
Restricted Set Classification: Who is there?

Ludmila I. Kunchevaa, Juan J. Rodŕıguezb, Aaron S. Jacksonc
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Abstract

We consider a problem where a set X of N objects (instances) coming from c classes have to be classified

simultaneously. A restriction is imposed on X in that the maximum possible number of objects from

each class is known, hence we dubbed the problem who-is-there? We compare three approaches to this

problem: (1) Independent classification whereby each object is labelled in the class with the largest posterior

probability; (2) A greedy approach which enforces the restriction; and (3) A theoretical approach which, in

addition, maximises the likelihood of the label assignment, implemented through the Hungarian assignment

algorithm. Our experimental study consists of two parts. The first part includes a custom-made chess data

set where the pieces on the chess board must be recognised together from an image of the board. In the

second part, we simulate the restricted set classification scenario using 96 datasets from a recently collated

repository (University of Santiago de Compostela, USC). Our results show that the proposed approach (3)

outperforms approaches (1) and (2).

Keywords: pattern recognition, object classification, restricted set classification, compound decision

problem, chess pieces classification

1. Introduction

One of the standard assumptions in classical pattern recognition is that the data points to be classified

come as an independent, identically distributed (iid) sequence. In many problems, this assumption does

not hold. As an example, imagine the task of classifying all the pieces on a chess board from a bird-view

snapshot, without knowledge of the course of the game up to that position. A classifier trained to recognise5

each piece individually will not be aware that, say, there cannot be more than two white bishops on the

board. Thus a white pawn could be misclassified as a white bishop without a penalty. Should the classifier

‘know’ the restriction, a mistake of this type will be less likely.
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Consider a classification problem where an instance x may come from one of the c classes in the set

Ω = {ω1, . . . , ωc}. Every instance is described by the values of n features, so without loss of generality,10

x ∈ Rn. Let X = {x1, . . . ,xc} be a set containing exactly one instance from each class. A set-classifier

Dset will label X with a permutation of the c class labels and ensure the best match in terms of classification

accuracy [1, 2]. We refer to this task as “who-is-who”.

This paper extends the above model to the more general case where X consists of m instances, and it is

known that at most ki instances may belong to class ωi, i = 1, . . . , c. Denoting k = k1 + . . .+ kc, we require15

that m ≤ k. The who-is-who task is a special case where ki = 1, i = 1, . . . , c, and m = c.

Simultaneous classification of instances has been studied in various contexts for non-i.i.d data:

1. Compound decision problem. Duda et al. [3] formulate the problem where each class is represented in

X by a specific number of objects but without offering a solution. Taking inspiration from labelling the

chromosomes in a cell (karyotyping), Slot [4] proposes a solution to this problem through maximising the20

log-likelihood of the labelling of X by using 0-1 integer programming.

2. Multiple-instance classification. This problem arises in complex machine learning applications where the

information about the instances is incomplete or ambiguous [5, 6, 7, 8, 9], for example, in drug activity

prediction [5]. The training examples come in “bags” labelled either positive or negative. For a positive

bag, it is known that at least one instance in the bag has a true positive label. For a bag labelled negative,25

all instances are known to be negative. The problem is to design a classifier that can label as accurately as

possible an unseen bag of instances.

3. Set classification. In this problem, all the instances in a set are assumed to have come from the same

unknown class [10]. This problem may arise in face recognition where multiple images of the same person’s

face are submitted as a set.30

4. Relaxation labelling. The m instances in set X should be labelled using the label set Ω. There are

relationships between the classes which are specified by the so-called compatibility coefficients. Iterative

relaxation labelling algorithms have been developed to solve this problem [11, 12].

Collective recognition. Collective recognition [13, 14] can be thought of as a special case of relaxation la-

belling. The instances within the set are related, so that the dependencies can be used to improve the35

classification accuracy. For example, in classifying web pages into topic categories, hyperlinked web pages

are more likely to share common class labels than non-linked pages [14].

Who-is-who can be cast as a relaxation labelling problem. However, the compatibility coefficients en-

forcing the constraint of one-per-class are such that we cannot take advantage of the existing algorithms. In

fact, there is an exact algorithm to solve who-is-who, which is preferable to the iterative alternatives.40
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5. Tracking of multiple objects. Simultaneous classification of a set of instances is used in tracking algorithms

for video sequences. For example, a moving object can be regarded as a patchwork of parts [15], a set of

tracklets [16] or a structure with connected pieces such as parts of a human face or body [17, 18, 19, 20].

The parts are matched from one image frame to the next. Tracking several people in a video [17, 21,

22] also relies on simultaneous classification. The classification in tracking is dominated by assessing the45

spatial location of the object/part using algorithms such as Kalman filter, Probabilistic Data Association

Filter (PDAF) [23, 24], mixture modelling, AdaBoost, particle filters [25, 26], temporal templates [17], the

Hungarian algorithm [27, 28], a game-theory approach [22], a locomotion model [21] and so on.

The appearance-based component (which is the trained classifier in our model) is deemed much less

important [19]. Indeed, sometimes the objects are indistinguishable, and the only way to identify them50

is using their predicted and observed locations (for example, monitoring fruit flies [28]). Typically, the

appearance-based classifier uses silhouette, texture [17], HSV colour histograms and edge detection [25, 23].

Tracking piglets has been attempted by marking each piglet on the back by a dye pattern [29, 30] thereby

empowering the appearance-based classifier. The simultaneous classification model proposed here can be

regarded as an additional tool for improving the tracking accuracy by making a better use of the objects’55

appearance.

While close, none of the problems and solutions above matches exactly our formulation of the restricted

set classification problem. The closest set-up is the compound decision problem but in our case we allow

for up to ki objects from each class instead of a fixed number. Potential applications of the restricted set

classification scenario include automatic attendance registration of students, karyotyping [31, 32, 33, 4],60

monitoring of animal behaviour (fruit flies [28], piglets [29, 30]), real-time labelling of the players in a game

video stream (football [26], hockey [25]).

The rest of the paper is organised as follows. Section 2 lays out the theory behind the restricted set

classification problem. Experimental results are shown in Section 3, and a conclusion is offered in Section 4.

2. The restricted set classification problem65

Definition 1. The restricted set classification problem is defined as follows. Let X = {x1, . . . ,xm} be a

set of instances such that at most ki instances come from class ωi ∈ Ω = {ω1, . . . , ωc}. Find labels for all

elements of X so that the restriction holds.

