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ABSTRACT 

Colorimetric cation responsive water soluble polymers and manageable films or 

membranes have been designed. The sensory materials respond with a colour change to 

the presence in water of Fe(III), Co(II), Cu(II), and Sn(II). The colour change is specific 

of each metal cation, and enables its identification (purple for iron, orange for cobalt, 

green for copper, and yellow for tin). The design of the materials relies on an addition 

monomer having a terpyridine moiety, which behaves as a dye in presence of transition 

metal cations due to its proven chelating capability toward these species and the colour 

development that always accompany the metallic complex formation. Water solutions 

of the sensory linear polymers allow for the UV/vis titration of Fe(III), Co(II), Cu(II), 
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and Sn(II) with a limit of detection of 1.3x10-7, 6.4x10-8, 1.3x10-5 and 1.4x10-5 M, 

respectively. On the other hand, sensory kits, cut from sensory membranes, permitted 

the visual quantification of the cations in a dynamic range of five decades (1x10-7 - 

5x10-3 M) for Fe(III) and Co(II) and of two decades (9x10-5 - 9x10-3 M) for Cu(II) and 

Sn(II). Titration curves can also be drawn from a picture taken to the sensory kits with a 

smartphone, by using the digital colour definition of the materials as analytical signal. 

Also, after entering into contact with hands, shapes of metallic objects (iron and cobalt 

containing tools) can be colour revealed by pressing the hands on paper or cotton fabrics 

wetted with water solutions of the linear sensory polymer. 

Keywords 

Sensory polymers, terpyridine, cation detection, forensic applications 

1. INTRODUCTION

The costless, in-situ, and fast detection and quantification of transition metal cations in 

pure water are of the utmost environmental, industrial, and health importance. 

Traditional techniques, such as atomic absorption spectroscopy (AAS) or inductively 

coupled plasma mass spectrometry (ICP-MS), enable the selective and precise detection 

and quantification of the mentioned chemical species. However, they are heavy, bulky, 

extremely expensive techniques and require trained personnel. On the other hand, 

chemical sensors have become a simple species detection method for non-trained 

personnel, especially if the transduction is chromogenic (i.e., by a colour change) and 

the detection can be carried out visually. 

Chemical sensors are an emerging technology with expanding applicability to a 

number of fields, such as civil security, environmental control and remediation, 

medicine, and industrial control. Moreover, sensory polymers, which are 
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macromolecules that have receptor motifs (or binding sites) in their structure, represent 

a step further and show significant advances over discrete (or low molecular mass) 

chemosensors. Thus, polymers can be prepared or transformed into films, coatings or 

finished sensory materials with different shapes. Distinct polymer geometries are 

achievable (linear, spherical, and tridimensional crosslinked network). They can be 

easily designed to work in hydrophobic or hydrophilic environments and can be used to 

sense both vapours and liquids. Also, they exhibit collective properties sensitive to 

minor perturbations. Finally, their sensory moieties cannot migrate with the 

concomitant increase in the performance stability along time, improve in the thermal 

and chemical resistance, and can be easily reused. 

Chemosensory polymers following a research methodology based on a 

guaranteed of success strategy have been prepared. That is to say, once chemical species 

to be detected are selected, the so-called targets, fully confident receptors for such 

targets are looked in scientific literature to find, usually, discrete organic molecules that 

are insoluble in water; then, their chemical structure is slightly modified by including a 

polymerizable group; and finally it is copolymerized with commercial hydrophilic and 

hydrophobic monomers to have water soluble linear polymers and crosslinked 

membranes with gel structures that allow for the detection in 100% water. The target 

species for this work are transition metal cations (Fe(III), Co(II), Cu(II) and Sn(II)), and 

the receptor core is based on a terpyridine (2,2’:6’,2’’-terpyridine, tpy) motif.  

Morgan and Burstal isolated tpy and described its purple complex with iron(II) 

in the 1930s [1]. Since then tpy has become one of the most used ligands with multiple 

applications in different research and technological areas, such as coordination 

polymers [2-4]; sensors for anion [5-8], cations [9-17], both[18,19], and biomolecules 
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[20,21]; gelation and solvochromic sensors [22]; luminescent converters [23-25]; 

photon harvesting [26] and catalysis [27]. Terpyridine derivatives are multivalent 

pyridine ligands that exhibit strong binding affinity toward a broad set of transition 

metal cations. This extremely strong interactions come both from the d-d* back 

bonding of the cations to the N-heterocycle rings and from the chelate effect [28,29]. 

Here, the tpy structure has been modified with a polymerizable methacrylamide 

group and two kind of chromogenic sensory materials have been prepared: linear 

polymers and solid film-shaped dense membranes comprised of crosslinked polymer 

networks. The tpy-monomer (~1% mol) was copolymerized with a balance of 

hydrophilic and hydrophobic commercial co-monomers (~99% mol) to give linear 

copolymers and networks (membranes). The linear polymers are water soluble. The 

membranes are solid, exhibit gel behaviour, and can be used to prepare manageable 

solid sensory kits. Both type of materials respond with development of different colour 

depending on the presence of Fe(III), Co(II), Cu(II) and Sn(II) in 100% water under 

controlled acidic conditions. The detection in 100% water is relevant for real-life 

environmental applications, whereas the acidic conditions avoid the analytical 

complexity of dealing with presence of different species of each cation (for instance, for 

iron at pH 2 only Fe3+ species are present, while at pH > 2 there are different equilibria 

of Fe3+, Fe(OH)2+, Fe(OH)2
+, and Fe(OH)3). Also, the usual presence in most research 

studies of organic solvents, due to the insolubility in water of conventional probes, 

influence the selectivity of the tpy core [30]. 

2. EXPERIMENTAL PART

2.1. Materials 
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All materials and solvents were commercially available and used as received, unless 

otherwise indicated: 2-acetylpyridine (98%, Alfa Aesar), iodine (≥ 99.8%, Sigma-

Aldrich), 4-nitrobenzaldehyde (99% Alfa Aesar), ammonium acetate (97%, Alfa Aesar), 

tin chloride anhydrous (98% , Alfa Aesar), methacryloyl chloride (97%, Alfa Aesar), 

triethylamine (TEA) (≥ 99%, Aldrich), pyridine (≥ 99%, Probus), sodium hydroxide 

(99.9%, VWR-Prolabo), hydrochloric acid (37%, VWR-Prolabo), N-methyl-2-

pyrrolidone (NMP) (99%, Aldrich), ethanol (99.97%, VWR-Prolabo), diethyl ether (≥ 

99,5%, Aldrich), SnCl2 anhydrous (98%, Alfa Aesar), Fe(NO3)3·9H2O (VWR-Prolabo), 

Cu(NO3)2·3H2O (98%, Sigma-Aldrich), Co(NO3)2·6H2O (≥ 99%, Labkem), NaCl (≥ 

99%, Sigma-Aldrich), KCl (99.5%, Scharlau), Al(NO3)2·9H2O (≥ 989%, Sigma-

Aldrich), Pb(NO3)2 (≥ 99%, Fluka), LiCl (≥ 99%, Sigma-Aldrich), Zn(NO3)2·6H2O 

(98%, Aldrich), Mg(NO3)2·6H2O (≥ 99%, Labkem), Cd(NO3)2 (98.5%, Alfa Aesar), 

Ni(NO3)2·6H2O (98.5%, Sigma-Aldrich), methyl methacrylate (MMA) (99%, Aldrich), 

1-vinyl-2-pyrrolidone (VP) (≥ 99%, Sigma-Aldrich), ethylene glycol dimethacrylate

(EGDMMA) (98%, Sigma-Aldrich), Azo-bis-isobutyronitrile (AIBN, ≥ 98%, Aldrich) 

was recrystallised twice from methanol. 

