5. Indoles 1 and 3 were prepared by Fisher indolization21 

followed by N-methylation22 when necessary. 2-Bromobenzylindoles 4-5 were prepared by N-

benzylation,22 followed by benzyl migration23 for 4 (and a subsequent N-methylation for 4b). 1,1´-

Dimethyl-1H,1´H-2,3´-biindole 2 was prepared by oxidative homocoupling of N-methylindole.24 

2-(3-Bromothiophen-2-yl)-1-methyl-1H-indole (3): yellow foam; yield = 55% (1.60 g); Rf = 0.23 

(hexane/EtOAc, 30/1); 1H NMR (300 MHz, CDCl3)  3.75 (s, 3H), 6.77 (s, 1H), 7.16-7.26 (m, 2H), 

7.33-7.45 (m, 3H), 7.73 (dd, J = 7.9, 0.9 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  31.1 (CH3), 105.2 

(CH), 109.8 (CH), 112.4 (C), 120.1 (CH), 121.0 (CH), 122.5 (CH), 127.5 (CH), 129.4 (C), 130.8 (C), 

130.9 (CH), 138.1 (C); LRMS (70 eV, EI) m/z (%) 293 [(M+2)+, 98], 291 (M+, 100); HRMS (EI+) calcd 

for C13H10BrNS 290.9717, found 290.9719. 

2-(2-Bromobenzyl)-1-methyl-1H-indole (4b): brown solid; yield = 60% (1.80 g); mp 110112 ºC; 1H 

NMR (300 MHz, CDCl3)  3.61 (s, 3H), 4.27 (s, 2H), 6.29 (s, 1H), 7.01 (dd, J = 7.4, 1.5 Hz, 1H), 7.12-

7.17 (m, 2H), 7.20-7.26 (m, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.65 (dd, J = 7.8, 

1.3 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  29.8 (CH3), 33.6 (CH2), 101.7 (CH), 109.1 (CH), 119.5 

(CH), 120.2 (CH), 121.1 (CH), 124.5 (C), 127.8 (CH), 127.9 (C), 128.3 (CH), 130.4 (CH), 132.8 (CH), 
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137.7 (C), 137.9 (C), 138.1 (C); LRMS (70 eV, EI) m/z (%) 301 [(M+2)+, 99], 299 (M+, 100); HRMS 

(EI+) calcd for C16H14BrN 299.0310, found 299.0309. 

1-(2-Bromobenzyl)-3-methyl-1H-indole (5b): white solid; yield = 80% (2.4 g); mp 5658 ºC; 1H 

NMR (300 MHz, CDCl3):  2.39 (s, 3H), 5.34 (s, 2H), 6.56 (dd, J = 5.6, 3.8 Hz, 1H), 6.91 (s, 1H), 

7.11-7.22 (m, 5H), 7.59-7.65 (m, 2H); 13C NMR (75.4 MHz, CDCl3):  9.8 (CH3), 50.0 (CH2), 109.6 

(CH), 111.4 (C), 119.1 (CH), 119.2 (CH), 122.0 (CH), 122.2 (C), 126.0 (CH), 127.9 (CH), 128.2 (CH), 

129.02 (C), 129.04 (CH), 132.8 (CH), 136.7 (C), 137.1 (C); HRMS (EI+) calcd for C16H14BrN 

299.0310, found 299.0312. 

General Procedure for the Synthesis of Alcohol Derivatives 6-10. To a solution of the 

corresponding starting bromoindole 1-5 (1 mmol) in THF (2 mL) at 78ºC, was added n-BuLi [for 1b, 

3, 4b, and 5a,b: (1.1 mmol, 1.6M in hexanes, 0.68 mL); for 1a and 4a: (2.2 mmol 1.6M in hexanes, 

1.36 mL); for starting indole 2, t-BuLi (1.1 mmol, 1.7M in pentane, 0.65 mL) was used as lithiation 

reagent from 78 to 0 ºC for 15 min)]. The solution was stirred at 78 ºC for 15 min and subsequently 

the appropriate aldehyde or ketone was added. The resulting mixture was warmed to room temperature 

and stirred until the corresponding bromoindole was consumed as determined by TLC or GC-MS. The 

reaction was quenched with a saturated NH4Cl aqueous solution and extracted with Et2O (3 × 10 mL). 

The combined organic layers were dried over anhydrous Na2SO4 and concentrated at reduced pressure. 

The residue was purified by flash silica gel column chromatography using mixtures of hexane and 

EtOAc as eluents to obtain the corresponding alcohols 6-10. In some cases, the synthesized alcohols 

were not characterized due to the presence of impurities after the column chromatography. So, in these 

cases the products obtained after the column chromatography were directly used in the cyclization step. 

No further attempts were made to identify these impurities as they do not have a significant influence in 

the cyclization (a selection of NMR spectra of these non-characterized alcohols used for the subsequent 

reactions is also provided in the Supporting Information). 

Spectroscopic and Characterization Data for Alcohols 6-10. 1-(2-(1-Methyl-1H-indol-2-

yl)phenyl)-1-phenylethanol (6a): white foam; yield = 64% (209 mg); 1H and 13C NMR were consistent 
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with the formation of rotamers in a ~2:1 ratio, designed as M (major rotamer) and m (minor rotamer); 

1H NMR (300 MHz, CDCl3)  1,89 (s, 3H, M), 1.95 (s, 3H, m), 2.54 (s, 3H, M), 2.65 (s, 1H, m), 3.32 

(s, 3H, m), 4.11 (s, 1H, M), 5.63 (s, 1H, m), 6.49 (s, 1H, M), 6.87-6.93 (m, 3H), 7.07-7.31 (m, 14H), 

7.35-7.58 (m, 6H), 7.66 (d, J = 7.7 Hz, 1H, M), 7.84-7.87 (m, 2H, M + m); 13C NMR (75.4 MHz, 

CDCl3)  29.4 (CH3, M), 30.5 (CH3, m), 31.2 (CH3, M), 31.9 (CH3, m), 77.1 (C, M), 77.3 (C, m), 101.7 

(CH, M), 103.0 (CH, m), 109.6 (2 × CH, M + m), 119.7 (CH, m), 120.0 (CH, M), 120.5 (CH, M), 120.6 

(CH, m), 121.7 (CH, m), 121.9 (CH, M), 124.9 (2 × CH, M), 125.4 (2 × CH, m), 126.27 (CH, M), 

126.32 (CH, M), 126.82 (CH, m), 126.84 (CH, m), 127.0 (CH, M), 127.2 (2 × C, M + m), 127.4 (CH, 

m), 127.9 (2 × CH, M), 128.0 (2 × CH, m), 128.5 (CH, m), 129.0 (CH, M), 130.7 (C, m), 131.3 (C, M), 

133.4 (2 × C, M + m), 136.6 (C, M), 136.9 (C, m), 139.4 (C, m), 139.6 (C, M), 147.5 (C, m), 147.7 (C, 

M), 148.5 (C. M), 149.8 (C, m); LRMS (70 eV, EI) m/z (%) 327 (M+, 100); HRMS (EI+) calcd for 

C23H21NO 327.1623, found 327.1626. 

(E)-2-(2-(1-Methyl-1H-indol-2-yl)phenyl)-4-phenylbut-3-en-2-ol (6f): yellow foam; yield = 62% (219 

mg); Rf = 0.20 (hexane/EtOAc, 7/1); 1H and 13C NMR were consistent with the formation of rotamers in 

a ~1:1 ratio; 1H NMR (300 MHz, CDCl3)  1.75 (s, 3H), 1.81 (s, 3H), 2.43 (s, 1H), 3.27 (s, 3H), 3.35 (s, 

1H), 3.38 (s, 3H), 6.03-6.11 (m, 1H), 6.27–6.37 (m, 3H), 6.48–6.58 (m, 2H), 6.75–6.81 (m, 1H), 7.03-

7.14 (m, 4H), 7.18-7.29 (m, 11H), 7.35-7.60 (m, 6H), 7.66-7.71 (m, 2H), 7.76-7.79 (m, 1H), 7.88-

7.90 (m, 1H); 13C NMR (75.4 MHz, CDCl3)  28.9 (CH3), 30.6 (2 × CH3), 31.3 (CH3), 75.4 (C), 75.6 

(C), 101.7 (CH), 102.4 (CH), 109.7 (CH), 109.8 (CH), 119.8 (CH), 120.1 (CH), 120.4 (CH), 120.5 

(CH), 121.75 (CH), 121.82 (CH), 126.2 (CH), 126.47 (4 × CH), 126.51 (CH), 126.6 (CH), 126.9 (CH), 

127.41 (CH), 127.46 (C), 127.50 (CH), 127.56 (C), 127.7 (CH), 128.35 (CH), 128.45 (2 × CH), 128.52 

(2 × CH), 129.1 (CH), 129.2 (CH), 130.2 (C), 131.0 (C), 132.9 (CH), 133.2 (CH), 136.2 (CH), 136.6 (2 

× C), 136.9 (CH), 137.0 (C), 137.1 (C), 140.3 (C), 140.5 (C), 146.6 (C), 147.3 (C); LRMS (70 eV, EI) 

m/z (%) 353 (M+, 34), 218 (100); HRMS (EI+) calcd for C25H23NO 353.1780, found 353.1781. 
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2-(2-(1-Methyl-1H-indol-2-yl)phenyl)-4-(thiophen-3-yl)but-3-yn-2-ol (6g): white foam; yield = 59% 

(211 mg); 1H and 13C NMR were consistent with the formation of rotamers in a ~1:1 ratio; 1H NMR 

(300 MHz, CDCl3)  1.99 (s, 3H), 2.00 (s, 3H), 2.83 (s, 1H), 3.38 (s, 1H), 3.45 (s, 3H), 3.46 (s, 3H), 

6.58 (d, J = 5.0 Hz, 1H), 6.62-6.65 (m, 2H), 6.74 (d, J = 2.9 Hz, 1H), 6.80 (d, J = 5.0 Hz, 1H), 7.02–

7.13 (m, 2H), 7.14–7.35 (m, 9H), 7.36–7.47 (m, 2H), 7.48-7.58 (m, 2H), 7.68-7.72 (m, 2H), 7.84 (d, J 

= 7.9 Hz, 1H), 7.98 (d, J = 7.9 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  30.7 (CH3), 30.8 (CH3), 31.0 

(CH3), 34.0 (CH3), 69.4 (C), 69.8 (C), 79.4 (C), 80.0 (C), 91.4 (C), 92.2 (C), 102.2 (CH), 103.1 (CH), 

109.6 (CH), 109.7 (CH), 119.7 (CH), 120.0 (CH), 120.5 (CH), 120.6 (CH), 121.3 (C), 121.5 (C), 121.7 

(CH), 121.9 (CH), 124.9 (CH), 125.2 (CH), 125.7 (CH), 125.8 (CH), 127.1 (CH), 127.4 (CH), 127.7 (2 

× C), 128.7 (CH), 128.9 (CH), 129.1 (CH), 129.2 (CH), 129.7 (CH), 129.8 (CH), 130.1 (C), 131.2 (C), 

132.8 (CH), 133.2 (CH), 137.2 (2 × C), 139.4 (C), 140.0 (C), 144.4 (C), 145.5 (C); LRMS (70 eV, EI) 

m/z (%) 357 (M+, 11), 339 (100); HRMS (EI+) calcd for C23H19NOS 357.1187, found 357.1188. 

(2-(1H-Indol-2-yl)phenyl)-(4-methoxyphenyl)methanol (6j): yellow foam; yield = 49% (161 mg); Rf 

= 0.25 (hexane/EtOAc, 4/1); 1H NMR (300 MHz, CDCl3)  2.69 (d, J = 5.1 Hz, 1H), 3.80 (s, 3H), 6.05 

(d, J = 5.0 Hz, 1H), 6.62-6.65 (m, 1H), 6.84-6.91 (m, 2H), 7.11-7.25 (m, 4H), 7.28-7.42 (m, 4H), 

7.61 (dd, J = 6.5, 1.0 Hz, 1H), 7.64-7.70 (m, 1H), 9.30 (s, 1H); 13C NMR (75.4 MHz, CDCl3)  55.4 

(CH3), 73.3 (CH), 102.7 (CH), 111.2 (CH), 114.0 (2 × CH), 120.1 (CH), 120.6 (CH), 122.1 (CH), 128.0 

(2 × CH), 128.29 (CH), 128.32 (CH), 128.5 (CH), 128.6 (C), 130.6 (CH), 133.3 (C), 134.8 (C), 136.5 

(C), 137.4 (C), 140.4 (C), 159.1 (C); LRMS (70 eV, EI) m/z (%) 329 (M+, 15), 311 (100); HRMS (EI+) 

calcd for C22H19NO2 329.1416, found 329.1413. 

