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1. Introduction

Electrochemistry is a very useful instrumental technique that is usually
employed in very different fields (analysis, energy, biochemistry, etc). However, in
general, this technique exhibits a limitation due to its intrinsic lack of molecular
information. Spectroscopy is another instrumental analysis technique widely used that
provides important molecular information, but in most cases, this set of techniques
does not provoke any change in the studied system. The combination of spectroscopic
and electrochemical techniques vyields very powerful techniques denoted as
Spectroelectrochemistry. These hybrid techniques provide not only molecular but also
kinetic information about the reactants, products, intermediate compounds or side
products that are generated during an electron transfer process. Therefore, as Kaim
and Fiedler wrote in 2009 [1], Spectroelectrochemistry combines the best of two

worlds.

UV/Vis absorption spectroelectrochemistry is perhaps the most used technique
in which better and interesting developments have been proposed. Probably, this is
the main reason why the first commercial spectroelectrochemical devices and
instruments have been proposed to perform these kinds of measurement.Twenty
years ago, it was very difficult to perform time-resolved UV/Vis absorption
spectroelectrochemistry exeriments but nowadays it has become relatively simple. The
main drawbacks of UV/Vis absorption spectroelectrochemistry are related to the lack
of information about the structure of the studied compounds or materials and about
the way in which these compounds interact with the electrodes. Raman spectroscopy
is one of the most interesting techniques to characterize and study different materials
and processes in many fields. Mainly, this spectroscopic technique provides suitable
information about vibrational modes which allows us to better understand at
molecular level many species. Raman effect was a very important discovery and proof

of this was the Nobel Prize in Physics awarded to C.V. Raman in 1930.

A number of groups around the world have combined Raman spectroscopy and
electrochemistry, obtaining very interesting results linked to the power of these two
instrumental techniques. However, the number of works using time-resolved Raman

Spectroelectrochemistry is significantly small. Actually, it is not easy to obtain well

David Ibaiez Martinez
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correlated results and high quality Raman responses recorded in short integration
times. This Thesis is mainly focused on the development of new devices for time-
resolved Raman spectroelectrochemistry. In this work, we have not only developed
spectroelectrochemical cells, but also MATLAB functions to manage the large amount
of data obtained during an experiment and, even, the Raman spectrometer has been

modified to synchronize the electrochemical and the spectroscopy information.

The development of the new devices and instrumental setups are described in
Chapter 3 (Experimental methodology) that is actually the core of this work. It has
been the most time consuming part of this Thesis, but it has also yielded the most

satisfying results.

In Chapter 4 (Results and discussion), the different spectroelectrochemical cells,
devices and setups, shown in Chapter 3, have been used to study different chemical

systems of particular interesting for the scientific community.

In the first section of the Chapter 4 we have studied a conducting polymer
performing Raman spectroelectrochemistry on a microelectrode, demonstrating the
high spatial resolution of our Confocal Raman microscope. Using microelectrodes
shows clear advantages for the study of some chemical systems, as is demonstrated

for poly-3-ethylenedioxythiophene.

In order to demonstrate the capability of working at very low integration times
with dynamic Raman spectroelectrochemistry, we have selected single walled carbon
nanotubes as a proof of concept. Carbon nanotubes have been exhaustively studied in
the last years, but there are very few time-resolved Raman studies of its oxidation and
reduction. Understanding the electrochemical behaviour of this material is crucial for

future applications.

Raman spectroscopy is not a very sensitive technique but when Surface-
enhanced Raman scattering (SERS) takes place, the sensitivity of the technique is
increased in several orders of magnitude. Since this effect was observed in the 70s it
has been widely used in varied scientific fields. Nowadays and after a wide

controversy, SERS effect has been explained by the contribution of electromagnetic

David Ibdanez Martinez



1. Introduction

and charge transference mechanism. However, it is still unclear which factors affect it
and, consequently, have to be controlled for SERS applications. In this Thesis, the
complex Raman signals observed during the generation of silver nanoparticles have
been explained by performing  complementarily UV/Vis  absorption
spectroelectrochemistry that helps to understand how the shape and the size of

nanoparticles affects to the SERS effect.

In the fourth section of Chapter 4 a new spectroelectrochemical cell has been
developed allowing us to perform Raman spectroscopy at liquid/liquid interfaces to
study charge transfer processes. Electrochemistry at liquid/liquid interfaces is
technically very complicated, but it provides invaluable information on a number of
chemical processes of key importance in biology, medicine, energy, etc. We hope that
the development of our new devices will help to shed more light on these processes.
This work has been performed in collaboration with Prof. Fermin at the University of
Bristol (United Kingdom). Moreover, in this section we have modified the liquid/liquid
interface with carbon nanotube films which opens up a number of possibilities to

facilitate both ion and electron transfer by supporting catalysers at the interface.

Finally, in the last section of Chapter 4 we have demonstrate the utility and
versatility of our cells, using our devices in a completely different Raman spectrometer
in collaboration with Dr. Kalbac at the Heyrovsky Institute in Prague (Czech Republic).
To illustrate the good performance of our cells we have selected the study of the SERS
effect of gold nanoparticles deposited on a carbon nanotube electrode. As chemical
system we have analysed the evolution of the Raman spectra of adenine and guanine
during their oxidation. Understanding the oxidation of these bases is the first step

necessary before studying the oxidation of DNA in the near future.

As usually this thesis is not a finished work, and for this reason we have decided
to add a final chapter about the future perspectives of our work. Currently, the new
devices and setups are being used during the writing of this Thesis. As always, this

work is alive.

David Ibaiez Martinez
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2. Theoretical fundamentals

Objetivos del capitulo

©

Introducir la espectroscopia Raman al ser la técnica en la que se basa la
tesis. Para ello se hace una revision bibliografica sobre el recorrido

historico seguido por esta técnica desde sus inicios hasta la actualidad.

Explicar uno de los fendmenos mas importantes que se observan en la
espectroscopia Raman como es el denominado efecto Surface-Enhanced
Raman Scattering (SERS), asi como los multiples factores que influyen en

él.

Realizar una revisién de las nanoparticulas metalicas en general, y de su
sintesis electroquimica en particular, al ser uno de los sistemas abordados
en el capitulo de resultados de esta tesis, y al ser la metodologia elegida

para crear sustratos SERS.

Introducir los diferentes materiales y sistemas que se estudiaran a lo largo
del capitulo 4, como son los polimeros conductores, los nanotubos de
carbono, las nanoparticulas metalicas, las interfases entre dos soluciones

inmiscibles y las bases nitrogenadas presentes en el ADN.

Metodologia

@ Busqueda y revisién critica y selectiva de la bibliogréfica directamente

vinculada con los diferentes temas abordados en esta tesis, tanto en

cuanto a técnicas utilizadas como a sistemas estudiados.

Resumen del capitulo

® Se han introducido los diferentes conceptos fundamentales para el

seguimiento de la tesis.

David Ibaiez Martinez
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®

Se ha hecho especial hincapié en explicar el efecto SERS. Para ello no solo
se explica el fundamento tedrico sino todos los factores de los que
depende, centrdndonos especialmente en el sustrato necesario para tener
tal efecto (tamafio, forma, método de sintesis, etc.), la longitud de onda de
excitacion y su relacidon con el sustrato, asi como en las propiedades de la
muestra objeto de estudio. Como puede deducirse de los resultados
encontrados en bibliografia, todavia no se han aclarado completamente

todos los aspectos relacionados con este efecto.

Los polimeros conductores son materiales muy interesantes debido a sus
particulares propiedades electrocrémicas, conductoras, mecanicas, etc.
Este sera uno de los sistemas estudiados en el capitulo de resultados, por

lo que en este capitulo se realiza una revisidon general de este material.

Los nanotubos de carbono son uno de los materiales mads interesantes en
la actualidad debido a sus excelentes propiedades electrdnicas,
vibracionales, mecanicas, térmicas y quimicas. En este capitulo se presenta
una vision general de este nanomaterial y se analizan sus diferentes
propiedades, ofreciendo una vision detallada de este material que
posteriormente sera estudiado y utilizado como sustrato en el capitulo de

resultados.

Aunque las nanoparticulas metalicas se pueden sintetizar de muchos
modos, la sintesis electroquimica presenta importantes ventajas respecto a
otros métodos sobre todo en términos de obtener nanoparticulas con su
superficie limpia. Ademas, se demuestra el amplio rango de propiedades
gue presentan las nanoparticulas, lo que las confiere gran utilidad en muy

diversas aplicaciones.

El estudio de la interfase entre dos disoluciones inmiscibles es un sistema
de gran interés electroquimico debido a los diferentes procesos que
pueden producirse en ella. En este capitulo se introducen este tipo de

interfases, explicdndose los tres tipos de transferencia que pueden tener

David Ibanez Martinez



2. Theoretical fundamentals

lugar: transferencia de iones, transferencia de iones asistida y transferencia
electronica de una fase a otra. Particularmente, la transferencia ionica es
de vital importancia en procesos biolégicos y la transferencia electrénica
presenta un futuro prometedor en la transformacion de moléculas que

estdn impedidas en medios hidréfobos o hidrdfilos.

La oxidacion de las bases nitrogenadas presentes en el ADN es un proceso
particularmente importante puesto que puede provocar un
funcionamiento andmalo de las células e incluso la muerte. En este
capitulo se presenta una vision general sobre el ADN que posteriormente

serd objeto de estudio en el capitulo de resultados.