2.2. Instrumentation and measurements 

1H and 13C NMR spectra were recorded with a Varian Inova 400 spectrometer operating 

at 399.92 and 100.57 MHz, respectively, with deuterated chloroform (CDCl3) as the 

solvent.  

UV/vis spectra were recorded using a Hitachi U-3900 UV/vis 

spectrophotometer.  
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Infrared spectra (FT-IR) were recorded with a FT/IR-4200 FT-IR Jasco 

spectrometer with an ATR-PRO410-S single reflection accessory. Low-resolution 

electron impact mass spectra (EI-LRMS) were obtained at 70 eV on an Agilent 6890N 

mass spectrometer. Thermogravimetric analysis (TGA) data were recorded for a 5-mg 

sample under a nitrogen or oxygen atmosphere on a TA Instrument Q50 TGA analyser 

at a scan rate of 10ºC min-1. The limiting oxygen index (LOI) was estimated using the 

following experimental Van Krevelen equation: LOI = 17.5 + 0.4 CR, where CR is the 

char yield weight percentage at 800ºC, which was obtained from the TGA 

measurements under a nitrogen atmosphere. 

The water-swelling percentage (WSP) of the membrane was obtained from the 

weights of a dry sample membrane (ωd) and a water-swelled sample membrane (ωs) as 

follows: 100 x [(ωs-ωd)/ωd] (the membrane was immersed in pure water at 20ºC until 

the swelled equilibrium was achieved). 

To determine the tensile properties of the polymer films (membranes), strips (5 

mm in width and 30 mm in length) were cut from polymer films of 112 and 115µm 

thickness for Mem1 and Mem2, respectively, on a SHIMADZU EZ Test Compact 

Table-Top Universal Tester at 20ºC. Mechanical clamps were used and an extension 

rate of 5 mm min-1 was applied using a gauge length of 9.44 mm. At least 6 samples 

were tested for each polymer, and the data was then averaged. 

The limit of detection (LOD) and limit of quantification were estimated by the 

following equations: LOD = 3.3 x SD/s and LOQ = 10 x SD/s, where SD is the standard 

deviation of a blank sample and s is the slope of the calibration curve in a region of low 

concentration of target species. 
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The qualitative and quantitative chromogenic responses of sensory squares 

(~5x5 mm) cut from membranes (Mem1 and Mem2) toward Fe(III), Co(II), Cu(II) and 

Sn(II) in water solution were studied by immersing the squares in a number of sealed 

vials with 1 mL of buffered water, containing each vial a known concentration of one of 

the target cations (pH = 2, buffer: KCl-HCl). The resident time was 24 hours and the 

temperature 25 °C. The qualitative evaluation of the sensing performance of the 

materials was carried out visually. On the other hand, the quantitative study was 

performed using a digital picture of the sensory squares taken with a smartphone by 

treatment of the colour definition data of each disc (RGB parameters, R = purple, G = 

green, B = blue). These parameters were obtained for each square directly after taking 

the photograph of the set squares through using the app called ColourMeter of a 

conventional Android smartphone (for each square 121 (11 × 11) pixels were averaged). 

The three RGB parameters were reduced to one variable (PC1, principal component 1), 

using principal component analysis (PCA), which provided an account of >78% of the 

information on the three RGB parameters, thus allowing for the elaboration of simple 

2D titration curves ([cation] vs. PC1) with concomitant noise reduction, without a 

significant loss of information, and with independence of the type of camera, lighting, 

quality of the image and so on [31,32].  

2.3. Synthesis of sensory monomer 

The sensory monomer containing the tpy-motif (5) was prepared according with the 

procedure schematically shown in Scheme 1.  

Scheme 1. 



Accepted manuscrip. Published manuscrip link: 
http://www.sciencedirect.com/science/article/pii/S0925400515306948 
doi:10.1016/j.snb.2015.11.116 

8 

Synthesis of 3-(4-nitrophenyl)-1-(pyridine-2-yl)prop-2-en-1-one (1). 2.5 mL of an 

aqueous solution of 10% NaOH was added to a suspension of 6.25 g (41.4 mmol) of 4-

nitrobenzaldehyde in 50 mL of ethanol. To the resulting mixture cooled at 0 ºC, 5.0 g 

(41.2 mmol) of 2-acetylpyridine was added dropwise for 3 h. The solution was stirred at 

0 ºC for 2 h. The precipitate formed was collected by filtration and washed with ethanol. 

Yield 6.91 g (66%). 1H NMR H (400 MHz, CDCl3, Me4Si): 8.75 (1H, d, J 4.7 Hz, 

pyridyl-H); 8.42 (1H, d, J 16.1 Hz, CH=CH); 8.26 (2H, d, J 8.8 Hz, Ph); 8.19 (1H, d, J 

7.9 Hz, pyridyl-H); 7.91 (1H, d, J 16.1 Hz, CH=CH); 7.90 (1H, td, J 7.7 Hz, 1.7 Hz, 

pyridyl-H); 7.85 (2H, d, J 8.9 Hz, Ph); 7.52 (1H,ddd, J 7.5 Hz, 4.7 Hz, 1.2 Hz, pyridyl-

H). 13C NMR, C (100.6 MHz, CDCl3, Me4Si): 189.06, 153.73, 149.11, 148.67, 141.44, 

141.36, 137.32, 129.36, 127.46, 124.94, 124.25, 123.20. EI-LRMS (m/z (%)): 255.07 

(18), 254.07 (M+, 100), 226.07 (23), 225.06 (68), 180.07 (18), 179.07 (31), 130.04 (16), 

102.04 (29), 79.03 (19), 78.03 (20). FTIR [Wavenumbers (cm-1)]: ar C-H: 3075; C=O: 

1671; C=N: 1578; as NO2: 1511; s NO2: 1334. 