Note that k1 + . . . + kc = k ≥ m.

Definition 2. A base classifier D is a classifier that assigns a class label to an instance x ∈ Rn
70

D : Rn → Ω. (1)

We also require that D provides estimates of the posterior probabilities P (ω1|x), . . . , P (ωc|x).
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Definition 3. A super-label for set X is any collection of m labels from Ω so that any instance x ∈ X

receives a single label. A super-label will be called consistent if it satisfies the requirement that at most ki

labels are equal to ωi, i = 1, . . . , c.

Denote by S the set of all possible super-labels of X. Let P = [pij ] be a matrix of size m × c that75

contains the posterior probability estimates obtained from the base classifier D applied to X. Entry pij is

the estimate of P (ωj |xi). Let P be the set of all matrices P .

Definition 4. A set classifier Dset assigns a super-label to any set X using the output of classifier D, that

is

Dset(X,D) : P → S. (2)

We consider two type of estimates of the accuracy of Dset for a given set X:80

• AT , total accuracy: AT = 1 if all labels are correctly assigned to the instances in X, and AT = 0,

otherwise;

• AP , partial accuracy: AP is the proportion correctly labelled instances in X.

Definition 5. Independent (Baseline) Set Classifier Di
set. This classifier takes the labels suggested

by D without any modification.85

Definition 6. Greedy Set Classifier Dg
set. Assume that D outputs the true posterior probabilities

P (ωi|x), for i = 1 . . . , c and any x ∈ Rn. This classifier labels the set X according to the following

algorithm:

1. Initialise a set V = ∅ to store the assigned object-class pairs.

2. Identify the largest posterior probability P (ω∗j |x∗j ) among the objects and classes not assigned so far.90

3. Remove ω∗j from the list of available classes, and x∗j from the list of available objects, and add the pair

to set V .

4. If there are no class-object pairs left, stop and return V . Else, continue from step 2.

To derive the extended model for simultaneous classification we will first introduce the two special cases:

the who-is-who [1] and who-is-missing [2].95

2.1. Who-is-who?

A set of c objects have to be labelled into c classes so that there is exactly one object in each class. Let

p be the probability that D will label correctly a randomly chosen instance x.

Di
set assumes that all instances are labelled independently. Then the accuracy measures of Di

set are

AT (Di
set) = pc (3)
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and100

AP (Di
set) = p. (4)

The super-label assigned by Di
set may not be consistent, more likely so for larger number of classes c. It

is possible to improve especially on AP (Di
set) by ensuring that the super label is consistent, for example by

applying Dg
set.

2.1.1. Two classes

Let c = 2 and X = {x1,x2}. Without loss of generality, assume that x1 was drawn from the distribution105

of class ω1, and x2 from ω2, hence the true super-label is 〈ω1, ω2〉. Suppose again that D is the perfect

classifier for the chosen feature space, and therefore we have knowledge of the true posterior probabilities.

To simplify notation, denote P1 = P (ω1|x1) and P2 = P (ω2|x2).

The probability that Di
set will give the correct super-label of X is

AT (Di
set(X)) = Pr(P1 > 0.5 & P2 > 0.5) . (5)

However, Dg
set will add to this two more cases. The super-label will be correct also when P1 < 0.5 and110

P2 > 1−P1, ensuring that ω2 will be assigned first to x2, leaving the free label ω1 for x1. By the same logic,

Dg
set will be right when P2 < 0.5 and P1 > 1 − P2. Since the cases are mutually exclusive, the probability

that Dg
set will give the correct super-label of X is

AT (Dg
set(X)) =

Pr(P1 > 0.5 & P2 > 0.5)

+ Pr(P1 < 0.5 & P2 > (1− P1))

+ Pr(P1 > (1− P2) & P2 < 0.5) (6)

≥ AT (Di
set(X)) (7)

The above expression reduces to115

AT (Dg
set(X)) = Pr(P1 + P2 > 0.5) . (8)

As AT (Dg
set(X)) ≥ AT (Di

set(X)) for any X, the inequality is valid across the whole space of pairs (x1,x2).

To visualise the improvement due to the greedy strategy, consider the two-dimensional data set shown

in Figure 1. We drew 10,000 random pairs X = {x1,x2}; x1 from ω1 and x2 from ω2.

The true probabilities P1 = P (ω1|x1) and P2 = P (ω2|x2) are used as the coordinate axes in Figure 2

where points corresponding to the 10,000 pairs are scattered. The region where Di
set gives the correct super-120

label is shaded in light grey, and the number of points is shown. The regions where Dg
set adds accuracy to

that of Di
set are shaded in dark grey.
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x1

x2

Figure 1: A two-dimensional data set with 10,000 points in each class.

For this example, AT (Di
set) = 80.80% and AT (Dg

set) = 7.65 + 7.90 + 80.80 = 96.35%.

Proposition 1. [1] For 2-class problems,

AP (Dg
set) > AP (Di

set) . (9)

The proof is shown in the Appendix.125

The theory about the two-class who-is-who problem has been illustrated by an earlier experimental study

to demonstrate the results’ validity when D is not a Bayes classifier and the posterior probabilities are only

estimates [1].

2.1.2. c classes

Let X = {x1, . . . ,xc} be the set of c objects where object xi is drawn from the distribution of class ωi,130

independently of the other c− 1 objects. Then the likelihood of a super label S = 〈s1, . . . , sc〉, si ∈ Ω is

L(S) =

c∏
i=1

P (si|xi)p(xi|ωi) . (10)

Since p(xi|ωi) does not depend on the super-label S, we can organise it into a multiplicative constant

PX =
∏c

i=1 p(xi|ωi), and rewrite the likelihood as

L(S) = PX

c∏
i=1

P (si|xi) . (11)
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Figure 2: 10,000 random pairs of points with super-label 〈ω1, ω2〉 drawn from the problem in Figure 1. The points are plotted

the space of the true posterior probabilities P (ω1|x1) and P (ω2|x2). The number of points in the respective regions are

displayed.

The set of feasible super-labels is the set of all permutations of the elements of Ω. The optimal super-label

S∗ will be the one maximising the L (equivalently log(L)), that is135

S∗ = arg max
S∈I

c∑
i=1

log(P (si|xi)) , (12)

where I is the set of all permutations of the class labels in Ω. S∗. Note that the greedy set classifier Dg
set

will not guarantee the optimal solution.

