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Substrates emulsification process to improve lipase-catalyzed sardine oil 

glycerolysis in different systems. Evaluation of lipid oxidation of the reaction 

products  

Ángela García Solaesa, María Teresa Sanz, Rodrigo Melgosa, Sagrario Beltrán 

Department of Biotechnology and Food Science (Chemical Engineering Section), 

University of Burgos, 09001 Burgos. Spain 

Abstract 

Mono- and diacylglycerols rich in omega-3 have a great interest due to their good 

bioavailability and oxidation stability compared with other kind of omega-3 

concentrates. The main drawback in mono- and diacylglycerols production by 

glycerolysis is the immiscibility of the substrates, oil and glycerol. To improve mass 

transfer rates, avoiding the use of organic solvents, emulsification of both reactants as 

reverse micelles (glycerol-in-oil) was carried out previous to lipase-catalyzed sardine oil 

glycerolysis. Substrate emulsification yielded higher reaction rates compared to kinetics 

with no previous emulsification, but still lower than in organic solvents. To avoid the 

use of organic solvent, SC-CO2 was used as reaction medium but no kinetic advantages 

were demonstrated in the pressure range from 15 to 25 MPa. By increasing temperature, 

from 40 to 90 ºC, reaction rates increased both in a solvent-free system and in SC-CO2 

medium. It was also found that an increase in temperature does not lead to an increase 

in the final oxidation status of the reaction products. This behavior was due to the 

sorption capacity of the Lipozyme 435 support, giving lower oxidation status at the 

highest temperature, 80-90 ºC.  

Keywords: fish oil, glycerolysis, microemulsion, SC-CO2, peroxides adsorption. 

Chemical compounds studied in this article: Glycerol (PubChem CID: 753); 
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1. Introduction 

The importance of omega-3 polyunsaturated fatty acids (n-3 PUFA), especially 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in human nutrition and 

disease prevention is fully recognized scientifically (Kris-Etherton, Harris, & Appel, 

2002; Riediger, Othman, Suh, & Moghadasian, 2009). n-3 PUFA supplements are 

available in different chemical forms. Among the different types of lipid derivatives 

containing n-3 PUFA concentrates, monoacylglycerols (MAG) and diacylglycerols 

(DAG) have good bioavailability and oxidation stability (Hernandez, 2014; Lawson & 

Hughes, 1988). Additionally, it must be also considered that dietary TAG are 

hydrolyzed in the small intestine to sn-2-MAG being the most favorable structure for n-

3 PUFA to be adsorbed by intestinal mucosa (Bandarra et al. 2012). In addition, MAG 

or its mixtures with DAG account for 75% of the worldwide emulsifier production 

(Zhong et al., 2009). The well-known drawbacks of the conventional chemical 

glycerolysis technique (energy intensive, low yields (30–40%), oxidized products) have 

prompted a growing interest in the development of alternative processes for the 

production of MAG and DAG rich in n-3 PUFA. Enzyme-catalyzed reaction is an 

attractive alternative since the reaction can be carried out under mild conditions 

(Bornscheuer, 1995; Feltes, de Oliveira, Block, & Ninow, 2013).  

To overcome the problem of the immiscibility of glycerol and oil, different approaches 

have been used in the literature to improve the contact between the reactants and hence 

reduce mass transfer limitation. Lipase-catalyzed glycerolysis has been carried out in 

different reaction media such as organic solvents (Damstrup et al., 2006), compressed 

fluids (Moquin, Temelli, King, & Palcic, 2005) and ionic liquids (Guo & Xu, 2006), in 

order to improve the mass transfer. The cost, toxicity and energy required for solvent 

removal from the product mixture, are important aspects to be considered when dealing 

with conventional solvent systems (Prat, Hayler, & Wells, 2014). Recently, the uses of 

different surfactants to increase the interfacial area, and ultrasound irradiation have been 

also proposed to reduce mass transfer limitation (Fiametti et al., 2012; Valério, Rovani, 

Treichel, De Oliveira, & Oliveira, 2010). Biocatalytic processing in microemulsion 

system has received attention in order to increase contact between substrates. The 

formation of a microemulsion of the reactants (glycerol-in-oil) as reverse micelles can 

help to improve mass transfer rates. Furthermore, lipases demonstrate high interfacial 

activity in micelle systems because the formation of the active site during the reaction 
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occurs at the interface between the substrates and the enzyme. Several food grade 

surfactants are able to stabilize the micellar system improving system homogeneity 

(Carvalho & Cabral, 2000; Stamatis, Xenakis, & Kolisis, 1999). Nevertheless, it must 

be taken into account that some food grade surfactants have chemical functions that 

could be modified by lipases. For instance, the lipase Novozym 435 presented activity 

at particular conditions towards some surfactants as soy lecithin and Tween in 

glycerolysis reactions (Camino Feltes, Villeneuve, Baréa, de Oliveira, & Ninow, 2012). 

