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and benchmarking of 30 models under all sky conditions

Miguel de Simón-Martı́na,b,∗, Cristina Alonso-Tristánb, Montserrat Dı́ez-Mediavillab
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Abstract

Solar energy potential analysis on oriented and tilted surfaces, such as building façades, is of capital importance to

estimate the energy production potential in integrated systems, such as BIPVs. The spatial distribution of solar diffuse

energy outstands as one of the most critical factors in order to improve performance simulations. Nevertheless, most

wide spread models have been only evaluated on equator facing tilted surfaces and with daily mean or hourly mean

time ranges. Thus, in this paper, 30 transposition solar diffuse irradiance models, from the semiphysical classical ones

to the newest non-parametric models, are reviewed, classified according to their characteristics and evaluated against

empirical 10-min averaged diffuse irradiance values gathered from high precision pyranometers placed on vertical

positions facing the four cardinal directions. Models’ performance is evaluated by several statistical estimators and

a benchmark has been carried out by a non-parametrical aggregating procedure. Results show that the most accurate

models appear to be the non-parametric ones. From these, The Multi-Layer Perceptron obtains the best results. From

the parametric models, the one whose estimations are closest to the measures is the Perez et al. with local optimised

coefficients. Perez et al. model with the original coefficients, Skartveit & Olseth and Igawa et al. models also show a

good performance.

Keywords: diffuse solar irradiance, vertical surfaces, irradiance modelling, sky conditions, benchmarking.

1. Introduction

It is clear that gaining an in-depth knowledge of the

available solar resource is of the utmost importance. It

can be used in very different fields, such as meteoro-

logical forecasting, biology, agriculture, energy, archi-

tecture, and so on. Moreover, it should not be forgot-

ten that knowledge of the potential of solar radiation

is necessary for diversifying energy and dimensioning

heating and air-conditioning systems, as well as for the

intelligent use of renewable energies on most scenar-

ios. The design, dimensioning and calculation of solar-

energy-based systems requires precise knowledge of the

amount of global irradiance and specially the direct, dif-

fuse and reflected components that fall on surfaces that
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are horizontal or inclined in any direction. This late case

is really worth of interest on the analysis of building’s

efficiency or solar energy generators performance. The

fruit of studies in this field allows the development and

implementation of many different systems; for example

photovoltaic technology [1, 2, 3, 4], the calculation of

thermal loads and cooling in buildings [5], the design of

efficient solar collectors [6], and an infinite number of

other technological applications that have the objective

of increasing human well-being and comfort [7, 8].

Since the Maastricht Treaty in 1992 [9], the Euro-

pean Union’s energy and environmental target has been

to promote sustainable and environmentally friendly

growth in its member countries. Having set the goal

of a 12.5% contribution from renewable energies with

respect to total consumption for the year 2010, at the

2004 Berlin Conference [10] the recommendation was

made that the percentage of renewable energies for the

year 2020 should reach 20% of the total consumption of

energy [11]. This was established through the Horizon
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Nomenclature and abbreviations

Ai Anisotropic index [-] Rr Tilted reflected irradiance fraction [-]

b Radiance distribution index [-] RMSD Root Mean Squared Difference [W·m−2]

B Beam direct irradiance [W·m−2] sc Circumsolar fraction [-]

Bext Extraterrestial irradiance [W·m−2] Si Igawa’s sky index [-]

Bsc Solar constant [W·m−2] TM Muneer’s radiance distribution [-]

d Willmott’s index of agreement [-] Greek symbols
D Diffuse irradiance [W·m−2] α Significance level [-]

fb Shadowing coefficient [-] γ Azimuth angle [rad]

fc Blocked circumsolar [-] γp Sensor’s azimuth angle [rad]

G Global irradiance [W·m−2] γs Sun’s azimuth angle [rad]

Gst Standard global irradiance [W·m−2] Δ Perez et al.’s brightness index [-]

hs Solar elevation [rad] δs Sun’s declination angle [rad]

igr Rel. ground radiance function [-] ε Perez et al.’s clearness index [-]

ir Rel. sky radiance function [-] θz Zenith angle [rad]

I Sky radiance [W·m−2·sr−1] θzp Sensor’s zenith angle [rad]

Ig Albedo’s radiance [W·m−2·sr−1] θzs Sun’s zenith angle [rad]

Igz Nadith radiance [W·m−2·sr−1] μ1−α Estatistical estimator [W·m−2]

Iz Zenith radiance [W·m−2·sr−1] ξgp Reflectance angle [rad]

kd Diffuse fraction [-] ξop Obstacle-pyranometer angle [rad]

m Relative optical air mass [-] ξp Sensor-sky point angle [rad]