David Ibanez Martinez
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2.1. Raman spectroscopy

Although Raman effect was theoretically predicted by Smekal in 1923 [2] and
Kramers and Heisenberg in 1925 [3], the first evidences of Raman spectroscopy are
dated in 1928 by Raman and Krishnan [4] and almost simultaneously by Landsberg and
Mandelstam [5]. The “New Type of Secondary Radiation” referred by Raman in his
paper had great importance and it was the main reason because he received the Nobel
Prize in Physics in 1930. During 1930-1940s, the instrumental limitation was an
important factor in the development of this technique. One example of these
restrictions can be found in the light sources used in this period when the mercury
lamp was the standard source. Although in 1952 the mercury spiral Toronto arc was
introduced as a new source [6], the most important innovation for this technique was
the laser invention in 1960 [7]. Thanks to the laser it was possible to focus the light
beam on a small sample, avoiding problems with stray light, and obtaining high quality
Raman spectra. Nevertheless, the breakthrough took place in 1974 when Fleischmann
observed an unexpected enhancement in the Raman signal of pyridine adsorbed on a
roughened silver electrode [8] (this phenomenon will be explained in more detail in
Section 2.2). The technological development and the interest in this technique have
advanced together, being actually Raman spectroscopy one of the most interesting
techniques to characterize, analyse and study a number of materials, systems and
processes in different scientific fields. This spectroscopic technique provides suitable
vibrational, rotational and low frequency modes information which allows us to

understand at molecular level many species.

For a better understanding of Raman spectroscopy is necessary to define the
scattering phenomenon. Scattering is produced when an incident particle (neutron,
electron or photon) beam hits a sample along a certain direction and due to the
interaction between the incident particle and the target, the direction and even the

energy of this particle beam can changed (Figure 2.1).

David Ibanez Martinez

13



14

2. Theoretical fundamentals

Incident beam

NN~

VAVAVAVAVA Scattered beam

Figure 2.1. Scattering phenomenon

As a result of the interaction between the sample and the incident beam, the
photons from the incident beam are absorbed by the molecules, exciting them to a
virtual energy states. However, the increment of energy is not a quantized process.
Therefore, depending on the frequency of the radiation source, the molecule can take
the energy of any infinite value (or virtual states) between the ground state and the

first electronic state.

oy " Stokes
Excitation Rayleigh
Energy Scattering RN
g Scattering
IR Absorbance ‘r v ey i
(0]

Figure 2.2. Rayleigh, Stokes and anti-Stokes Raman scattering mechanisms.

Figure 2.2 shows Rayleigh and Raman scattering mechanisms. Rayleigh
dispersion is produced when the molecule is promoted from the zero vibrational state
of the ground state to a virtual state and it returns to the starting state without change
of energy. This kind of scattering, when the energy of the incident and the scattered
beam is the same, is known as elastic scattering. However, when the energy of the

incident light beam and the energy of the scattered beam are different (inelastic
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2. Theoretical fundamentals

scattering), it is known as Stokes and anti-Stokes Raman scatterings. Stokes scattering
takes place when the molecule is excited from the zero vibrational state of the ground
state to a virtual state and it returns to the first vibrational state of the ground state.
However, Anti-Stokes scattering is produced when the molecule is raised from the first
vibrational energy of the ground state to the virtual state and after that, it backs to the
zero vibrational state of the ground state. At room temperature, the fraction of
molecules found in the first vibrational state of the ground state is small, so the
intensity of anti-Stokes bands is always much lower than Stokes signals (Istokes / lanti-
stokes > 1) (Figure 2.3). Furthermore, Raman frequency is positive or negative for anti-
Stokes or Stokes scattering, respectively, being these frequencies equal in absolute

value.

Rayleigh

-459

Stokes

-314

Anti-Stokes

Intensity /a.u

+218

+314  +459

-500 -400 -300 -200 -100 O 100 200 300 400 500

Raman shift /ecm!

Figure 2.3. Raman spectrum of CCl,.

2.2. Surface-enhanced Raman scattering (SERS) effect

In 1974, Fleischmann observed for the first time a huge enhancement of the
Raman intensity for pyridine molecules on a roughened silver electrode [8], although
this behaviour was interpreted in 1977 by Van Duyne [9]. This phenomenon was called
Surface-Enhanced Raman Scattering (SERS) effect and its discovery opened up new
horizons for Raman spectroscopy. The main difference respect to Raman spectroscopy

is the presence of metal nanostructures as fundamental factor for the enhancement

David Ibanez Martinez
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(Figure 2.4). Therefore, not only the interaction sample-light has to be considered in

the SERS effect but also the metal nanostructure-light interaction.

Thionin acetate
on GC

—— Thionin acetate
on AuNPs/GC

la.u

Raman

0 500 1000 1500 2000 2500 3000
Raman Shift /cm™

Figure 2.4. Raman spectra of thionin acetate (a) on a glassy carbon electrode
and (b) on gold nanoparticles/glassy carbon electrode as SERS substrate.

SERS effect is explained by the contribution of two mechanisms,

electromagnetic and chemical (also denoted as charge transference) enhancements

[10-12]:

ELECTROMAGNETIC MECHANISM is a physical effect in which the enhancement of the
local electromagnetic fields is due to electromagnetic resonances owing to the
collective excitation of conduction electron oscillations (plasmon resonance) in
the metallic structure. For practical applications, when the electromagnetic
field of the incident light beam produces the excitation of the plasmon
resonance, it generates a nanometrical volume on the metal surface in which
the molecules are detected, so, it is not necessary the direct contact between

the analyte and the metallic surface to have a Raman signal.

CHEMICAL MECHANISM is associated with the particular electronic properties of the
molecule. It is produced by the electronic interaction between the molecule
and the metal surface, resulting in an enhancement of the polarizability of the
molecule. The chemical mechanism produces the perturbation of the electronic

structure of the molecule adsorbed and, consequently, the modification in its
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optical properties. In this way, the interaction between the molecular orbitals
of the molecule and the electronic band of the metal surface makes enable the
electron transfer between them. Furthermore, this kind of interaction requires
the direct contact, so this mechanism is a short range effect, limited to the first

layer of molecules adsorbed.

The electromagnetic contribution to the enhancement factor is higher than the
chemical one. In orders of magnitude, the enhancement due to the electromagnetic

mechanism is between 103-10% instead of 10-10° in the chemical case [11].

After a wide controversy, especially in the 1990s when the charge transfer was
considered as unique contribution to SERS effect [13—15], nowadays is accepted that

both mechanisms are responsible of this extraordinary effect [10-12,16-18].

2.2.1. SERS factors

In this Section, we review different factors that we consider important to remark
due to their influence in the SERS effect. As we will see below, these factors are many
and varied but they can be classified in 3 categories: metal nanostructures as SERS
substrates, the laser used due to its specific excitation wavelength and the properties

of the sample which will be studied.

A. Metal nanostructures

One of the most important factors in SERS effect, or maybe the most important
one, is the metal nanostructure. According to Natan [19] and to our experience, the

ideal SERS substrate should have:

= High SERS activity.
= Uniformity or ordered structure.
= Stability and reproducibility.

= Surface purity.
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In our opinion, although the major contribution is the high SERS activity, we do
not forget the other properties that make a substrate appropriated to SERS studies.
However, it is complicated to obtain nanostructures with all these properties, and in
general the substrate used (with specific properties) has to be chosen according to the
final application. Nevertheless, the characteristics of these substrates are obtained by
the control of different parameters such as type of metal particles, size, shape,

thickness or interparticle spacing.

Noble metal Au, Ag and Cu roughened surfaces were the first SERS substrates used
because they were considered the unique that could provide an enhancement.
Nowadays other transition elements (Pt, Pd, Co, Fe, Ni and Rh) have showed these

properties [20-28], increasing SERS applications.

If we compare the enhancement produced by the different metals, in general, Au,
Ag and Cu show the highest enhancement (averaged surface enhancement up to 10°
[29]). The reason why Pt, Pd, Co, Fe, Ni or Rh are not as useful as Au, Ag and Cu is
mainly due to their dielectric properties [30]. An exact classification of the metals as a
function of the enhancement order factor is not possible because it depends on
several factors explained below (as nanoparticles properties, synthesis procedure or
excitation wavelength). In point of fact, nanoparticles of one specific metal can show
the best SERS response for a specific analyte but do not show the highest

enhancement factor when the experimental conditions or the analyte studied change.

A careful control of the physical properties of a SERS substrate is necessary to

obtain the desired result. Next, some of the most significant parameters are depicted:

= Size. Many studies have been focused on the influence of the diameter [31-
38], the thickness of the layer formed [34,39] and the interparticle spacing
[40]. For example, Li suggested a diameter of 50 nm as the optimal size of
spherical gold nanoparticles (AuNPs) for SERS spectroscopy under different
conditions [32] (iError! No se encuentra el origen de la referencia..a). This
conclusion was extracted from the analysis of the Raman intensity of 4-

aminothiophenol and 4-nitrothiophenol, in which the highest SERS effect for
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these two compounds was observed at the same AuNPs diameter (iError! No
se encuentra el origen de la referencia..a). In this work, authors suggest that
their conclusions might also be applicable to other adsorbates. However, in a
similar work, Tian studied the optimal size of AUNPs to obtain the best SERS
intensity of pyridine [38], and they concluded that for this system the optimal
diameter was about 135 nm (iError! No se encuentra el origen de la
referencia..b).
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Figure 2.5. Optimal diameter of AuNPs for the study of (a) 4-
nitrothiophenol [32] and (b) pyridine [38].