(2-(1H-Indol-2-yl)phenyl)(thiophen-2-yl)methanol (6n): yellow foam; yield = 51% (155 mg); Rf = 

0.25 (hexane/EtOAc, 4/1); 1H NMR (300 MHz, CDCl3)  2.90 (s, 1H), 6.27 (s, 1H), 6.54-6.64 (m, 1H), 

6.76-6.87 (m, 1H), 6.93-7.01 (m, 1H), 7.12-7.44 (m, 6H), 7.53-7.62 (m, 2H), 7.66 (d, J = 7.7 Hz, 

1H), 8.87 (bs, 1H); 13C NMR (75.4 MHz, CDCl3)  70.1 (CH), 103.1 (CH), 111.2 (CH), 120.2 (CH), 

120.7 (CH), 122.3 (CH), 125.4 (CH), 125.7 (CH), 127.0 (CH), 127.9 (CH), 128.56 (CH), 128.60 (CH + 
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C), 130.4 (CH), 132.5 (C), 136.5 (C), 136.7 (C), 140.2 (C), 147.4 (C); LRMS (70 eV, EI) m/z (%) 305 

(M+, 4), 287 (100); HRMS (EI+) calcd for C19H15NOS 305.0877, found 305.0876. 

(E)-1-(2-(1-Methyl-1H-indol-2-yl)phenyl)-3-phenylprop-2-en-1-ol (6o): white foam; yield = 55% 

(186 mg); Rf = 0.25 (hexane/EtOAc, 4/1); 1H NMR (400 MHz, CDCl3, 50 ºC)  2.00 (bs, 1H), 3.45 (s, 

3H), 5.44 (bs, 1H), 6.25 (m, 2H), 6.52 (s, 1H), 7.16-7.32 (m, 9H), 7.39 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 

7.6 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  30.7 

(CH3), 72.1 (CH), 102.0 (CH), 109.7 (CH), 119.9 (CH), 120.6 (CH), 121.7 (CH), 126.6 (2 × CH), 127.4 

(CH), 127.8 (CH), 127.9 (C), 128.6 (2 × CH), 129.5 (CH), 130.5 (CH), 131.2 (C), 131.4 (CH), 136.5 

(C), 137.3 (C), 138.7 (C), 142.8 (C), two aromatic CH peaks were not observed; LRMS (70 eV, EI) m/z 

(%) 339 (M+, 19), 248 (100); HRMS (EI+) calcd for C24H21NO 339.1623, found 339.1624. 

1-(2-(1-Methyl-1H-indol-2-yl)phenyl)butan-1-ol (6p): white foam; yield = 45% (125 mg); Rf = 0.25 

(hexane/EtOAc, 6/1); 1H NMR (300 MHz, CDCl3)  0.80 (t, J = 7.3 Hz, 3H), 1.10–1.42 (m, 3H), 1.52–

1.77 (m, 3H), 1.85 (bs, 1H), 3.54 (s, 3H), 4.71 (bs, 1H), 6.47 (s, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.24–7.32 

(m, 2H), 7.33–7.43 (m, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.63–7.71 (m, 2H); 13C NMR (75.4 MHz, CDCl3) 

 14.0 (CH3), 19.1 (CH2), 30.7 (CH3), 70.9 (CH), 102.6 (CH), 109.6 (CH), 119.9 (CH), 120.5 (CH), 

121.6 (CH), 126.1 (CH), 127.1 (CH), 128.0 (C), 129.4 (CH), 131.0 (C), 131.4 (CH), 137.4 (C), 139.0 

(C), 144.8 (C), two aliphatic CH2 peaks were not observed; LRMS (70 eV, EI) m/z (%) 279 (M+, 100), 

218 (61); HRMS (EI+) calcd for C19H21NO 279.1623, found 279.1623. 

Dicyclopropyl-(1,1'-dimethyl-1H,1'H-[2,3'-biindol]-2'-yl)methanol (7b): yellow foam; yield = 42% 

(156 mg); 1H NMR (300 MHz, CDCl3)  0.25–0.68 (m, 7H), 0.76–0.85 (m, 1H), 1.35–1.49 (m, 1H), 

1.50–1.64 (m, 1H), 2.09 (s, 1H), 3.59 (s, 3H), 4.19 (s, 3H), 6.61 (s, 1H), 7.10–7.19 (m, 2H), 7.19–7.23 

(m, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.36 (d, J = 7.4 Hz, 1H), 7.41–7.49 (m, 2H), 7.71 (d, J = 7.8 Hz, 1H); 

13C NMR (CDCl3, 75.4 MHz)  1.1 (CH2), 1.8 (CH2), 1.9 (CH2), 3.3 (CH2), 19.9 (CH), 21.1 (CH), 30.4 

(CH3), 33.3 (CH3), 73.7 (C), 103.3 (CH), 104.4 (C), 109.2 (CH), 109.5 (CH), 119.4 (2 × CH), 120.2 

(CH), 120.3 (CH), 121.2 (CH), 122.3 (CH), 128.1 (C), 129.2 (C), 135.6 (C), 137.3 (C), 137.4 (C), 
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143.6 (C); LRMS (70 eV, EI) m/z (%) 352 (M+, 100), 323 (27); HRMS (EI+) calcd for C25H24N2 

352.1939, found 352.1940. 

(2-(1-Methyl-1H-indol-2-yl)thiophen-3-yl)di-p-tolylmethanol (8a): yellow foam; yield = 50% (212 

mg); Rf = 0.25 (hexane/EtOAc, 15/1); 1H NMR (300 MHz, CDCl3)  2.37 (s, 6H), 3.23 (s, 1H), 3.52 (s, 

3H), 6.29 (d, J = 2.5 Hz, 1H), 6.66 (dd, J = 5.3, 3.0 Hz, 1H), 7.057.18 (m, 8H), 7.227.36 (m, 3H), 

7.53 (d, J = 7.9 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  21.2 (2 × CH3), 30.8 (CH3), 81.0 (C), 104.9 

(CH), 109.7 (CH), 120.0 (CH), 120.8 (CH), 122.4 (CH), 125.4 (CH), 126.0 (CH), 127.4 (C), 127.6 (2 × 

CH), 128.0 (C), 128.6 (2 × CH), 128.9 (CH), 130.5 (CH), 132.0 (C), 137.1 (2 × C), 137.7 (C), 144.5 (2 

× C), 148.6 (C); LRMS (70 eV, EI) m/z (%) 423 (M+, 100); HRMS (EI+) calcd for C28H25NOS 

423.1657, found 423.1655. 

(2-((1H-Indol-2-yl)methyl)phenyl)di-p-tolylmethanol (9a): yellow foam; yield = 52% (217 mg); Rf = 

0.30 (hexane/EtOAc, 5/1); 1H NMR (300 MHz, CDCl3)  2.40 (s, 6H), 3.26 (s, 1H), 4.04 (s, 2H), 

6.246.30 (m, 1H), 6.73 (dd, J = 7.9, 1.3 Hz, 1H), 6.997.10 (m, 3H), 7.127.23 (m, 10H), 7.32 (dd, J 

= 7.6, 1.4 Hz, 1H), 7.487.55 (m, 1H), 8.01 (bs, 1H); 13C NMR (75.4 MHz, CDCl3)  21.2 (2 × CH3), 

32.8 (CH2), 83.5 (C), 100.2 (CH), 110.5 (CH), 119.3 (CH), 119.9 (CH), 120.9 (CH), 125.5 (CH), 127.9 

(4 × CH), 128.2 (CH), 128.6 (C), 129.0 (4 × CH), 129.9 (CH), 132.7 (CH), 136.3 (C), 137.4 (2 × C), 

139.3 (C), 139.8 (C), 144.1 (C), 144.3 (2 ×C); LRMS (70 eV, EI) m/z (%) 399 [(MH2O)+, 45), 308 

(100); HRMS (EI+) calcd for C30H25N (MH2O)+ 399.1887, found 399.1885. 

Cyclopropyl-(2-((1-methyl-1H-indol-2-yl)methyl)phenyl)(phenyl)methanol (9b): yellow foam; yield = 

48% (176 mg); Rf = 0.30 (hexane/EtOAc, 5/1); 1H NMR (300 MHz, CDCl3)  0.330.44 (m, 1H), 

0.520.72 (m, 3H), 1.66 (ddd, J = 16.3, 8.0, 5.7 Hz, 1H), 2.08 (s, 1H), 3.13 (s, 3H), 3.61 (d, J = 17.2 

Hz, 1H), 4.13 (d, J = 17.2 Hz, 1H), 6.03 (d, J = 0.7 Hz, 1H), 6.96 (dd, J = 7.6, 1.2 Hz, 1H), 7.027.09 

(m, 1H), 7.13 (dd, J = 8.1, 1.3 Hz, 1H), 7.167.20 (m, 1H), 7.217.34 (m, 6H), 7.38 (dd, J = 7.5, 1.4 

Hz, 1H), 7.467-52 (m, 1H), 8.15 (dd, J = 7.8, 1.4 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  2.0 (CH2), 
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2.4 (CH2), 23.5 (CH), 29.4 (CH3), 31.4 (CH2), 78.0 (C), 101.2 (CH), 108.9 (CH), 119.3 (CH), 119.9 

(CH), 120.7 (CH), 126.1 (CH), 126.3 (2 × CH), 126.8 (CH), 127.7 (CH), 127.9 (2 × CH), 128.1 (CH), 

131.3 (CH), 137.6 (C), 138.0 (C), 140.4 (C), 144.5 (C), 145.6 (C); one aromatic carbon peak was 

misssing due to overlapping; LRMS (70 eV, EI) m/z (%) 349 [(MH2O)+, 57), 308 (100); HRMS (EI+) 

calcd for C26H23N (MH2O)+ 349.1830, found 349.1832. 

1-(2-((1-Methyl-1H-indol-2-yl)methyl)phenyl)-1-(thiophen-2-yl)ethanol (9c): yellow foam; yield = 

60% (208 mg); Rf = 0.25 (hexane/EtOAc, 6/1); 1H NMR (300 MHz, CDCl3)  2.07 (s, 3H), 2.50 (bs, 

1H), 3.35 (s, 3H), 3.95 (d, J = 17.0 Hz, 1H), 4.23 (d, J = 17.1 Hz, 1H), 6.05 (d, J = 0.7 Hz, 1H), 6.76 

(dd, J = 3.5, 1.2 Hz, 1H), 6.91 (dd, J = 5.1, 3.6 Hz, 1H), 7.00–7.05 (m, 1H), 7.08 (dd, J = 7.8, 1.1 Hz, 

1H), 7.12–7.20 (m, 1H), 7.21–7.35 (m, 4H), 7.50 (d, J = 7.8 Hz, 1H), 7.72 (dd, J = 7.7, 1.2 Hz, 1H); 13C 

NMR (75.4 MHz, CDCl3)  29.5 (CH3), 31.6 (CH2), 33.3 (CH3), 75.6 (C), 101.3 (CH), 108.9 (CH), 

119.3 (CH), 120.0 (CH), 120.8 (CH), 123.8 (CH), 124.5 (CH), 126.2 (CH), 126.4 (CH), 126.7 (CH), 

127.8 (C), 128.3 (CH), 131.5 (CH), 137.3 (C), 137.7 (C), 140.4 (C), 143.9 (C), 153.5 (C); LRMS (70 

eV, EI) m/z (%) 347 (M+, 77), 110 (100); HRMS (EI+) calcd for C22H21NOS 347.1344, found 347.1345. 