MBD Mean Bias Difference [W·m−2] ξs Sun-sky point angle [rad]

N Day of the year [day] ξsp Sun-pyranometer angle [rad]

R Reflected irradiance [W·m−2] ρ Ground’s reflectance [-]

R2 Coefficient of determination [-] τ Atmosphere’s transmitance [-]

Rb Tilted beam irradiance fraction [-] φg Geographical latitude [deg. N]

Rd Tilted diffuse irradiance fraction [-]

2020 plan [12]. Prescriptions were also made in the Ky-

oto Protocol on climate change [13], which many Euro-

pean countries, including Spain, signed up to. As it is

well known, the protocol created an obligation to lower

emissions of greenhouse gases such as CO2, which are

produced mainly by the majority of transportation forms

and by current systems for generating thermal and elec-

trical energy. Within this framework, one of the paths

to the achievement of the stated objectives is the devel-

opment of new energy strategies within urban environ-

ments.

A significant level of energy is consumed in urban

environments. Policies focused on distributed genera-

tion, net energy balance or the construction of “Nearly
Zero Energy Buildings” (nZEB) have been supported by

both photovoltaic and thermal solar technology through

their modularity and easy adaptability to any struc-

ture. The nZEB concept has been considerably strength-

ened by European energy policies such as EU Directive

2002/91/EC [14], consolidated in Directive 2010/31/EU

[15], which demands that, since 2019, all newly con-

structed buildings that are property of public entities

must be nZEBs, and that by the end of 2020 all newly

constructed buildings must be of this type. This new

construction trend allows buildings to be practically in-

dependent from the electricity network and other en-

ergy infrastructure, thanks mainly to the integration of

sources of renewable energy in the architectural design

(particularly in “Building Integrated Photovolatic Sys-
tems” or BIPVs), maximization of ventilation and nat-

ural light, a lowering and optimization of consumption,

and so on [16, 17].

The integration of photovoltaic generators in build-

ings envelopes, giving rise to BIPV systems, offers im-

mense potential. In Germany, for example, the integra-

tion of photovoltaic systems in buildings may allow up

to 50% of demand for electricity to be covered [18].

Other studies indicate that there could be electrical en-

ergy savings of between 30% and 50% [19]. In any

case, there would be a significant advance towards en-

ergy sustainability and self-sufficiency and, therefore,

this development seems like it will be unstoppable in

the coming years. Furthermore, the harnessing of so-

lar energy via building façades can be achieved in many
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Figure 1: Solar irradiance modelling flow chart.

ways, and especially through the incorporation of ther-

mal and photovoltaic modules [20].

Paradoxically, the development of solar energy sys-

tems in recent decades, while extensive, has always

been focused on large energy-production plants (pop-

ularly known as solar farms) or, in contrast, on small

and isolated facilities in rural settings that need an

autonomous energy supply. According to [21], grid-

connected decentralized PV power plants have de-

creased from more than the 80% in 2000 to almost the

30% in 2015. Moreover, although the rapid deployment

of grid-connected PV dwarfed the off-grid market, off-

grid applications are developing more rapidly in sev-

eral countries than in the past and some targeted sup-

port has been implemented [21]. Both scenarios differ

completely from the average situation of an urban envi-

ronment [22, 23, 24]. Beam direct irradiance on any sur-

face depends on the cosine of the incidence angle which

can be evaluated through the description of the Sun’s

position in the sky vault. However, spatial distribution

of the diffuse irradiance is affected by the atmosphere

conditions and the observed part of the sky vault by the

studied surface. A deep analysis need to be conducted

in order to develop effective tools that allow the use of

the solar resource and an optimal design of urban solar

plants.

Characterising solar energy is a complex task. The

irradiance from the sun that reaches the outer part of the

atmosphere can be considered as practically constant

over time for the purpose of this analysis (hence the def-

inition of the solar constant as irradiance at the extra-

terrestrial level, with a value of Bsc = 1 367 W·m−2

[25]). However, the irradiance that reaches any point

on the Earth’s surface is affected by quasi-random phe-

nomena such as the absorption and scattering produced

by the gases of the atmosphere, aerosols or particles in

suspension. For this reason, obtaining systematic and

reliable measures of solar potential at the surface level

is fundamentally important and not a trivial matter [26].