To avoid this problem, other synthetic surfactants, such as sodium (bis-2-ethyl-hexyl) 

sulfosuccinate (aerosol-OT or AOT), have been used. AOT has been reported to form 

micelles in a great number of nonpolar substances and several other polar solvents such 

as glycerol (Fiametti et al., 2009). In this case, good results have been obtained in 

glycerolysis systems when adding more that 7.5% of AOT (Fiametti et al., 2009). 

However, the high amount of this surfactant may generate problems during removal 

processes (Stamatis, Xenakis, & Kolisis, 1994). 

Another alternative to organic solvents is the use of the supercritical fluids (SCFs) as 

reaction medium. Supercritical carbon dioxide (SC-CO2) is probably the most used SCF 

due to its additional benefits (non-toxic, non-flammable, readily available at high 

purities and low costs, and relatively mild critical conditions) that are appealing when 

choosing environmental replacement for organic solvents (Matsuda, 2013; Rezaei, 

Temelli, & Jenab, 2007). SC-CO2 has liquid-like density but gas-like viscosity resulting 

in high mass transfer being a clean alternative to replace organic solvents. Enzymatic 

concentration of n-3 PUFA in supercritical fluids (SCFs) is an interesting option for the 

prevention of oxidation during processing of fish oil (Lin, Chen, & Chang, 2006; Roh, 

Kim, & Choi, 2015). Besides, SC-CO2 can be easily separated from the reaction 

products by simple depressurization and allows fractionation of the reaction products. 

Some previous studies of enzymatic reactions of different lipid sources in SC-CO2 have 

been reported in the literature. However, in case of enzymatic glycerolysis, other 

compressed fluids such as propane, n-butane, and acetone, have been used (Esmelindro 

et al., 2008; Tai & Brunner, 2011; Valério et al., 2010). Some studies of glycerolysis of 

vegetable oils in SC-CO2 at high temperatures can be found but with no enzymatic  

catalyst (Moquin et al., 2005; Temelli, King, & List, 1996).  

In a previous work, a detail kinetic study of glycerolysis of sardine oil using Lipozyme


 

435 form Candida antarctica B as biocatalyst in an optimized amount of tert-butanol 

was performed (Solaesa, Sanz, Beltrán, et al., 2016). Tert.butanol helped to create a 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

4 
 

homogeneous phase and to reduce mass transfer limitations. However, organic solvents 

present different environmental concerns. In this work, to improve contact between 

substrates, avoiding the use of organic solvents, emulsification of glycerol and oil 

before glycerolysis reaction was considered. Glycerolysis reaction has been performed 

in a solvent free system at atmospheric pressure and in SC-CO2 as reaction medium 

with previous susbstrates emulsification. The effect of adding a surfactant, AOT or 

Tween 80, to stabilize the emulsion, on glycerolysis performance has been also studied.  

Glycerolysis has been determined at different operating temperaturesat atmosphere 

pressure, 0.1 MPa, and in SC-CO2 medium in the pressure range from 15 to 25 MPa. 

Since n-3 PUFA are highly susceptible to oxidation; the oxidative status of the final 

reaction products was evaluated through the peroxide and anisidine values. Reaction 

yields and the oxidation values of the reaction products were compared for both 

systems. 

2. Materials and methods 

2.1 Materials 

Refined sardine oil was provided by Industrias Afines S.L. (Spain) with 18.3% of EPA 

and 7% of DHA and a water content of 0.2% (Solaesa, Bucio, Sanz, Beltrán, & 

Rebolleda, 2014). Glycerol was purchased from Sigma Aldrich with a purity of ≥ 99.5% 

and a water content of 0.18%. The food grade lipase Lipozyme 435 from Candida 

antarctica B (immobilized on a macroporous hydrophobic acrylic resin), was donated 

by Novozymes A/S (Bagsvaerd, Denmark). Carbon dioxide (99.9%) was supplied by 

Air Liquide S.A. (Spain). Polyoxyethylene sorbitan monooleate (Tween 80) and sodium 

bis (2-ethylhexyl) sulfosuccinate (Aerosol AOT or AOT), used as food grade 

surfactants, were purchased by Sigma Aldrich. All other chemicals used in different 

analyses were of analytical or HPLC grade. 