Definition 7. Hungarian Set Classifier Dh
set. This classifier uses the Hungarian assignment algo-

rithm [34] to find S∗.1. The input to the algorithm is the matrix LP with the logarithms of the poste-

rior probabilities obtained from the individual classifier, and the output is the optimal permutation S∗,140

guaranteeing the maximum sum of logarithms, as in equation (12).

Previous experiments have shown significant improvement of AT (Dh
set) over both AT (Dg

set) and AT (Di
set) [1].

2.2. Who-is-Missing?

In this scenario, a set X of k < c objects have to be labelled into c classes so that there is at most

one object in each class [2]. As the question of interest here is “who-is-missing”, it may be thought that145

the correct assignment of the elements of X is not strictly necessary. However, in order to maximise the

likelihood of discovering the identity of the missing classes, we still need to maximise the likelihood of the

assignments of the objects in X. Let S(−) ⊂ Ω and S(+) = Ω\S(−) be respectively the set of missing and the

set of present classes. The probability that S(−) is missing is the same as the probability that S(+) is present.

1Further developed by Kuhn and Munkres, also known as Kuhn-Munkres algorithm. Proposed originally for c× c matrices,

the Hungarian algorithm has been extended for rectangular matrices [35].
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Therefore, by maximising the log-likelihood of the collection of labels in S(+), we maximise the probability150

of discovering the correct S(−). This allows for the who-is-missing problem to be cast as who-is-who.

We create v = c−k dummy objects z1, . . . , zv, and assign probabilities P (ωi|zj) = 1/c for all i = 1, . . . , c

and j = 1, . . . , v. Thus the matrix with posterior probabilities P is of size c × c, and has v identical rows

with values 1/c. The optimal labelling (eqn (12)) becomes

S∗ = arg max
S∈I

 k∑
i=1

log(P (si|xi)) +

v∑
j=1

log

(
1

c

) . (13)

The second term can be absorbed into a constant which does not depend on S, and does not affect the155

optimal assignment of labels to X. The Hungarian set algorithm Dh
set can be applied to P for finding S∗.

The labels assigned to the dummy objects are the missing classes. Note that the value of the constant we

assign in place of the posterior probabilities for the dummy objects does not matter. The same assignment

will be obtained for any value.

We carried a set of experiments for the who-is-missing problem [2] with the UCI letter data set and an160

image data set of LEGO parts. The results again strongly favoured the Hungarian set algorithm Dh
set before

the greedy Dg
set and the independent Di

set set algorithms.

2.3. Solution to the restricted set classification problem

Following the naming convention for the two special cases above, we call the restricted set classification

problem (Definition 1) ‘who-is-there’.165

Recall the example of who-is-there where the chess pieces on a board are to be recognised from a bird-

view snapshot. In this case, there are 12 possible classes (pawn, bishop, knight, castle, king, queen; × 2 for

black and white) and up to 32 objects. The maximum number of objects from each class is fixed by context.

We assume that we don’t have prior knowledge of the moves leading to the current board configuration.

To solve the who-is-there problem, we should be looking to maximise the log-likelihood of the super-170

label. However, this time the set of classes has to be augmented with ki copies of each class. The posterior

probabilities for the copies are the same as the one in the original column. In addition, the set of objects also

has to be expanded to contain k objects altogether. The k −m dummy objects are assigned 1/c posterior

probabilities for all k possible class labels in the super-label. The resultant matrix P is of size k × k. The

example below illustrates this arrangement.175

Consider three classes denoted respectively •, 4 and �. It is known that X contains at most k = 5

objects where at most 2 are from class •, at most 1 is from class 4 and at most 2 are from class �. Suppose

that the observed set X contains m = 4 objects with the following posterior probabilities provided by D:
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0.53 0.53 0.23 0.24 0.24

0.55 0.55 0.36 0.09 0.09

0.21 0.21 0.50 0.29 0.29

0.50 0.50 0.33 0.17 0.17

0.33 0.33 0.33 0.33 0.33

𝐱1
𝐱2

𝐱4
𝐳1

𝐱3

Dummy object

Dummy classesMatrix with 
posterior 
probabilities

Figure 3: Construction of matrix P (8× 8) for the numerical example. The ellipses show the assignment by Dh
set.

Object P (•|x) P (4|x) P (�|x)

x1 0.53 0.23 0.24

x2 0.55 0.36 0.09

x3 0.21 0.50 0.29

x4 0.50 0.33 0.17

We construct P as shown in Figure 3. The assignment resulting from applying Dh
set to P is also indicated180

in the figure.

The Hungarian set classifier Dh
set will assign super-label 〈� • 4•〉 to the four objects in X, amounting

to criterion value

ln(0.24) + ln(0.55) + ln(0.50) + ln(0.50) = −3.4112 .

The Greedy set classifier Dg
set, on the other hand, will assign super-label 〈• • 4�〉, which gives

ln(0.53) + ln(0.55) + ln(0.50) + ln(0.17) = −3.6978 .

Both super-labels satisfy the constraints but Dh
set leads to a higher (better) log-likelihood value compared185

to Dg
set. This is to be expected as Dh

set guarantees the optimal assignment of labels with respect to the

log-likelihood criterion.

3. Experiments

Our hypothesis is that, for the restricted set classification problem, both accuracy measures AT and AP

should be maximised by applying Dh
set compared to applying Dg

set and Di
set, for various models of the base190

classifier D.
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3.1. Chess pieces

For this experiment we used 46 bird-view snapshots of a chess board. Each image was cropped and

squared (Figure 4 (a)), and subsequently split into 64 squares. The task is to identify the chess pieces and

their positions (Figure 4 (b)). Figure 4 (c) shows examples of the training data for the 13 classes: 12 classes195

for the chess pieces and one class for empty squares (denoted by E). Five instances (image tiles) are shown

from each class.

���� � !
���� ��
������ �
� � � �
��� � �

� � � �
�� � ���
� � � ��

(a) Bird-view snapshot (b) True positions

� � � 
 � � � � � � � � E

(c) Examples of the training data

Figure 4: A chess board example

We decided to use the following features on each tile:

• Entropy of the grey-level image.