Also, despite the increase over the last decade in clima-

tological stations with the capacity to measure variables

related to the magnitudes of solar irradiance in devel-

oped countries, the density of these stations is still very

low due to the extent of the Earth’s surface. To give

an example, on average, ground stations in the United

States in 2008 covered approximately 1% of the terri-

tory. The world average is estimated at 5% [27]. More-

over, databases that recorded ground measures are not

always complete, especially with regard to the measur-

ing of the components of irradiance, due to cost and the

difficulties of calibrating, operating and maintaining of

the equipment. This leads directly to the need to develop
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and validate models or theories that allow us to estimate

irradiance values from the available set of data, in the

simplest and most precise way possible.

As it can be seen in Figure 1, modelling diffuse ir-

radiance on tilted (including vertical) surfaces requires

several transformations and chains of models depending

on the available model input data. Direct beam irradi-

ance B(n) can be estimated from the extraterrestial irra-

diance value Bext(n), through the τ models which calcu-

late the atmosphere’s transmittance values on the hori-

zontal surface. On the other hand, kt models correlate

the extraterrestial irradiance with the horizontal global

irradiance and kd and kb models allow the evaluation of

the diffuse and beam fractions respectively. Reflected ir-

radiance on a given surface, R(θzp, γp), is proportional to

the albedo’s reflectance ρ and the horizontal global irra-

diance. The so-called “transposition models” transform

global horizontal and diffuse horizontal irradiances into

reflected and diffuse irradiances on any given plane (Rd

and Rr values) tilted a zenith angle θzp and oriented an

azimuth angle γp. Moreover, most of the models found

in the literature have been developed and tested with

irradiance data on inclined planes pointing the Equa-

tor (equatorial direction) and not a convention on the

nomenclature has been achieved.

Although it can be found a wide range of models for

the transposition of the irradiance value from the hori-

zontal plane to Equator pointing tilted surfaces, not an

extended systematic review and validation test on sev-

eral vertical planes has been found in the consulted bib-

liography. Furthermore, most of previous works in this

field limit the analysis to whether clear sky conditions

or complete overcast skies and use indirect data from

the composition model instead of direct measurements

of diffuse irradiance on the tilted plane. Moreover,

a classification of the transposition models according

to their adopted hypothesis and formulation has been

found worth of interest and it helped the authors in this

work to propose a normalized nomenclature for all mod-

els. Thus, a deep and systematic review of these mod-

els has been carried out and a benchmarking analysis

has been conducted with measurements on four oriented

vertical surfaces under all sky conditions.

2. Materials and Methods

Data used in the study were acquired at a radio-

metric station installed on the rooftop of the E.P.S. of

the University of Burgos (42.2122◦N, 3.3753◦W, 860

m.a.s.l.). Obstacles on the horizon are negligible (el-

evation angles are less than 5◦) and top quality stan-

dards according to the World Meteorological Organi-

zation (WMO) [28] and the National Renewable En-

ergy Laboratory from United States (NREL) [27] are

guaranteed. The data set included diffuse irradiance

measures, taken every ten minutes on vertical planes

oriented toward the four main cardinal points (North,

South, East and West) by the MK6 device, which has

four sensors (First class pyranometers) and one single

multi-lobular shadow-band. This device has been pre-

sented and fully described in [29]. The study period

encompassed eight months, from September 2014 to

April 2015, so as to ensure that a variety of seasonal

processes and meteorological conditions were sampled.

Other studies in the bibliography use typically periods

for measurement from 3 months to one year hourly or

10-min data [30, 31, 32, 33, 34]. Moreover, due to the

novelty of the deployed measurement instrument for the

vertical diffuse irradiance, it is not possible to access to

a wider range of data.

Geometrical correction and Le Baron total correction

have been applied to the measures to reduce the influ-

ence of the shadow-band and obtain high accuracy val-

ues [35, 36]. Albedo’s irradiance have been quantified

by a SIR SKS-1110 pyranometer installed in an inverted

position.

Horizontal measures of global and diffuse irradiance

have also been obtained with Hukseflux SR11 pyra-

nometers mounted on a Geonica SunTracker-3000. Cor-

rection factor for the diffuse irradiance measurement in

this case is almost negigible as the sun tracker has a ball

that prevents the direct beam irradiance from reaching

the diffuse sensor. Direct beam irradiance has been mea-

sured with a Hukseflux DR01 pyrheliometer.

The following quality physical filters, proposed in

[28, 37, 38, 39], were applied to guarantee reliable data:

1. Solar elevation hs ≥ 5◦.
2. G(0) ≥ 0.19 W·m−2.

3. G(0) ≤ 1.12Bsc.

4. B(n) ≤ Bsc.

5. B(n) ≥ 0.19 W·m−2.

6. B(n)/Bsc ≤ G(0)/(Bsc cos θzs) − 0.5.

7. D(0) ≤ 1.15G(0).

8. D(0) ≤ 0.8Bsc.

9. D(0) ≥ 0.19 W·m−2.

10. R(180) ≥ 0.19 W·m−2.

11. R(180) ≤ G(0).

All pyranometers were calibrated against a reference

pyranometer (Hukseflux SR21) which had in turn been

previously calibrated at the World Radiation Center

(WRC) in Davos (Switzerland). The uncertainties of all

the sensors were calculated by the B method proposed

in [40] and the results are shown in Table 1.
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Table 1: Sensor’s uncertainties.