2.2 Emulsification process  

Microemulsions of the glycerolysis system of sardine oil were prepared at a fixed mole 

ratio of 3:1 (glycerol:oil) since this mole ratio was found as the optimum in a previous 

kinetic study (Solaesa, Sanz, Beltrán, et al., 2016). A high-speed blender (Miccra D9 

equipped with a DS-20/PF EMR rotor–stator) at different speeds, from 16000 to 35000 

rpm, was used by pulses during 3 minutes. To prepare the surfactant-free emulsion as 

reverse micelles, the appropriate amount of glycerol (10 g) was added drop by drop to 
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the suitable amount of oil (30 g) while being completely mixed at high speed. Dispersed 

(glycerol) and continuous (sardine oil) phases were identified by the dilution test (Mize 

et al., 2013). Furthermore, different concentrations (0.5, 1 and 1.5% in glycerol or oil as 

indicated in Table 2) of two food grade surfactants, AOT and Tween 80, were tested in 

order to improve the stability of the emulsion. A defined quantity of each surfactant was 

dissolved in oil or in glycerol, depending on its solubility. The characterization of the 

emulsions was performed 10 min after emulsification to avoid any creaming or 

coalescence effect. Particle size distribution (PSD), mean droplet diameter and 

polydispersity index (PDI) of samples were measured by dynamic light scattering 

(DLS), using a Zetasizer Nano ZS apparatus (Malvern Instruments Ltd., UK) to 

evaluate the best conditions to produce a stable emulsion with small (or the smallest) 

droplet size.  

2.3 Lipase-catalyzed glycerolysis of sardine oil in different systems 

A comparative study of lipase-catalyzed glycerolysis in different systems was carried 

out. All the experiments were conducted in a batch mode keeping constant the enzyme 

concentration at 5 wt% (by weight of substrates) and the substrate mole ratio (3:1, 

glycerol to oil) according to previous work (Solaesa, Sanz, Beltrán, et al., 2016). Table 

1 summarizes all glycerolysis reactions that have been done in this work. Experiments 1 

- 6 have been carried out at atmospheric pressure in a solvent free system in a 100 mL 

jacketed batch reactor. First of all, experiments 1 and 2 were carried out to evaluate the 

effect of previous substrates emulsification on reaction rate. Experiments 3 and 4 were 

performed with emulsified substrates stabilized by adding a food grade surfactant, AOT 

and Tween 80 respectively, at the optimum concentration previously determine in 

section 2.2. Experiments 2, 5 and 6 were performed to evaluate the effect of reaction 

temperature, 50, 80 and 90ºC respectively. Glycerolysis reaction was carried out as 

follows. Once emulsion was prepared, it was charged into the reactor. Later, the lipase 

was added and a nitrogen stream was applied. The reactor was then closed and the 

stirring system by impellers was connected. A thermostatic water bath allows working 

at the desired temperature. The reactor was covered with foil paper to avoid the light 

exposure. 

On the other hand, experiments 7-13 have been carried out in SC-CO2 as reaction 

medium. They were performed in a high pressure batch stirred tank reactor made of 

stainless steel, having an internal volume of 100 mL (Melgosa et al., 2017). A freshly 
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prepared emulsion and the lipase were charged into the reactor provided with magnetic 

agitation and then it was closed, placed in a thermostatic water bath and connected to 

the pressure circuit. Subsequently, SC-CO2 was fed into the reactor by means of a high 

pressure pump (ISCO 260 D) up to the desired pressure, which was maintained by a 

digital pressure controller. Operating pressure and temperature have been varied in the 

range between 15-25 MPa (Exp.7-9) and 40-90ºC (Exp. 7 and 10-13).  

In both systems, samples were taken periodically during 8 h, filtered and stored at -18ºC 

up to analysis. 

2.4 Analysis of the reaction products 

The neutral lipid profile (TAG, DAG, MAG and FFA) was analyzed by a normal phase 

high performance liquid chromatography (NP-HPLC). The chromatographic apparatus 

consisted of a HPLC system (Agilent 1200) formed by a quaternary pump and an auto-

injector. The chromatographic separation of the compounds was carried out at room 

temperature with a Lichrospher Diol column (5 μm, 4 mm × 250 mm) and detection was 

performed by an evaporative light scattering detector (Agilent 1200 series) at 35ºC and 

0.35 MPa. Gradient elution was achieved by mobile phases A (isooctane) and B 

(methyltert-butyl ether:acetic acid = 99.9:0.1, v/v). The method and calibration 

procedure have been previously reported (Solaesa, Sanz, Falkeborg, et al., 2016). The 

regioisomers of DAG and MAG could not be distinguished by the applied analytical 

procedure, so the total amount of MAG and DAG was reported for the kinetic 

experiments. The lipid profile results were expressed in glycerol free basis.  