Something similar happens with silver nanoparticles (AgNPs). Scaiano
determined 50nm as the optimal size of spherical AgNPs analysing rhodamine
6G spectra [35]. This result is not in agreement with the study of Graham, who

obtained the highest enhancement factor studying malachite green oxalate,
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b)

rhodamine 6G and thiophenol using AgNPs of 65 nm [41]. Li also analysed
rhodamine 6G spectra, suggesting the optimal size range of AgNPs between
35-55 nm [42].

From these examples we can infer that there is not a consensus about the
optimal diameter to obtain the highest SERS intensity. As we commented
above, the optimal conditions highly depend on the studied system and the

experimental conditions (substrate, analyte, excitation wavelength, ...).

SHAPE. It is really challenging to obtain nanoparticles (NPs) with exactly the
same shape, for that reason, comparison of experiments is very problematic.
However, many authors have studied the influence of the NPs shape in the
SERS response [36,43-45]. The NP shapes used in those works are really
varied and fascinating as is shown in jError! No se encuentra el origen de la
referencia. [45]. This case evidences that is impossible to define a universal
geometry which shows the best SERS response because many factors, as for
example the excitation wavelength, influences in the SERS intensity obtained

for the same NPs.
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Figure 2.6. SEM images of (a) octahedral AgNPs with the edges and corners selectively etched leaving.
(b) SERS intensity of benzenethiol using these AgNPs and different lasers [45].

NPs composITION. During last years the combination of metals is being widely
used to obtain SERS substrates with different properties. Examples are
core@shell NPs whose core and shell are formed by different metals.
Although the use of Au core is frequent, (Au/Pd [46,47], Au/Ag [48,49], Au/Pt
[50], Au/Rh [51], Au/Cu [52], Au/Co [53]) other materials have been also
tested, such as silver, iron, copper or titanium oxide (Ag/Pt [54], Ag/Cu [55],
TiO,/Au [56], Ag/Fes04 [57], Fe203/Ag [58], FePt/Ag [59], Fe,0s/Au [60], Ni/Au
[61], Cu/Ni [62], etc). In some cases it has been also proposed three layers

structures, Au/Pd/Pt [63], Au/Pt/Au [64] (Figure 2.7), Ag/C/Ag [65].

~ R
AgNO, R ) H,PCl,
— . | 2
Sodium Citrate _;/f
Au Au-Ag Au-Pt
§ o ",
AgNO, HAuCI, U

———————e > A

Sodium Citrate Sodium Citrate

Au-Pt-Ag Au-Pt-Au

Figure 2.7. Chemical synthesis of Au/Pt/Au [64].

However, one of the most promising and interesting SERS substrate structure
was proposed by Tian in 2010 [29]. This substrate consists of metal
nanoparticles isolated with a very thin and optically transparent shell of SiO,
or Al,Os; (Figure 2.8), known as SHINERS (Shell-isolated nanoparticles
enhanced Raman spectroscopy).

SHINERS properties are due to the strong electromagnetic field of the Au core,
which is transferred to improve the chemical signal associated with the
vibrational bands of the sample. The shell allows controlling the distance from
the core to the sample surface and furthermore, using an inert shell assures

that there is not contact between them.
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Silica or alumina shell

Al core

1,155

1 L 1 L 1
1,200 1,400 1,600
Raman shift (cm™)

Figure 2.8. SHINERS (a) structure and (b) SEM image. (c) Pesticide (pericarps) detection: | sample
without pesticide, Il sample with pesticide, Il sample with pesticide and SHINERS, IV pesticide solid

[29].

Although initially SHINERS were made with Au core, Tian et al. also proposed
their synthesis with Ag core [66]. They compared by three-dimensional finite-
difference time-domain (3D-FDTD) calculations the enhancement factor of
Ag/SiO, and Au/SiO, on smooth Au and Ag in specific conditions (core
diameter 200 nm and 532 nm excitation wavelength), and they concluded
that Ag is more SERS active than Au, more versatile respect to the excitation
wavelength and, additionally, cheaper. SHINERS are not only useful for
electrochemistry (electrocatalysis, electrochemical adsorption,
electrochemical corrosion and electroplating [29,67]), but also for others
fields such as biology (probing of biological structures) or for analysis
(determination of glucose [29] or detection of drugs or pesticides on food
[68]).

Moreover, the advances and developments in new materials, as carbon

nanotubes [69,70], graphene [71-73] or polymers [74,75], make possible the
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fabrication of different composites with metal nanostructures. As we will see
in Section 4.5, we electrodeposit AuNPs on a press-transfer single-walled
carbon nanotubes electrode, obtaining a SERS substrate to study, in our case,

the oxidation of purine bases of DNA.

= SYNTHESIS METHOD. These nanostructures with specific SERS substrates
properties can be created in a number of ways, being chemical reaction [76—
78], electrodeposition [70,79,80], electrochemical surface roughening [81-
84], sputtering coating [85,86], laser ablation [87-89], lithography [90-92]
and evaporation deposition [93,94] the methods which show the highest
enhancements. Figure 2.9 shows an example that the enhancement depend

on the synthesis route [86].

Methwlene Blue
532 nm

1000 4

gold sputtered substrate

Raman Int. (arb. unit)

gold evaporated substrate

100 T T T T T
200 400 600 800 1000 1200 1400 1600 1800

-1
Wavenumber/cm

Figure 2.9. SERS spectra of methylene blue using gold substrates synthesized
by different methods [86].

It is noteworthy that nowadays there is not a universal substrate to obtain the
highest SERS enhancement for whatever system because there are too many factors to
take into account. Hence, analyst has to look for a substrate which shows good SERS
performance for specific experimental conditions. As will be seen along Chapter 4, we
use a different SERS substrate for each chemical system studied and we change it

depending on, for example, the laser excitation wavelength.
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B. Excitation wavelength dependence

Another important factor to be considered for the SERS enhancement is the
dependence of this effect on the excitation wavelength; or rather the interaction
between the excitation wavelength and the metallic nanostructures plasmon band.
The plasmon band is associated with the collective oscillation of the electron gas at the
surface of the NPs (electrons of the conduction band) that is correlated with the
electromagnetic field of the incident light. This plasmon band is characteristic of each
kind of nanoparticles and it depends on their size and shape (iError! No se encuentra el

origen de la referencia.).

According to the electromagnetic mechanism, the highest SERS enhancement is
observed when the excitation wavelength matches with the plasmon absorption band

of the substrate [86,96,97].
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Figure 2.10. Plasmon band of (a) spherical AuNPs of different size. (b) Transversal and
longitudinal components of the plasmon band of AuNPs with different shapes [95].

The enhancement factor (EF) can be calculated, if the intensities are normalized

for the laser power and for the integration time, by [97,98]:

ISERS/CSERS
= —[Cskrs (eq. 1.1)

]
NR /CNR

EF

where Isgrs and Iyg are the SERS and normal Raman intensities and Csgrs and
Cygr are the concentration of the sample analysed in SERS and normal Raman

measurements, respectively.

As we have explained above, the classical SERS substrates are formed by Au, Ag
and Cu, but Au and Ag are the most used substrates because Cu is less inert. Plasmon
band of these metals is centred in the visible and near infrared wavelength (Figure
2.11), and considering that Raman scattering is produced in this range of wavelengths

the use of Au and Ag as SERS substrate is widespread.

*

Au

[ Ag |

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Wavelength (nm)

Figure 2.11. Approximate wavelength ranges where Ag, Au, and Cu have been well-characterized as
SERS substrates [99].

Although some oxides and nitrides of different metals (Ti, V and Al) have been
also proposed as SERS substrates due to their similar optical properties to the classical

metals [100], the use of Au and Ag is still preferred.
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There are a number of works which analyse the influence of the laser
wavelength on the same substrates [98,101-104]. Results indicate that not only SERS
intensity changes with the laser, but also the vibration modes that can be observed
depend on the excitation wavelength. Figure 2.12 shows SERS bands of p-
aminothiophenol on AgNPs with different excitation lasers (514.5 and 1064 nm). In
both cases, the spectra shows the bands which correspond to the symmetric a;
vibration modes, but only using the 514.5 nm excitation line is possible to observe the

bands associated with other vibration mode (b,).
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Figure 2.12. p-aminothiophenol SERS spectra using excitation
lines of 514.5 and 1064 nm [103].

In our case, AgNPs SERS substrates provide a good SERS enhancement using a
532 nm laser. On the other hand, and as Figure 2.11 shows [99], the use of AuNPs
requires an excitation wavelength higher than 550 nm. For that reason, the study of
the oxidation mechanism of purines bases of DNA on AuNPs/carbon nanotube

electrode (Section 4.5) was performed using a 633 nm laser instead of 532 nm laser.