1-Cyclopropyl-1-(2-((1-methyl-1H-indol-2-yl)methyl)phenyl)ethanol (9d): yellow oil; yield = 62% 

(189 mg); Rf = 0.23 (hexane/EtOAc, 5/1); 1H NMR (400 MHz, CDCl3)  0.46–0.54 (m, 1H), 0.58–0.74 

(m, 3H), 1.481.58 (m, 1H), 1.56 (s, 3H), 1.85 (s, 1H), 3.73 (s, 3H), 4.55–4.70 (m, 2H), 6.02 (s, 1H), 

7.14–7.40 (m, 6H), 7.59 (t, J = 7.2 Hz, 1H), 7.747.81 (m, 1H); 13C NMR (100.6 MHz, CDCl3)  1.7 

(CH2), 3.3 (CH2), 23.0 (CH), 27.9 (CH3), 29.7 (CH3), 32.5 (CH2), 75.0 (C), 100.8 (CH), 108.8 (CH), 

119.3 (CH), 119.9 (CH), 120.7 (CH), 126.5 (CH), 126.9 (CH), 127.2 (CH), 127.9 (C), 132.2 (CH), 

136.4 (C), 137.6 (C), 142.1 (C), 145.5 (C); LRMS (70 eV, EI) m/z (%) 305 (M+, 30), 110 (100); HRMS 

(EI+)calcd for C21H23NO 305.1780, found 305.1779. 

(4-Methoxyphenyl)-(2-((1-methyl-1H-indol-2-yl)methyl)phenyl)methanol (9e): yellow foam; yield = 

56% (200 mg); Rf = 0.19 (hexane/EtOAc, 5/1); 1H NMR (CDCl3, 300 MHz)  2.29–2.48 (m, 1H), 3.40 

(s, 3H), 3.79 (s, 3H), 3.98 (d, J = 16.9 Hz, 1H), 4.08 (d, J = 16.9 Hz, 1H), 6.01 (s, 1H), 6.13 (d, J = 3.9 
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Hz, 1H), 6.84–6.90 (m, 2H), 6.99 (d, J = 7.6 Hz, 1H), 7.07–7.15 (m, 1H), 7.18–7.31 (m, 5H), 7.35 (t, J 

= 7.5 Hz, 1H), 7.51–7.58 (m, 1H), 7.64 (d, J = 7.7 Hz, 1H); 13C NMR (100.6 MHz, CDCl3)  29.5 

(CH3), 30.2 (CH2), 55.3 (CH3), 73.0 (CH), 101.4 (CH), 108.9 (CH), 113.9 (2 × CH), 119.4 (CH), 120.1 

(CH), 120.9 (CH), 126.9 (CH), 127.0 (CH), 127.8 (C), 127.9 (CH), 128.5 (2 × CH), 129.7 (CH), 135.0 

(C), 135.7 (C), 137.7 (C), 138.9 (C), 141.4 (C), 159.2 (C); LRMS (70 eV, EI) m/z (%) 357 (M+, 100), 

355 (5); HRMS (EI+) calcd for C24H23NO2 357.1729, found 357.1728. 

(2-((1H-Indol-2-yl)methyl)phenyl)-(4-methoxyphenyl)methanol (9f): yellow foam; yield = 40% (137 

mg); Rf = 0.25 (hexane/EtOAc, 3/1); 1H NMR (300 MHz, CDCl3)  2.56 (bs, 1H), 3.79 (s, 3H), 3.98 (d, 

J = 15.9 Hz, 1H), 4.09 (d, J = 15.9 Hz, 1H), 6.00 (d, J = 3.3 Hz, 1H), 6.27 (d, J = 1.9 Hz, 1H), 6.87 (d, 

J = 8.8 Hz, 2H), 7.037.12 (m, 3H), 7.197.30 (m, 5H), 7.457.55 (m, 2H), 7.88 (bs, 1H); 13C NMR 

(100.6 MHz, CDCl3)  31.5 (CH2), 55.4 (CH3), 73.0 (CH), 100.6 (CH), 110.6 (CH), 114.0 (2 × CH), 

119.6 (CH), 119.9 (CH), 121.2 (CH), 127.1 (CH), 127.5 (CH), 128.1 (CH), 128.4 (2 × CH), 128.6 (C), 

130.8 (CH), 135.1 (C), 136.3 (C), 136.5 (C), 137.9 (C), 141.3 (C), 159.2 (C); LRMS (70 eV, EI) m/z 

(%) 325 [(MH2O)+, 62], 217 (100); HRMS (EI+) calcd for C23H19NO (MH2O)+ 325.1467, found 

325.1466. 

(E)-1-(2-((1-Methyl-1H-indol-2-yl)methyl)phenyl)-3-phenylprop-2-en-1-ol (9h): yellow foam; yield = 

64% (226 mg); Rf = 0.10 (hexane/EtOAc, 3/1); 1H NMR (300 MHz, CDCl3)  2.16 (bs, 1H), 3.60 (s, 

3H), 4.254.30 (m, 2H), 5.64 (d, J = 5.9 Hz, 1H), 6.11 (d, J = 0.6 Hz, 1H), 6.40 (dd, J = 15.9, 5.9 Hz, 

1H), 6.64 (dd, J = 15.9, 1.2 Hz, 1H), 7.08 (dd, J = 7.6, 1.1 Hz, 1H), 7.12 (dd, J = 7.8, 1.0 Hz, 1H), 7.20 

(dd, J = 8.2, 1.2 Hz, 1H), 7.237.34 (m, 7H), 7.37 (dd, J = 7.4, 1.4 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 

7.63 (dd, J = 7.6, 1.4 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  29.8 (CH3), 30.5 (CH2), 71.9 (CH), 

101.4 (CH), 109.0 (CH), 119.5 (CH), 120.1 (CH), 121.1 (CH), 126.7 (2 × CH), 127.0 (CH), 127.4 

(CH), 127.86 (C), 127.92 (CH), 128.3 (CH), 128.7 (2 × CH), 130.2 (CH), 130.7 (CH), 130.9 (CH), 

135.8 (C), 136.5 (C), 137.8 (C), 139.3 (C), 140.6 (C); LRMS (70 eV, EI) m/z (%) 353 (M+, 100); 

HRMS (EI+) calcd for C25H23NO 353.1780, found 353.1780. 
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(2-((1H-Indol-1-yl)methyl)phenyl)(cyclopropyl)(phenyl)methanol (10a): yellow oil; yield = 71% (250 

mg); Rf = 0.26 (hexane/EtOAc, 5/1); 1H NMR (400 MHz, CDCl3)  0.32–0.45 (m, 1H), 0.52–0.62 (m, 

1H), 0.64–0.7 (m, 2H), 1.75 (tt, J = 8.2, 5.5 Hz, 1H), 2.26 (s, 1H), 4.85 (d, J = 17.5 Hz, 1H), 5.44 (d, J = 

17.5 Hz, 1H), 6.44–6.53 (m, 2H), 6.57–6.63 (m, 1H), 6.85 (d, J = 3.1 Hz, 1H), 6.99–6.05 (m, 1H), 7.06–

7.11 (m, 1H), 7.14 (dd, J = 7.6, 1.2 Hz, 1H), 7.29–7.45 (m, 6H), 7.59–7.65 (m, 1H), 8.12 (dd, J = 7.8, 

1.2 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  1.5 (CH2), 2.9 (CH2), 23.4 (CH), 47.9 (CH2), 78.7 (C), 

101.3 (CH), 109.9 (CH), 119.3 (CH), 120.7 (CH), 121.4 (CH), 126.6 (CH), 126.7 (2 × CH), 127.1 

(CH), 127.3 (CH), 127.5 (CH), 128.0 (2 × CH), 128.4 (CH), 128.5 (C), 128.9 (CH), 136.3 (C), 138.0 

(C), 143.5 (C), 144.1 (C); LRMS (70 eV, EI) m/z (%) 353 (M+, 100); HRMS (EI+) calcd for C25H23NO 

353.1780, found 353.1777. 

2-(2-((1H-Indol-1-yl)methyl)phenyl)propan-2-ol (10b): yellow oil; yield = 40% (106 mg); Rf = 0.17 

(hexane/EtOAc, 4/1); 1H NMR (400 MHz, CDCl3)  1.79 (s, 6H), 5.84 (s, 2H), 6.63–6.74 (m, 2H), 

7.07–7.30 (m, 6H), 7.32–7.42 (m, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.69–7.81 (m, 1H); 13C NMR (75.4 

MHz, CDCl3) 31.9 (2 × CH3), 48.8 (CH2), 74.2 (C), 101.5 (CH), 110.0 (CH), 119.5 (CH), 121.0 

(CH), 121.7 (CH), 125.7 (CH), 127.2 (CH), 127.7 (CH), 128.5 (CH), 128.70 (C), 128.73 (CH), 136.1 

(C), 136.6 (C), 144.6 (C); LRMS (70 eV, EI) m/z (%) 265 (M+, 80), 232 (100); HRMS (EI+) calcd for 

C18H19NO 265.1467, found 265.1467. 

(2-((1H-Indol-1-yl)methyl)phenyl)-(4-methoxyphenyl)methanol (10c): white foam; yield = 50% (171 

mg); Rf = 0.13 (hexane/EtOAc, 5/1); 1H NMR (300 MHz, CDCl3):  2.57 (bs, 1H), 3.83 (s, 3H), 5.16 

(d, J = 16.4 Hz, 1H), 5.27 (d, J = 16.4 Hz, 1H), 5.94 (s, 1H), 6.56 (d, J = 3.1 Hz, 1H), 6.66 (d, J = 7.7 

Hz, 1H), 6.886.94 (m, 2H), 6.97 (d, J = 3.1 Hz, 1H), 6.987.04 (m, 1H), 7.127.20 (m, 3H), 

7.227.29 (m, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.667.70 (m, 1H); 13C NMR 

(75.4 MHz, CDCl3)  47.2 (CH2), 55.4 (CH3), 73.1 (CH), 101.7 (CH), 109.7 (CH), 114.1 (2 × CH), 

119.6 (CH), 121.0 (CH), 121.7 (CH), 127.0 (CH), 127.4 (CH), 127.7 (CH), 128.2 (CH), 128.4 (CH), 
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128.5 (2 × CH), 128.6 (C), 134.5 (C), 134.9 (C), 136.3 (C), 140.5 (C), 159.3 (C); LRMS (70 eV, EI) 

m/z (%) 343 (M+, 100); HRMS (EI+) calcd for C23H21NO2 343.1572, found 343.1574. 

1-(4-Methoxyphenyl)-1-(2-((3-methyl-1H-indol-1-yl)methyl)phenyl)ethanol (10d): yellow oil; yield = 

73% (271 mg); Rf = 0.21 (hexane/EtOAc, 4/1); 1H NMR (300 MHz, CDCl3)  2.03 (s, 3H), 2.35 (s, 

3H), 2.40 (bs, 1H), 3.85 (s, 3H), 4.92 (d, J = 17.4 Hz, 1H), 5.38 (d, J = 17.4 Hz, 1H), 6.56 (d, J = 7.7 

Hz, 1H), 6.65 (s, 1H), 6.71 (dd, J = 6.3, 2.1 Hz, 1H), 6.876.99 (m, 2H), 7.017.19 (m, 3H), 7.237.41 

(m, 3H), 7.59 (dd, J = 6.2, 2.4 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  9.7 

(CH3), 33.7 (CH3), 47.7 (CH2), 55.4 (CH3), 76.7 (C), 109.8 (CH), 110.5 (CH), 113.8 (2 × CH), 118.6 

(CH), 118.8 (CH), 121.4 (CH), 126.0 (CH), 126.5 (CH), 126.57 (2 × CH), 126.64 (CH), 127.8 (CH), 

128.3 (C), 128.7 (C), 136.7 (C), 138.0 (C), 139.8 (C), 143.4 (C), 158.7 (C); LRMS (70 eV, EI) m/z (%) 

371 (M+, 100), 338 (72); HRMS (EI+) calcd for C25H25NO2 371.1885, found 371.1884. 