Synthesis of 1-pyridylacylpyridinium iodide (2). To a solution of 2 g (15.6 mmol) of 2-

acetylpyridine in 20 mL of pyridine 4.60 g (17.6 mmol) of I2 was added and heated at 

100 ºC under N2 atmosphere for 3 h. The mixture was then cooled at room temperature 

and filtered off and washed with ether. The dry solid was then washed with ethanol. A 

black solid was obtained. It was immediately used in the next synthetic step because it 

is sensitive to ambient conditions. Yield 4.03 g (75%). 1H NMR H (300 MHz, CDCl3, 

Me4Si): 8.75 (1H, d, J 4.7 Hz, pyridyl-H); 8.42 (1H, d, J 16.1 Hz, CH=CH); 8.26 (2H, 

d, J 8.8 Hz, Ph); 8.19 (1H, d, J 7.9 Hz, pyridyl-H); 7.91 (1H, d, J 16.1 Hz, CH=CH); 

7.90 (1H, td, J 7.7 Hz, 1.7 Hz, pyridyl-H); 7.85 (2H, d, J 8.9 Hz, Ph); 7.52 (1H, ddd, J 

7.5 Hz, 4.7 Hz, 1.2 Hz).  
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Synthesis of 2-(4-(4-nitrophenyl)-6-(pyridin-2-yl)pyridin-2-yl)pyridine (3). To a 

solution of 10% dry ammonium acetate in 20 mL of ethanol, 1 g (3 mmol) of (2) and 

0.78 g (3 mmol) (1) were added. The mixture was refluxed for two days, the solvent 

removed and the product used without further purification. Yield 1.00 g (93%). 1H 

NMR H (400 MHz, CDCl3, Me4Si): 8.75 (2H, pyridyl-H); 8.73 (2H, d, J 4.3 Hz, 

pyridyl-H); 8.68 (2H, d, J 8.0 Hz, pyridyl-H); 8.36 (2H, d, J 8.8 Hz, Ph); 8.04 (2H, d, J 

8.8 Hz, Ph); 7.90 (2H, td, J 7.8 Hz, 1.6 Hz, pyridyl-H); 7.38 (2H, pyridyl-H). 13C NMR, 

C (100.6 MHz, CDCl3, Me4Si):156.53, 155.81, 149.35, 148.33, 148.02, 145.12, 137.17, 

128.43, 124.34, 124.34, 121.56, 119.07. EI-LRMS (m/z (%)):355.11 (25), 354.11 (M+, 

100), 309.12 (20), 308.12 (78), 306.09 (9), 229.07 (57), 203.06 (4), 177.05 (4), 153.54 

(5), 78.02 (5). FTIR [Wavenumbers (cm-1)]: C=N: 1585; as NO2: 1514; s NO2: 1351. 

Synthesis of 4-(2,6-di(pyridin-2-yl)pyridin-4-yl)benzenamine (4). A mixture of 3.66 g 

(10.3 mmol) of (3) and 12.24 g (64.5 mmol) of anhydrous tin(II) chloride in 

concentrated hydrochloric acid (100 mL) was heated at 70 °C for 6 h. The solid was 

filtered off and stirred in a 10% aqueous solution of sodium hydroxide for 1 hour. Then 

it was filtered off and washed with water. Yield 3.07 g (92%). 1H NMR H (400 MHz, 

CDCl3, Me4Si): 8.73 (2H, ddd, J 4.8 Hz, 1.8 Hz, 0.9 Hz, pyridyl-H); 8.69 (2H, s, 

pyridyl-H); 8.67 (2H, dt, J 8.0 Hz, 1.1 Hz, pyridyl-H); 7.87 (2H, td, J 7.7 Hz, 1.8 Hz 

pyridyl-H); 7.78 (2H, d, J 8.5 Hz, Ph); 7.35 (2H, ddd, J 7.5 Hz, 4.8 Hz, 1.2 Hz, pyridyl-

H); 3.87 (2H, s, NH2). 
13C NMR, C (100.6 MHz, CDCl3, Me4Si):156.70, 155.88, 

150.14, 149.22, 147.67, 136.95, 128.53, 128.38, 123.81, 121.49, 117.93, 115.37. EI-

LRMS (m/z (%)):325.13 (24), 324.13 (M+, 100), 323.12 (19), 296.11 (6), 246.10 (15), 

219.09 (6), 162.09 (6), 78 (4). FTIR [Wavenumbers (cm-1)]: NH2: 3481, 3387; C=N: 

1599; NH2: 1338; C-N: 1185. 
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Synthesis of N-(4-(2,4-di(pyridin-2-y)pyridine-4-yl)phenyl)methacrylamide (5). A 

solution of 2.60 g (8 mmol) of (4) in 20 mL of NMP was stirred at room temperature for 

5 min. Then, 1 g (9.6) mmol of methacryloyl chloride was added dropwise for 20 min. 

After that, 1.05 g (10.4 mmol) of TEA was added and the mixture is stirred for 4 hs at 

50 ºC under nitrogen atmosphere. The solution thus formed was precipitated in water, 

the solid filtered off and washed with water. Yield 3.07 g (98%). 1H NMR H (400 

MHz, CDCl3, Me4Si): 8.73 (2H, d, J 4.3 Hz, pyridyl-H); 8.72 (2H, s, pyridyl-H); 8.66 

(2H, d, J 8.0 Hz, pyridyl-H); 7.91 (2H, d, J 8.7 Hz, Ph); 7.87 (2H, td, J 7.8 Hz, 1.6 Hz, 

pyridyl-H); 7.73 (2H, d, J 8.7 Hz, Ph); 7.68 (1H, s, NH); 7.35 (2H,m, pyridyl-H); 5.83 

(1H, s, =CH2), 5.49 (1H, s, =CH2), 2.09 (3H, s, CH3). 
13C NMR, C (100.6 MHz, 

CDCl3, Me4Si): 171.38, 166.68, 156.40, 156.08, 149.55, 149.25, 141.00, 138.86, 

137.01, 134.35, 128.12, 123.96, 121.52, 120.26, 118.55, 18.91. EI-LRMS (m/z (%)): 

393.17 (29), 392.16 (M+, 100), 391.14 (23), 337.14 (6), 351.12 (5), 323.13 (6), 233.09 

(19), 78.02 (21), 62.99 (18). FTIR [Wavenumbers (cm-1)]: N-H: 3301; C=O: 1665; C=N: 

1585; N-H: 1519. 

2.4. Polymer synthesis 

The linear copolymer (LCp) was prepared by thermically initiated radical 

polymerization of the hydrophilic monomer VP and the tpy-derivative monomer (5) in a 

99/1 (VP/(5)) molar ratio (Scheme 2). A 100-mL three-necked flask equipped with a 

magnetic stirrer, a nitrogen inlet, and a reflux condenser was charged with a solution of 

0.18 mmol (0.071 g) of (5) and 17.9 mmol (2.0 g) of VP in 18 mL of dioxane. 

Subsequently, AIBN (0.29 g, 1.8 mmol) was added, and the solution was heated to 60 

ºC. After stirring for 4 h under nitrogen, the solution was allowed to cool. The, it was 

poured dropwise to hexane (200 mL) with vigorous stirring, yielding a white precipitate 
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(Yield 1.61 g (79%)). From the green chemistry viewpoint, the preparation of one gram 

of polymer LCp requires: a) reagents: 15 mg of TEA, 14 mg of methacryloyl chloride, 

1.2 mL of HClconc, 147 mg of SnCl2, 88 mg of ammonium acetate, 46 mg of 2-

acetylpyridine, 51 mg of I2, 31 mg of 4-nitrobenzaldehyde, 240 mg of NaOH, 1.24 g of 

VP, and 180 mg of AIBN; b) solvents: 286 L of NMP, 1.4 mL of ethanol, 218 L of 

pyridine, 212 L of ether, 11.2 mL of dioxane, and 124.2 mL of hexane. 

Scheme 2. 