C. Sample

After describing the properties of SERS substrates and the dependence between
the excitation wavelength with the plasmon band, the characteristics of the sample to
be studied have to be also described. Not all species are able to be detected by SERS

scattering and only certain properties make the system able to show SERS response.
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Besides the interaction between the incident light and the metal nanostructure there
is also another interaction, which must be considered, the interaction between the
sample and the excitation light. iError! No se encuentra el origen de la referencia. shows
the SERS spectra of five oligonucleotides (R6G, FAM, ROX, Cy5.5 and Bodipy) using two
excitation wavelengths, 514 and 633 nm [104]. jError! No se encuentra el origen de la
referencia..a shows that only three of these oligonucleotides (R6G, FAM and ROX)
provide an intense SERS response because they are in resonance with the 514 nm
excitation wavelength. iError! No se encuentra el origen de la referencia..b shows the
spectra of the same five oligonucleotides but in this case with and excitation laser of
633 nm. Now, only three oligonucleotides have an intense signal (ROX, Cy5.5 and
Bodipy) because they are in resonance with the new excitation wavelength, but these
spectra are significantly different from those of jError! No se encuentra el origen de la
referencia..a. Only one nucleotide is detected with both lasers because ROX shows two

absorption bands that are in resonance with 514 and 633 nm excitation wavelengths.
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Figure 2.13. SERS spectra of five synthetic oligonucleotide with excitation wavelength of a) 514 nm
and b) 632 nm [104].

The intensity of the SERS bands depends also on the concentration of the
analyte, being both values linear dependent (Figure 2.14) [105-107]. Moreover, it is

not possible to increase the concentration of the analyte to substitute the SERS effect,
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that is to say, the intensity of the Raman scattering with high analyte concentration

will not be by far as intense as using a SERS substrate.
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Figure 2.14. SERS spectra of thionine at concentrations of (a) 10° M,
(b) 10° M, (c) 107 M and (d) 10®M using AuNPs as a substrate [107].

Other factors to take into account are the experimental conditions in which the
measurements are performed because they can change the SERS activity of a substrate
For example, Figure 2.15 shows the effect of the temperature in the SERS

enhancement [108].
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Figure 2.15. SERS spectra of rhodamine 6G adsorbed on a roughened Ag substrate at
different temperatures: (a) 25 °C, (b) 50 °C, (c) 100 °C, (d) 125 °C and (e) 150 °C [108].
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Distance between analyte and metal surface is another important factor that
affects to the electromagnetic mechanism [97]. The electromagnetic field of the
incident beam produces the excitation of the plasmon resonance, generating a volume
(of few nanometres) on the surface in which the molecules are detected (Figure 2.16).
Hence, it is not required that analyte and surface must be in direct contact. Although
this idea is not in agreement with the chemical mechanism, which considers that the
analyte must be directly adsorbed on the surface, it is accepted that distance is an

important SERS factor.

SERS
scattering

Surface
~ [ b plasmons

Figure 2.16. Electromagnetic mechanism contribution to the
distance between the analyte and the metal surface.

However, it is necessary not only to think in terms of distance, but also in the
orientation that the molecule acquires respect to the surface because it determines
the interaction between this molecule and the metal structure. Changes in the
intensity and position of the SERS bands can be observed due to the modification in
the orientation of the molecules. Once the molecules are absorbed on the surface, it
can break the symmetry and some bands that were initially forbidden can be allowed
to be enhanced [18]. A clear example will be discussed in Section 4.5, in which we
analyse the orientation of the adenine and guanine oxidation intermediates respect to

the AuNPs deposited on a SWCNT electrode.
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2.2.2. Applications

SERS has been widely used in many fields. Although there are countless

examples, some of these applications could be classified in:

SPECTROELECTROCHEMISTRY AND CATALYSIS: The combination of SERS scattering with
different electrochemical techniques allows monitoring multitude of
processes as for example oxygen reduction [109], carbon monoxide stripping
[83,110], platinum catalysed reactions [64,111], electron transfer between
proteins [112], cyanide adsorption [70,80,113], benzyl chloride reduction
[114], formic acid oxidation [83], metal electrodeposition [114,115], etc.
DETECTION OF SINGLE MOLECULES AND TRACES: SERS scattering has been
demonstrated as one of the most useful techniques for the detection of
different species as dyes [86,117,118], drugs [119], food additives [29,120] or
explosives [121].

BIOLOGICAL AND MEDICAL APPLICATIONS: this is one of the fields in which this
spectroscopic technique has become more important due to the capacity to
detect carcinogenic cells [122,123], DNA components [124-126], therapeutic
agents [127], glucose [128-130], etc.

CHARACTERIZATION OF MATERIALS: numerous and varied materials have been
characterized by this technique, examples of that are carbon nanotubes [131-
134], graphene [135-138], graphite [139-141], fullerenes [142,143], polymers
[144,145], nanocomposites [146,147] among many others.

ART CONSERVATION: identification of pigments, oil and pastels in paintings [148—
151], textiles [151,152], wood sculptures [153] and even in archaeological
samples [154] have been successfully analysed (iError! No se encuentra el

origen de la referencia.).
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b)

Figure 2.17. Art samples which have been analysed by SERS: (a) ‘For to Be a Farmer’s Boy’ (Winslow
Homer, 1887) [148], (b) portion of a carpet from Bursa/Turkey/Istanbul (late 16th/early 17th century)
[150], (c) The Morgan Madonna, Virgin and Child in Majesty (France, 1150-1200) [153].

2.3. Conducting polymers

Although the oxidative polymerimerization of aniline was described by Letheby
in 1862 [155], it was not until more than 100 years later, in the 1970s, when the
research on conducting polymers intensified. Contributions of Heeger and MacDiarmid
obtaining polyacetylene with high conductivity using halogens in the synthesis [156] or
the improvement in the polyheterocyclic chemistry when Diaz obtained polypyrrole
films with high conductivity [157] allowed an important progress in the conducting

polymers chemistry.

Polymers are known to have good insulating properties. However, it is now
recognized that there are some polymers which have conducting properties. These
polymers that conduct the electrical current are called conducting polymers (also
conductive or conjugated polymers). According to its conductivity these polymers can

be classified in two categories:
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= [NTRINSIC CONDUCTING POLYMERS (ICPs) are those in which the electrical
conductivity arises from the electron m extended conjugation along the
polymer chain. This extended m-conjugated system of the conducting
polymers have single and double bonds alternating along the polymer chain.
Examples of ICPs are polypyrrole, polyaniline, polyacetylene and

polythiophene (Figure 2.18).

M / A\

trans-Polyacetylene
Polypyrrole Polyamlme Polythiophene

n

Figure 2.18. Examples of ICPs: polypyrrole, polyaniline, trans-polyacetylene and polythiophene.

= EXTRINSIC CONDUCTING POLYMERS (ECPs) are those in which the conductivity is due
to the inclusion of conductive materials such as metals, graphite or charge

transfer complex in the polymer matrix.

The conductivity values of conducting polymers are varied, as is shown in Figure
2.19, because different parameters can affect the conductivity of a polymer such as
the current density, the concentration of monomer, the substituents on the monomer,
the kind and concentration of the contraions, the solvent, the temperature or the

working electrode used in the electrochemical synthesis [158].

Conducting polymers

Semi-conductors Metals

10 10 |10 |104 | 108
Quartz Diamond Glass Ge Cu, Fe, Ag

Conductivity /S.cm?

Figure 2.19. Conductivity of conducting polymers.
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Charge transport and hence, the conductivity of this kind of polymers has been

explained by different models:

CHARGE DELOCALIZATION MODEL. This model considers that the w-bonding orbitals
are overlapped producing the valence band. Above this band is located the
conduction band, which is empty and is formed by the m-antibonding orbitals.
The difference between the energy of the valence band and the conduction
band is known as band gap. Band gap of neutral polymers is higher than 1.5
eV (for a semiconductor this value is around 1 eV), which makes them an
insulator material. Initially, the conversion to a conducting or semiconducting
material was attributed to the incorporation of an electron in the conduction
band or by the removal of an electron from the valence band. However, this
model was considered incorrect when solitons, unpaired electrons that can be
removed to form a carbocation or paired with another electron to form a
carbanion centre, were discovered in the neutral polyacetylene. Using
semiconductors terminology, electron removing/adding in conducting
polymers is called doping. It is named as p-doping when the polymer is
oxidized and as n-doping if the polymer is reduced. In orbital terms, the
electrons of the solitons are in intermediate energetic levels between the
valence and the conduction bands. Thus, the conductivity in p-doping can be
considered as electronic “holes” because electrons of the valence band can go
to the orbital of the soliton which is empty, producing vacant positions in the
valence gap (Figure 2.20.a). On the other hand, the conductivity in n-doping is
explained as a soliton that has two electrons and one of them can promote to
the conduction band (Figure 2.20.b). Solitons cannot be considered as radical
centres because they are delocalized along the chain and reticular reactions
are energetically unfavourable. However, as the concentration of solitons
along the polymeric chain is not enough to explain the high increase in the

conductivity of these polymers another model was proposed.
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Figure 2.20. Molecular orbitals of a neutral soliton, (a) positive charged (p-doping)

and (b) negative charged (n-doping).

= |LOCALIZED CHARGE MODEL. This model considers that the charge is localized in the
polymeric chain forming an ionic pair with the counterion [159]. The
resonance energy lost with the localization of the charge is recovered by
distortions in the chain. In this case, the oxidation produces the extraction of
an electron of a double bond [160]. Then, a structural relaxation takes place
producing a local distortion near the charge and the structure of this fragment
is transformed in a quinoid structure in which simple bonds are shorter and

they acquire a double bond character. The radical (anion or cation) obtained is

known as polaron (Figure 2.21).