Measure Sensor Max. Relative
Uncert. [%]

Diff. North Hukseflux SR11 5.6

Diff. South Hukseflux SR11 5.6

Diff. East Hukseflux SR11 5.6

Diff. West Hukseflux SR11 5.6

Glo. Hor. Hukseflux SR11 4.2

Diff. Hor. Hukseflux SR11 4.6

Dir. Beam Hukseflux DR01 5.5

Albedo’s SIR SKS-1110 7.8

Non-parametric models have been evaluated through

a k cross-validation method. Thus, for these models,

the whole data set was randomly divided into k = 10

subsets of an approximately equal size. Throughout the

k = 10 iterations, one subset was the test data set and

the combination of the other nine subsets was the train-

ing subset. The training subsets were used to adjust the

coefficients of the models and the test subset was used

to evaluate the performance of the model. The whole

procedure was repeated in such a way that every subset

is used once for testing. Note that the testing data for

each subset was not used in the training of the model.

Model performance was finally established as the av-

erage value over the k = 10 iterations obtained by the

statistical estimators that were adopted.

Six parameters were considered for the statistical

analysis: coefficient of determination (R2), the Root

Mean Squared Difference (RMSD), the Mean Bias Dif-

ference (MBD), t-statistic (t), Willmott’s index of agree-

ment (d) and the μ1−α-statistic (μ0.99). Their expressions

are defined by equations (1), (2), (3), (4), (5) and (6), re-

spectively [41].

R2 =
σ2

XY

σ2
Xσ

2
Y

, (1)

RMSD =

√√√
1

N

N∑
i=1

(
De,i − Dm,i

)
, (2)

MBD =
1

N

N∑
i=1

(
De,i − Dm,i

)
, (3)

t =

√
(N − 1)MBD2

RMSD2 − MBD2
, (4)

d = 1 −

N∑
i=1

(De,i − Dm,i)
2

N∑
i=1

(|De,i − Dm| + |Dm,i − Dm|)2

, (5)

μ1−α = sign(MBD)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝|MBD| − tα/2

√
RMSD2 − MBD2

N − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(6)

where, σXY is the covariance between the X (measured

values) and the Y (estimated values) variables, σX is the

standard deviation of variable X, σY is the standard de-

viation of variable Y , De,i is the i-th diffuse estimated

value, Dm,i is the i-th diffuse measured value, α is the

statistical significance (usually taken 0.01) and N is the

total number of measures.

The RMSD value points to the short-term behavior of

the model, while the MBD value describes its long-term

performance. We should highlight that a few differences

of a high magnitude with regard to the reference values

will significantly increase the RMSD. Conversely, over-

estimations can be canceled out by under-estimations in

the MBD. Moreover, neither the RMSD nor the MBD

can provide a confidence interval to give significance

to the model’s predictions. Thus, in equation (4) the t-
statistic is presented [42]. It combines both statistical

estimators and offers a confidence interval with a statis-

tical significance of α. However, this estimator is based

on a very restrictive hypothesis contrast where the mean

difference between the estimated and the reference val-

ues is assumed to be zero (μ = 0). This estimator was

redefined in terms of the value of such a difference, in

order to avoid such a limiting restriction, and is now

called μ1−α [35]. In this case, we took α = 0.01. This

estimator includes the sign of the MBD value, in order

to analyze whether the proposed model tended either to

overestimate (positive sign) or underestimate (negative

sign). Finally, Willmott’s d estimator [43] represents

the relative distance among the measured values and

the estimated values against the centered distance (with-

out systematic error). Its value is ranged in the interval

d ∈ [0, 1].

For the final decision, 5 rankings (one for each partic-

ular direction and one for the overall behavior) includ-

ing the 30 models under study were included. The over-

all or final rankings were calculated by a non-parametric

aggregation procedure, adapted from [44]. In this case,

the locations were substituted by the measured direc-

tions.

In all cases, studentized residuals [45] were evalu-

ated and absolute values greater than 2 were discarded.
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Thus, normality, homocedasticity and the independence

of the data were found to be acceptable.

In the case of radiance gradient anisotropic models,

certain complex integrals must be carried out through

the zenith and the azimuth angles. In this work, numer-

ical integration methods using global adaptive quadra-

ture and default error tolerances implemented in Matlab

routines have been used.