• Standard deviation of the grey-level image.200

• Difference between the mean grey intensity of (i) a square centred at the tile centre, with side equal

to half of the tile side, and (ii) the tile area outside the square.

• 100 grey-level values obtained by resizing the image to 10× 10 pixels.
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The experiment was organised as 46-fold cross-validation where one board was left aside in each fold. A

classifier was trained for each fold, and the posterior probabilities of the testing data were subsequently205

calculated. The classifier models which we tried out as base classifier D are shown in Table 1.2

The matrix with the posterior probabilities P was expanded as demonstrated in Figure 3. The three set

classifiers: Di
set (B), Dg

set (G) and Dh
set (H) were then applied giving the accuracies shown in Table 1.

Table 1: Averaged partial accuracy AP and averaged total accuracy AT in % for the Baseline (B), Greedy (G) and the

Hungarian (H) set classifiers for the 46-cross-validation experiment for the Chess data. Symbol • after the value in column

Ap-H indicates that H is significantly different from G at p < 0.001, and symbol − means that there is no significant difference.

The largest AP for each classifier type is underlined.

Partial accuracy AP Total accuracy AT

Classifier B G H B G H

Nearest neighbour 95.75 96.23 96.43 − 32.61 43.48 47.83

Linear discriminant analysis 79.42 80.74 83.19 • 0.00 0.00 0.00

Näıve Bayes 39.64 59.68 64.20 • 0.00 0.00 0.00

Decision tree 87.13 85.67 86.01 − 4.35 4.35 4.35

SVM – linear 89.57 90.18 90.52 − 0.00 2.17 2.17

SVM – radial basis function (RBF) 87.67 88.52 89.50 • 2.17 2.17 2.17

SVM – sigmoid kernel 67.46 67.53 67.46 − 2.17 2.17 2.17

SVM – polynomial kernel 87.57 88.76 88.82 − 0.00 0.00 0.00

Random Forest 91.88 93.00 93.58 • 2.17 19.57 26.09

Paired t-test was used to identify any significant differences between AP for the proposed Dh
set against

Dg
set at p < 0.001 for the classifier models. The results favour Dh

set which is often the most accurate set210

classifier. The greedy set classifier is the next best, and the baseline set classifier (independent application

of D) wins only once, for the decision tree classifier. This is likely a result from the notoriously poor

approximation of posterior probabilities by the standard decision tree classifier.

Looking at AT , the only base classifier which can be of any use in recognising the whole set of chess

pieces for this experiment is the nearest neighbour. Even its accuracy AT is not sufficiently high. For the215

purposes of demonstrating the advantage of using a proper set classifier, we chose a difficult task. This can

be observed in the small example of the training set in Figure 4 (c). The position of the camera was such

that the same type of piece could be seen to “lean” up, down, left or right, so much so that a distinguishing

part of the top of the piece is missing. We did not attempt to analyse whether the background of the piece is

2Own MATLAB code was used for the nearest neighbour classifier, the näıve Bayes classifier and the random forest ensemble

(RF). The MATLAB Statistic Toolbox was used for the linear discriminant classifier, the decision tree classifier and the random

tree base classifier for RF. LibSVM library [36] was used for the multi-class SVM classifiers.
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black or white, and proceed to apply different classifiers accordingly. If the aim of the paper was to recognise220

correctly all the pieces in this restricted set classification problem, we would have opted for multiple cameras,

more elaborate and context-related features, advanced classifiers such as deep learning neural networks, and

calibration of the posterior probabilities. Our experiment is a proof of concept. It demonstrates that the

restricted set classification problem needs special treatment beyond training a standard classifier D and

applying it independently to the elements of the set of instances X.225

3.2. USC data

3.2.1. The data collection

In the second set of experiments we used a collection of datasets chosen as a testbed for a comprehensive

experimental evaluation of 179 classifiers from 17 families [37]3. Many of the datasets within the collection

are from the UCI Machine Learning Repository [38]. We refer to this repository as USC after the host230

university (University of Santiago de Compostela, Spain).

To enable a reasonable formulation of the restricted set classification problem we had to ensure that

there is sufficient variability within each class we sampled from. Otherwise the results would depend too

much on a few instances. Therefore, we reduced the original 121 datasets to 96 datasets, and modified those

retained according to the following rule. Classes containing less than 50 examples were removed. Hence,235

datasets without at least two classes with at least 50 examples in each were discarded from the collection.

The description of the data collection that we used is shown in Table 2.

3.2.2. Experimental protocol

Two fold cross validation, repeated five times, was used to partition the data into training and initial

testing sets. From each of the ten initial testing sets, 100 runs were carried out. Thus, for each dataset, we240

carried out 1000 runs.

In each run, we commence by initialising the set to be labelled by X = ∅. A random integer between 1

and 10 is drawn for each class to serve as the limit on the number of possible objects from that class. Denote

by ki the number of objects allowed for class ωi. Then a second random integer, ri, is drawn between 0 and

ki, to determine how many objects from ωi will actually be present in the set X. Note that we include the245

possibility of a completely absent class. Next, we add to X ri randomly selected testing objects whose true

label is ωi. After constructing the set X, Di
set (Baseline), Dg

set (Greedy) and Dh
set (Hungarian) are applied

to find the respective super-labels.

The following set of classifiers were tested as D:

• Nearest neighbour (1-NN)250

3The repository is available at http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
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Table 2: Characteristics of the datasets (#E: examples, #F: feautures, #C: classes).