Neutral chain
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Figure 2.21. Structure of the chain of a neutral polymer, polaron and bipolaron.
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If a second electron is extracted, there would be two possibilities: the electron
is removed in other position forming another polaron, or the adjacent radical

to the positive charge is removed producing a bipolaron (Figure 2.21).

In orbital terms, when the distortion of the chain is produced by the energy
input (AE), it causes an energetic increase (+AE) of the HOMO orbital and an
energetic decrease (-AE) of the LUMO orbital (Figure 2.22). Hence, the
electron removing/adding in the w orbital leads to the formation of two
electronic states between the valence and the conduction bands in the
polaron. After the extraction of a second electron, another polaron or a
bipolaron can be formed. The energy of distortion with two positive charges is
higher than with one positive charge and consequently, the energetic states
of the bipolaron are more separated of HOMO and LUMO than in the polaron
(Figure 2.22).

Conduction
: band :
n doping : | p doping
[T TTR. A, . Valence JERTTIT. A, .
' —/ % band i —"
Conduction | : 5 7 ¢ | Conduction
band : band
: Polaron
Valence Valence
band : H band
Two polarons Bipolaron

Figure 2.22. Molecular orbitals of a polaron, two polarons (n-doping) and a
bipolaron (p-doping).

Therefore, the high conductivity is obtained when the polymer is highly doped
due to the formation of large number of bipolarons in the polymeric chain. It
leads to two bipolanoric bands between the valence and the conduction
bands (Figure 2.23) [161]. Moreover, the small energetic difference between
these bands can produce the partial overlapping of the lowest energetic band

with the valence band and the highest energetic with the conduction band.
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Figure 2.23. Energy levels of a bipolaron highly p-doped overlapping
and without overlapping with conduction and valence bands

2.3.1. Applications

Due to their exceptional properties, conducting polymers have been widely

used in many fields:

= Batteries [162—-164].

= Light emitting diodes (LEDs) [165-167].
= Photovoltaic devices [168-170].

= Sensors[171-173].

= QOptical devices [174-176)].

= Electronic devices [177-179].

= Electrochromic devices [180-182].

= Mechanical and electromechemical devices [183,184].
= Corrosion protection [185,186].

= Catalysis [187,188].

= Drug and chemical delivery [189,190].
= Membranes [191,192].
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2.3.2. Poly(3,4-ethylenedioxythiophene), PEDOT

= Many times, polythiophenes have been taken as models for studying the
processes of charge transport in conducting polymers. The modification of
their structure with different substituents causes changes in many properties
of the polymer. Mainly, two factors should take into account: ELECTRONIC
EFFECTS are related to the ability of the substituents to act as electron-
acceptors or electron-donors. Electron-acceptor groups can increase the
oxidation potential to incompatible values with the stability of the solvents,
making difficult the polymerization. This inability to polymerize the monomers
comes from the high reactivity of their radicals, which can react with the
solvent or with anions in fast reactions to form soluble products instead of the
polymers. On the other hand, although electron-donor groups favour the
polymerization process because they reduce the oxidation potential that must
be applied to oxidize the monomers, these groups can also stabilize the
radical cations, making lower the reactivity.

= STERIC EFFECTS. Although steric factors not affect significantly to the oxidation of
the monomer, this effect has a strongly influence in the morphology and

therefore in the properties of final polymer.

In general, poly(3,4-ethylenedioxythiophene) (PEDOT, Figure 2.24.) is one of the

most promising conducting polymers due to its exceptional properties.

| Poly(3.4-ethylenedioxythiophene), PEDOT

Figure 2.24. Structure of poly(3,4-ethylenedioxythiophene).
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PEDOT shows a relatively high conductivity in the doped state (~ 300 S.cm™)
and electrochromic properties, being transparent in the doped state and coloured in
the neutral state, being characterized by a relative low band-gap value [193].
Moreover, the high insolubility of PEDOT in almost all common solvents is remarkable.
In many cases, once synthesized, PEDOT is used in a solvent medium different from

that in which it has been formed [193].

2.4. Nanomaterials

Over the last decades, nanomaterials have been one of the most interesting
systems employed in different fields due to their mechanical, thermal, electric,
electronic, magnetic and optical properties. Although, nowadays there is not a
universal definition, nanoscale materials are defined as a set of substances where at

least one dimension is less than approximately 100 nm.

There are different classifications for this kind of materials, for example,
nanomaterials can be classified on the basis of the number of dimensions which are

not confined to the nanoscale range (<100 nm):

= Zero-dimensional (0-D): Materials where in all the dimensions are measured
within the nanoscale (nanoparticles, quantum dots).

®= One-dimensional (1-D): One dimension that is outside the nanoscale
(nanotubes, nanowires, nanorods).

= Two-dimensional (2-D): Two of the dimensions are not confined to the

nanoscale (nanofilms, nanolayers, nanocoatings).

As we will see below, different 0-D (gold nanoparticles and silver nanoparticles)
and 1-D materials (single walled carbon nanotubes) were used in some studies

performed in this Thesis.
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2. Theoretical fundamentals

2.4.1. Carbon nanotubes

In the carbon family there are many allotropes, such as diamond, graphite,
graphene, nanotubes and fullerenes. A carbon nanotube (CNT) is a 1-D nanomaterial,
where a graphene sheet is curled into a cylindrical shape. Depending on the number of
graphene sheets rolled there are different kinds of carbon nanotubes. Thus, single-
walled carbon nanotubes (SWCNT, iError! No se encuentra el origen de la referencia..a)
are produced when a unique graphene sheet is rolled, double-walled carbon
nanotubes (DWCNT, iError! No se encuentra el origen de la referencia..b) are obtained
when two graphene sheets are curled, and, in general, multi-walled carbon nanotubes
(MWCNT, iError! No se encuentra el origen de la referencia..c) are constituted when more
than one graphene sheets are rolled leading to a different number of concentric
nanotubes. MWCNT were the earliest carbon nanotubes discovered by lijima [194] in

1991, while the first SWCNT were referenced in 1993 [195,196].

Figure 2.25. (a) SWCNT (image from http://www.carbonallotropes.com/carbon-nanotubes/39-single-
wall-carbon-nanotubes.html), (b) DWCNT [197] and (c) MWCNT  (image  from
http://medicalnanotec.com/cancer-therapy/multi-walled-carbon-nanotubes-cancer-treatment).

Depending on the final properties (orientation, alignment, nanotube length,
diameter, purity and density), CNT can be produced using different methods [198,199]
as discharge methods, laser ablation, pyrolysis, sonochemical/hydrothermal, high-

pressure carbon monoxide conversion (HiPCO) or chemical vapour deposition (CVD).

A. Structure of CNT

CNT can be classified depending on how the graphene sheet is wrapped into a

tube. CNT structure is described by the chirality vector:

Cy, = na, + ma, (eq. 1.2)
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where n and m are integer numbers and a; and a; are the unit vectors (Figure

2.26).

Figure 2.26. Scheme of CNT structure.

According to the chirality angle, it varies between 0 and 30 degrees, there are

three possible geometries (jError! No se encuentra el origen de la referencia.):

= ARMCHAIR: the chiral angle is 30 degrees and the hexagons are lined up parallel
to the axis of the nanotube. They show metallic properties.

= 71G-zAG: the chiral angle is O degrees and the hexagons are oriented in a circle
around the nanotube. They only conduct an electric current when extra
energy in the form of light or an electric field is applied, i.e, they have semi
metallic character.

= CHIRAL NANOTUBES: the value of the chiral angle is between zero and 30 degrees
and the hexagons do not form a line in the direction of the axes of the CNT.

a)

b)

c)

Figure 2.27. CNT (a) armchair (b) zig-zag and (c) chiral.
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B. Properties of CNT

= ELECTRONIC PROPERTIES

The properties of CNT are closely related to their electronic structure, which
can be explained considering the electronic structure similar to a graphite sheet. Each
carbon atom forms 3 covalently o-bonds with the 3 neighbouring carbons via the
orbitals sp”, The fourth electron of each carbon atom extends over the basal plane in

the p, orbital and forms delocalized ®-bonds.

Metallic and semiconducting character of CNT only depends on the chirality
vector (n,m). In this way, slight structural modifications produce important changes in
their electronic properties. So, only if (n - m) is a multiple of 3, the nanotubes exhibit a
metallic behaviour, otherwise they show semiconducting properties. Figure 2.28
represents the electronic structure in terms of density of states (DOS), in which the
energy scale is referred against the half-filling energy () that is the energy where all
bonding orbitals (rt) are filled and all antibonding orbitals (") are empty, producing
one w-orbital per carbon atom occupied. Figure 2.28 shows an example of metallic and
semi-metallic CNT in resonance with the excitation laser energy (gjaser), allowing several
electronic transitions (E;; to the metallic and E;; and E;; to semiconducting CNT). This
theoretical electronic transition diagram is defined by the electronic transition energy

as well as the diameter (chirality parameters) of CNT.

hole| electron
H injection ' injection
i

BN, ES)

‘ | g |
‘ — .

i
fisemi-conducting i ‘

Density of electronic states / a.u.

metallic /

=]
(S

Energy vs. &, /eV

Figure 2.28. Theoretical electronic density of states (DOS) for metallic (blue) and semi-conducting
(red) SWCNT where the occupied states are represented by shaded regions under the DOS and S
and M denote whether this spacing belongs to a metallic or a semiconducting SWCNT [200].
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" VIBRATIONAL PROPERTIES
Atomic vibrations of CNT can be studied theoretically and experimentally. One
of the most theoretical procedures used is to study the phonon dispersion by the zone
folding model. Experimentally, Raman spectroscopy allows identifying the vibration

frequencies.