Finally, Taylor diagrams [46] for the four cardinal di-

rections are plotted as part of a graphic analysis, and

Pairwise matrix rankings of the overall performance

have been obtained for MBD, RMSD and μ0.99 statis-

tical estimators.

3. Models classification and description

According to [47], a literature review can be con-

ducted in many different ways. In order to show the

state of the art in this field with precision, it has been de-

cided to conduct a systematic review. In [48] a system-

atic review is defined as a process developed to identify

the core of a narrative review which may result worth

of interest in practice. This process is carried out by

following a scientific, well-documented and objective

procedure which takes 6 steps:

1. Identify the review purpose and formulate the re-

search question.

2. Define the literature searching criteria.

3. Conduct the literature review.

4. Evaluate the data.

5. Anaylse and synthesize the data.

6. Show the results and conclusions.

Then, following the described process, we have de-

fined the aim of the study and the research question as

“which models can be used to estimate the diffuse ir-
radiance component on tilted and oriented surfaces?”
The proposed question fulfills the requirements exposed

in [49]: the question is delimited and it is accesible and

distinguishable in the literature.

According to the systematic review procedure, next

step requires the definition of the details of the search-

ing criteria. In this case it has been considered the fol-

lowing:

Sources: Only papers from indexed international jour-

nals, scientific books edited by international ed-

itors, international conference proceedings, open

access Ph.D. Thesis and technical reports from

prestigious international organizations have been

included in the research.

Language: English and Spanish.

Publication period: As it is desired to include the orig-

inal models’ definitions in order to avoid errata

from replication in other contributions, it has been

analysed research works from 1940 until 2016.

Requirements: Selected contributions must be open

access or available in international databases, peer-

reviewed and guarantee traceability in the research.

From those contributions which were presented

both for a journal paper and a conference com-

munication, only the journal manuscript will be in-

cluded in the review.

Type: Both original research contributions (new model

descriptions) and review works have been included

in the analysis.

Once the searching criteria were defined, the litera-

ture review was conducted and 58 contributions were

finally found and selected. 28 of those contributions

(48%) include a review of the existing models in the

literature. Selected contributions include 46 journal pa-

pers, 5 books, 2 Ph.D. Thesis, 2 communications pub-

lished in conference proceedings and 3 technical re-

ports. All contributions were written in English but one,

that was published in Spanish.

Figure 2: Histogram of the reviewed contributions grouped by their

publication dates.

Figure 2 shows an histogram of the analysed contri-

butions grouped by the decades of the publication dates.

It can be observed that almost the 45% of the references

are subsequents to the 2000s. Thus, balance between
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original sources of the models’ descriptions and the lat-

est reviews in the field has been guaranteed.

Focusing on the reviewed journal papers, to assure

their quality and international validation, in addition to

considering only indexed international journals, a cita-

tion analysis has been conducted. Results are shown

in Table 2. In this analysis, references [50] and [51]

have been discarded because of, due to the wide inter-

disciplinarity of the application of the described non-

parametric models, they achieve a number of citations

out of bounds: 3 796 and 12 082 respectively.

Table 2: Citation analysis of the selected journal papers. Number of

citations from Google Scholar database.

Parameter Value
Count 43

Mean 108.72

Min. 0

Q1 15

Median 66

Q3 134.5
Max. 554

With a mean number of citations of 108.72 and a me-

dian of 66, it is demonstrated that the selected references

can be considered representative in the field and that

they have been validated by the scientific community.

Finally, from those contributions wich include a re-

view (either they are review works or because they in-

clude a review section or a comparison between differ-

ent models performance) the average number of the re-

viewed models is 10.125, with a standard deviation of

5.669. The found most complete review work includes

26 models.

It has been found a wide range of models for deter-

mining the value of diffuse irradiance on an inclined

plane oriented in an equatorial direction. The exten-

sion of the results of models for inclined planes with dif-

ferent orientations is brought about by considering the

angle formed by the position of the Sun and the direc-

tion vector that characterises the studied surface. In this

section, an exhaustive review of the existing and most

widely used models is conducted.

Transpositon models range from the simplest formu-

lations in the end of the 1940s to the most modern

techniques based on soft computing. No standardised

nomenclature for describing the models is observed;

thus some original expressions have been modified to

adapt them to an homogeneous nomenclature where ap-

propriate. Moreover, according to their formulation and

characteristics, models have been classified into two

classes and four main groups (see Figure 3):

Parametric models: based on the integration of the

differential radiance equation in the atmosphere.