dataset #E #F #C

abalone 4177 8 3

acute-inflammation 120 6 2

acute-nephritis 120 6 2

adult 48842 14 2

annealing 850 31 3

arrhythmia 295 262 2

balance-scale 576 4 2

bank 4521 16 2

blood 748 4 2

breast-cancer 286 9 2

breast-cancer-wisc 699 9 2

breast-cancer-wisc-diag 569 30 2

car 1728 6 4

cardiotocography-10clases 2126 21 10

cardiotocography-3clases 2126 21 3

chess-krvk 28029 6 17

chess-krvkp 3196 36 2

congressional-voting 435 16 2

conn-bench-sonar-mines-rocks 208 60 2

conn-bench-vowel-deterding 990 11 11

connect-4 67557 42 2

contrac 1473 9 3

credit-approval 690 15 2

cylinder-bands 512 35 2

dermatology 297 34 4

ecoli 272 7 3

energy-y1 768 8 3

energy-y2 768 8 3

glass 146 9 2

haberman-survival 306 3 2

hayes-roth 129 3 2

heart-cleveland 219 13 2

heart-hungarian 294 12 2

heart-va 107 12 2

hill-valley 1212 100 2

horse-colic 368 25 2

ilpd-indian-liver 583 9 2

image-segmentation 2310 18 7

ionosphere 351 33 2

iris 150 4 3

led-display 1000 7 10

letter 20000 16 26

low-res-spect 469 100 3

lymphography 142 18 2

magic 19020 10 2

mammographic 961 5 2

miniboone 130064 50 2

molec-biol-promoter 106 57 2

dataset #E #F #C

molec-biol-splice 3190 60 3

monks-1 556 6 2

monks-2 601 6 2

monks-3 554 6 2

mushroom 8124 21 2

musk-1 476 166 2

musk-2 6598 166 2

nursery 12958 8 4

oocytes-merluccius-nucleus-4d 1022 41 2

oocytes-merluccius-states-2f 1022 25 3

oocytes-trisopterus-nucleus-2f 912 25 2

oocytes-trisopterus-states-5b 898 32 2

optical 5620 62 10

ozone 2536 72 2

page-blocks 5445 10 4

pendigits 10992 16 10

pima 768 8 2

planning 182 12 2

ringnorm 7400 20 2

seeds 210 7 3

semeion 1593 256 10

soybean 362 35 4

spambase 4601 57 2

spect 265 22 2

spectf 267 44 2

statlog-australian-credit 690 14 2

statlog-german-credit 1000 24 2

statlog-heart 270 13 2

statlog-image 2310 18 7

statlog-landsat 6435 36 6

statlog-shuttle 57977 9 5

statlog-vehicle 846 18 4

steel-plates 1941 27 7

synthetic-control 600 60 6

teaching 102 5 2

thyroid 7200 21 3

tic-tac-toe 958 9 2

titanic 2201 3 2

twonorm 7400 20 2

vertebral-column-2clases 310 6 2

vertebral-column-3clases 310 6 3

wall-following 5456 24 4

waveform 5000 21 3

waveform-noise 5000 40 3

wine 130 13 2

wine-quality-red 1571 11 4

wine-quality-white 4873 11 5

yeast 1350 8 5
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• Linear discriminant analysis (LDA)

• Näıve Bayes (NB)

• Logistic Regression (LOG)

• Decision tree (DT)

• Random Forest (RF)255

• Rotation Forest (ROT)

3.2.3. Results

We have prepared a supplementary document which contains the full numerical results from the experi-

ments in seven tables, one for each classifier. Here we reproduce only the table for the decision tree classifier

(Table 4).260

The best and the worst base classifiers. We next give a graphical illustration of the two methods

which appeared to be the weakest and the strongest in our experiment: Näıve Bayes (NB, the weakest)

and Rotation Forest ensemble (ROT, the strongest). Figure 5 (a) shows the improvement on AP of Di
set

achieved by applying Dh
set to the restricted set classification problem. To prepare the plot, we arranged

the datasets in ascending order of AP (Di
set). Then we plotted AP (Di

set) and AP (Dh
set) versus the dataset265

index. The differences between the two curves are small and not clearly visible, especially for larger values of

AP (Di
set). Therefore, in order to show the consistency of the improvement, we drew a vertical line upwards

from each point (dataset) where the strict inequality AP (Di
set) < AP (Dh

set) held. Shown above the curves

is the number of datasets out of 96 which satisfy the inequality. For NB, the partial accuracy AP (Dh
set) was

higher than AP (Di
set) for all 96 datasets.270

In the same way, we plot together the curves for AP (Dg
set) and AP (Dh

set), this time sorting the datasets

on AP (Dg
set). The graph is shown in Figure 5 (b). This time, there were datasets for which the opposite strict

inequality held, that is, AP (Dg
set) > AP (Dh

set). For these datasets, we drew the vertical lines downward,

and show the number of datasets under the curves. For this case, Method H was better than method G in

42 comparisons and worse in 13 comparisons, leaving 41 ties. We can apply the sign statistical test whose275

p-value signifies reflects the probability that such difference may happen by chance if the two methods are,

in fact, equivalent. For the results plotted in Figure 5 (b), p = 6.66 × 10−5, suggesting that AP (Dh
set) is

significantly better than AP (Dg
set).

Figure 5 suggests that, even though AP is not as high as for the remaining baseline classifiers D, the set

classifier is able to improve on it consistently. Moreover, the Hungarian algorithm should be preferred to280

the greedy algorithm for its, albeit small, provably superior accuracy.
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Figure 5: Comparison between the partial accuracy AP of: (a) Di
set and Dh

set, and (b) Dg

set and Dh
set for the Näıve Bayes

classifier and USC data collection. Upward vertical lines indicate that method H is strictly better than its counterpart for the

respective dataset, and downward vertical line indicate that it is strictly worse. The numbers of datasets which satisfy the

inequalities are shown in the respective parts of the plot.

Figure 6 is a matching example to Figure 5 where the based classifier is the Rotation Forest ensemble,

the best overall set classifier. Method H is again making a “clean sweep” against I. This time, however,

the number of results where method H is worse than method G rose to 38 versus 55 comparisons in favour

of method H. This gives p = 0.0180 for the two-tailed sign test, which still supports the claim that there is285

significant difference in favour of method H at p < 0.01.

The scaling of the figures was kept the same to allow for a visual comparison of the accuracies. Clearly,

ROT leads to better AP than NB as all curves run higher in Figure 6. The improvement on AP , however,

is more pronounced for NB. Part of this may be due to the fact that NB is meant to approximate posterior

probabilities (under the feature independence assumption), and gives a ready-made matrix with probabilities290

P . Rotation Forest, on the other hand, uses the voting scores as approximation of the posterior probabilities,

which is not ideal, and may compromise the expected improvement on the accuracy of the independent set

classifier I,

Figure 7 contains all the results for the total accuracy AT whereby we require that all elements of X are

classified correctly (correct super-label). The p-values for the results in subplots (b) and (d) are respectively295

0.0820 and 0.4484. If we consider the right-tailed test with null hypothesis about the medians G ≥ H, and

alternative H > G, then the p-value for subplot (b) is 0.0410, hence method H is better than method G at

p < 0.05.