2.5 Lipid oxidation analysis 

The oxidation status has been determined using two assays: peroxide value (PV) and 

anisidine value (AV). The PV measures the concentration of hydroperoxides formed in 

the initial stages of lipid oxidation (primary oxidation). PV was determined following 

the AOAC Official Method 965.33 by an automatic titrator Methrom 905 Titrando 

(AOAC Official Method 965.33, 2000). The AV is an estimation of the concentration of 

non-volatile secondary oxidation products (mainly 2-alkenals and 2,4-dienals). The AV 

was measured according to AOCS official method (Cd 18–90), using a UV-Visible 

spectrophotometer (AOCS Official Method Cd 18-90, 2017). PV and AV allow 

calculating total oxidation (TOTOX) by the formula:   

TOTOX = 2PV + AV                                                   [1] 
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PV and AV have been determined for the supplied refined sardine oil and the final 

reaction mixtures obtained after 8 h at the different temperatures The lipid phase was 

separated for analysis from the lipase and the remained glycerol by centrifugation at 

5000 rpm and 35ºC during 10 minutes. The upper phase, free of glycerol, formed by the 

lipid fraction (TAG, DAG, MAG and FFA) was collected under N2 atmosphere and 

stored at -18ºC up to analysis.  

2.6 Statistical analysis 

All analyses were conducted using software Statgraphics X64. The results are presented 

as a mean  standard deviation of at least three replicates. The significance of the 

differences was determined based on an analysis of the variance with the Tukey’s 

honestly significant difference (HSF) method at p-value ≤ 0.05. 

3. Results and discussion 

3.1 Optimization of the emulsification process and characterization of the 

emulsion 

3.1.1 Surfactant-free emulsions 

The effect of emulsification speed on emulsion stability without the addition of 

surfactants has been evaluated by measuring the polydispersity index (PDI) and the 

droplet diameter of the emulsion obtained in the range from 16000 to 35000 rpm. At 

any of the emulsification speeds essayed, droplet diameter was lower than 2 µm but 

29000 rpm were needed to obtain a PDI below 1. The lowest polydispersity index was 

obtained at the highest speed assayed in this work, 35000 rpm; however, foaming was 

observed. Therefore 29000 rpm was selected for further substrate emulsifications. At 

this speed the mean droplet diameter of the emulsion was 301 ± 34 nm and the PDI 

around 0.4. The surfactant-free emulsion presented a PDI lower than 1 only up to 20 

minutes, although at longer times, still a translucent and homogeneous system was 

visually observed. In any case, the emulsion was prepared and immediately used as 

reaction media.  

3.1.2 Surfactant stabilized emulsions 

The use of a surfactant was also tested in this work to improve the emulsion stability 

and reaction rates. Two food grade surfactants, AOT and Tween 80, with hydrophilic 
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lipophilic balance (HLB) values of 10 and 15 respectively, were used at different 

amounts (0.5, 1 and 1.5%). PDI of the emulsions prepared adding these surfactants were 

measured at specific times to evaluate their stability (Table 2). Although a surfactant 

was added to stabilize the emulsions, PDI in the different emulsions increased with time 

in all cases (Table 2). The higher stability was observed when 0.5% of Tween 80 and 

1.5% of AOT were previously dissolved in glycerol. In these cases the emulsion was 

found to be stable for at least 1 h. PSD was evaluated for emulsions with the highest 

stability formed by adding 0.5 % of Tween 80 and 1.5 % of AOT in glycerol and 

compared with those obtained in surfactant-freeemulsion. Smaller micelles were 

obtained when a surfactant was added to the system with medium particle sizes values 

of 67 ± 5 nm, 94 ± 4 nm and 301 ± 34 nm for AOT 1.5 % and 0.5 % of Tween 80 

dissolved in glycerol and surfactant-free emulsion, respectively.  

3.2 Glycerolysis reaction of sardine oil by Lipozyme 435 

3.2.1 Effect of substrates emulsification on the reaction rate  

Fig. 1 compares the kinetics of the glycerolysis reaction in a solvent free medium at 

atmospheric pressure with and without previous emulsification of the substrates (Exp 1 

and 2 respectively). As it can be observed, when no previous emulsification of the 

reactants was carried out, mass transfer limitations lead to lower initial reaction rate. 

These limitations are reflected in the values of the initial slope of TAG composition as 

function of time being 0.15  0.01 (mol TAG %·min
-1

) without substrates 

emulsification and 0.279  0.008 (mol TAG %·min
-1

) for substrate emulsification. For a 

reverse micelle system, higher interfacial area is provided, which favors lipase-

catalyzed reactions. At longer reaction times, reaction rates become similar due to the 

MAG and DAG formation as emulsifiers. The low HLB values of MAG and DAG 

mean that they tend to stabilize reverse micelles systems (O’Brien, 2004). Similar 

results were observed by Awadallak et al. (Awadallak, Voll, Ribas, Cardozo, & Edson, 

2013) in the enzymatic palm oil hydrolysis under ultrasound irradiation to produce 

DAG. They also performed a control reaction (without ultrasound influence) to compare 

the degree of hydrolysis in both systems, being around 20% after 12 h in the control 

reaction and almost 40% when ultrasound was used before the reaction. But at longer 

reaction times (24 h) the degree of hydrolysis becomes similar. Therefore, they also 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

9 
 

concluded that ultrasound used before the reaction to promote emulsification improved 

kinetics.  