They can be parametrised. Depending on the radi-

ance distribution hypothesis it can be distinguised

isotropic or anisotropic models. Parametric models

are the most widely extended in the literature.

Isotropic models: these consider a homogeneous dis-

tribution of radiance in the atmosphere. Thus, they

are independent of the observed sky patch.

Anisotropic superposition models: they consider the

effects of anisotropy in the circumsolar region

and/or the horizontal band. They evaluate the to-

tal diffuse irradiance as the sum (or composition)

of a background isotropic irradiance and one or

two components that encompass the atmosphere’s

anisotropies.

Relative radiance anisotropic models: these models

perform a comprehensive analysis of the angular

distribution of radiance, parameterising it in accor-

dance with the zenith and azimuth angles of the

differential region of the sky analysed in each case.

A gradient function describes the variance of the

radiance with the zenith angle and an indicatrix

function modifies radiance with the azimuth angle

with respect a zenith radiance. Furthermore, mod-

els in this category can be classified into overcast

sky, clear sky, intermediate sky or all-sky distribu-

tions. Let’s notice that most classical isotropic and

anisotropic models are particular results of the in-

tegration of relative radiance models, such as it can

be demonstrated for the Liu & Jordan model con-

sidering a constant radiance flux, or for the Steven

& Unsworth model considering a linearly varia-

tion with cos θz [38]. Total diffuse irradiance is ob-

tained by integrating the sky radiance through the

observed sky vault. Thus, diffuse irradiance on a

tilted surface may be expressed as:

D(θzp, γp) =

∫ γp+π2

γp−π/2

∫ π/2

0

I(θz, γ) cos ξp sin θzdθzdγ

+

∫ γp+3π/2

γp+π/2

∫ θzγ

0

I(θz, γ) cos ξp sin θzdθzdγ, (7)

where the integration limit θzγ is the zenith angle of

the intersection of the surface with the sky dome

7



Figure 3: Solar diffuse irradiance transposition models classification.

and ξp the angle between a point in the sky and

the sensor. Radiance function, I(θz, γ), is expressed

as the product of the zenith radiance, Iz, and the

relative radiance function ir(θz, γ):

I(θz, γ) = ir(θz, γ)Iz. (8)

Zenith radiance can be obtained from the measured

diffuse irradiance on the horizontal plane:

Iz =
D(0)∫ 2π

0

∫ π/2

0

ir(θz, γ) cos θz sin θzdθzdγ

. (9)

Similarly, albedo’s irradiance in this sort of models

can be expressed as:

R(θzp, γp) =

∫ γp+π/2

γp−π/2

∫ π−θzγ

π/2

Ig(θz, γ) cos ξp sin θzdθzdγ,

(10)

where Ig(θz, γ) is the albedo’s radiance, which also

could be defined as the product of a relative radi-

ance function, igr(θz, γ), and a nadith radiance, Igz.

In this work, albedo’s radiance is supossed to be

isotropic, thus:

Ig(θz, γ) = igr(θz, γ)Igz =
ρG(0)

π
. (11)

Non-parametric models: this class includes models

that are not based on physical hypothesis but allow

the adjustment between input variables or estima-

tors and output variables or responses. Although

several techniques exist in this field, the most ex-

tended models in recent decades are based on au-

tomated learning or soft computing. These algo-

rithms, which most of them mimic human infer-

ence processes, are powerful tools and some of

them can perform as universal aproximators of any

unknown function. The best results on transposi-

tion models seem to have been obtained by fuzzy

inference systems, artificial neural networks and

neuro-fuzzy networks.

Fuzzy inference models: fuzzy models are based on

the fuzzy sets theory and allow to map inputs to

outputs. Two main alternatives of these models can

be found: the Mamdani-type fuzzy inference and

the Takagi-Sugeno fuzzy inference.

Artificial Neural Networks: ANNs are a family of

models inspired by biological neural networks and

can be used wether to classify data or to approx-

imate functions. For transposition problems, only

universal approximators ANNs can be used. They

may differ on the architecture, the activity rule or

the learning rule or learning paradigm. Many ver-

sions of the ANNs have been developed through

the recent decades, outstanding the Multi-Layer

Perceptron, the Radial Basis Function based ANN

and the Generalised Regression Neural Network.

Neuro-fuzzy networks: these combine the fuzzy infer-

ence techniques with the structure of artificial neu-

ral networks. They are based on backforward net-

8



works which activation functions are modelised ac-

cording to fuzzy sets theory. The most extended

model in this category is the ANFIS model, devel-

oped by Jang in 1993. Several versions of it can

be found since then applied to several engineering

and science fields.