o PHONON DISPERSION

Phonons are the quantized states of the normal mode vibrations and they
affect to the mechanical, transport and thermal properties in condensed matter
systems. Zone folding model [201-203] is a useful tool to calculate the dependence
between symmetry and chirality with the frequency vibration modes. Using this
approach for a 2D carbon system as graphene it is possible to obtain also the phonon
dispersion for CNT. The first approximation for the phonon dispersion of graphene
starts considering it as graphite in the basal plane [204]. Graphite phonon dispersion
curves are calculated and fitted with experimental results obtained by electron energy
loss spectroscopy, inelastic neutron scattering, speed of sound and other techniques
[205,206]. Finally, three phonon dispersion curves are obtained. They correspond to
acoustic vibration modes (Figure 2.29): an in-plane tangential (bond-bending) mode,

an in-plane radial (bond-stretching) mode and an out-of-plane mode [204].

a)

—

7‘?'\

B YYYYYY) ﬁ
Figure 2.29. (a) An acoustic mode of a carbon nanotube, the vibration is perpendicular to
the nanotube axis and it corresponds to a linear combination of both in-plane and out-of-

plane graphite-derived modes. (b) Out-of-plane tangential acoustic modes in a single layer
of graphite give rise to a radial breathing mode in the carbon nanotube.
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These phonon dispersion relations of CNT depend on the diameter and chiral
angle (n and m indices) [203]. The zone folding procedure allows obtaining the
appropriate one-dimensional frequency for almost all the phonon branches of a

carbon nanotube.

2 RAMAN SPECTRUM
Raman spectroscopy could be considered as one of the best techniques for the
characterization of carbon nanotubes [142,200,207,208]. The characteristic Raman
spectrum of CNT (Figure 2.30) shows mainly four bands: the radial breathing mode
(RBM), the disorder induced mode (D), the tangential displacement mode (G) and the

high frequency two phonon mode (G’).

la.u

Raman

- 4 4
RBM D G

0 500 1000 1500 2000 2500 3000

Raman Shift /cm™

Figure 2.30. Raman spectrum of a CNT film.

RBM band appears around 150-250 cm™ in the Raman spectra and provides
suitable information about the diameter of the CNT (Figure 2.31.b). There are so
different CNT diameters as RBM bands are distinguished in the spectrum. The
relationship between the RBM frequency mgsm (cm™) and the diameter of the CNT d;

(nm) is given by the equation:
A
CURBM s d_t + B (eq 13)

where A (nm cm™) and B (cm™) are semiempirical parameters that take values

between 220-230 nm cm™ for A and 10-20 cm™ for B, depending on the experimental
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conditions [208]. B is used to characterize the interaction of the nanotubes in a bundle

and its value is 0 cm™ for isolated CNT.

The most intense band, G-band, is located at 1550-1600 cm™ and corresponds
to the tangential vibration modes of the CNT [208] (Figure 2.31.a). G-band provides
much information about the nanotubes, for example, it allows knowing the metallic or
semi-metallic character of the CNT film and also it is very useful to check the charge
transfer related to the doping. This band is composed of several peaks related to two
effects: (1) the symmetry effect related with the CNT curvature and (2) the phonon
wave vector confinement along the circumferential direction. It is composed of six
active modes for chiral CNT with symmetries 2A;; + 2E;4 + 2E;; and of three bands for
armchair and zig-zag CNT [209]. However, the intensity of the E;g and E,g is much lower
than the symmetric A;; modes, being considered only two components of the G-band,
one peaked at about 1570 cm™ (G') and other around 1590 cm™ (G*). G component is
associated with the carbon atoms vibrations along the circumferential direction of the
CNT, being highly sensitive to the metallic or semi-metallic character of the film. Its
frequency depends on the diameter and the metallic or semi-metallic properties but
not to the chiral angle. G* mode is associated with the atoms vibrations along the
nanotube axis and its frequency is sensitive to the charge transfer from dopant
additions (up-shifts for acceptors and down-shifts for donors) but it is independent of
the chiral angle and the diameter. The dependence between the diameter and the G-

band components can be only studied in isolated nanotube levels [208].

Figure 2.31. (a) Tangential vibration (G-band) and (b) RBM modes.
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D-band, peaked around 1250-1450 cm™, corresponds to the presence of
defects as substitutional heteroatoms, vacancies, grain boundaries or other defects
and by finite size effects, all of which lower the crystalline symmetry of the quasi-
infinite lattice. G’-band, centred in 2500-2800 cm™ is related to the D-band, being the
G’-band an overtone of the D-band and both D and G’ bands are the result of second-
order Raman scattering processes. However, G’-band appears even in crystalline
graphite where the D-band is absent, so G’-band is an intrinsic characteristic of the
graphene lattice. In general for all kinds of sp2 carbon materials, there is a strong
dependence between the frequency of the D and G’ and the laser energy. The
intensity, frequency, and width of the D and G' bands not only provide information of
the electronic structure of CNT, but also these spectral properties change depending
on the experimental conditions such as mechanical stress (stretching or compression)

or temperature.

The frequency, intensity and width of all of these bands change during the
electrochemical processes as is explained in Section 4.2. Understanding the behaviour

of the CNT during their oxidation and reduction is essential to characterize them.

»  MECHANICAL PROPERTIES
CNT show fascinating mechanical properties. The strength of the carbon bonds
makes CNT one the strongest and stiffest materials known. Initially, the measurements
of the elastic properties of individual nanotubes were considered impossible. However,
using different theoretical studies and new experimental techniques these properties
(hardness, elasticity, stiffness, elastic response, yield strength and fracture...) have
been defined. For example, the hollow and closed morphology of CNT makes them

very flexible in response to mechanical stress (Figure 2.32) [210].

Figure 2.32. Theorical CNT response to mechanical stress [210].
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Furthermore, exceptional Young’s modulus [211-213] and resistance to shock
loads [212,214] have also been demonstrated. However, an important factor for the
mechanical properties is the dependence on the CNT growth method and on the

processing, due to the defects produced during these processes [215].

" THERMAL PROPERTIES

Thermal conductivity and the specific heat of CNT depend on the atomic
vibrations (phonons). Different techniques have been used to study them: calorimetry
[216], thermal conductivity [217], thermal relaxation [218] or pulsed photothermal
reflectance technique [219]. Although the results are various, in general thermal
properties of CNT are similar to graphite characteristics. Both graphite and CNT show
very interesting thermal behaviour that makes them a really promising material in

several fields.

= CHEMICAL PROPERTIES
It is complicated to obtain CNT with specific properties directly from the
synthesis process. For that reason, the chemical functionalization of their walls surface
is essential (iError! No se encuentra el origen de la referencia.). Although different studies
have demonstrated that the ends of the CNT are positions more reactive than the
cylindrical parts [220,221], the modification of the outerwall is also possible [222]

(iError! No se encuentra el origen de la referencia..b).

Figure 2.33. Example of CNT (a) end and (b) outerwall functionalized.
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Functionalization process can be performed by different routes: oxidation at
high temperature by gas reaction [221], liquid phase oxidation with different acids
(HNO3, HCIO4, H,SO4, ...) [223-227], fluorination at high temperature [222],
cycloadditions [228], electrochemical reactions [229], photochemical reactions [230],

etc.

Furthermore, different molecules can be encapsulated inside the CNT, for
example water [231-233], biomolecules [234], ion liquids [235] or drug molecules
[236]. This new confinement produces modifications in the inner molecules and

consequently also the CNT properties change.

2.4.2. Metal nanoparticles

Although metal nanostructures properties as SERS substrate have been
explained in the Section 2.2.1.A, this Section displays a more general overview of metal

nanoparticles (NPs).

NPs are defined as particles whose dimensions are in the nanometric range,

between 1 and 100 nm, so they are an example of 0-D materials.

Metal NPs synthesis can be accomplished using different methods: chemical
reduction [76-78], seed-mediated [237], photochemical [238], electrochemical
[70,239], sonochemical [240], lithography [91,92], galvanic replacement [241], thermal
evaporation [242], radiolysis [243], sol-gel [244], laser ablation [87—89], chemical vapor
deposition [245], microwave assisted [246], biological (fungi, bacteria, plant) assisted
[247-249]. The choice of the synthesis method, the concentration of the reagents and
other specific parameters of each tecnique allow us to obtain NPs with specific size
and shape. These two characteristics are specially important because they determine

chemical and physical properties of NPs.

Although chemical reduction is the most used method of NPs synthesis our

group is more interested in the electrochemical route due to the higher control of the
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synthesis and, therefore, to the generation of more reproducible NPs. In all the studies

presented in Chapter 4, metal NPs are deposited by electrochemical methods.

A. Electrochemical synthesis

Electrosynthesis method allows us to control many parameters during the
deposition process. Slight changes of intensity current, applied potential,
electrodeposition time, electrode material, kind or concentration of supporting
electrolyte or salt precursor electrolyte, etc. can produce significant modifications in
the properties of NPs yielded. Another important advantage of this method is the
highest surface cleaning of the NPs generated considering that a smaller amount of

reactants is used leadsing to a minor contamination of the samples.