Statistical testing for all results. Table 3 presents a summary of all the results. Given the large number

of datasets, we considered it reasonable to display the average accuracies to support the statistical test300
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Figure 6: Comparison between the partial accuracy AP of: (a) Di
set and Dh

set, and (b) Dg

set and Dh
set for the Rotation

Forest ensemble and USC data collection. Upward vertical lines indicate that method H is strictly better than its counterpart

for the respective dataset, and downward vertical line indicate that it is strictly worse. The numbers of datasets which satisfy

the inequalities are shown in the respective parts of the plot.

results. Note that we still used the non-parametric sign test for the comparison. The results support the

claim that the set classifier which uses the Hungarian assignment algorithm is consistently better than the

two rival algorithms. Admittedly, while consistent, the improvement over method G is fairly small, as

evidenced by Figures 5 – 7, where the curves for G and H visibly coincide. This raises up the question of

whether the Hungarian algorithm is really needed for this task or satisfactory results can be obtained with305

the greedy algorithm?

Note that this paper is about the definition of the restricted set classification problem. The crucial part

of the proposed solution is the expansion of the probability matrix P . This can be followed by the optimal

assignment algorithm (H) or a good suboptimal assignment algorithm (G).

Analysis of the improvement of H over B. Figure 8 illustrates the improvement offered by method310

H over the baseline set classifier B for both partial accuracy AP and total accuracy AT . For this example

we used all the results for the seven base classifiers. Each point corresponds to a dataset, so there are

96 × 7 = 672 points scattered in total in each sub-plot. The diagonal line is where the points should lie

if H and B had identical accuracies. The figure shows that, for both AP and AT , H is better than B.

Interestingly, the improvement on AP (sub-plot (a)) depends on the base accuracy while the improvement315

on AT (sub-plot (b)) is more uniform on the total accuracy of B. The set classifier can correct individual

errors better when the base classifier is not very accurate, and less so when the individual accuracy increases.

This tendency exists but is less pronounced for the total accuracy AT .

In Figure 9 we examine the relationship between the improvement on the partial and the total accu-

racy. The 672 points obtained from all seven classifier models and all datasets are scattered in the space320
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Figure 7: Comparison between the total accuracy AT of: (a) method H versus I, (b) method H versus method G for the

Näıve Bayes classifier; (c) method H versus I, (d) method H versus method G for the Rotation Forest ensemble, all for

the USC data collection. Upward vertical lines indicate that method H is strictly better than its counterpart for the respective

dataset, and downward vertical line indicate that it is strictly worse. The numbers of datasets which satisfy the inequalities

are shown in the respective parts of the plot.
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Table 3: Average partial accuracy AP and total accuracy AT for the three set classifiers (B Baseline, G Greedy and H

Hungarian) for seven base classifier models with the USC data collection. Method H was compared with I and G using the

sign test at significance level p < 0.001. The results are shown next to the H columns. The first symbol is the result of the

H/I comparison, and the second symbol, the result from the H/G comparison. A bullet indicates that H is significantly better

that the other set classifier, and a dash indicates that there is no difference at the chosen significance level.

Partial accuracy AP Total accuracy AT

Classifier B G H B G H

Nearest neighbour (1-NN) 76.05 77.57 78.14 • • 30.03 32.55 33.45 • •

Linear discriminant analysis (LDA) 73.74 76.86 76.99 • • 27.67 30.97 31.06 • •

Näıve Bayes (NB) 72.83 75.86 75.95 • • 25.10 28.50 28.51 • −

Logistic Regression (LOG) 75.13 78.43 78.74 • • 29.74 33.65 33.95 • •

Decision tree (DT) 77.81 79.85 80.27 • • 32.63 35.60 36.29 • •

Random Forest (RF) 81.25 83.57 83.62 • • 40.16 44.03 44.14 • •

Rotation Forest (ROT) 82.09 84.69 84.79 • − 42.80 47.05 47.14 • −
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Figure 8: Improvement of method H over method B for the 96 USC datasets using the all 7 base classifiers.
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Figure 9: Scatterplot of all datasets for all seven base classifiers in the plane (∆AP ,∆AT ). The blue triangle contains 54% of

all points

(∆AP ,∆AT ) where ∆AP = AP (Dh
set)− AP (Di

set) and ∆AT = AT (Dh
set)− AT (Di

set). The lines of no im-

provement are depicted in red. The figure shows that the total accuracy benefits even more than the partial

accuracy (68.6% of the points are above the diagonal line, that is ∆AT > ∆AP ). We identified and outlined

by a triangle a dense region in the diagram containing approximately 54% of all points plotted. For these

points, a fairly small improvement on the partial accuracy was sufficient to ensure a greater improvement325

in the total accuracy, justifying overall the restricted set classification approach. Larger improvements on

AP lead to larger improvement on AT too, but for most of these points, ∆AP > ∆AT (that is, the points

lie under the diagonal).

Another interesting observation from the figure is that even for datasets where the partial accuracy of

method H was worse than that of method method B (left from the line ∆AP = 0), the total accuracy of330

method H was still better than that of method B (∆AT > 0). Overall, ∆AT > 0 for 93.75% of the points,

∆AT = 0 for 5.95% of the points, and ∆AT < 0 for 0.3% of the points. Note that this set of points includes

all seven base classifiers and all datasets.

Relationship of the improvement of H over B and the number of classes.. Figure 10 plots the

improvement ∆AP and ∆AT versus the number of classes. The points in the scatterplots again correspond335

to the datasets using all seven base classifiers.

There is no visible relationship between the number of classes and the improvement of method H against
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Figure 10: Improvement of H over B for the partial accuracy (∆AP ) and the total accuracy ∆AT ) against the number of

classes for the respective problems.

method B. The problems with two and three classes make up 75% of the USC collection. It can be expected

that more is to be gained if we have a large number of classes compared to fewer classes, but this could not

be verified with this collection.340

4. Conclusion

We propose a solution for the restricted set classification problem which we also call “who-is-there”.