The film-shaped sensory membranes were prepared by the bulk radical 

polymerization of the hydrophilic monomer VP, the hydrophobic monomer MMA, and 

the tpy-containg monomer (5). EGDMMA was used as cross-linking agent (Scheme 3). 

The co-monomer molar ratio VP/MMA/5/EGDMMA was 50/49.5/0.5/1 and 49/49/2/1 

for Mem1 and Mem2, respectively. AIBN (1 wt%) was employed as a thermal radical 

initiator. The bulk radical polymerization reaction was carried out in a silanized glass 

mould that was 100 mm thick in an oxygen-free atmosphere at 60 ºC overnight. From 

the green chemistry viewpoint, the preparation of one gram of membrane requires: a) 

Mem1: reagents (6 mg of TEA, 6 mg of methacryloyl chloride, 487 L of HClconc, 51 

mg of SnCl2, 35 mg of ammonium acetate, 18 mg of 2-acetylpyridine, 20 mg of I2, 12 

mg of 4-nitrobenzaldehyde, 101 mg of NaOH, 502 mg of VP, 452 mg of MMA, 18 mg 

of EGDMMA, and 9 mg of AIBN) and solvents (116 L of NMP, 580 L of ethanol 88 

L of pyridine, 88 L of ether); b) Mem2: reagents (23 mg of TEA, 22 mg of 

methacryloyl chloride, 1.9 mL of HClconc, 228 mg of SnCl2, 136 mg of ammonium 

acetate, 71 mg of 2-acetylpyridine, 77 mg of I2, 47 mg of 4-nitrobenzaldehyde, 387 mg 

of NaOH, 476 mg of VP, 428 mg of MMA, 17 mg of EGDMMA, and 9 mg of AIBN) 
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and solvents (443 L of NMP, 2.2 mL of ethanol, 337 L of pyridine, and 337 L of 

ether). 

Scheme 3. 

2.5. Solid sensory substrates 

The solid sensory substrates were manufactured form Mem1 and Mem2 films 

by using plastic scissors to cut out 5x5 mm sensory squares. Plastic scissors were used 

to avoid the presence of iron. Conventional steel scissors turned the membrane coloured 

(the solely contact of an iron containing object with the membrane surface turns it 

purple in colour). 

3. RESULTS AND DISCUSSION

3.1. Sensing target cations in pure water  

The objective of this work is the exploitation of organic molecules in pure water. 

Organic molecules are usually highly hydrophobic and water insoluble. Their properties 

in this medium are unknown although they can be envisaged by studying the molecules 

in organic/aqueous mixtures. Accordingly, an interesting molecule was chosen, its 

structure was slightly modified by including a polymerizable group, and hydrophilic 

polymers were prepared. The polymers are both linear (soluble in water), and 

crosslinked membranes (with gel behaviour as manageable solid kits). With these 

materials the goal of exploiting water insoluble molecules in pure water was achieved. 

3.2. Design of the colorimetric chemosensory terpyridine unit 

Firstly metal cations and water as target species and measuring medium, respectively, 

were selected. A chromogenic response as transduction of the recognition phenomena 

was also chosen. This is because sensory materials to be used as sensory devices for 
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non-specialized personnel are sought, and the naked eye is the best antenna for this 

purpose. For meeting this criteria, a proven multivalent chelanting ligand, terpyridine, 

was chose, which was isolated in 1932 [1], as a guarantee of success [5-19]. Thus, a tpy 

derivative containing an amine group was used to prepare the acrylamide monomer (5), 

which was co-polymerized with the hydrophilic VP and the hydrophobic MMA co-

monomers. 

3.3. Materials preparation and characterisation 

The acrylamide sensory monomer (5) was conventionally prepared by the 

straightforward reaction of methacryloyl chloride with the amine group of the 

intermediate containing the tpy motif (4). The preparation of (4) was previously 

reported, and the steps followed to prepare products (1) to (4) have been adapted from 

those described by a number of authors looking for inexpensiveness of the chemicals, 

optimization of the reaction steps, higher reaction yields, easy or no further purification 

of products [33-37]. The 1H and 13C NMR and FTIR data and the spectra of the 

intermediates and monomers can be found in the experimental section and in the ESI, 

Section S1. The potential applicability of the designed acrylic soluble polymer LCp and 

sensory membranes, Mem1 and Mem2, is highlighted by the fact that a small quantity 

(≤6.8% (Mem2), ≤1.8% (Mem1)) by weight of the sensory synthetic monomer is used 

in the preparation of the sensory materials, as will be described below, using (≥93.1% 

(Mem2), ≥98.2% (Mem1)) by weight of widely available and very inexpensive 

commercial co-monomers. 

The mechanical and thermal behaviour are key parameters of every material. 

The membranes, or films, have good physical appearance and were creasable and 

handleable. Mechanically, they had tensile strength and moduli ranging 33-39 and 660-
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730 MPa, respectively (Table 1). These results are excellent for lab-made acrylic 

membranes. The thermal resistance was evaluated using TGA. The degradation 

temperatures that resulted in a 5% weight loss under a nitrogen atmosphere (T5) were 

~240ºC for membranes and much higher, ~390ºC, for LCp. The ester content of the 

membranes, from the MMA co-monomer, lowered the thermal resistance compared 

with LCp. The methyl ester moieties are hydrophobic and counterbalance the 

hydrophilic nature of VP in the membranes in order to control the water-swelling 

percentage (WSP). Gel behaviour is relevant for the membrane to sense in pure water 

because the target species enter into the material as solvated species by diffusion. 

However, the water uptake has to be modulated in order to keep good mechanical 

properties in the swelled state. For this purpose, a moderate WSP around 40% is 

desirable. The membranes constitution was designed to meet this criterion. Accordingly, 

WSP of Mem1 and Mem2 was 48% and 36 %, respectively. The hydrophobic nature of 

the tpy motifs is the responsible of the 12% water uptake decrease upon increasing 1.5% 

the monomer containing the tpy groups (5) (Scheme 3). 

Table 1. 

 

3.4. The chemosensing mechanism 

The chemosensing mechanism can be described as the coordination of the cation 

species to the tpy motifs [38]. Thus, the complexation processes of one cation (M) and 

two tpy motifs (L) in water. The complex stoichiometry was estimated with a Job´s plot 

obtained from the UV/vis titration of Fe(III) with water solutions of the sensory 

polymer LCp (Figure 1). The process is governed by two stability constants K1 and K2, 

 
M  +  L                 ML

ML + L               ML2

K 1

K 2
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where L is the moles of sensory tpy-motifs per water volume of linear copolymer, L 

represents really not a conventional concentration because the sensory motifs are 

chemically anchored to the linear copolymer chains. The formation of ML and ML2 is 

clearly depicted in the UV/vis titration spectra (Figure 1). 