(4-Methoxyphenyl)-(2-((3-methyl-1H-indol-1-yl)methyl)phenyl)methanol (10e): yellow oil; yield = 

49% (175 mg); Rf = 0.20 (hexane/EtOAc, 2/1); 1H NMR (300 MHz, CDCl3)  2.22 (d, J = 3.6 Hz, 1H), 

2.30 (s, 3H), 3.82 (s, 3H), 5.09 (d, J = 16.3 Hz, 1H), 5.21 (d, J = 16.3 Hz, 1H), 5.97 (d, J = 3.6 Hz, 1H), 

6.666.73 (m, 2H), 6.89 (dd, J = 9.1, 2.7 Hz, 2H), 6.937.02 (m, 1H), 7.087.13 (m, 2H), 7.137.20 

(m, 1H), 7.217.27 (m, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.547.64 (m, 2H); 13C NMR (75.4 MHz, CDCl3) 

 9.7 (CH3), 46.9 (CH2), 55.4 (CH3), 73.0 (CH), 109.5 (CH), 110.9 (CH), 114.1 (2 × CH), 118.9 (CH), 

119.0 (CH), 121.6 (CH), 125.9 (CH), 126.9 (CH), 127.60 (CH), 127.63 (CH), 128.1 (C), 128.5 (2 × 

CH), 128.9 (C), 134.6 (C), 135.1 (C), 136.7 (C), 140.6 (C), 159.3 (C); LRMS (70 eV, EI) m/z (%) 357 

(M+, 16), 132 (100); HRMS (EI+) calcd for C24H23NO2 357.1729, found 357.1728. 

(2-((3-Methyl-1H-indol-1-yl)methyl)phenyl)di-p-tolylmethanol (10f): yellow oil; yield = 67% (289 

mg); Rf = 0.21 (hexane/EtOAc, 10/1); 1H NMR (300 MHz, CDCl3)  2.37 (d, J = 1.0 Hz, 3H), 2.47 (s, 

6H), 3.10 (s, 1H), 5.37 (s, 2H), 6.556.62 (m, 1H), 6.696.83 (m, 3H), 7.027.13 (m, 4H), 7.187.29 

(m, 8H), 7.567.63 (m, 1H); 13C NMR (75.4 MHz, CDCl3)  9.8 (CH3), 21.2 (2 × CH3), 48.3 (CH2), 

83.3 (C), 109.8 (CH), 110.4 (CH), 118.5 (CH), 118.8 (CH), 121.3 (CH), 125.9 (CH), 126.6 (CH), 127.5 
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(CH), 127.8 (4 × CH), 128.2 (CH), 128.7 (C), 129.0 (4 × CH), 129.6 (C), 136.8 (C), 137.4 (2 × C), 

138.8 (C), 143.5 (C), 143.6 (2 × C); LRMS (70 eV, EI) m/z (%) 431 (58), 322 (100); HRMS (EI+) calcd 

for C31H29NO 431.2249, found 431.2248. 

2-Methyl-1-(2-((3-methyl-1H-indol-1-yl)methyl)phenyl)propan-1-ol (10g): yellow oil; yield = 51% 

(149 mg); Rf = 0.20 (hexane/EtOAc, 8/1); 1H NMR (300 MHz, CDCl3)  0.87 (d, J = 6.7 Hz, 3H), 1.11 

(d, J = 6.5 Hz, 3H), 1.96 (bs, 1H), 1.992.10 (m, 1H), 2.38 (s, 3H), 4.64 (dd, J = 7.1, 2.7 Hz, 1H), 5.32 

(d, J = 16.0 Hz, 1H), 5.41 (d, J = 16.0 Hz, 1H), 6.726.90 (m, 2H), 7.107.31 (m, 4H), 7.34 (t, J = 7.4 

Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 7.4 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  9.8 (CH3), 

18.3 (CH3), 19.6 (CH3), 34.8 (CH), 47.1 (CH2), 76.0 (CH), 109.4 (CH), 111.1 (C), 119.0 (CH), 119.2 

(CH), 121.8 (CH), 125.7 (CH), 127.0 (CH), 127.8 (CH), 127.9 (2 × CH), 129.0 (C), 134.8 (C), 136.8 

(C), 141.4 (C); LRMS (70 eV, EI) m/z (%) 293 (M+, 100); HRMS (EI+) calcd for C20H23NO 293.1780, 

found 293.1778. 

General Procedure for the Synthesis of Polycyclic Adducts 11-15. Acid-catalyzed procedure: PTSA 

(5 mol%, 5 mg) was added to a solution of the corresponding alcohol derivative 6-10 (0.5 mmol) in 

MeCN (1 mL) and the resulting reaction mixture was stirred at rt until the alcohol was consumed as 

determined by TLC (0.5-24 h). The crude mixture was quenched with aqueous NaOH (0.5M) and 

extracted with EtOAc (3 × 10 mL), and the combined organic layers were dried over anhydrous Na2SO4 

and concentrated at reduced pressure. The residue was purified by flash chromatography using mixtures 

of hexane and EtOAc as eluents to obtain the corresponding cycloadducts 11-15 in the yields reported 

in Table 1 or Schemes 3-5. In some cases the final product precipitates from the reaction mixture and 

could be isolated by simple filtration in pure form. 

Fe-catalyzed procedure (for the preparation of 11p, and 15b,g):19 To an oven dried vial containing 

FeCl3 (0.075 mmol, 12 mg) was added a solution of the alcohol 6p, or 10b,g (0.5 mmol) in DCE (3 

mL), and allowed to stir until FeCl3 was completely dissolved (1015min). Then AgSbF6 (0.225 mmol, 

77 mg) was added and the resulting reaction mixture was stirred at 50 ºC for 24 h. The reaction was 
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quenched with aqueous HCl (1M), extracted with DCM (3 × 10 mL), and the water layer was basified 

with aqueous NaOH (1M), and extracted with DCM (2 × 5 mL). The organic extracts combined and 

dried, filtered and concentrated to give the residue. The residue was purified by silica flash 

chromatography using mixtures of hexane and EtOAc as eluents to obtain the corresponding 

cycloadducts 11p, and 15b,g in the yields reported in Table 1 and Scheme 5. 

Spectroscopic and Characterization Data for Cycloadducts 11-15. 5,10-Dimethyl-10-phenyl-5,10-

dihydroindeno[1,2-b]indole (11a): white solid; yield = 90% (140 mg); mp 178180 ºC; 1H NMR (300 

MHz, CDCl3)  2.06 (s, 3H), 4.13 (s, 3H), 7.12–7.20 (m, 1H), 7.22–7.40 (m, 6H), 7.42–7.52 (m, 5H), 

7.70 (dd, J= 7.5, 0.6 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  24.8 (CH3), 31.3 (CH3), 50.3 (C), 110.0 

(CH), 118.0 (CH), 119.0 (CH), 119.8 (CH), 121.4 (CH), 123.0 (C), 124.4 (CH), 125.7 (CH), 126.41 (2 

× CH), 126.43 (CH), 126.9 (CH), 128.4 (2 × CH), 130.0 (C), 133.7 (C), 142.1 (C), 142.4 (C), 144.5 

(C), 159.0 (C); LRMS (70 eV, EI) m/z (%) 309 (M+, 80), 294 (100); HRMS (EI+) calcd for C23H19N 

309.1517, found 309.1518. 

10-Cyclopropyl-5-methyl-10-phenyl-5,10-dihydroindeno[1,2-b]indole (11b): white solid; yield= 85% 

(168 mg); mp 174176 ºC; 1H NMR (300 MHz, CDCl3)  0.000.05 (m, 1H), 0.390.46 (m, 1H), 

0.630.82 (m, 2H), 2.002.12 (m, 1H), 4.09 (s, 3H), 7.087.15 (m, 1H), 7.207.49 (m, 9H), 7.567.63 

(m, 2H), 7.69 (d, J = 7.3 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  1.6 (CH2), 4.1 (CH2), 18.4 (CH), 

31.2 (CH3), 56.0 (C), 109.9 (CH), 117.9 (CH), 119.4 (CH), 119.9 (CH), 121.2 (CH), 124.0 (C), 124.9 

(CH), 125.6 (CH), 125.9 (C), 126.4 (CH), 126.9 (CH), 127.4 (2 × CH), 128.3 (2 × CH), 134.3 (C), 

141.9 (C), 143.7 (C), 144.8 (C), 157.6 (C); LRMS (70 eV, EI) m/z (%) 335 (M+, 43), 307 (100); HRMS 

(EI+) calcd for C25H21N 335.1674, found 335.1677. 

10-Ethyl-5-methyl-10-(thiophen-2-yl)-5,10-dihydroindeno[1,2-b]indole (11c): white solid; yield = 

80% (132 mg); mp 136138 ºC; 1H NMR (300 MHz, CDCl3)  0.70 (t, J = 7.3 Hz, 3H), 2.38 (dq, J = 

14.5, 7.3 Hz, 1H), 2.71 (dq, J = 14.5, 7.3 Hz, 1H), 4.09 (s, 3H), 6.90 (dd, J = 5.1, 3.6 Hz, 1H), 6.97 (dd, 

J = 3.6, 1.2 Hz, 1H), 7.097.38 (m, 5H), 7.44 (d, J = 8.2 Hz, 1H), 7.537.70 (m, 3H); 13C NMR 
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(CDCl3, 75.4 MHz) 9.9 (CH3), 31.3 (CH3), 33.8 (CH2), 53.6 (C), 110.0 (CH), 118.1 (CH), 119.88 

(CH), 119.93 (CH), 121.4 (CH), 123.3 (CH), 123.7 (CH), 123.8 (C), 124.4 (CH), 125.7 (CH), 126.1 

(C), 126.6 (CH), 127.2 (CH), 133.8 (C), 142.1 (C), 143.5 (C), 149.3 (C), 155.8 (C); LRMS (70 eV, EI) 

m/z (%) 330 [(M+1)+, 6], 329 (M+, 24), 300 (100); HRMS (EI+) calcd for C22H19NS 329.1238, found 

329.1237.

10-Cyclopropyl-5,10-dimethyl-5,10-dihydroindeno[1,2-b]indole (11d): white solid; yield= 63% (87 

mg); mp 135–137 ºC; 1H NMR (400 MHz, CDCl3):  0.10 (bs, 1H), 0.33 (bs, 1H), 0.54–0.64 (m, 1H), 

0.67–0.77 (m, 1H), 1.32–1.45 (m, 1H), 1.66 (s, 3H), 4.07 (s, 3H), 7.19–7.47 (m, 5H), 7.56 (d, J = 6.2 

Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.72–7.76 (m, 1H); 13C NMR (100.6 MHz, CDCl3)  1.1 (CH2), 2.7 

(CH2), 19.7 (CH3), 22.8 (CH), 31.2 (CH3), 47.4 (C), 110.0 (CH), 117.9 (CH), 119.4 (CH), 119.7 (CH), 

121.1 (CH), 123.3 (CH), 124.0 (C), 125.3 (CH), 126.7 (CH), 127.1 (C), 133.8 (C), 142.0 (C), 142.9 

(C), 158.6 (C); LRMS (70 eV, EI) m/z (%) 273 (M+, 100), 258 (53); HRMS (EI+) calcd for C20H19N 

273.1517, found 273.1515. 

10-Cyclopropyl-10-methyl-5,10-dihydroindeno[1,2-b]indole (11e): brown solid; yield = 73% (95 

mg); mp 110–112 ºC; 1H NMR (400 MHz, CDCl3)  0.02–0.04 (m, 1H), 0.22–0.26 (m, 1H), 0.45–0.54 

(m, 1H), 0.57–0.63 (m, 1H), 1.24–1.36 (m, 1H), 1.58 (s, 3H), 7.12–7.19 (m, 2H), 7.20–7.32 (m, 2H), 

7.37–7.43 (m, 2H), 7.47 (dd, J = 7.3, 0.6 Hz, 1H), 7.61–7.68 (m, 1H), 8.24 (bs, 1H); 13C NMR (100.6 

MHz, CDCl3)  1.1 (CH2), 2.2 (CH2), 19.6 (CH3), 22.5 (CH), 47.9 (C), 112.3 (CH), 117.6 (CH), 119.4 

(CH), 120.4 (CH), 121.7 (CH), 123.2 (CH), 124.7 (C), 125.5 (CH), 126.8 (CH), 128.8 (C), 133.4 (C), 

140.8 (C), 141.5 (C), 158.2 (C); LRMS (70 eV, EI) m/z (%) 259 (M+, 76), 231 (100); HRMS (EI+) 

calcd for C19H17N 259.1361, found 259.1363. 