The problem is to classify simultaneously a set of objects into c classes, ω1, . . . , ωc, knowing that there

is at most ki objects from class ωi. The values of ki are specified in advance and fixed. Our solution is

to expand the matrix with posterior probabilities given by the classifier so that we cover the possibility345

for k =
∑c

i=1 ki objects and labels, and apply the Hungarian assignment algorithm on the logarithms of

the posterior probabilities in the expanded matrix. The simpler alternatives which we considered were the

standard approach of applying the trained classifier D individually to each instance in the set X, and a

greedy approach where objects and classes are paired and eliminated from the set. Our experimental study

validates the proposed approach for various choices of base classifier model D.350

We demonstrated that the set classifier is better than the individual classifier for the restricted set

classification problem through a two-part experiment. In the first part, we formulated the problem on a

chess dataset where the all pieces on a chessboard had to be recognised from a bird-view snapshot. The

second experiment was carried out using the University of Santiago de Compostela collection of 96 data.

We constructed restricted set classification problems and applied the proposed solution. The experiments355
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favoured ensemble classifiers as the base classifier D, and subsequently the Hungarian set classifier Dh
set on

the expanded probability matrix.

The scalability of the proposed framework is affected only by the complexity of the Hungarian algorithm.

Training of the base classifier D is the same with or without the restricted set classification framework. The

complexity of the Hungarian algorithm for our case is O(k3), where k is the maximum number of objects in360

the set. The Hungarian algorithm may be impractical for very large k or when rapid classification is needed,

for example in tracking. In such cases, the greedy set classifier can be used, sacrificing some accuracy AP

and AT .

An interesting question which we intend to address in the future is that about possible dependencies in

the set of objects X. The instances in X may not be independently drawn from their respective classes.365

For example, the snapshot of the chessboard has a certain illumination. When classifying the pieces in the

individual squares cropped from the snapshot, we assume that they are drawn independently from their

respective classes. In other words, the fact that these sub-images have similar illumination is not currently

accounted for in the theoretical model we propose here.
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Appendix

Proof of Proposition 1

Proposition 1. For 2-class problems,375

AP (Dg
set) > AP (Di

set) . (14)

Proof. For Di
set,

AP (Di
set) = Pr(P1 > 0.5)Pr(P2 > 0.5)× 2

2

+ Pr(P1 > 0.5)Pr(P2 ≤ 0.5)× 1

2

+ Pr(P1 ≤ 0.5)Pr(P2 > 0.5)× 1

2
(15)

=
1

2
(Pr(P1 > 0.5) + Pr(P2 > 0.5)) (16)

= p , (17)
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where p is the accuracy of D. For Dg
set,

AP (Dg
set) = Pr(P1 > 0.5)Pr(P2 > 0.5)× 2

2

+Pr(P1 ≤ 0.5)Pr(P2 > 0.5)Pr(P2 > 1− P1)× 2

2

+Pr(P1 > 0.5)Pr(P2 ≤ 0.5)Pr(P1 > 1− P2)× 2

2
. (18)

The ROC curve of a classifier for a two-class problem is constructed by nominating any of the two classes380

to be the ‘positive’ class and the other to be the ‘negative’ class. The area under the ROC curve, AUC,

gives the probability that the classifier will rank a randomly chosen positive instance higher than randomly

chosen negative instance [39]. Phrased differently, this is the probability that the classifier will make errors

with less certainty compared to the certainty when assigning a correct label. Formally,

AUC = Pr(P1 > 1− P2) = Pr(P2 > 1− P1) . (19)

Denote by S1 = Pr(P1 > 0.5) the sensitivity of D assuming that class ω1 is the positive class, and by385

S2 = Pr(P2 > 0.5) the sensitivity of D assuming that class ω2 is the positive class. Then

AP (Dg
set) = S1S2 + (1− S1)S2AUC + S1(1− S2)AUC

= S1S2 + (S1 + S2 − 2S1S2)AUC . (20)

For the Bayes classifier D, whereby the labelling is done by the largest posterior probability, AUC > 0.5.

Therefore,

AP (Dg
set) > S1S2 + (S1 + S2 − 2S1S2)× 0.5

390

=
1

2
(S1 + S2) = p = AP (Di

set) . (21)
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Results for the USC data for the decision tree classifier

Table 4: Averaged partial accuracy AP and averaged total accuracy AT in % for the Baseline (B), Greedy (G) and the

Hungarian (H) set classifiers for the decision tree classifier. Symbol • after the value in column H indicates that H is

significantly different from G at p < 0.01. The highest accuracy for each dataset is indicated in boldface.