The first references of metal electrodeposition are dated in the last decades of
19t century [250-253] and first years of 20t century [254,255], when some metals as
Ir, Cu, Ni and Fe were studied. Since these starting studies, this method has
experimented an extraordinary evolution, enabling us now to control some of the

most characteristic properties of NPs such as size and shape.

Electrosynthesis of metal NPs can yield NPs in solution or NPs deposited on the
electrode surface. NPs electrosynthesis in solution is very similar to a chemical
synthesis, but instead of using a chemical reducing agent, the electrons needed to
reduce metal ions are provided by the electrode of an electrochemical cell, using in
most cases a sacrificial anode [256]. When NPs are electrodeposited on the electrode
surface as the result of applying a negative enough overpotential, a typical 3 electrode
electrochemical cell is used. This last one procedure has been chosen to synthesize all

NPs shown in this Thesis.

During the electrodeposition process two stages are observed. The initial stage
or nucleation step corresponds to the generation of the first metal nuclei on the
electrode surface, while the second or growth step relates to the growth of these.

There are described two kinds of nucleation named as (Figure 2.34):
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= INSTANTANEOUS NUCLEATION, in which the number of nuclei is constant during all
the experiment, and they grow on their former positions on the substrate
surface but no more new nuclei are formed. In general, this type of nucleation
leads to obtain larger nuclei and rougher surfaces.

= PROGRESSIVE NUCLEATION, where the number of nuclei is not constant during the
synthesis. While initial nuclei starts to grow, new nuclei are formed on the

electrode surface.

The second step is the growth of the nuclei being possible to differenciate two
types of growth: two-dimensional (2D) and three-dimensional (3D) [257]. In 2D
growth, the nuclei grow faster in the two directions parallel to the electrode surface
than in the perpendicular direction. On the other hand, in the 3D growth, the nuclei
grow with similar rate in both parallel and perpendicular direction respect to the

electrode surface.

v v v -
Instantaneous . w ~ b
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v v v v ¢ bbb

Figure 2.34. Scheme of instantaneous and progressive nucleation.

Metal NPs characterization is usually performed using a variety of techniques,
such as transmission electron microscopy (TEM), scanning electron microscopy (SEM),
scanning tunneling microscopy (STM), atomic force microscopy (AFM), dynamic light
scattering (DLS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-
Vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR),
nuclear magnetic resonance (NMR), matrix assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF) or Rutherford backscattering spectrometry
(RBS).
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B. Properties and applications

Metal NPs exhibit a large range of optical, chemical, catalytic, electrical and
magnetic properties due to finite size effects which make them really useful in
different fields. These properties can change as function of the metal, size, shape or
number of components of the NPs and are different from the bulk or their constituents
because the surface of the NPs are structurally and compositionally different [258].

Metal NPs have been used in a number of applications:

= CATALYTIC APPLICATIONS. Metal NPs are used as catalyst in many reactions, such
as carbon monoxide oxidation [259], oxidation of small organic molecules
such as formic acid and ethanol [260], selective oxidation of cyclohexene and
cyclooctene [261], degradation of rhodamine [262], nonenzymatic
impedancimetric detection of glucose [263], tandem reaction of alcohols and
nitrobenzenes to generate N-alkyl amines and imines [264], 4-nitrophenol and
4-aminophenol reduction [265], etc.

= BIOMEDICAL APPLICATIONS. NPs are used as contrast agents in diagnostic [266],
cancer detection [267], photothermal cancer therapy [268], drug and gene
delivery [269], pathogens detection [270], protein detection [271],
investigation of the structure of DNA [272].

= SENSORS AND MOLECULAR RECOGNITION, such as detection of toxic ions [273],
development of new biosensor [274], or in molecular recognition [275].

= ENVIRONMENTAL TREATMENTS, such as in air desifection [276], water [277],
groundwater [278] and biological wastewater [279] desinfection, surfaces
desinfection (antimibrobial paints [280], clinical clothing [281], paper for food
preservation [282]).

= ENERGY. They have been very used in photovoltaic applications [283], batteries
[284], fuel cells [285] or solar cells [286].

= ELECTRONIC, such as in memory devices [287], light emitting diodes (LEDs) [288]

or photonic crystals in optical computers [289].
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= MATERIALS. The use of NPs in different materials allows improving their
properties as in ceramics, metal materials, NPs/CNT, NPs/graphene, NPs/C

fibers and NPs/polymer composites [290,291].

2.5. Interfaces between two immiscible solutions

The interface between two immiscible electrolyte solutions (ITIES) is formed
between two liquids with very low miscibility, one of these solvents is usually water
and the other is a polar organic solvent, such as 1,2-dichlorobencene (DCB),
nitrobenzene (NB) or 1,2-dichloroethane (DCE). Processes which take place at these
interfaces have become one of the most interesting systems in electrochemistry due to
its wide range of applications, as in biological membranes [292—-295], pharmacokinetic
characterization [296—298], catalysis [299-302], metal deposition [303-306] or
electroanalysis [307-309].

The first electrochemical experiments in ITIES were performed in 1902, when
Nernst and Riesenfeld observed the ion transfer through the interfaces
water/phenol/water during the passage of an electrical current [310]. The first
theoretical study of these interfaces was developed by Verwey and Niessen in 1939
[311]. This study was based on a similar physical model to the Gouy-Chapman
electrical double layer. In 1953, Karpfen and Randles presented an important
development for further studies performing an analysis of the thermodynamic
equilibrium between the two phases [312]. An important moment in the development
of ITIES was achieved by Gavach et al. in 1968, when they demonstrated that the ITIES
could be polarized and the Galvani potential (potential difference between the two
phases) can be used to achieve charge transfer reactions [313]. The breakthrough took
place in 1977 when Samec introduced the four-electrode potentiostat with the ohmic
drop compensation [314-317]. This work is fundamental because it made possible the
use of new techniques to study ITIES as cyclic voltammetry [304,318-321], differential
pulse voltammetry [322], alternating current voltammetry [323], chronoamperometry
[324], polarography [325,326] and impedance spectroscopy [327,328]. In the last

years, the development of new devices has allowed using different
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spectroelectrochemical techniques to study ITIES systems [329—-335]. In the Section 4.4
of this work, a new cell to study the reactions which take place at the liquid/liquid (L/L)

interface using time-resolved Raman spectroelectrochemistry is presented.

2.5.1. Interfacial structure

It is complicated to define the interfacial structure because the interface
formed between two immiscible solutions is a molecular interface with its own
dynamics, so the time scale is another parameter to define the structure. The
interfacial structure has been assessed by different methods: X-ray reflectivity
[336,337], neutron scattering [338], laser scattering [339], second harmonic
generation (SHG) [340—-342], sum frequency generation (SFG) [343—345] or molecular
dynamics simulations [346—349].

The first capacitance model was a Gouy-Chapman model, which represents the
interface as a double electric layer in both phases. However, this model is not able to
reproduce accurately the experimental capacitance data. Verwey-Neissen model, with
some modifications, propose that the interface consists in a free layer of ions (inner
layer) formed by oriented solvent molecules, which separates the diffuse double-layer
regions. Furthermore, it considers the penetration of ions into the inner layer (Figure

2.35).
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Figure 2.35. Modified Verwey-Niessen model of ITIES.
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Using this model the potential difference or Galvani potential can be explains

with three contributions:
AT @ = @7 — @3 + @; (eg. 1.4)

where @ is the Galvani potential, @," and ¢,° are the potential at the boundary
between the diffuse layer and the inner layer in the aqueous and organic phase

respectively and @ is the potential at the centre of the inner layer.

2.5.2. Nernst equation

When two immiscible solutions form an interface, a distribution of charge
between the two phases is produced due to the energy difference between these two
phases. At constant pressure and temperature, the thermodynamic equilibrium at

ITIES is expressed as:
gl =i’ (eqg. 1.5)
where fifand i}’ are the chemical potential of the component i in the organic

and aqueous phases, respectively. If we consider the electrical and chemical

contribution the equation is expressed by:

1’ + RTIna? + zFp° = ™ + RT Inay + zF " (eq. 1.6)

where 1° and p"” are the standard chemical potentials in aqueous and
organic phases, respectively; ¢°and @"are the Galvani potentials in both phases;
afand a}’ are the activities of the i specie in the two phases; F is the Faraday constant
and z is the charge. Using the above expression we can obtain the relationship

w

between the Galvani potential difference (A¥ @?) and the Gibbs energy (AGfmnsf,i):

AG? =’ — " = —zFAY @? (eq. 1.7)

transf,i —

Therefore, the relation between the Galvani potential difference and the Gibbs

energy is defined by:

AG? ;
w _ transf,i
Af @ = F (eq.1.8)
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2.5.3. Transfer reactions

The different reactions that can take place at ITIES are classified into three main

categories (Figure 2.36) [350]:

= |on transfer
= Assisted ion transfer

= Electron transfer

Phase 1

" @ b H* o Ox, Red, QD

B BH* Red, Ox;

Phase 2

Figure 2.36. (a) lon transfer, (b) assisted ion transfer and (c) electron transfer.

A. Ion transfer

lon transfer reaction through ITIES has been widely studied for over last
decades [314,323,351-359] and in general, it is considered that this transference

occurs in 3 major steps:

= Mass transfer in one phase to the interface (mainly diffusion).
= |on transfer reaction.

= Mass transfer in the other phase away from the interface.

In this kind of transference, it is necessary to provide the enough energy (Gibbs

energy) to transfer an ion from one phase to the other.