(E)-5,10-Dimethyl-10-styryl-5,10-dihydroindeno[1,2-b]indole (11f): white solid; yield = 80% (134 

mg); mp 150–152 ºC; 1H NMR (300 MHz, CDCl3)  1.88 (s, 3H), 4.13 (s, 3H), 6.57 (d, J = 15.9 Hz, 

1H), 6.77 (d, J = 15.9 Hz, 1H), 7.217.45 (m, 9H), 7.49 (d, J = 8.2 Hz, 1H), 7.54–7.60 (m, 1H), 

7.677.77 (m, 2H); 13C NMR (75.4 MHz, CDCl3)  23.8 (CH3), 31.2 (CH3), 49.0 (C), 110.0 (CH), 
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118.1 (CH), 119.0 (CH), 119.9 (CH), 121.4 (CH), 123.6 (C), 124.0 (CH), 125.6 (CH), 126.4 (2 × CH), 

127.11 (CH), 127.14 (CH), 127.39 (CH), 127.49 (C), 128.5 (2 × CH), 133.6 (C), 134.3 (CH), 137.6 (C), 

142.1 (C), 142.4 (C), 156.7 (C); LRMS (70 eV, EI) m/z (%) 335 (M+, 92), 320 (17); HRMS (EI+) calcd 

for C25H21N 335.1674, found 335.1673. 

5,10-Dimethyl-10-(thiophen-3-ylethynyl)-5,10-dihydroindeno[1,2-b]indole (11g): brown solid; yield 

= 80%; mp 156158 ºC; 1H NMR (300 MHz, CDCl3)  1.94 (CH3), 4.05 (CH3), 7.057.09 (m, 1H), 

7.177.44 (m, 7H), 7.62 (d, J = 7.2 Hz, 1H), 7.687.75 (m, 1H), 7.797.86 (m, 1H); 13C NMR (75.4 

MHz, CDCl3)  27.5 (CH3), 31.2 (CH3), 40.3 (C), 74.5 (C), 91.4 (C), 110.1 (CH), 118.1 (CH), 118.8 

(CH), 120.1 (CH), 121.7 (CH), 122.7 (C), 124.2 (CH), 124.9 (CH), 126.1 (CH), 126.3 (C), 127.7 (CH), 

128.2 (CH), 130.3 (CH), 133.3 (C), 142.0 (2 × C), 155.3 (C); one aromatic C peak was missing due to 

overlapping; LRMS (70 eV, EI) m/z (%) 339 (M+, 100); HRMS (EI+) calcd for C23H17NS 339.1082, 

found 339.1083. 

10-Cyclopropyl-5-methyl-10-(phenylethynyl)-5,10-dihydroindeno[1,2-b]indole (11h): white solid; 

yield= 88% (158 mg); mp 163165 ºC; 1H NMR (300 MHz, CDCl3)  0.600.78 (m, 2H), 0.991.15 

(m, 2H), 1.181.27 (m, 1H), 4.05 (s, 3H), 7.247.47 (m, 10H), 7.64 (d, J = 7.1 Hz, 1H), 7.797.89 (m, 

2H); 13C NMR (75.4 MHz, CDCl3)  1.7 (CH2), 2.4 (CH2), 19.3 (CH), 31.2 (CH3), 46.4 (C), 81.0 (C), 

87.9 (C), 110.1 (CH), 118.1 (CH), 119.6 (CH), 120.2 (CH), 121.6 (CH), 123.3 (C), 123.6 (C), 124.9 

(CH), 125.5 (C), 126.1 (CH), 127.76 (CH), 127.83 (CH), 128.2 (2 × CH), 131.9 (2 × CH), 133.4 (C), 

142.0 (C), 142.6 (C), 155.0 (C); LRMS (70 eV, EI) m/z (%) 359 (M+, 100); HRMS (EI+) calcd for 

C27H21N 359.1676, found 359.1679. 

10-(4-Methoxyphenyl)-5-methyl-5,10-dihydroindeno[1,2-b]indole (11i): white solid; yield = 97% 

(158 mg); mp 180182 ºC; 1H NMR (300 MHz, CDCl3)  3.78 (s, 3H), 4.10 (s, 3H), 4.92 (s, 1H), 6.83 

(d, J = 8.4 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 7.13–7.28 (m, 4H), 7.29–7.46 (m, 4H), 7.66 (d, J = 7.4 Hz, 

1H); 13C NMR (75.4 MHz, CDCl3)  31.3 (CH3), 47.8 (CH), 55.3 (CH3), 109.9 (CH), 114.2 (2 × CH), 

117.8 (CH), 119.1 (CH), 119.8 (CH), 121.4 (CH), 123.9 (C), 124.6 (C), 125.4 (CH), 125.6 (CH), 127.0 
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(CH), 129.0 (2 × CH), 132.9 (C), 134.7 (C), 142.1 (C), 144.2 (C), 153.5 (C), 158.6 (C); LRMS (70 eV, 

EI) m/z (%) 325 (M+, 40), 324 (100); HRMS (EI+) calcd for C23H19NO 325.1467, found 325.14678. 

10-(4-Methoxyphenyl)-5,10-dihydroindeno[1,2-b]indole (11j): white solid; yield = 80% (124 mg); 

mp 180182 ºC; 1H NMR (400 MHz, CDCl3)  3.76 (s, 3H), 4.94 (s, 1H), 6.79–6.83 (m, 2H), 7.03–

7.08 (m, 1H), 7.11–7.19 (m, 4H), 7.28 (d, J = 7.4 Hz, 1H), 7.31–7.38 (m, 2H), 7.44 (t, J = 7.5 Hz, 2H), 

8.40 (bs, 1H); 13C NMR (100.6 MHz, CDCl3)  48.1 (CH), 55.4 (CH3), 109.9 (CH), 114.2 (2 × CH), 

117.5 (CH), 119.1 (CH), 120.5 (CH), 122.0 (CH), 124.5 (C), 125.5 (CH), 125.6 (CH), 126.1 (C), 127.0 

(CH), 129.0 (2 × CH), 132.6 (C), 134.3 (C), 140.9 (C), 142.9 (C), 153.2 (C), 158.6 (C); LRMS (70 eV, 

EI) m/z (%) 311 (100); HRMS (EI+) calcd for C22H17NO 311.1310, found 311.1307. 

10-(4-Chlorophenyl)-5-methyl-5,10-dihydroindeno[1,2-b]indole (11k): white solid; yield = 82% 

(135 mg); mp 139141 ºC; 1H NMR (300 MHz, CDCl3)  4.06 (s, 3H), 4.85 (s, 1H), 7.127.22 (m, 

3H), 7.24–7.28 (m, 1H), 7.29–7.36 (m, 3H), 7.37–7.47 (m, 4H), 7.69 (d, J = 7.5 Hz, 1H); 13C NMR 

(75.4 MHz, CDCl3)  31.2 (CH3), 47.6 (CH), 110.0 (CH), 117.9 (CH), 118.9 (CH), 119.9 (CH), 1121.6 

(CH), 123.6 (C), 123.8 (C), 125.48 (CH), 125.54 (CH), 127.2 (CH), 128.9 (2 × CH), 129.4 (2 × CH), 

132.4 (C), 134.6 (C), 139.6 (C), 142.0 (C), 144.2 (C), 152.7 (C); LRMS (70 eV, EI) m/z (%) 331 

[(M+2)+, 34], 329 (M+, 100), 218 (29); HRMS (EI+) calcd for C22H16ClN 329.0971, found 329.0972. 

10-(4-Chlorophenyl)-5,10-dihydroindeno[1,2-b]indole (11l): yellow solid; yield = 65% (102 mg); 

mp 180182 ºC; 1H NMR (300 MHz, CDCl3) 4.94 (s, 1H), 7.07–7.30 (m, 7H), 7.31–7.41 (m, 3H), 

7.42–7.53 (m, 2H), 8.37 (bs, 1H); 13C NMR (CDCl3, 75.4 MHz)  48.0 (CH), 112.3 (CH), 117.7 (CH), 

118.9 (CH), 120.6 (CH), 122.1 (CH), 124.2 (C), 125.36 (C), 125.42 (CH), 125.7 (CH), 127.3 (CH), 

128.9 (2 × CH), 129.4 (2 × CH), 132.5 (C), 134.2 (C), 139.3 (C), 140.8 (C), 143.0 (C), 152.4 (C); 

LRMS (70 eV, EI) m/z (%) 317 [(M+2)+, 34], 315 (M+, 100), 313 (35); HRMS (EI+) calcd for 

C21H14ClN 315.0815, found 315.0813. 

5-Methyl-10-(5-methylfuran-2-yl)-5,10-dihydroindeno[1,2-b]indole (11m): white solid; yield = 55% 

(82 mg); mp 146148 ºC; 1H NMR (300 MHz, CDCl3)  2.36 (s, 3H), 4.07 (s, 3H), 5.07 (s, 1H), 5.86-
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5.92 (m, 2H), 7.16-7.30 (m, 3H), 7.31-7.43 (m, 2H), 7.64-7.78 (m, 3H); 13C NMR (75.4 MHz, 

CDCl3)  13.9 (CH3), 31.2 (CH3), 41.8 (CH), 106.06 (CH), 106.14 (CH), 109.9 (CH), 118.0 (CH), 

119.6 (CH), 119.9 (CH), 120.9 (C), 121.4 (CH), 124.0 (C), 125.4 (CH), 126.1 (CH), 127.4 (CH), 134.6 

(C), 142.0 (C), 144.2 (C), 149.5 (C), 151.6 (C), 151.9 (C); LRMS (70 eV, EI) m/z (%) 299 (M+, 100), 

298 (61); HRMS (EI+) calcd for C21H17NO 299.1310, found 299.1310. 

10-(Thiophen-2-yl)-5,10-dihydroindeno[1,2-b]indole (11n): white solid; yield = 80% (115 mg); mp 

137139 ºC; 1H NMR (400 MHz, CDCl3)  5.27 (s, 1H), 6.95 (dd, J = 4.8, 3.8 Hz, 1H), 7.04 (dd, J= 

3.3, 1.0 Hz, 1H), 7.09–7.15 (m, 2H), 7.17–7.24 (m, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.42–7.47 (m, 2H), 

7.49–7.55 (m, 2H), 8.35 (s, 1H); 13C NMR (100.6 MHz, CDCl3)  43.5 (CH), 112.3 (CH), 117.7 (CH), 

119.3 (CH), 120.7 (CH), 122.1 (CH), 123.9 (CH), 124.4 (C), 124.9 (CH), 125.0 (C), 125.6 (CH), 125.8 

(CH), 126.9 (CH), 127.5 (CH), 133.8 (C), 140.8 (C), 142.8 (C), 143.6 (C), 151.6 (C); LRMS (70 eV, 

EI) m/z (%) 287 (M+, 100); HRMS (EI+) calcd for C19H13NS 287.0769, found 287.0768. 

(E)-5-Methyl-10-styryl-5,10-dihydroindeno[1,2-b]indole (11o): white solid; yield = 79% (127 mg); 

mp 125127 ºC; 1H NMR (300 MHz, CDCl3)  4.10 (s, 3H), 4.63 (d, J = 8.4 Hz, 1H), 6.26 (dd, J= 

15.6, 8.4 Hz, 1H), 7.00 (d, J= 15.6 Hz, 1H), 7.167.50 (m, 10H), 7.59 (d, J = 7.4 Hz, 1H), 7.677.75 

(m, 2H); 13C NMR (75.4 MHz, CDCl3)  31.2 (CH3), 46.4 (CH), 110.0 (CH), 117.8 (CH), 119.1 (CH), 

119.9 (CH), 121.5 (CH), 122.9 (C), 124.3 (C), 125.3 (CH), 125.8 (CH), 126.4 (2 × CH), 127.3 (2 × 

CH), 128.6 (2 × CH), 129.5 (CH), 131.7 (CH), 134.8 (C), 137.5 (C), 142.0 (C), 144.1 (C), 151.3 (C); 

LRMS (70 eV, EI) m/z (%) 321 (M+, 100), 320 (26); HRMS (EI+) calcd for C24H19N 321.1517, found 

321.1520. 