AP AT

Classifier B G H B G H

abalone 61.01 63.06 63.23 − 6.50 7.60 7.60 −

acute-inflammation 100.00 100.00 100.00 − 100.00 100.00 100.00 −

acute-nephritis 100.00 100.00 100.00 − 100.00 100.00 100.00 −

adult 76.34 79.90 79.95 − 28.10 34.80 35.00 −

annealing 90.64 91.60 91.99 − 52.10 56.10 57.50 −

arrhythmia 82.84 84.79 85.41 − 41.70 46.40 47.80 −

balance-scale 85.11 85.52 85.52 − 43.50 45.90 46.10 −

bank 64.79 71.92 71.94 − 18.60 23.90 24.70 −

blood 60.04 68.82 69.92 − 15.90 23.10 25.60 −

breast-cancer-wisc-diag 92.85 92.61 92.95 − 64.70 66.50 67.40 −

breast-cancer-wisc 94.26 94.34 94.32 − 70.50 72.50 72.40 −

breast-cancer 58.66 65.34 66.58 − 11.90 17.50 19.30 −

car 92.04 92.58 92.78 − 46.70 50.20 51.30 −

cardiotocography-10clases 74.96 74.96 74.77 − 0.50 0.60 0.60 −

cardiotocography-3clases 85.53 86.14 86.09 − 34.10 37.60 37.40 −

chess-krvk 73.36 74.25 74.48 • 0.00 0.10 0.10 −

chess-krvkp 98.99 99.04 99.09 − 94.70 95.30 95.70 −

congressional-voting 48.95 62.61 67.07 • 11.80 21.10 26.10 •

conn-bench-sonar-mines-ro 69.99 72.29 72.30 − 19.70 23.10 23.50 −

conn-bench-vowel-deterdin 81.38 81.22 81.60 • 1.70 1.80 1.90 −

connect-4 74.75 77.78 77.79 − 24.70 29.00 29.10 −

contrac 48.18 50.17 50.79 • 2.80 2.90 2.90 −

credit-approval 84.22 84.32 84.32 − 37.90 40.80 40.80 −

cylinder-bands 68.71 70.59 70.67 − 20.20 23.00 22.90 −

dermatology 96.86 96.81 96.93 − 73.40 74.70 74.90 −

ecoli 91.02 91.01 92.10 • 51.70 53.20 56.30 •

energy-y1 93.55 93.90 94.11 − 59.20 63.40 64.80 −

energy-y2 88.81 89.57 89.83 − 39.90 44.20 45.00 −

glass 73.44 75.24 75.70 − 23.10 26.80 27.90 −

haberman-survival 60.01 66.97 68.40 − 14.00 19.30 21.40 •

hayes-roth 61.75 65.71 66.39 − 15.50 19.50 20.30 −

heart-cleveland 68.21 73.01 73.63 • 19.70 24.40 25.40 •

heart-hungarian 76.13 78.80 79.00 − 26.80 31.20 31.90 −

heart-va 54.55 58.22 58.32 − 9.40 11.10 11.40 −

hill-valley 50.59 65.25 70.34 • 14.90 26.10 31.70 •

horse-colic 81.21 82.36 82.58 − 34.40 38.00 38.50 −

ilpd-indian-liver 52.41 63.11 65.28 − 11.60 19.70 22.60 −

image-segmentation 93.57 93.40 93.39 − 29.90 32.00 32.20 −

ionosphere 83.95 83.71 83.78 − 40.70 42.40 42.40 −

iris 92.99 92.73 92.97 − 60.40 62.20 63.20 −

led-display 70.21 70.25 70.20 − 0.10 0.10 0.10 −

Continued on next page
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Table 4 – continued from previous page

AP AT

Classifier B G H B G H

letter 84.33 84.04 84.03 − 0.00 0.00 0.00 −

low-res-spect 80.94 81.65 81.76 − 23.60 26.40 27.20 −

lymphography 75.82 78.33 78.61 − 27.30 32.00 33.10 −

magic 82.35 83.81 83.78 − 38.60 42.80 42.80 −

mammographic 83.16 84.03 84.27 − 37.10 41.50 42.20 •

miniboone 87.53 87.72 87.72 − 48.60 50.80 50.80 −

molec-biol-promoter 74.64 76.13 76.48 − 28.10 31.00 31.90 −

molec-biol-splice 89.73 89.55 89.45 − 45.30 47.40 47.40 −

monks-1 83.45 86.07 87.22 − 47.00 52.70 54.80 −

monks-2 58.44 67.65 69.38 − 13.60 22.70 25.10 −

monks-3 96.97 97.26 97.32 − 83.30 85.60 85.80 −

mushroom 100.00 100.00 100.00 − 100.00 100.00 100.00 −

musk-1 76.64 77.30 77.79 − 27.80 31.20 32.30 −

musk-2 90.16 90.58 90.64 − 56.70 60.20 60.30 −

nursery 98.36 98.54 98.57 − 83.90 86.10 86.30 −

oocytes-merluccius-nucleu 64.59 68.07 68.11 − 16.20 19.10 19.60 −

oocytes-merluccius-states 83.63 83.30 83.31 − 28.90 30.30 30.60 −

oocytes-trisopterus-nucle 69.67 71.35 71.48 − 18.30 20.10 20.30 −

oocytes-trisopterus-state 85.77 86.15 86.19 − 43.90 47.20 47.60 −

optical 88.81 88.44 88.47 − 5.70 6.20 6.30 −

ozone 57.82 66.25 66.89 − 16.00 21.60 22.70 −

page-blocks 84.40 85.49 86.00 • 26.20 29.30 30.10 −

pendigits 95.13 94.83 94.84 − 27.90 29.10 29.00 −

pima 69.17 72.39 72.77 − 20.20 24.50 25.10 −

planning 51.08 65.87 71.35 • 12.80 25.40 30.80 •

ringnorm 89.81 90.05 90.18 − 53.90 57.30 57.30 −

seeds 90.40 90.55 90.49 − 49.10 51.80 52.20 −

semeion 72.11 71.62 71.73 − 0.10 0.10 0.10 −

soybean 86.94 87.47 87.94 • 28.10 30.90 32.50 •

spambase 90.87 91.19 91.14 − 58.10 61.70 61.80 −

spect 65.84 68.54 69.22 − 15.50 18.90 19.60 −

spectf 70.13 71.11 70.51 − 21.70 23.30 23.70 −

statlog-australian-credit 54.57 57.59 58.14 − 10.30 11.80 12.30 −

statlog-german-credit 62.43 66.31 66.25 − 13.80 16.60 16.60 −

statlog-heart 74.53 76.02 75.77 − 24.10 27.20 27.30 −

statlog-image 95.05 94.96 95.02 − 40.20 41.80 41.90 −

statlog-landsat 82.25 82.04 82.19 − 8.60 9.10 9.50 −

statlog-shuttle 98.15 98.25 98.18 − 79.30 81.00 80.60 −

statlog-vehicle 70.48 71.81 72.00 − 7.30 8.40 8.60 −

steel-plates 71.98 72.57 72.72 − 0.80 1.10 1.10 −

synthetic-control 87.35 86.84 87.24 − 14.20 15.00 15.60 −

teaching 58.33 62.62 62.83 − 9.60 12.70 13.30 −

thyroid 97.59 97.57 97.55 − 82.80 84.20 84.00 −

tic-tac-toe 91.11 91.69 91.64 − 61.00 64.60 64.50 −

titanic 68.37 75.28 76.43 • 22.40 32.50 34.60 •

twonorm 84.40 84.54 84.62 − 40.30 42.90 43.10 −

vertebral-column-2clases 76.37 78.38 78.63 − 29.30 33.30 33.70 −

vertebral-column-3clases 74.11 75.90 75.77 − 16.70 19.50 19.60 −

wall-following 99.13 99.13 99.18 • 90.00 90.50 91.00 −

Continued on next page
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Table 4 – continued from previous page

AP AT

Classifier B G H B G H

waveform-noise 74.58 74.70 74.97 − 14.20 15.30 15.70 −

waveform 76.16 76.40 76.68 − 17.10 18.20 18.40 −

wine-quality-red 42.66 46.18 46.54 − 1.00 1.30 1.30 −

wine-quality-white 42.51 44.73 46.16 • 0.20 0.20 0.30 −

wine 94.15 94.03 94.48 − 71.80 73.60 75.10 •

yeast 57.58 58.41 58.62 − 1.20 1.20 1.20 −
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