Considering the stability constants definition, the UV/vis spectroscopic data, and 

the mass balance (ܥெ ൌ ሾܯሿ ൅ ሾܮܯሿ ൅ ሾܮܯଶሿ;  ௅ܥ ൌ ሾܮሿ ൅ ሾܮܯሿ ൅ 2ሾܮܯଶሿ), the stability 

constants can be calculated by non-linear curve fit of Eq. (1), where A is the absorbance, 

εL is calculated initially by εL = A0/CL, and εML2 at the end with a huge excess of metal 

by εML2= 2Afinal/CL (at this point ሾܯሿ ≅  .ெ) [39]ܥ

ܣ ൌ
ିଵି௄భሾெሿାඥሺଵା௄భሾெሿሻమା଼஼ಽ௄భ௄మሾெሿ

ସ௄భ௄మሾெሿ
൬ߝ௅ ൅ ሿܯଵሾܭெ௅ߝ ൅ ெ௅మߝ

ିଵି௄భሾெሿାඥሺଵା௄భሾெሿሻమା଼஼ಽ௄భ௄మሾெሿ

ସ
൰    (1) 

The fitting of Eq. (1) to complexation of iron(III) with LCp is shown in Figure 

1, giving rise to K1= 51,000 ± 6,000 and K2= 2,000 ± 1,000. The determination of K1 

and K2 for Co(II), Cu(II) and Sn(II) could not be carried out because for each cation ML 

and ML2 species absorb in the same UV/vis region.  

 

Figure 1. 

 

3.5. Sensing Fe(III), Co(II), Cu(II) and Sn(II) in aqueous media  

The addition of transition metal cations to water solutions of LCp give rise to the 

development of clearly visible and nice colours (purple (Fe(III)), orange (Co(II)), green 

(Cu(II)) and yellow (Sn(II)) (Figure 2). The UV/vis titration curves are depicted in 

Figures 3 and 4. The response to Fe(III) and Co(II) is conventional (Figure 3), with 

LOD and LOQ in the sub-micromolar level (1.3x10-7 and 3.9x10-7 M for the Fe(III) and 
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6.4x10-8 and 1.9x10-7 M for Co(II)). On the other hand, the response to Cu(II) and 

Sn(II) was rather complex with LOD and LOQ in the sub milimolar level (1.3x10-5 and 

3.8x10-5 M for Cu(II) and 1.4x10-5 and 4.2x10-5 M for Sn(II)). Only the low 

concentration region is shown in Figure 4. Full titration curves and UV/vis titration 

spectra are shown in Figures S6 to S9, ESI.  

Figure 2. 

 

Figure 3. 

 

Figure 4. 

 

Solid sensory materials give similar colours upon entering into contact with the 

cations (Fe(III), Co(II), Cu(II) and Sn(II)), and the differences between solution an solid 

state for each cation, shown in Figure 2, correspond to concentration differences and 

colour perception and digitalization. Thus, these materials permitted the preparation of 

solid titration kits for the visual detection and quantification of cations. Accordingly, 

squares cut from Mem1 allowed for the naked eye study of Fe(III) and Co(II) content 

by analysing the purple and orange colour development, respectively (Figure 5a). The 

lower sensitivity of the sensory polymers toward Cu(II) and Sn(II), compared with the 

sensitivity toward Fe(III) and Co(II), was resolved by increasing the tpy sensory motifs 

within the membranes. Therefore, Mem2, which have a molar tpy content four times 

higher than Mem1, permitted the visual titration of Cu(II) and Sn(II) by following the 

green and yellow colour development, respectively. The digital colour of pictures of 

sensory squares (sensory kits) shown in Figures 5a and 5b were used to build titration 
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curves with quantification purposes, as previously described. The titration curve for 

Fe(III) is shown in Figure 5c (the data and titration curves for Co(II), Cu(II) and Sn(II) 

are depicted in the ESI, Tables S1-S12 and Figures S10-S13) [31,32]. 

Figure 5. 

 

3.6. Response time  

There are key parameters for sensor performance for real live measurements: reliability, 

accurateness, environmental inertness, and short response time. The response time was 

calculated as follows: for LCp solutions by UV/vis spectroscopy as the time needed to 

achieve 99% of the absorbance variation (ESI, Figure S14). This time was 10, 6, 2, and 

12 min for Fe(III), Co(II), Cu(II), Sn(II) respectively (cations concentration of 5x10-6, 

5x10-5, 1x10-4, 7.5x10-4 M, respectively). The apparent response time of the sensory 

films (membranes) was slower because of the diffusion of the species into the 

membrane, and the sensory squares were left immersed overnight. 

3.7. Interference study 

The selectivity of the sensory materials as colorimetric transition metal cation sensors 

was tested in the presence of a broad set of cations (NaCl, KCl, Cu(NO3)2·3H2O, 

Co(NO3)2·6H2O, Al(NO3)2·9H2O, Pb(NO3)2, LiCl, Zn(NO3)2·6H2O, Mg(NO3)2·6H2O, 

Cd(NO3)2, SnCl2 and Ni(NO3)2·6H2O, SnCl2, Fe(NO3)3·9H2O,  Cu(NO3)2·3H2O, 

Co(NO3)2·6H2O). Thus, a solution of LCp in water (pH = 2, buffer: KCl-HCl, 

concentration of sensory motifs in water was 1x10-3 M -equivalents of pendant sensory 

tpy motifs per litre-) with a cocktail of these cations (concentration of each cation = 

9.09x10-4 M) was used in this study. The UV/vis spectra show that the set of cations are 

true interferents (ESI, Figure S15). This is a cause of the broad chelating effect of tpy 
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motifs. This means that a full range of complexes are formed, though only a few are 

coloured. Accordingly, real sample can contain these ions at different concentrations 

and this fact may be a drawback for the identification and quantification of the target 

cations. However, the target cations can also be evaluated in presence of these 

interferents by the standard addition procedure. For instance, by adding increasing and 

known quantities of Fe(III) to the sample containing the cocktail of 13 cations 

(concentration of each cation = 1x10-6 M), the Fe(III) concentration calculated was 

1.3x10-6 M, similar to the real content, 1.0x10-6 M (ESI, Figure S16). Furthermore, the 

accuracy of the Fe(III) concentration determination was verified by measuring the 

cation concentration in a sample prepared with tap water from our laboratory spiked 

with Fe(III), thus emulating a real sample. The titration curve was prepared using tap 

water (the iron concentration of this tap water, determined by inductively coupled 

plasma mass spectrometry -ICP-, was about 19.4 ppb). The Fe(III) concentration added 

to the tap water was 1.5x10−6 M, and the calculated concentration was 1.4x10−6 M, in 

good accordance with the added Fe(III) concentration. In parallel, the standard addition 

method permitted the calculation of the iron concentration of tap water, giving a result 

of 20.3 ppb, also in agreement with the concentration calculated by ICP. 

3.8. Forensic applications and metal recognition 

Iron containing tools leave a small amount of metal upon entering into contact with 

other surfaces. This is relevant in forensic applications where it is important to detect 

the imprint of certain objects in hands, like knives. In this sense, Figure 6 and a video 

shows the shape of a lag screw in a finger after holding it with two fingers. After 

pressing lag screw with the fingers, the index finger is pressed on a filter paper 

impregnated with an aqueous solution of LCp. The iron particles are oxidized by the 
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oxygen of the air, the sweat and water and recognized by the tpy motifs giving rise to 

the complex formation with the concomitant purple colour development (see video, 

ESI). 