Fig. 2 represents the reaction time course of TAG when surfactants, AOT and Tween 

80, were added to the system at the concentration reported in Table 2 for the most stable 

emulsions, 1.5% of AOT and 0.5% of Tween 80 in glycerol.Although , particle 

diameter was smaller when both surfactants, AOT or Tween 80, were added to the 

emulsions; this size reduction did not lead to significant improvement in the reaction 

rate or equilibrium conversion. Based on these results, further kinetics studies on 

glycerolysis were performed by previously emulsifying both reactants but with no 

addition of surfactant.  

In the literature, surfactants have been also used to improve the contact between 

substrates, however much higher concentration was employed. Fiametti et al. (Fiametti 

et al., 2009) evaluated AOT concentrations from 5 to 20 % in the MAG production of 

olive oil, and obtained conversion values of around 60% for the AOT concentration of 

20 wt%. On the other hand, Camino Feltes et al. (Camino Feltes et al., 2012) employed 

10% of different surfactants (Tween 65, Tween 80, Tween 85 and soy lecithin) and they 

noticed that Tween as well as soy lecithin were partially modified by the lipase during 

the glycerolysis reaction. However, they acted as surfactants rather than as substrates at 

concentrations as low as 0.4–0.8%. Additionally, the use of high amounts of surfactants 

may imply additional steps for the desired products recovery. 

In a previous work, lipase catalyzed glycerolysis have been performed in tert-butanol as 

organic reaction medium to avoid mass transfer limitations (Solaesa, Sanz, Beltrán, et 

al., 2016). Fig. 3 compares the glycerolysis reaction time course in a lipid base for 

TAG, DAG, MAG and FFA when tert-butanol was used as reaction media (Solaesa, 

Sanz, Beltrán, et al., 2016) and in solvent free media with previous substrate 

emulsification (Exp. 2). It can be observed that reaction rates are much higher in tert-

butanol than in a free solvent media. This proves that mass transfer controls the reaction 

process since tert-butanol helps to create an homogeneous system but also to reduce the 

viscosity of the medium (viscosity of glycerol, fish oil and tert-butanol at 50 ºC are 142, 

20–30 and 1.421 mPa·s, respectively). Due to mass transfer limitations, reaction rates 

are slower and the intermediate, DAG, accumulates in a greater extent in a solvent free 

media. After 7 h DAG accounts for 17.2 %, compared to less than 5 % in tert-butanol. It 

seems that by controlling the viscosity of the medium selective formation of MAG and 

DAG can be obtained. In any case, although higher reaction rates and reaction yield 
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were obtained in tert-butanol, organic solvents present a number of environmental 

concerns and its use should be avoided. 

3.2.2 Pressure effect  

To avoid the use of organic solvents to improve the mass transfer and therefore increase 

the reaction rate and MAG conversion, the glycerolysis reaction has been carried out in 

SC-CO2 medium with previous emulsified substrates. Fig. 4 shows the effect of 

operating pressure (from 15 to 25 MPa) at 50ºC, on the reaction conversion and 

products yield after 7 h of reaction time. Based on these results it can be concluded that 

pressure has no significant effect on MAG and DAG yield or global TAG conversion in 

SC-CO2 as reaction media in the pressure range studied in this work. TAG conversion 

ranged from 71 to 74% and MAG and DAG yield was 53 and 17 %, respectively. In this 

regard, the effect of pressure on enzyme catalysis in SC-CO2 is difficult to predict since 

pressure affects the density and transport properties of SC-CO2, but also has an effect on 

reaction rate since concentrations of reactants and products can be modified due to 

partitioning between the phases (Rezaei et al., 2007). As it has been previously 

explained, in a reverse micelle system, sardine oil behaves as the continuous phase. 

According to the literature, solubility of CO2 in fish oil increases with pressure at 

constant temperature, for instance, at 40ºC, solubility at 15 MPa is 29.1% mass and at 

25 MPa is 33.1% mass (Borch-Jensen & Mollerup, 1997). The increase in solubility 

with pressure could improve the diffusivity in the reaction medium. However, fish oil 

solubility also increase in SC-CO2 by increasing pressure at constant temperature 

(Bucio et al., 2016). In the literature, it has been suggested (Temelli et al., 1996) that 

due to this solubility increment of TAG in the SC-CO2, TAG could be in the 

supercritical phase, not being available in the liquid phase to react with glycerol that 

remains in the liquid phase due to its low solubility values in SC-CO2 (Medina-

Gonzalez, Tassaing, Camy, & Condoret, 2013; Nunes, Carrera, Najdanovic-Visak, & 

Nunes Da Ponte, 2013). These phenomenon’s could cancel each other showing no effect 

of pressure on glycerolysis performance. Temelli et al. (Temelli et al., 1996) obtained 

similar results in the glycerolysis of soybean oil in SC-CO2 at high temperatures (150-