Xiis x2 (eq. 1.9)

w
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This energy can be supplied by a suitable potential difference (Galvani potential

difference) applied across the interface being defined by:
AT =" —¢° (eq. 1.10)
where @ is the Galvani potential at the respective phases.

At equilibrium we can consider the Nernst equation due to the equality of the

ion potential located in adjacent phases:

AV =AY ——In <—W) (eq. 1.11)

where a; is the activity, z; is the charge of the ion (i) and A‘(’,"(p? is the standard

ion transfer potential which is due to the solvation difference in both phases and is

defined as:

A‘éVG?ransfi w0 -
AY @7 = e eq. 1.12
o Pi ZiF ZiF (eq )

where A‘g’GtOmnsf,i is the Gibbs energy of transfer of i, u?’o is its standard Gibbs

energy of solvation and /,L?'W is its standard Gibbs energy of hydration.

B. Assisted ion transfer

This kind of reaction not only involves the transference of an ion but also
neutral ligands which can be located at the interface (in either of the two phases).
Depending on the concentration ratios and the distribution coefficient of the ligand,

there are four possible mechanisms (Figure 2.37) [360]:

= TRANSFER BY INTERFACIAL COMPLEXATION (TIC): (1) ion H" is transferred to the
interface, (2) the complexation with the ligand B is produced in the interface

and (3) the complex BH" is transferred to the other phase.
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= TRANSFER BY INTERFACIAL DISSOCIATION (TID): (1) the complex BH" is transferred to
the interface, (2) it is dissociated in the interface and (3) the ion H" is
transference the other phase.

» TRANSFER FOLLOWED BY ORGANIC PHASE COMPLEXATION (TOC): (1) the ion H' is
transferred from one phase to the other phase, (2) where is produced the
complexation BH" with the ligand B.

= AQUEOUS COMPLEXATION FOLLOWED BY THE TRANSFER OF THE COMPLEX (ACT): (1) the ion
H* and the ligand B form the complex BH" in the aqueous phase and after

that, (2) the transference of the complex to the organic phase is produced.

Aqueous phase

a) TIC H' )TID K" c)TOCH" dACT 5 e e @,

B BH*  BH* B B+H'C_)BH B

Organic phase

Figure 2.37. Assisted ion transfer mechanism: (a) transfer by interfacial complexation (TIC), (b) transfer
by interfacial dissociation (TID), (c) transfer followed by organic phase complexation (TOC) and (d)
aqueous complexation followed by the transfer of the complex (ACT).

C. Electron transfer

In the electron transfer process, there is a redox couple in one phase which will
be oxidized and another couple in the other phase that will be reduced due to the

passage of electrons through the interface.
Ox{’ + Red§ = Red} + 0x3 (eq. 1.13)

At equilibrium, the Galvani potential difference is defined by the Nernst

equation:

AV =AY p° — BT In <—a0"1aRed2) (eq. 1.14)

nF a}/{edlagxz
where n is the number of electrons transferred and A¥ @° is determined by:
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0, 0,
Ay @° = EO;Z/RedZ - Eori/Rem (eq. 1.15)

where ng/Red is the standard redox potential for the redox couples.

Electron transfer reactions can be explained in terms of elementary steps: (1)
approach of the reactants to the interfacial region in both phases, (2) formation of the
electron transfer precursor complex, (3) electron transfer reaction, (4) reorganization
and dissociation of the successor complex and (5) products go away from the interface.
However, it is not clear where the precursor formation and the electron transfer take
place. Samec proposed that the electron transfer is produced across an ion-free layer
composed of oriented solvent molecules [315]. On the other hand, Girault and
Schiffrin assumed the electrochemical potentials are dependent on the position of the
reactants at the interface in a mixed solvent region [361]. From a general point of
view, the activation energy of the full process is defined by [362]:

. 2
A+ AG° +w, —w
AGgyer = ( b~ W) 41 (eq. 1.16)

where A is the energy reorganization, AG® is the formal Gibbs energy for the
elementary electron transfer, w, is the approaching of the reactants and w, is the
separation of the products from the interface. The dependence between the activation
energy and the Galvani potential is given by these parameters (AG°', w; and w;) and
the Galvani potential difference can induce changes in them. Consequently, the
observed potential dependence of the electron transfers can arise from two
contributions: changes in the interfacial concentration of the reactants and

modifications in the free energy of the elementary step [350].

2.6. DNA bases

The deoxyribonucleic acid (DNA) is a macromolecule responsible for the storage
and transmission of the genetic information. The DNA chemistry started in 1868, when
Miescher was studying lymphoid cells in biological material and he found a great

guantity of these cells in the pus from infections. After treating the biological rests, he
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noticed a gelatinous precipitate with unexpected properties which did not match with
those of proteins [363]. Although Miescher did most of his work in 1868, his paper was
not published until 1871 [364].

However, the most famous breakthrough in the study of DNA was produced in
1953 when Watson and Crick [365] discovered the structure of the DNA. This structure
is formed by a double helix of two antiparallel DNA chains which are linked by

hydrogen bonds (Figure 2.38).

These chains consist of individual units, called nucleotides, which are linked to
each other to form these long chains. Nucleotides are formed by a five-carbon sugar
(2’-deoxyribose), a phosphate group and an organic base. The base is linked to 1’-

carbon of each sugar.

Sugar
Phosphate
Backbone

Base pair

Adenine Thymine

) = Guanine
Cytosine

Figure 2.38. Double helix of DNA. Source: The microbiology of
the Built Environment network http://microbe.net.

There are four bases: two purine bases (adenine and guanine) and two
pyrimidine bases (thymine and cytosine), Figure 2.39. According to Watson and Crick
rules [365] the hydrogen bonds are established only between specific pairs of bases:

adenine with thymine and guanine with cytosine. But DNA bases composition is not
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random in a cell, the amount of adenine is the same than thymine and the quantity of

guanine and cytosine is also equal.

NH> O 0 NH,
S 0L O
N N) N N///l\NHz ”/Ko H/Ko

Adenine Guanine Thymine Cytosine

Figure 2.39. Bases of the DNA: adenine, guanine, thymine and cytosine.

DNA can adopt different conformations depending on the nucleotide sequence
and environmental conditions. The most common structure is B-DNA, which twists in a
right-handed double helix and where it is possible to differentiate a major and a minor
groove. In the major groove, which is deep and wide, chemical groups which are
present specify the identity of the base pair, while the minor groove, which is shallow

and narrow, shows a higher negative charge density.

DNA bases can be modified producing molecular changes to the genetic
machinery that leads to cell malfunction and death of it. One method to causes DNA
modifications is the oxidation of the bases because during this process different
oxidations products can be formed. These products are influential in mutagenesis,

carcinogenesis, aging and neurodegenerative disease [366—369].

Therefore, it is important to define and characterize the oxidation mechanism
in order to understand and detect possible damages in the DNA. Both purine and
pyrimidine bases can be electrochemically oxidized [370-373], although adenine and
guanine are oxidized at much lower positive potentials than thymine and cytosine. In
the Section 4.5 of this Thesis, we propose the oxidation mechanism of adenine and
guanine, analysing the oxidation products and their orientation on gold nanoparticles

using Raman spectroelectrochemistry.
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8. Apendix

Acronyms and definitions

Acronyms Definition

A Adenine
2-0x0A 2-oxoadenine
2,8-dioxoA 2,8-dioxoadenine
BTPPATPBF; Bis(triphenylphosphoranylidene) ammonium
tetrakis(pentafluoro) phenylborate
Bend Bending
CE Counter electrode
CN’ Cyanide
CNT Carbon nanotubes
SWCNT Single-walled carbon nanotubes
DWCNT Double-walled carbon nanotubes
MWCNT Multi-walled carbon nanotubes
D Dimensional
0-D Zero-dimensional
1-D One-dimensional
2-D Two-dimensional
3-D Three-dimensional
DCB 1,2-dichlorobenzene
DCE 1,2-dichloroethane
Def Deformation
DMFc Dimethylferrocene
DNA Deoxyribonucleic acid
DOS Density of states
ECPs Extrinsic conducting polymers
EDOT 3,4-ethylenedioxythiophene
EDTA Ethylenediaminetetraacetic acid
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G Guanine
8-0x0G 8-oxoguanine
8-0x0G™ 8-oxoguanine oxidized
GC Glassy carbon
ICA Independent Components Analysis
ICPs Intrinsic conducting polymers
ITIES Interface between two immiscible electrolyte
solutions
L/L Liquid/Liquid
NPs Nanoparticles
AuNPs Gold nanoparticles
AgNPs Silver nanoparticles
PEDOT Poly(3,4-ethylenedioxythiophene)
PET Polyethyleneterphtalate
PMMA Polymethyl methacrylate
PTFE Polytetrafluoroethylene
PVC Polyvinylchloride
RBM Radial breathing mode
RE Reference electrode
Rock Rocking
Sciss Scissoring
SEM Scanning Electron Microscope
SERS Surface-enhanced Raman scattering
Sqz Squeezing
Str Stretching
UV/Vis Ultraviolet/Visible
Wag Wagging
WE Working electrode
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Magnitudes and Units
A Absorbance  au  Arbitraryunits
Ad Potential difference \' Volts
E Potential \" Volts
| Intensity A Amperes
s Raman intensity a.u Arbitrary units
A Wavelength nm Nanometers
Q Charge C Coulombs
t Time s Seconds
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