Moreover, it is possible to know if a tool has iron in its composition by dipping 

in a water solution of LCp. Immediately after immersion, the solution turn purple (see 

Figure 6 and video, ESI). 

Cobalt, a critical raw material [40], can also be analysed in a similar way. Figure 6 and 

the video (ESI) also shows how a widia drill bit, which has an iron-based shaft with a 

tungsten carbide (with 6-10% of cobalt) blade at the tip off the drill. After being touched 

with a finger, the widia blade leave on the filter paper, previously wet with the water 

solution of LCp, its orange imprint surrounded by the purple imprint of the iron holding 

the widia tip. 

Figure 6. 

 

4. CONCLUSIONS 

Terpyridine, as a proven chelating agent for monoatomic metallic cations, has been used 

to prepare colorimetric sensory solid polymers both as water soluble linear polymers 

and as solid films (membranes). Water solution of the linear polymer turned purple, 

orange, green or yellow upon being in contact with Fe(III), Co(II), Cu(II) and Sn(II), 

respectively. The colour development permitted the visual differentiation of the cations 

and the titration with the UV/vis technique. The limit of detection was sub-micromolar 

for Fe(III) and Co(II), and micromolar for Cu(II) and Sn(II). In a similar fashion, the 

solid films have gel behaviour and turn coloured upon immersing in water containing 

the aforementioned cations. Squares cut from the membranes (5x5 mm) behaved as 
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solid sensory kits from which the cations could be differentiated and their concentration 

estimated by the naked eye. Pictures taken to the kits permitted the titration using the 

colour definition of the sensory squares as analytical input. The dynamic range was of 

five decades (lower concentration = 1x10-7 M) for Fe(III) and Co(II) and of two decades 

(lower concentration = 9x10-5 M) for Cu(II) and Sn(II). The chosen of proven organic 

chelating agents and their chemical anchorage to polymer backbones have proven to be 

successful strategies to prepare sensory materials for water environments. The colour 

output of the sensory systems and the manageable solid kits allowed for the visually use 

of these materials by non-specialized personnel and, concomitantly, portable devices 

such as smartphones permit the fast and costless quantification of target species. 

Moreover, forensic applications are envisaged, e.g., the shape of metallic objects after 

entering into contact with hands can be colour revealed by pressing the hands on paper 

or cotton fabrics wetted with water solutions of the linear sensory polymer. 
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Apendix A. Supplementary data 

A file and a video. The file containing experimental part (intermediates and monomer 

characterization); study of interaction of LCp, Mem1 and Mem2 with Fe(III), Co(II), 

Cu(II), and Sn(II); interference study; and response time. The video showing the 

forensic applications and metal recognition of metallic goods with solutions of LCp. 
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Tables 

 

 

Table 1. Thermal (TGA) and mechanical properties of materials. The thermal properties 
were evaluated in inert (N2) and oxidizing (synthetic air) atmospheres. 

Polymer 

Thermal properties Mechanical properties 
Atmosphere 

LOIc) 
Tensile 

strength, 
MPa 

Young’s 
Modulus, 

MPa 

Elongation, 
% 

N2  Air 
T5,

a) 

°C 
T10,

a) 
°C 

CR,b) 

%  
T5,

a) 
°C 

T10,
a)

°C 
Mem1 242 344 4  224 318 19.1  33 660 9 
Mem2 241 342 4  245 333 19.1  39 730 8 
LCp 389 408 1  353 399 17.9  n.a.d) n.a.d) n.a.d) 
a) 5% weight loss (T5), 10% weight loss (T10); 

b) CR: char yield at 800 ºC; c) limiting
oxygen index, calculated from the TGA data (LOI = 17.5 + 0.4 CR, CR at 800 ºC under
nitrogen).d) n.a.: not applicable. 
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Captions 

Graphical abstract 

Films and water soluble polymers as sensory materials for the detection and 

quantification of iron, cobalt, copper and tin salts in water, and for forensic applications. 

 

Schemes 

Scheme 1. Synthesis of acylic monomer (5). 

Scheme 2. Synthesis and chemical structure of sensory linear polymer (LCp). 

Scheme 3. Synthesis and chemical structure of sensory membranes Mem1 and Mem2. 
The picture shows the membranes after removal from the mould. 

 

Figures 

Figure 1. UV/vis study of the interaction of Fe(III) (M) with tpy-motif (L) of LCp in 
water (pH = 2, buffer = HCl-KCl): a) absorbance variation spectra. Blue and red spectra 
correspond to formation of 1:1 (ML) and 1:2 (ML2) complexes tpy motif:Fe(III), 
respectively (inset: separation of processes with indication of the isosbestic points); b) 
absorbance at 567 nm vs Fe(III) concentration. The continuous line is the fitting of the 

data according with Eq. (1) (inset: Job´s plot (tpy is molar fraction of tpy sensory 

motifs, absorbance at 567 nm); and c) the species distribution. The concentration of 
sensory motifs in water was 1x10-4 M (equivalents of pendant sensory tpy motifs per 
litre). 

Figure 2. Colour development sensory materials upon entering into contact with Fe(III), 
Co(II), Cu(II) and Sn(II): a) LCp in water solution (pH = 2, buffer = KCl-HCl, 
concentration of cations = 5x10-4 M). The concentration of sensory motifs in water was 
0.01 M (equivalents of pendant sensory tpy motifs per litre); and b) Mem1 after 
immersion in water (pH = 2, buffer = KCl-HCl, concentration of cations = 5x10-4 M, 
immersion time = 24 h). 

Figure 3. Titration curves of Fe(III) and Co(II) with aqueous solutions of LCp (pH = 2, 
buffer = KCl-HCl, concentration of cations ranging from 6.75x10-8 to 6.57x10-4 M for 
Fe(III) and 7.99x10-8 to 7.54x10-4 M for Co(II). Insets: expansion of the low 
concentration region. The concentration of sensory motifs in water was 1x10-4 M for the 
Fe(III) titration and 1x10-3 M for the Co(II) titration  (equivalents of pendant sensory 
tpy motifs per litre). 

Figure 4. Titration curves of: a) Cu(II); and b) Sn(II) with aqueous solutions of LCp 
(pH = 2, buffer = KCl-HCl, concentration of cations ranging from 1.64x10-5 to 1.46x10-
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3 M for Cu(II) and 3.44x10-5 to 1.50x10-3 M for Sn(II) M. The concentration of sensory 
motifs in water was 1x10-3 M (equivalents of pendant sensory tpy motifs per litre). 

Figure 5. Visual titration of Fe(III), Co(II), Cu(II) and Sn(II) in water (pH = 2, buffer = 
KCl-HCl) with squares cut from Mem1 or Mem2. Each square was dipped in the water 
solution containing each cation for 24 h. The sensory membrane and the cation 
concentration of the water solution was: a) membranes = Mem1, Fe(III) and Co(II) 
concentration, from left to right: 1x10-7, 5x10-7, 1x10-6, 5x10-6, 1x10-5, 5x10-5, 1x10-4, 
5x10-4, 1x10-3, 5x10-3 M; b) membranes = Mem2, Cu(II) and Sn(II) concentration, from 
left to right: 9x10-5, 3x10-4, 6x10-4, 9x10-4, 3x10-3, 6x10-3, 9x10-3 M; and c) Fe(III) 
titration curve obtained from the picture taken to the squares immersed in water with 
Fe(III) (PC1: principal component 1 that encompass three digital colour parameters 
(RGB) of each sensory square). 