250ºC) in the pressure range from 20.7 to 62.1 MPa and Tao et al. in the enzymatic 

synthesis of dipalmitin from palmitic acid and glycerol at 65ºC in the pressure range 

from 8.5 to 18.5 MPa (Tao, Li, Qu, & Zhang, 2013). 
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Fig. 4 also presents the results obtained at atmospheric pressure at 50 ºC in a solvent-

free system with previous substrate emulsification (section 3.2.1). Lipid products profile 

was similar in both systems, SC-CO2 and in a solvent-free media. To compare reaction 

rates, Table 3 summarizes the different initial reaction rates for TAG, DAG, MAG 

estimated by the initial slopes of the plot of the different lipid percentages profile as a 

function of time in both systems. Based on the properties of SC-CO2, such as low 

viscosity and high diffusivity, kinetics are expected to be faster than in a solvent free 

system. Surprisingly, similar results were obtained at atmospheric pressure than when 

working in SC-CO2. As previously explained, due to the increase of TAG solubility in 

SC-CO2 with temperature, fish oil is less available in the liquid phase to react with 

glycerol. This could explain the similar results obtained at atmospheric pressure and in 

SC-CO2. Therefore, from the reaction rate or product composition no advantages on the 

use of SC-CO2 can be demonstrated. Although, it must be emphasized that the use of 

SC-CO2 could be advantageous to the fractionation of the reaction products (Castillo, 

Marty, Combes, & Condoret, 1994).   

3.2.3 Temperature effect  

To assess the effect of temperature on the kinetics of the glycerolysis of sardine oil by 

Lipozyme 435 in SC-CO2 media and in a solvent free system, operating temperature has 

been varied from 40 to 90ºC (experiments 8, 10-13) and 50 to 90 ºC (experiments 2, 5 

and 6), respectively. Initial substrate molar ratio (3:1 glycerol:sardine oil) and enzyme 

loading (5% wt. of substrates) remained unchanged. Fig. 5 shows the MAG + DAG 

production at different temperatures in SC-CO2. For a solvent free system, as it has been 

described in section 3.2.2, the time reaction course overlap with those carried out in 

CO2 medium and it has not been represented. Equilibrium conversion is essentially 

temperature independent, although, at 40ºC, 8 hours was not sufficient time to achieve 

equilibrium concentration. Rising temperature from 40 to 90ºC resulted in an increase 

of the initial reaction rate, due to the higher kinetic energy of the molecules that leads to 

lower viscosity and higher diffusivity of the solvent and substrates (Rezaei et al., 2007). 

It must be highlighted that enzyme activity was not negatively affected by temperature 

even at 90ºC.  

 In both systems, SC-CO2 medium and solvent-free system, initial reaction rate 

followed and Arrhenius type dependence with temperature. From the slope of the 
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Arrhenius plot, an estimation of the activation energy can be evaluated as 52  2 kJ/mol 

in SC-CO2 medium and a similar value for the solvent free system, 49  2 kJ/mol. 

3.3 Comparison of lipid oxidation in both systems 

In section 3.2.3 has been demonstrated that the enzyme Lipozyme 435 presents a high 

thermal stability since the highest reaction rate has been obtained at the highest reaction 

temperature assayed in this work, 90ºC. However, when working with easily oxidizable 

compounds, such as n-3 PUFA, the oxidation status of the final reaction products must 

be taken into account. In this work, PV and AV have been determined for the refined 

sardine oil and the reaction mixtures obtained at the different temperatures after 7 hours 

of reaction in solvent free and in SC-CO2 media.  

PV and AV for the supplied refined sardine oil were 4.8  0.1 meq O2/kg and 23.0  0.1 

respectively. These values can be considered “acceptable” because they do not exceed 

the limit allowed (10 meq O2/Kg oil for PV and 30 for AV) according to European 

Pharmacopeia Standard (European Pharmacopoeia 5.0, 2005). Fig. 6 shows the PV and 

the AV of the reaction products obtained from 40 to 90 ºC. This figure shows 

unexpected results since PV decreased as reaction temperature increased, obtaining 

values of around 3 meq O2/kg at the highest temperatures assayed in this work (80-

90ºC) which are even lower than that obtained for the supplied refined sardine oil. 

Similar results regarding oxidation status have been obtained in solvent free system in 

the temperature range from 50 to 90ºC. AV remained unchanged by increasing 

temperature (Fig. 6). 