Table 3: Analysed diffuse irradiance models for tilted surfaces. Col-

umn “Type” classifies the models, column “Ref” includes the original

and/or descriptive references in the literature and column “ID” assigns

an identifier to each model.

Type Model Ref ID
Parametric models

Isotropic Liu & Jordan [52] D01

Tian et al. [33] D02

Badescu [53] D03

Koronakis [54] D04

Olmo [55, 34, 56] D05

Anisotropic ASHRAE [57] D06

superposition Dı́ez-Mediavilla [58] D07

DOE-2 [59] D08

Gueymard [60, 61] D09

Hay & Davies [62, 63] D10

Klucher [64] D11

Ma & Iqbal [65] D12

Muneer [66, 67] D13

Perez et al. [68, 32] D14

Perez et al. opt. [68, 32] D15

Reindl [69] D16

Skartveit & Olseth [70, 71] D17

Steven & Usworth [72, 73] D18

Temps & Coulson [74] D19

Willmott [75] D20

Anisotropic Brunger & Hooper [76] D21

relative radiance CIE 2004 [38] D22

TCCD [77] D23

Igawa et al. [78, 79] D24

Moon & Spencer [80] D25

Siala & Hooper [81] D26

Non-parametric models
Neural Networks MLP [82] D27

RBF [50] D28

GRNN [83] D29

Neuro-Fuzzy ANFIS [51] D30

According to the proposed classification, 30 differ-

ent models have been analysed and described. In Table

3 these models can be shown, classified according to

proposed criteria. Other similar carried out studies in

this field have compared only isotropic and anisotropic

by superposition models [84, 85, 86, 87, 88]. Very few

studies analyse in deep parametric and non-parametric

models together. Moreover, the high computation re-

quirements for the evaluation of anisotropic by gradient

models (several complex integrations are needed) also

exclude them from most studies.

Although more models of each category can be

found, specially anisotropic by superposition models, a

selection have been done according to the most widely

extended, significantly different structure and/or charac-

teristics and best obtained results.

The following sections describe used formulations

for each model. It must be remarked that mistakes on

shown formulations in some papers have been propa-

gated in the literature. Some authors have tried to fix

them in their reviews [87, 61], and so this work. Fur-

thermore, a standardised formulation for common vari-

ables is used here, which may differ from the original.

Transposition models are based on the hypothesis of

that total or global irradiance on a tilted and oriented

plane, G(θzp, γp), where θzp is the zenith angle of the

pyranometer or sensor and γp its azimuth angle (0 rad

for the South direction, East negative), can be estimated

as the sum of the irradiance components,

G(θzp, γp) = RbB(0) + RdD(0) + RrρG(0). (12)

In this work, it has been defined as Rd the transpo-

sition relation between the horizontal diffuse irradiance

and the tilted diffuse irradiance,

Rd =
D(θzp, γp)

D(0)
. (13)

Similarly, Rr is defined as the transposition relation

between the reflected horizontal global irradiance by the

surroundings and the reflected irradiance measured on

the tilted surface,

Rr =
R(θzp, γp)

ρG(0)
, (14)

where ρ is the reflectance of the surroundings which

can be specifically measured by an albedometer or esti-

mated as function of the reflecting material [38].

Most authors consider Rr under an isotropic distribu-

tion hypothesis. Thus, equation 15 is usually consid-

ered. In following sections, this parameter formula will

be only specified for those models which consider other

hypothesis for reflected irradiance distribution.

Rr =
1 − cos θzp

2
. (15)

For tilted diffuse irradiance measurement on tilted

and oriented planes, reflected irradiance can be avoided
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by installing an appropriate shield to block irradiance

incidence from the ground. However, these devices also

obstruct the sensor and interferences in the measure-

ments can be obtained.

3.1. Liu & Jordan (D01)

This model, presented in [52], is one of the most ex-

tended in the bibliography and it can be obtained by the

integration of the sky radiance under the isotropic hy-

pothesis where ir(θz, γ) = 1.

Rd =
1 + cos θzp

2
. (16)

3.2. Tian et al. (D02)

In [33], the diffuse and reflected contributions of the

irradiance incident on a tilted plane are proportional

to the observed sky vault by the surface, which differ

slightly from the Liu & Jordan model (D01).

Rd =
π − θzp

π
, (17)

Rr =
θzp

π
. (18)

3.3. Badescu (D03)

This model is characterized by the ponderation of the

zenith angle of the incoming radiance on the surface.

Rd =
3 + cos(2θzp)

4
, (19)

Rr =
1 − cos(2θzp)

4
. (20)

3.4. Koronakis (D04)

Similarly to model D03, in [54] is proposed a model

which ponderates the origin of the sky radiance (63% of

the irradiance is considered to come from the equatorial

hemisphere of the observed sky vault). However, the

reflected irradiance is considered to be isotropic.