5-Methyl-10-propyl-5,10-dihydroindeno[1,2-b]indole (11p): white solid; yield = 69%; mp 130–132 

ºC; 1H NMR (300 MHz, CDCl3) 0.99 (t, J = 7.3 Hz, 3H), 1.48–1.58 (m, 2H), 1.17–1.86 (m, 1H), 

2.12–2.23 (m, 1H), 3.88–3.99 (m, 1H), 4.06 (s, 3H), 7.17–7.22 (m, 1H), 7.23–7.29 (m, 2H), 7.35 (t, J = 

7.4 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.54 (dd, J = 7.4, 0.7 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.71 (dd, 

J = 7.8, 0.6 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  14.6 (CH3), 20.4 (CH2), 31.2 (CH3), 35.7 (CH2), 
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42.9 (CH), 109.9 (CH), 117.7 (CH), 119.6 (CH), 119.7 (CH), 121.2 (CH), 124.4 (C), 124.7 (CH), 124.9 

(CH), 126.7 (CH), 135.0 (C), 142.0 (C), 144.1 (C), 153.1 (2 × C); LRMS (70 eV, EI) m/z (%) 261 (M+, 

21), 218 (100); HRMS (EI+) calcd for C19H19N 261.1517, found 261.1519. 

11-Cyclopropyl-5,10-dimethyl-11-phenyl-10,11-dihydro-5H-cyclopenta[1,2-b:3,4-b']diindole (12a): 

yellow solid; yield = 90% (175 mg); mp 299–301 ºC; 1H NMR (300 MHz, CDCl3)  0.190.11 (m, 

1H), 0.240.33 (m, 1H), 0.911.00 (m, 1H), 1.051.13 (m, 1H), 1.962.04 (m, 1H), 3.70, (s, 3H), 4.20 

(s, 3H), 6.967.08 (m, 2H), 7.177.39 (m, 7H), 7.407.47 (m, 1H), 7.517.62 (m, 2H), 7.857.98 (m, 

1H); 13C NMR (CDCl3, 100.6 MHz)  0.3 (CH2), 5.9 (CH2), 15.4 (CH), 31.2 (CH3), 32.6 (CH3), 54.7 

(C), 109.6 (CH), 110.5 (CH), 111.1 (C), 116.6 (CH), 118.1 (CH), 118.4 (C), 119.5 (CH), 119.6 (C), 

119.9 (CH), 120.5 (CH), 120.7 (CH), 125.6 (C), 126.8 (CH), 126.9 (2 × CH), 128.7 (2 × CH), 139.1 

(C), 140.3 (C), 142.8 (C), 143.9 (C), 160.4 (C); LRMS (70 eV, EI) m/z (%) 388 (M+, 100), 360 (76); 

HRMS (EI+) calcd for C28H24N2 388.1939, found 388.1938. 

11,11-Dicyclopropyl-5,10-dimethyl-10,11-dihydro-5H-cyclopenta[1,2-b:3,4-b']diindole (12b): 

yellow solid; yield = 93% (164 mg); mp 291–293 ºC; 1H NMR (400 MHz, C6D6)  0.13–0.22 (m, 2H), 

0.27–0.32 (m, 2H), 0.34–0,41 (m, 2H), 0.87–0.93 (m, 2H), 1.01–1.08 (m, 2H), 3.38 (s, 3H), 3.41 (s, 

3H), 7.05 (d, J = 8.1 Hz, 1H), 7.08–7.09 (m, 1H), 7.13 (dd, J = 8.1, 1.1 Hz, 1H), 7.19–7.23 (m, 1H), 

7.23–7.29 (m, 2H), 7.69–7.74 (m, 2H); 13C NMR (100.6 MHz, C6D6)  0.8 (2 × CH2), 4.1 (2 × CH2), 

14.8 (2 × CH), 31.2 (CH3), 31.9 (CH3), 52.1 (C), 110.2 (CH), 110.7 (CH), 110.8 (C), 117.0 (C), 118.3 

(CH), 118.6 (CH), 119.9 (CH), 120.3 (C), 120.6 (CH), 120.7 (CH), 120.8 (CH), 127.0 (C), 140.0 (C), 

141.0 (C), 144.4 (C), 160.4 (C); LRMS (70 eV, EI) m/z (%) 352 (M+, 100), 323 (38); HRMS (EI+) 

calcd for C25H24N2 352.1939, found 352.1937. 

9-Methyl-4,4-di-p-tolyl-4,9-dihydrothieno[3',2':4,5]cyclopenta[1,2-b]indole (13a): white solid; yield 

= 75% (152 mg); mp 213–215 ºC; 1H NMR (400 MHz, CDCl3)  2.27 (s, 6H), 3.92 (s, 3H), 7.02 (dd, J 

= 7.9, 0.6 Hz, 4H), 7.067.09 (m, 1H), 7.107.15 (m, 1H), 7.167.19 (m, 1H), 7.207.24 (m, 5H), 

7.317.35 (m, 1H), 7.457.47 (m, 1H); 13C NMR (75.4 MHz, CDCl3)  21.1 (2 × CH3), 31.6 (CH3), 
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60.3 (C), 110.2 (CH), 118.6 (CH), 120.4 (CH), 120.5 (CH), 124.0 (CH), 124.6 (C), 125.3 (CH), 128.0 

(4 × CH), 128.6 (C), 129.1 (4 × CH), 132.2 (C), 136.2 (2 × C), 140.0 (C), 140.7 (C), 141.6 (2 × C), 

160.5 (C); LRMS (70 eV, EI) m/z (%) 405 (M+, 100), 314 (73); HRMS (EI+) calcd for C28H23NS 

405.1551, found 405.1551. 

4-Cyclopropyl-9-methyl-4-phenyl-4,9-dihydrothieno[3',2':4,5]cyclopenta[1,2-b]indole (13b): white 

solid; yield = 80% (136 mg); mp 152154 ºC; 1H NMR (300 MHz, CDCl3)  0.14–0.24 (m, 1H), 0.38–

0.62, (m, 3H), 1.86–1.96 (m, 1H), 3.95 (s, 3H), 7.09 (d, J = 4.9 Hz, 1H), 7.11–7.34 (m, 6H), 7.36 (d, J = 

7.8 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.9 Hz, 2H); 13C NMR (75.4 MHz, CDCl3)  2.4 

(CH2), 3.1 (CH2), 18.3 (CH), 31.6 (CH3), 56.1 (C), 110.2 (CH), 118.7 (CH), 120.2 (CH), 120.3 (CH), 

123.1 (CH), 124.9 (CH), 126.6 (CH), 127.1 (C), 127.2 (2 × CH), 128.5 (2 × CH), 132.1 (C), 140.4 (C), 

141.2 (C), 143.9 (C), 160.0 (C); one aromatic C peak was missing due to overlapping; LRMS (70 eV, 

EI) m/z (%) 341 (M+, 88), 313 (100); HRMS (EI+) calcd for C23H19NS 341.1238, found 341.1238. 

5-Methyl-11,11-di-p-tolyl-6,11-dihydro-5H-benzo[b]carbazole (14a): white solid; yield = 95% (196 

mg); mp 267269 ºC; 1H NMR (400 MHz, acetone-d6)  2.26 (s, 6H), 4.01 (s, 2H), 6.50 (d, J = 8.1 Hz, 

1H), 6.73 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 6.94 7.02 (m, 10H), 7.12–7.17 (m, 1H), 7.20 (dd, J = 7.4, 1.5 

Hz, 1H), 7.33–7.40 (m, 2H), 10.21 (bs, 1H); 13C NMR (100.6 MHz, acetone-d6)  20.8 (2 × CH3), 55.8 

(C), 111.6 (CH), 117.7 (C), 119.4 (CH), 120.5 (CH), 121.0 (CH), 126.3 (CH), 126.5 (CH), 127.9 (C), 

128.9 (4 × CH), 129.2 (CH), 130.3 (4 × CH), 131.1 (CH), 134.9 (C), 135.7 (C), 135.9 (2 × C), 137.6 

(C), 145.2 (2 × C), 146.1 (C); the peak corresponding to the aliphatic CH2 was overlapped by the peak 

of the deuterated solvent; LRMS (70 eV, EI) m/z (%) 399 (M+, 33), 308 (100); HRMS (EI+) calcd for 

C30H25N 399.1987, found 399.1989. 

11-Cyclopropyl-5-methyl-11-phenyl-6,11-dihydro-5H-benzo[b]carbazole (14b): white solid; yield = 

90% (157 mg); mp 239241 ºC; 1H NMR (300 MHz, CDCl3)  0.60.11 (m, 2H), 0.340.50 (m, 2H), 

1.82 (tt, J = 8.2, 5.6 Hz, 1H), 3.79 (s, 3H), 4.24 (s, 2H), 6.62 (d, J = 8.0 Hz, 1H), 6.80 (ddd, J = 8.0, 7.0, 

1.0 Hz, 1H), 6.94 (dd, J = 7.8, 1.4 Hz, 1H), 7.09 (ddd, J = 8.2, 5.3, 1.2 Hz, 1H), 7.14 (dd, J = 7.5, 1.2 
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Hz, 1H), 7.187.38 (m, 6H), 7.63 (d, J = 6.9 Hz, 2H); 13C NMR (75.4 MHz, CDCl3)  2.3 (CH2), 2.9 

(CH2), 23.4 (CH), 27.8 (CH2), 29.5 (CH3), 50.0 (C), 108.7 (CH), 112.5 (C), 118.8 (CH), 120.1 (CH), 

120.6 (CH), 125.7 (CH), 126.0 (CH), 126.2 (CH), 126.6 (C), 127.9 (2 × CH), 128.6 (CH), 129.6 (2 × 

CH), 130.4 (CH), 132.5 (C), 134.2 (C), 137.5 (C), 144.2 (C), 149.6 (C); LRMS (70 eV, EI) m/z (%) 349 

(M+, 30), 260 (100); HRMS (EI+) calcd for C26H23N 349.1830, found 349.183. 

5,11-Dimethyl-11-(thiophen-2-yl)-6,11-dihydro-5H-benzo[b]carbazole (14c): white solid; yield = 

80% (131 mg); mp 179181 ºC; 1H NMR (300 MHz, CDCl3)  2.17 (s, 3H), 3.77 (s, 3H), 4.22 (d, J = 

20.6 Hz, 1H), 4.31 (d, J = 20.6 Hz, 1H), 6.967.04 (m, 2H), 7.157.29 (m, 6H), 7.317.44 (m, 3H); 13C 

NMR (75.4 MHz, CDCl3)  27.2 (CH2), 29.4 (CH3), 31.9 (CH3), 42.9 (C), 108.8 (CH), 115.4 (C), 119.0 

(CH), 119.5 (CH), 121.0 (CH), 124.1 (CH), 124.9 (CH), 125.5 (C), 125.9 (CH), 126.1 (CH), 127.0 

(CH), 128.8 (CH), 129.2 (CH), 130.3 (C), 131.7 (C), 137.8 (C), 144.7 (C), 156.3 (C); LRMS (70 eV, 

EI) m/z (%) 329 (M+, 30), 314 (100); HRMS (EI+) calcd for C22H19NS 329.1238, found 329.1241. 

11-Cyclopropyl-5,11-dimethyl-6,11-dihydro-5H-benzo[b]carbazole (14d): white solid; yield = 80% 

(115 mg); mp 135137 ºC; 1H NMR (400 MHz, CDCl3)  0.010.09 (m, 1H), 0.210.36 (m, 3H), 

1.341.42 (m, 1H), 1.99 (s, 3H), 3.72 (s, 3H), 4.06.16 (m, 2H), 7.087.13 (m, 1H), 7.18 (d, J = 7.3 

Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.267.36 (m, 3H), 7.67 (d, J = 7.9 Hz, 1H), 7.89 (d, J = 7.9 Hz, 1H); 

13C NMR (75.4 MHz, CDCl3)  2.9 (CH2), 3.8 (CH2), 25.9 (CH3), 27.3 (CH), 27.6 (CH2), 29.3 (CH3), 

40.8 (C), 109.0 (CH), 112.8 (C), 118.7 (CH), 120.6 (CH), 121.1 (CH), 125.8 (CH), 126.5 (CH), 127.5 

(CH), 129.0 (CH), 131.6 (C), 133.2 (C), 137.7 (C), 144.7 (C), one aromatic carbon peak was missing 

due to overlapping; LRMS (70 eV, EI) m/z (%) 287 (M+, 28), 246 (100); HRMS (EI+) calcd for 

C21H21N 287.1674, found 287.1671. 