To determine the effect of temperature on autoxidation of sardine oil, oil samples were 

heated at 40, 65 and 90ºC for 7 hours and the oxidation status was analyzed. Table 4 

shows that, both PV and AV are strongly depend on temperature, increasing as 

temperatures increased; however, the opposite trend was found in the oxidation status of 

the reaction products at the same temperatures. The lipase used in this work, Lipozyme 

435, is immobilized on a macroporous hydrophobic acrylic resin; therefore it was 

assumed that peroxides could be adsorbed on the resin. To verify this assumption, 

sardine oil was mixed with the immobilized lipase at the same ratio sardine oil:lipase 

loading as for the glycerolysis reaction (28:1 g sardine oil:g lipase) and heated at 40, 65 

and 90ºC for 7 hours under low agitation. After that, PV and AV were determined. It 

can be clearly observed (see Table 4) that the amount of peroxides in the sardine oil 

decreased at each temperature when the immobilized lipase is present compared with 
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the control sardine oil. Furthermore, lower peroxide values were obtained by increasing 

temperature, proving that sorption process of lipid peroxide in the enzyme support is 

favored by increasing temperature due to improved diffusivity. Regarding the AV, 

lower values were also obtained in the sardine oil in contact with the immobilized lipase 

than in the sardine oil heated at the same temperature without lipase. Therefore, the 

support of the enzyme could also have capacity to adsorb secondary oxidation products. 

According to the PV and AV, TOTOX values also decreased in the sardine oil that has 

been in contact with Lipozyme 435 (Table 4). These results can explain the trend 

observed in the oxidation status of the reaction products with increasing temperature. In 

any case, it must be highlighted that during the glycerolysis reaction MAG and DAG 

are formed and sorption behavior could be modified.  

4. Conclusions 

In this work, it has been demostrated that the emulsification of substrates before 

enzymatic glycerolysis reaction improved process efficiency in solvent free and in SC-

CO2 media, reducing mass transfer limitations in the three-phase system 

glycerol/oil/lipase, giving around 75% of MAG and DAG in 4 hours. Furthermore, 

when food grade surfactants, AOT or Tween 80, were added to the emulsified system, 

no significant improvement was observed neither in the reaction rate nor in the 

equilibrium conversions. It has been also found that pressure has no significant effect on 

reaction conversion and reaction rate, showing no kinetic advantages on the use of SC-

CO2 in glycerolysis reaction, although SC-CO2 could be used to fractionate the reaction 

products. An increase in temperature from 40 to 90 ºC produces higher reaction rates in 

both systems. Regarding the oxidation status of the reaction products, it has been 

concluded that higher reaction temperature results in a higher adsorption of the 

oxidation products on the support of the lipase, giving lower oxidation values.  
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Fig.  1  .TAG composition as a function of time in the glycerolysis of sardine oil in solvent free 

system  with () and without (◊) substrates emulsification at atmospheric pressure (0.1 MPa). 

Reactions were performed at MR = 3:1 (glycerol:oil), T = 50ºC, enzyme loading 5 % wt. of 

substrates. 
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Fig.  2. TAG composition as a function of time in the glycerolysis of sardine oil previous 

substrates emulsification with 1.5% of AOT in glycerol (□), 0.5% of Tween 80 in glycerol (○) 

and surfactant free () at atmospheric pressure (0.1 MPa).. Reactions were performed at MR = 

3:1 (glycerol:oil), T = 50ºC, enzyme loading 5 % wt. of substrates. 
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Fig.  3.  Time course of lipase-catalyzed glycerolysis reaction of sardine oil in tert-butanol 

medium (hollow symbols) and in solvent free (solid symbols) with previous emulsification of 

the substrates at atmospheric pressure (0.1 MPa). Legend: TAG (, ▲), DAG (□, ■), MAG (◇, 

◆) and FFA (○, ●). Reactions were performed at MR = 3:1 (glycerol:oil), T = 50ºC, enzyme 

loading 5 % wt. of substrates. 
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Fig.  4. Effect of pressure in SC-CO2 as reaction medium on glycerolysis conversion of sardine  

oil and products yield with previous substrates emulsification . (∆) conversion of TAG, (□, ◊, 

and ○) yields of DAG, MAG and FFA, respectively after 7 h of reaction time.  Reactions were 

performed at MR = 3:1 (glycerol:oil), T = 50ºC, enzyme loading 5 % wt. of substrates. 
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Fig.  5. Effect of temperature on MAG + DAG composition as function of time  in the 

glycerolysis of sardine oil with previous substrates emulsification in SC-CO2 at15 MPa: 40ºC 

(◊), 50ºC (□), 65ºC (∆), 80ºC (○) and 90ºC (x). Reactions were performed at MR = 3:1 

(glycerol:oil) and enzyme loading 5 % wt. of substrates. 
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Fig.  6. Influence of reaction temperature on PV (white bars) and AV (grey bars) in the final 

reaction mixture after 7 h at 15 MPa in SC-CO2 as reaction medium with previous substrates 

emulsficiation. Measurements given are mean values based on four determinations. Limit 

allowed is the maximum of each axis. Values with different letters in each type of analysis (PV 

or AV) are significantly different when applying the Tukey's honestly significant difference 

(HSD) method at p-value ≤ 0.05. 
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Table 1. Summary of the reaction conditions for lipase-catalyzed sardine oil glycerolysis 

reactions carried out in this work. 