Figure 6. Detecting iron and cobalt with a water solution of LCp (pH = 2, buffer: KCl-
HCl, 1.14 mg/mL (concentration of sensory motifs was 1.75x10-3 M -equivalents of 
pendant sensory tpy motifs per litre-)): a) shape of a lag screw in a finger; b) coloration 
of the LCp solution caused by the iron of the lag screw; and c) shape of a widia blade 
(tungsten carbide + 6-10% of cobalt) of a drill bit. 
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Scheme 1. Synthesis of acylic monomer (5). 
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Scheme 2. Synthesis and chemical structure of sensory linear polymer (LCp). 
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Scheme 3. Synthesis and chemical structure of sensory membranes Mem1 and Mem2. 
The picture shows the membranes after removal from the mould. 
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Figure 1. UV/vis study of the interaction of Fe(III) (M) with tpy-motif (L) of LCp in 
water (pH = 2, buffer = HCl-KCl): a) absorbance variation spectra. Blue and red 
spectra correspond to formation of 1:1 (ML) and 1:2 (ML2) complexes tpy 
motif:Fe(III), respectively (inset: separation of processes with indication of the 
isosbestic points); b) absorbance at 567 nm vs Fe(III) concentration. The continuous 

line is the fitting of the data according with Eq. (1) (inset: Job´s plot (tpy is molar 
fraction of tpy sensory motifs, absorbance at 567 nm); and c) the species distribution. 
The concentration of sensory motifs in water was 1x10-4 M (equivalents of pendant 
sensory tpy motifs per litre). 
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Figure 3. Titration curves of Fe(III) and Co(II) with aqueous solutions of LCp (pH = 
2, buffer = KCl-HCl, concentration of cations ranging from 6.75x10-8 to 6.57x10-4 M 
for Fe(III) and 7.99x10-8 to 7.54x10-4 M for Co(II). Insets: expansion of the low 
concentration region. The concentration of sensory motifs in water was 1x10-4 M for 
the Fe(III) titration and 1x10-3 M for the Co(II) titration (equivalents of pendant 
sensory tpy motifs per litre). 
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Figure 4. Titration curves of: a) Cu(II); and b) Sn(II) with aqueous solutions of LCp 
(pH = 2, buffer = KCl-HCl, concentration of cations ranging from 1.64x10-5 to 
1.46x10-3 M for Cu(II) and 3.44x10-5 to 1.50x10-3 M for Sn(II) M. The concentration of 
sensory motifs in water was 1x10-3 M (equivalents of pendant sensory tpy motifs per 
litre). 
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S1. Experimental part. Intermediate and monomer characterisation  
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Figure S1. Characterisation of (3-(4-nitrophenyl)-1-(pyridine-2-yl)prop-2-en-1-one (1): 
a) chemical structure; b) FT-IR; c) 1H NMR; d) 13C NMR (NMR solvent: DMSO-d6).
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Figure S2. Characterisation of 1-pyridylacylpyridinium iodide (2): a) chemical 
structure; b) 1H NMR (NMR solvent: DMSO-d6).
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Figure S3. Characterisation of 2-(4-(4-nitrophenyl)-6-(pyridin-2-yl)pyridin-2-
yl)pyridine (3): a) chemical structure; b) FT-IR; c) 1H NMR; d) 13C NMR (NMR 
solvent: DMSO-d6).
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Figure S4. Characterisation of 4-(2,6-di(pyridin-2-yl)pyridin-4-yl)benzenamine (4): a) 
chemical structure; b) FT-IR; c) 1H NMR; d) 13C NMR (NMR solvent: DMSO-d6). 
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Figure S5. Characterisation of N-(4-(2,4-di(pyridin-2-y)pyridine-4-
yl)phenyl)methacrylamide (5): a) chemical structure; b) FT-IR; c) 1H NMR; d) 13C 
NMR (NMR solvent: DMSO-d6).
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S2. Titration of Fe(III) with LCp 
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Figure S6. UV/Vis titration spectra of Fe (III) with a water solution of LCp (pH = 2, 
buffer = KCl-HCl, concentration of cations ranging from 6.75x10-8 to 6.57x10-4 M). 
The concentration of sensory motifs in water was 1x10-4 M (equivalents of pendant 
sensory tpy motifs per litre). 
 

S3. Titration of Co(II) with LCp 
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Figure S7. UV/Vis titration spectra of Co (II) with a water solution of LCp (pH = 2, 
buffer = KCl-HCl, concentration of cations ranging from 7x99·10-8 to 7x54·10-4 M). 
The concentration of sensory motifs in water was 1x10-3 M (equivalents of pendant 
sensory tpy motifs per litre). 
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S4. Titration of Cu(II) with LCp 
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Figure S8. UV/Vis titration spectra (a) and curve (b) of Cu(II) with a water solution of 
LCp (pH = 2, buffer = KCl-HCl, concentration of cations ranging from 1.64x10-5 to 
1.46x10-3 M). The concentration of sensory motifs in water was 1x10-3 M (equivalents 
of pendant sensory tpy motifs per litre). 
 
 
S5. Titration of Sn(II) with LCp 
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Figure S9. UV/Vis titration spectra (a) and curve (b) of Sn (II) with a water solution of 
LCp (pH = 2, buffer = KCl-HCl, concentration of cations ranging from 3.44x10-5 to 
1.50x10-3 M). The concentration of sensory motifs in water was 1x10-3 M (equivalents 
of pendant sensory tpy motifs per litre). 
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S6. Titration of cations with pictures taken to Mem1 and Mem2. 

The titration of Fe(III) and Co(II) with Mem1 and Cu(II) and Sn(II) with Mem2 was 

carried out with the colour data of pictures taken to sensory squares cut from the 

sensory membranes after immersing them in solutions of different concentrations of the 

cations in water. The quantitative studies were done using the digital photograph taken 

to sensory squares with a smartphone by treatment of the data of the color definition of 

each square (RGB parameters, R = red, G = green, B = blue). These parameters were 

obtained for each square directly after taking the photograph of the set squares through 

analysis with a conventional Android smartphone (app ColourMeter, automatically 

average 11 × 11 (121) pixels for each square). The three RGB parameters were reduced 

to one variable (principal component 1, PC1), using principal component analysis 

(PCA). 

 

S6.1. Titration of Fe(III) with a picture taken to Mem1. 

 

Table S2. Principal component analysis. 
Component Eigenvalue Variance, 

% 
Cumulative, 

% 
PC1 2.94419 98.140 98.140 
PC2 0.05381 1.794 99.933 
PC3 0.0020027 0.067 100.000 

 

Table S3. Component weights 

Variable PC1 

R 0.582036 
G 0.573253 
B 0.576728 

 

 

Table S1. RGB parameters and principal components obtained from the digital image of 
squares cut from the sensory membrane Mem1 after immersion in water with Fe(III). 