11-(4-Methoxyphenyl)-5-methyl-6,11-dihydro-5H-benzo[b]carbazole (14e): white solid; yield = 84% 

(142 mg); mp 239241 ºC; 1H NMR (300 MHz, CDCl3)  3.76 (s, 3H), 3.77 (s, 3H), 4.16 (dd, J = 20.5, 

4.0 Hz, 1H), 4.34 (dd, J = 20.5, 4.0 Hz, 1H), 5.42 (t, J = 4.0 Hz, 1H), 6.81 (d, J = 8.5 Hz, 2H), 7.02 (t, J 

= 7.4 Hz, 1H), 7.157.29 (m, 7H), 7.33 (d, J = 8.2 Hz, 1H), 7.367.43 (m, 1H); 13C NMR (75.4 MHz, 
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CDCl3)  27.2 (CH2), 29.4 (CH3), 44.1 (CH), 55.2 (CH3), 108.6 (CH), 111.0 (C), 113.9 (2 × CH), 118.9 

(CH), 119.1 (CH), 121.0 (CH), 126.0 (CH), 126.3 (C), 126.7 (CH), 129.3 (CH), 129.6 (2 × CH), 130.5 

(CH), 131.7 (C), 132.8 (C), 137.7 (C), 139.2 (C), 139.7 (C), 157.9 (C); LRMS (70 eV, EI) m/z (%) 339 

(M+, 25), 337 (100); HRMS (EI+) calcd for C24H21NO 339.1623, found 339.1622. 

11-(4-Methoxyphenyl)-6,11-dihydro-5H-benzo[b]carbazole (14f): white solid; yield = 98% (159 

mg); mp 180182 ºC; 1H NMR (400 MHz, CDCl3)  3.73 (s, 3H), 4.14 (dd, J = 20.4, 4.0 Hz, 1H), 4.32 

(dd, J = 20.4, 3.8 Hz, 1H), 5.39 (at, J = 3.8 Hz, 1H), 6.73–6.82 (m, 2H), 6.94–6.99 (m, 1H), 7.08–7.13 

(m, 1H), 7.15–7.32 (m, 8H), 7.85 (bs, 1H); 13C NMR (75.4 MHz, CDCl3)  28.1 (CH2), 44.0 (CH), 55.3 

(CH3), 110.6 (CH), 112.3 (C), 114.0 (2 × CH), 119.1 (CH), 119.5 (CH), 121.6 (CH), 126.1 (CH), 126.7 

(CH), 126.9 (C), 129.1 (CH), 129.6 (2 × CH), 130.6 (CH), 131.3 (C), 131.9 (C), 136.6 (C), 138.9 (C), 

139.6 (C), 158.0 (C); LRMS (70 eV, EI) m/z (%) 325 (M+, 94), 218 (100); HRMS (EI+) calcd for 

C23H19NO 325.1467, found 325.1468. 

5-Methyl-11-(thiophen-2-yl)-6,11-dihydro-5H-benzo[b]carbazole (14g): yellow solid; yield = 75% 

(118 mg); mp 163165 ºC; 1H NMR (300 MHz, CDCl3)  3.76 (s, 3H), 4.15 (dd, J = 20.3, 3.7 Hz, 1H), 

4.28 (dd, J = 20.3, 3.7 Hz, 1H), 5.61 (t, J = 3.7 Hz, 1H), 6.73 (dd, J = 4.9, 1.1 Hz, 1H), 7.03 (t, J = 7.5 

Hz, 2H), 7.11 (dd, J = 4.9, 2.9 Hz, 1H), 7.16–7.44 (m, 8H); 13C NMR (75.4 MHz, CDCl3)  27.3 (CH2), 

29.5 (CH3), 40.0 (CH), 108.8 (CH), 110.3 (C), 118.8 (CH), 119.1 (CH), 120.8 (CH), 121.1 (CH), 125.8 

(CH), 126.2 (CH), 126.4 (C), 126.7 (CH), 127.9 (CH), 129.4 (CH), 130.2 (CH), 132.0 (C), 132.9 (C), 

137.7 (C), 138.6 (C), 147.2 (C); LRMS (70 eV, EI) m/z (%) 315 (M+, 100), 232 (97); HRMS (EI+) 

calcd for C21H17NS 315.1082, found 315.1083. 

(E)-5-Methyl-11-styryl-6,11-dihydro-5H-benzo[b]carbazole (14h): yellow solid; yield = 85% (142 

mg); mp 159161 ºC; 1H NMR (400 MHz, CDCl3)  3.77 (s, 3H), 4.13 (dd, J = 20.4, 3.8 Hz, 1H), 4.22 

(dd, J = 20.3, 3.7 Hz, 1H), 5.04–5.10 (m, 1H), 6.24 (dd, J = 15.6, 9.0 Hz, 1H), 6.79 (d, J = 15.6 Hz, 

1H), 7.08 (t, J = 7.5 Hz, 1H), 7.167.24 (m, 2H), 7.247.31 (m, 4H), 7.327.41 (m, 4H), 7.507.57 (m, 

1H), 7.69 (d, J = 7.9 Hz, 1H); 13C NMR (100.6 MHz, CDCl3)  27.2 (CH2), 29.5 (CH3), 42.9 (CH), 
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108.4 (C), 108.8 (CH), 119.17 (CH), 119.19 (CH), 121.2 (CH), 126.5 (3 × CH), 126.7 (CH), 126.8 (C), 

127.2 (CH), 128.6 (2 × CH), 129.3 (CH), 129.5 (CH), 130.4 (CH), 132.1 (C), 132.9 (C), 134.4 (CH), 

137.3 (C), 137.6 (C), 137.7 (C); LRMS (70 eV, EI) m/z (%) 335 (M+, 63), 333 (100); HRMS (EI+) 

calcd for C25H21N 335.1674, found 335.1674. 

11-Cyclopropyl-11-phenyl-6,11-dihydroindolo[1,2-b]isoquinoline (15a): yellow solid; yield = 30% 

(50 mg); mp 163–165 ºC; 1H NMR (300 MHz, CDCl3)  0.08–0.16 (m, 1H), 0.28–0.36 (m, 1H), 0.67–

0.77 (m, 2H), 1.70–1.79 (m, 1H), 4.86 (d, J = 15.2 Hz, 1H), 5.26 (d, J = 15.2 Hz, 1H), 6.49 (s, 1H), 

7.14–7.42 (m, 10H), 7.47 (d, J = 8.1 Hz, 1H), 7.61–7.74 (m, 2H); 13C NMR (75.4 MHz, CDCl3)  1.0 

(CH2), 1.9 (CH2), 20.3 (CH), 45.1 (C), 50.1 (CH2), 99.9 (CH), 108.8 (CH), 119.7 (CH), 120.6 (CH), 

120.9 (CH), 126.4 (CH), 126.6 (CH), 126.7 (CH), 127.4 (CH), 127.5 (2 × CH), 128.2 (CH), 128.3 (C), 

130.0 (2 × CH), 133.3 (C), 135.6 (C), 142.2 (C), 142.6 (C), one aromatic carbon peak was missing due 

to overlapping; LRMS (70 eV, EI) m/z (%) 335 (M+, 84), 294 (100); HRMS (EI+) calcd for C25H21N 

335.1674, found 335.1677. 

11,11-Dimethyl-6,11-dihydroindolo[1,2-b]isoquinoline (15b): yellow oil; yield = 46% (57 mg); Rf = 

0.23 (hexane/EtOAc, 4/1); 1H NMR (400 MHz, CDCl3)  1.73 (s, 6H), 5.30 (s, 2H), 6.47 (s, 1H), 7.12–

7.20 (m, 1H), 7.21–7.26 (m, 1H), 7.267.32 (m, 1H), 7.35 (d, J = 6.8 Hz, 1H), 7.38 (d, J = 7.1 Hz, 1H), 

7.43 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.64 (dd, J = 7.8, 0.7 Hz, 1H); 13C NMR (100.6 

MHz, CDCl3)  30.3 (2 × CH3), 36.5 (C), 44.8 (CH2), 95.1 (CH), 108.7 (CH), 119.8 (CH), 120.4 (CH), 

120.7 (CH), 124.7 (CH), 126.4 (CH), 126.6 (CH), 128.0 (CH), 128.7 (C), 131.2 (C), 135.8 (C), 142.5 

(C), 145.3 (C); LRMS (70 eV, EI) m/z (%) 247 (M+, 19), 232 (100); HRMS (EI+) calcd for C18H17N 

247.1361, found 247.1360. 

11-(4-Methoxyphenyl)-6,11-dihydroindolo[1,2-b]isoquinoline (15c): yellow solid; yield = 52% (85 

mg); mp 138–140 ºC; 1H NMR (300 MHz, CDCl3)  3.80 (s, 3H), 5.31 (s, 2H), 5.46 (s, 1H), 6.28 (d, J 

= 0.8 Hz, 1H), 6.86 (d, J = 8.3 Hz, 2H), 7.107.21 (m, 3H), 7.227.36 (m, 4H), 7.377.44 (m, 1H), 

7.47 (d, J = 8.1 Hz, 1H), 7.61 (dd, J = 7.8, 0.6 Hz, 1H); 13C NMR (75.4 MHz, CDCl3)  44.5 (CH2), 
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44.9 (CH), 55.4 (CH3), 98.4 (CH), 108.9 (CH), 114.1 (2 × CH), 119.9 (CH), 120.4 (CH), 120.8 (CH), 

126.5 (CH), 126.8 (CH), 127.7 (CH), 128.8 (C), 129.0 (CH), 129.7 (2 × CH), 131.8 (C), 135.2 (C), 

135.7 (C), 136.9 (C), 139.3 (C), 158.5 (C); LRMS (70 eV, EI) m/z (%) 325 (M+, 100), 217 (30); HRMS 

(EI+) calcd for C23H19NO 325.1467, found 325.1466. 

11-(4-Methoxyphenyl)-11,12-dimethyl-6,11-dihydroindolo[1,2-b]isoquinoline (15d): yellow solid; 

yield = 56% (99 mg); mp 124–126 ºC; 1H NMR (400 MHz, CDCl3,)  1.79 (s, 3H), 1.95 (s, 3H), 3.80 

(s, 3H), 5.26 (d, J = 15.7 Hz, 1H), 5.39 (d, J = 15.7 Hz, 1H), 6.79–6.84 (m, 2H), 7.01 (dd, J = 7.7, 1.5 

Hz, 1H), 7.12–7.16 (m, 1H), 7.18 (dd, J = 7.3, 1.5 Hz, 1H), 7.20–7.27 (m, 4H), 7.32–7.35 (m, 1H), 7.44 

(d, J = 8.1 Hz, 1H), 7.50–7.54 (m, 1H); 13C NMR (75.4 MHz, CDCl3)  9.2 (CH3), 29.3 (CH3), 44.5 

(CH2), 55.2 (CH3), 105.6 (C), 108.7 (CH), 113.4 (2 × CH), 118.2 (CH), 119.3 (CH), 120.9 (CH), 126.1 

(CH), 126.2 (CH), 127.6 (CH), 128.3 (CH), 129.4 (2 × CH), 129.7 (C), 129.9 (C), 134.6 (C), 138.7 (C), 

139.7 (C), 143.3 (C), 157.9 (C); LRMS (70 eV, EI) m/z (%) 353 (M+, 55), 338 (100); HRMS (EI+) 

calcd for C25H23NO 353.1780, found 353.1782. 