Exp. 
Reaction 

medium 

Pressure 

(MPa) 

Temperature 

(ºC) 
Emulsification Surfactant 

1 

Solvent free 0.1 

50 

No - 

2 Yes - 

3 Yes AOT 

4 Yes Tween 80 

5 80 Yes - 

6 90 Yes - 

7 

SC-CO2 as 

solvent 

15 

50 

Yes - 

8 20 Yes - 

9 25 Yes - 

10 

15 

40 Yes - 

11 65 Yes - 

12 80 Yes - 

13 90 Yes - 
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Table 2. Polydispersity index (PDI) as measurement of reverse micelles stability when food 

grade surfactants are used at different concentrations at different times  

Surfactant 
Concentration of 

surfactant (wt%)
a
 

PDI after different times 

10 min 30 min 1 h 

Tween 80 

(HLB = 15) 

0.5 in G 0.17 ± 0.04
ab

 0.29 ± 0.01
a
 0.78 ± 0.15

b
 

1 in G 0.63 ± 0.09
d
 0.83 ± 0.19

b
 1 

AOT 

(HLB = 10) 

0.5 in G 0.51 ± 0.19
cd

 0.79 ± 0.09
b
 1 

1 in G 0.27 ± 0.06
ab

 0.50 ± 0.01
ab

 1 

1.5 in G 0.28 ± 0.04
abc

 0.45 ± 0.13
a
 0.43 ± 0.06

a
 

0.5 in O 0.07 ± 0.02
a
 0.64 ± 0.07

ab
 1 

1 in O 0.34 ± 0.06
bc

 0.43 ± 0.03
a
 1 

1.5 in O 0.14 ± 0.05
ab

 0.43 ± 0.09
a
 1 

a
G = dissolved in glycerol; O = dissolved in oil 

Values with different letters in each column are significantly different when applying the 

Tukey's honestly significant difference (HSD) method at p-value ≤ 0.05. 
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Table 3. Initial slopes of TAG, DAG and MAG composition at different operating pressures 

previous substrates emulsification in SC-CO2 (pressure range: 15-25 MPa) and at atmospheric 

pressure in a solvent free system (0.1 MPa). Reaction conditions: 50ºC, 5 % enzyme loading 

based on substrate weight, MR = 3:1. 

Pressure, 

MPa 

Initial slopes (mol%·min
-1

) 

TAG  DAG  MAG  

0.1* 0.279  0.008
a
  0.045  0.005

a
 0.150  0.006

a
 

15 0.296  0.010
a
 0.052  0.002

a
 0.202  0.007

b
 

20 0.271  0.008
a
 0.062  0.005

a
 0.162  0.009

a
 

25 0.284  0.012
a
 0.052  0.008

a
 0.204  0.009

b
 

* Solvent free. Values with different letters in each column are significantly different when 

applying the Tukey's honestly significant difference (HSD) method at p-value ≤ 0.05. 
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Table 4. PV, AV and TOTOX values obtained after 7 hours heating at different 

temperatures sardine oil and sardine oil in contact with Lipozyme 435.  

T, ºC 

PV, meqO2/kg AV TOTOX 

Sardine oil 
Sardine oil  

+ lipase 
Sardine oil 

Sardine oil  

+ lipase 
Sardine oil 

Sardine oil  

+ lipase 

40 

65 

90 

11.6  0.1a 

22.3  0.2
b
 

47  1
c
 

6.1  0.1
c
 

4.8  0.1
b
 

3.8  0.1
a
 

24.4  0.3
a
 

30.2  0.8
b
 

54.5  0.5
c
 

23.5  0.7
a
 

25.5  0.6
b
 

30.3  0.2
c
 

47.6  0.6
a
 

75  1
b
 

148  3
c
 

35.7  0.9
a
 

35.1  0.8
a
 

37.9  0.4
b
 

Values with different letters in each column are significantly different when applying the 

Tukey's honestly significant difference (HSD) method at p-value ≤ 0.05. 
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Highlights 

 Emulsified substrates improve the initial rate in solvent-free glycerolysis.  

 The use of SC-CO2 presents no kinetic advantages in glycerolysis reaction. 

 Hydroperoxides are adsorbed on the lipase support. 

 Sorption of hydroperoxide is favored at high reaction temperatures. 
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