[Fe (III)], M R G B PC 
5x10-3 50 33 41 -1.95516 
1x10-3 41 29 43 -2.06522 
5x10-4 43 30 48 -1.98203 
1x10-4 80 42 83 -1.11377 
5x10-5 96 51 108 -0.597742 
1x10-5 140 108 147 0.811318 
5x10-6 154 131 156 1.26956 
1x10-6 169 160 165 1.79495 
5x10-7 170 161 164 1.8042 
1x10-7 177 172 169 2.03389 
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Figure S10. Titration curve of Fe(III) with 
Mem1. The digital color parameters (R,G 
and B) of each membrane square are group 
in one variable (principal component 1, 
PC1) by principal component analysis 
(PCA). Squares cut brom Mem1 were 
immersed in water with concentration of 
Fe(III) ranging from 1x10-7 to 5x10-3 (pH = 
2, buffer: KCl-HCl). 

 

S6.2. Titration of Co(II) with a picture taken to Mem1. 

 

Table S5. Principal component analysis. 
Component Eigenvalue Variance, 

% 
Cumulative, 

% 
PC1 2.53612 84.537 84.537 
PC2 0.46185 15.395 99.932 
PC3 0.00203299 0.068 100.000 

 

Table S6. Component weights 

Variable PC1 

R 0.514257 
G 0.61889 
B 0.59373 

 

 

Table S4. RGB parameters and principal components obtained from the digital image of 
squares cut from the sensory membrane Mem1 after immersion in water with Co(III). 

[Co(II)], M R G B PC 
5x10-3 156 89 44 -2.56815 
1x10-3 163 91 43 -2.15985 
5x10-4 170 94 45 -1.69921 
1x10-4 180 120 66 -0.458357 
5x10-5 184 144 95 0.511812 
1x10-5 183 163 131 1.20368 
5x10-6 182 165 138 1.26498 
1x10-6 180 173 155 1.4909 
5x10-7 176 173 158 1.30562 
1x10-7 172 173 160 1.10856 
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Figure S11. Titration curve of Co(II) with 
Mem1. The digital color parameters (R,G 
and B) of each membrane square are group 
in one variable (principal component 1, 
PC1) by principal component analysis 
(PCA). Squares cut brom Mem1 were 
immersed in water with conentration of 
Co(II) ranging from 1x10-7 to 5x10-3 (pH = 
2, buffer: KCl-HCl). 

 

S6.3. Titration of Cu(II) with a picture taken to Mem2. 

 

 

Table S8. Principal component analysis. 
Component Eigenvalue Variance, 

% 
Cumulative, 

% 
PC1 2.91962 97.321 97.321 
PC2 0.0757245 2.524 99.845 
PC3 0.00465104 0.155 100.000 

 

Table S9. Component weights 

Variable PC1 

R 0.583573 
G 0.571252 
B 0.577161 

 

 

Table S7. RGB parameters and principal components obtained from the digital image of 
squares cut from the sensory membrane Mem1 after immersion in water with Fe(III). 

[Cu(II)], M R G B PC 
9x10-3 129 161 98 -2.64827 
6x10-3 140 170 108 -1.30406 
3x10-3 143 173 106 -1.07998 
9x10-4 161 179 121 0.456468 
6x10-4 169 182 126 1.09896 
3x10-4 174 182 131 1.44092 
9x10-5 180 183 140 2.03597 
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Figure S12. Titration curve of Cu(II) with 
Mem2. The digital color parameters (R,G and 
B) of each membrane square are group in one 
variable (principal component 1, PC1) by 
principal component analysis (PCA). Squares 
cut brom Mem2 were immersed in water 
with conentration of Cu(II) ranging from 
9x10-5 to 3x10-2 (pH = 2, buffer: KCl-HCl). 

 

S6.4. Titration of Sn(II) with a picture taken to Mem2. 

 

 

Table S11. Principal component analysis. 
Component Eigenvalue Variance, 

% 
Cumulative, 

% 
PC1 2.36076 78.692 78.692 
PC2 0.632503 21.083 99.775 
PC3 0.00674105 0.225 100.000 

 

Table S12. Component weights 

Variable PC1 

R 0.504118 
G 0.647955 
B 0.570981 

 

 

Table S10. RGB parameters and principal components obtained from the digital image of 
squares cut from the sensory membrane Mem1 after immersion in water with Fe(III). 

[Cu(II)], M R G B PC 
9x10-3 174 148 55 -2.40455 
6x10-3 179 154 64 -1.47304 
3x10-3 184 160 69 -0.619572 
9x10-4 187 169 82 0.365715 
6x10-4 191 176 95 1.33738 
3x10-4 186 179 111 1.35712 
9x10-5 181 179 138 1.43695 
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Figure S13. Titration curve of Sn(II) with 
Mem2. The digital color parameters (R,G and 
B) of each membrane square are group in one 
variable (principal component 1, PC1) by 
principal component analysis (PCA). Squares 
cut brom Mem2 were immersed in water 
with conentration of Sn(II) ranging from 
9x10-5 to 3x10-2 (pH = 2, buffer: KCl-HCl). 

 

S7. Response time  
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Figure S14. Response time. Absorbance of a solution of LCp in water (pH = 2, buffer: 
KCl-HCl) upon adding: a) Fe(III); b) Co(II); c) Cu(II); and d) Sn(II). The concentration 
of sensory motifs in water was 1x10-4 M for Fe(III), and 1x10-3 M for Co(II), Cu(II) and 
Sn(II) (equivalents of pendant sensory tpy motifs per litre). The concentration of each 
cation was 5x10-6, 5x10-5, 1x10-4 and 7.5x10-4 M for Fe(III), Co(II), Cu(II) and Sn(II) 
respectively.  
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S8. Interference study  
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Figure S15. Interference study. Water solutions of LCp (concentration of sensory 
motifs was 1x10-3 M (equivalents of pendant sensory tpy motifs per litre)) upon adding 
a: a) cocktail of cations that forms coloured complexes with tpy motifs (Fe(III), Co(II), 
Cu(II), Sn(II). Concentration of each cation = 1.3x10-3 M); b) cocktail of 13 cations 
(Na+, K+, Li+, Cu(II), Co(II), Al(III), Pb(II), Zn(II), Mg(II), Cd(II), Sn(II) and Ni(II), 
Fe(III), Cu(II), Co(II)). Concentration of each cation = 9.09x10-4 M). 
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Equation y = a + b*x

Adj. R-Sq 0.9828

Value Standard E

B Interce 0.0107 0.00188

B Slope 7964.3 429.03007

Figure S16. Standard addition of an aqueous solution of Fe (III) to a water solution of 
LCp (concentration of sensory motifs was 2x10-3 M (equivalents of pendant sensory tpy 
motifs per litre)) containing a cocktail of 13 cations (Na+, K+, Li+, Cu(II), Co(II), 
Al(III), Pb(II), Zn(II), Mg(II), Cd(II), Sn(II) and Ni(II), Fe(III), Cu(II), Co (II)). The 
concentration of each cation was 1x10-6 M; b) least square fitting of the absorbance at 
567 nm vs molar concentration of Fe(III). (Calculated concentration of Fe(III) = 
1.3x10-6. Real concentration of Fe(III) and each cation = 1x10-6 M). 
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