11-(4-Methoxyphenyl)-11-methyl-6,11-dihydroindolo[1,2-b]isoquinoline (15e): yellow oil; yield = 

65% (110 mg); Rf = 0.20 (hexane/EtOAc, 5/1); 1H NMR (300 MHz, CDCl3)  2.11 (s, 3H), 3.76 (s, 

3H), 4.83 (d, J = 15.2 Hz, 1H), 5.25 (d, J = 15.2 Hz, 1H), 6.47 (s, 1H), 6.72–6.76 (m, 2H), 6.97–7.00 

(m, 2H), 7.14–7.19 (m, 1H), 7.23–7.45 (m, 5H), 7.55 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H); 13C 

NMR (75.4 MHz, CDCl3)  28.1 (CH3), 44.97 (CH2), 45.03 (C), 55.3 (CH3), 97.6 (CH), 108.7 (CH), 

113.4 (2 × CH), 119.7 (CH), 120.6 (CH), 120.9 (CH), 126.2 (CH), 126.6 (2 × CH), 127.7 (CH), 128.5 

(2 × CH), 133.3 (C), 135.8 (C), 138.6 (C), 142.4 (C), 144.2 (C), 158.0 (C); LRMS (70 eV, EI) m/z (%) 

339 (M+, 100), 324 (28); HRMS (EI+) calcd for C24H21NO 339.1623, found 339.1623. 

12-Methyl-11,11-di-p-tolyl-6,11-dihydroindolo[1,2-b]isoquinoline (15f): yellow solid; yield = 63% 

(130 mg); mp 129–131 ºC; 1H NMR (300 MHz, CDCl3)  1.58 (s, 3H), 2.34 (s, 6H), 4.93 (s, 2H), 6.83–

6.89 (m, 4H), 7.01–7.08 (m, 4H), 7.13 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H), 7.19–7.28 (m, 3H), 7.29–7.35 (m, 

1H), 7.37–7.42 (m, 1H), 7.56–7.60 (m, 1H); 13C NMR (75.4 MHz, CDCl3)  9.5 (CH3), 21.1 (2 × CH3), 
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44.7 (CH2), 56.6 (C), 107.9 (C), 108.4 (CH), 118.7 (CH), 118.9 (CH), 121.1 (CH), 126.2 (CH), 126.5 

(CH), 126.9 (CH), 128.8 (4 × CH), 129.7 (CH), 129.8 (C), 130.2 (4 × CH), 133.9 (C), 134.4 (C), 136.3 

(2 × C), 137.6 (C), 141.1 (2 × C), 143.8 (C); LRMS (70 eV, EI) m/z (%) 413 (100); HRMS (EI+) calcd 

for C31H27N 413.2143, found, 413.2142. 

11-Isopropyl-12-methyl-6,11-dihydroindolo[1,2-b]isoquinoline (15g): yellow solid; yield= 60% (83 

mg); mp 120–122 ºC; 1H NMR (400 MHz, CDCl3)  0.89–1.00 (m, 6H), 2.07–2.17 (m, 1H), 2.41 (s, 

3H), 4.07 (dd, J = 6.2, 3.5 Hz, 1H), 5.18 (dd, J = 15.5, 2.3 Hz, 1H), 5.31 (dd, J = 15.5, 2.5 Hz, 1H), 

7.12–7.46 (m, 7H), 7.59–7.65 (m, 1H); 13C NMR (75.4 MHz, CDCl3)  9.4 (CH3), 20.4 (CH3), 20.8 

(CH3), 37.0 (CH2), 45.5 (CH), 45.7 (CH), 105.3 (C), 108.4 (CH), 118.5 (CH), 118.9 (CH), 120.6 (CH), 

126.4 (CH), 126.5 (CH), 126.9 (CH), 129.3 (C), 129.8 (CH), 133.3 (C), 134.7 (C), 135.4 (C), 136.9 

(C); LRMS (70 eV, EI) m/z (%) 275 (M+, 14), 232 (100); HRMS (EI+) calcd for C20H21N 275.1674, 

found, 275.1675. 

Acknowledgments. We gratefully acknowledge the Ministerio de Economía y Competitividad 

(MINECO) and FEDER (CTQ2013-48937-C2-1-P) and Junta de Castilla y León (BU237U13) for 

financial support. M. G. thanks the MEC for a “Young Foreign Researchers” contract (SB2006-0215). 

Supporting Information Available. Copies of 1H and 13C NMR spectra of all products. This material 

is available free of charge via the Internet at http://pubs.acs.org. 

 

References 

(1) For recent reviews, see: (a) Ishikura, M.; Yamada, K. Nat. Prod. Rep. 2009, 26, 803–852. (b) 

Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489–4497. (c) Zhang, M.-Z.; 

Chen, Q.; Yang, G.-F. Eur. J. Med. Chem. 2015, 89, 421–441. 

(2) For selected revisions on indole synthesis or functionalization see: (a) Barluenga, J.; Rodríguez, 

F.; Fañanás, F. J. Chem. Asian J. 2009, 4, 1036–1048. (b) Bandini, M.; Eichholzer, A. Angew. Chem. 



 

32

Int. Ed. 2009, 48, 9608–9644. (c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215–PR283. (d) 

Shiri, M. Chem. Rev. 2012, 112, 3508–3549. (e) Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29–41. 

(3) For a revision on synthesis and applications of indenoindoles see: Rongved, P.; Kirsch, G.; 

Bouaziz, Z.; Jose, J.; Le Borgne, M. Eur. J. Med. Chem., 2013, 69, 465–479. 

(4) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688–3690. 

(5) (a) Talaz, O.; Gülçin, I.; Göksu, S.; Saracoglu, N. Bioorg. Med. Chem. 2009, 17, 6583–6589. (b) 

Kashyap, M.; Das, D.; Preet, R.; Mohapatra, P.; Satapathy, S. R.; Siddharth, S.; Kundu, C. N.; 

Guchhait, S. K. Bioorg. Med. Chem. Lett. 2012, 22, 2474–2479. 

(6) Grandini, C.; Camurati, I.; Guidotti, S.; Mascellani, N.; Resconi, L. Organometallics 2004, 23, 

344–360. 

(7) (a) Xu, H.-Y.; Xu, X.-P.; Wang, S.-Y.; Ji, S.-J. Eur. J. Org. Chem. 2012, 5440–5445. (b) Das, D.; 

Pratihar, S.; Roy, S. Org. Lett. 2012, 14, 4870–4873. (c) Oh, C. H.; Park, H. S.; Park, N.; Kim, S. Y.; 

Piao, L. Synlett 2014, 25, 579–585. (d) Chu, X.-Q.; Zi, Y.; Lu, X.-M.; Wang, S.-Y.; Ji, S.-J.; 

Tetrahedron 2014, 70, 232–238. (e) Kotha, S.; Ali, R.; Srinivas, V.; Krishna, N. G. Tetrahedron 2015, 

71, 129–138. 

(8) For the synthesis of related indenoindolones see: (a) Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V. 

Chem. Commun. 2010, 46, 150–152. (b) Jiang, B.; Li, Q.-Y.; Tu, S.-J.; Li, G. Org. Lett. 2012, 14, 5210–

5213. 

(9) Very recently the synthesis of 10-aryl-5,10-dihydroindeno[l,2-b]indoles was described including 

few compounds possessing a quaternary 10th carbon bearing a methyl and an aryl group: Reddy, A. G. 

K.; Satyanarayana, G. Synthesis 2015, 47, 1269–1279. 

(10) (a) Sanz, R.; Ignacio, J. M.; Castroviejo, M. P.; Fañanás, F. J. ARKIVOC 2007, (iv), 84–91. (b) 

Takaya, J.; Udagawa, S.; Kusama, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2008, 47, 4906–4909. (c) 

Zhou, J.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Tetrahedron 2009, 65, 6877–6881. (d) Suarez, L. L.; 

Greany, M. F. Chem. Commun. 2011, 47, 7992–7994. (e) Swami, A.; Ramana, C. Synlett 2015, 26, 604–

608. 



 

33

(11) For a review on the direct nucleophilic SN1-type reactions of alcohols, see: Emer, E.; Sinisi, R.; 

Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647666. 

(12) For recent examples, see: (a) Zhang, L.; Zhu, Y.; Yin, G.; Lu, P.; Wang, Y. J. Org. Chem. 2012, 

77, 95109520. (b) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. B. Tetrahedron Lett. 2012, 53, 

47044707. (c) Hikawa, H.; Suzuki, H.; Azumaya, I. J. Org. Chem. 2013, 78, 1212812135. 

(13) See, for instance: (a) Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311314. (b) Motokura, 

K.; Nakagiri. N.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 60066015. (c) Liu, 

Y.-L.; Liu, L.; Wang, Y.-L.; Han, Y.-C.; Wang, D.; Chen, Y.-J. Green Chem. 2008, 10, 635640. 

(14) For recent examples, see: (a) Putra, A. E.; Takigawa, K.; Tanaka, H.; Ito, Y.; Oe, Y.; Ohta, T. 

Eur. J. Org. Chem. 2013, 63446354. (b) Hakim Siddiki, S. M. A.; Kon, K.; Shimizu, K.-i. Chem. Eur. 

J. 2013, 19, 1441614419. (c) Chen, S.-j.; Lu, G.-p.; Cai, C. Synthesis 2014, 46, 17171724. 

(15) (a) Sanz, R.; Martínez, A.; Miguel, D.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Adv. Synth. Catal. 

2006, 348, 18411845. (b) Sanz, R.; Miguel, D.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Synlett 2008, 

975978. (c) Sanz, R.; Miguel, D.; Martínez, A.; Gohain, M.; García-García, P.; Fernández-Rodríguez, 

M. A.; Álvarez, E.; Rodríguez, F. Eur. J. Org. Chem. 2010, 70277039. 

(16) See, for instance: (a) Huang, W.; Zheng, P.; Zhang, Z.; Liu, R.; Chen, Z.; Zhou, X. J. Org. Chem. 

2008, 73, 68456848. (b) Bandini, M.; Tragni, M.; Umani-Ronchi, A. Adv. Synth. Catal. 2009, 351, 

25212524. (c) Kumar Das, S.; Singh, R.; Panda, G. Eur. J. Org. Chem. 2009, 47574761. (d) 

Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M. Org. Lett. 2011, 13, 53145317. (e) Sarkar, S.; 

Maiti, S.; Bera, K.; Jalal, S.; Jana, U. Tetrahedron Lett. 2012, 53, 55445547. (f) Zheng, H.; Ghanbari, 

S.; Nakamura, S.; Hall, D. G. Angew. Chem. Int. Ed. 2012, 51, 61876190. (g) Nammalwar, B.; Bunce, 

R. A. Tetrahedron Lett. 2013, 54, 43304332. 

(17) For metal-catalyzed examples, see: (a) Namba, K.; Yamamoto, H.; Sasaki, I.; Mori, K.; Imagawa, 

H.; Nishizawa, M. Org. Lett. 2008, 10, 17671770. (b) Bandini, M.; Eichholzer, A. Angew. Chem. Int. 

Ed. 2009, 48, 95339537. (c) Bandini, M.; Bottoni, A.; Chiarucci, M.; Cera, G.; Miscione, G. P. J. Am. 



 

34

Chem. Soc. 2012, 134, 2069020700. (d) Wong, C. M.; Vuong, K. Q.; Gatus, M. R. D.; Hua, C.; 

Bhadbhade, M. Organometallics 2012, 31, 75007510. 

(18) Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Org. Biomol. Chem. 2014, 12, 60336048. 

(19) Jefferies, L. R.; Cook, S. P. Org. Lett. 2014, 16, 20262029. 

(20) Notably, the cyclopenta[1,2-b]indole is a key structural motif of wide range of biological active 

products. See for instance: (a) Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, 

H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. Org. Lett. 2012, 14, 33643367. (b) Harms, H.; 

Rempel, V.; Kehraus, S.; Kaiser, M.; Hufendiek, P.; Müller, C. E.; König, G. M. J. Nat. Prod. 2014, 77, 

673677. 

(21) So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem. Int. Ed. 2008, 47, 80598063. 

(22) Heany, H.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1973, 499500. 

(23) Wiedenou, P.; Blechert, S. Synth. Commun. 1997, 27, 20332039. 

(24) Liang, Z.; Zhao, J.; Zhang, Y. J. Org. Chem. 2010, 75, 170177. 