Rd =
2 + cos θzp

3
. (21)

3.5. Olmo (D05)

Rd =
G(0) exp

[
−kt

(
ξ2sp − θ2zs

)]
− RbB(0)

D(0)
, (22)

where kt is the clearness index and ξsp is the angle be-

tween the sun’s position and the pyranometer direction

(p vector).

In the original reference [55] where this model is pro-

posed, the definition of ξsp results geometrically incor-

rect [34] and, thus, equation 23 must be applied.

cos ξsp = sin φg sin δs cos θzp − cos φg sin δs sin θzp cos γp

+ cos φg cos δs cosωs cos θzp

+ sin φg cos δs cosωs sin θzp cos γp

+ cos δs sinωs sin θzp sin γp.
(23)

In this expression, φg is the geographical latitude.

The reflected irradiance component can be also ex-

tracted from the original model:

Rr = exp
[
−kt

(
ξ2sp − θ2zs

)]
sin2

(
ξsp

2

)
. (24)

Because of found significant deviations with real

measurements [87], some authors proposed modified

expressions [56]:

Rr =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
− exp

[
−kt

(
ξ2sp − θ2zs

)]
cos3

(
ξsp

2

)
if 0 ≤ kt < 0.35,

− exp
[
−kt

(
ξ2sp − θ2zs

)]
sin

(
ξsp

2

)
if 0.35 ≤ kt ≤ 0.65.

(25)

3.6. ASHRAE (D06)
This model was initially proposed by the American

Society of Heating, Refrigerating and Air-Conditioning

Engineers from data gathered in USA and Canada. It

has been adopted sucessive improvements through time

and it has been recomended to be applied in compu-

tational simulations of buildings’ thermal behaviours

[57]. Explicit formula for Rd can be found in [60]:

Rd = RdT +

⎛⎜⎜⎜⎜⎝C2
N

C
− B(n)

D(0)

⎞⎟⎟⎟⎟⎠ ρRr cos θzs, (26)

where RdT is an empirical function developed in [89],

C is an empirical coefficient which is seasonally depen-

dent and that can be calculated through a polinomic re-

gression of the values given in [90] (see equation (28)
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and Figure 4). CN is the so-called clarity index which

value has only been established by ASHRAE for USA.

CN = 1 has been used in this study in absence of real

measurements or estimations.

RdT =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.45 if cos ξsp ≤ 0.2,

0.55 + 0.437 cos ξsp

+0.313 cos2 ξsp if cos ξsp > 0.2.
(27)

C = a0+a1N+a2N2+a3N3+a4N4+a5N5+a6N6, (28)

where N is the day of the year and coefficients ai, with

i ∈ {0, 1, 2, 3, 4, 5, 6}, have been calculated respectively

as: a0 = 0.0530, a1 = 5.6048E-4, a2 = −2.2630E-5,

a3 = 3.8458E-7, a4 = −2.3524E-9, a5 = 5.9699E-12,

a6 = −5.4191E-15.

Figure 4: C coefficient from Threlkeld.

3.7. Dı́ez-Mediavilla (D07)

Rd =
1 + cos θzp

2
+ N1N2, (29)

where N1 is adjusted to the optimum value for any Perez

et al’s clearness index, ε′, and N2 is a parameter depend-

ing on the zenith angle.

N1 =
2b

π(3 + 2b)
= 0.0751 − 1.999Ai − 0.8800A2

i , (30)

where b is the radiance sky distribution index, which

theoretical limit is b = 0 (isotropic sky). Empirical stud-

ies state its value in the range b ∈ [1.0, 2.0] [38]. Ai is

the anisotropy index or modulation function defined by

Hay & Davies in equation (49).

N2 = sin θzp − θzp cos θzp − π1 − cos θzp

2
. (31)

3.8. DOE-2 (D08)
This model is implemented in several simulation

computer programs, such as DOE-2 and ENCORE-

CANADA.

Rd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if θzp < 45◦,

RdT if 45◦ ≤ θzp < 135◦,
0 if θzp ≥ 135◦.

(32)

RdT has been defined in equation (27).

3.9. Gueymard (D09)

Rd = (1 − NG)Rd0 + NGRd1, (33)

where the 0 subindex refers to clear sky conditions and

1 subindex to a cover sky. Rd0 is calculated through the

following regression expression:

Rd0 = exp
(
a0 + a1 cos ξsp + a2 cos2 ξsp + a3 cos3 ξsp

)
+ F1G(θzp) + F2G(h′s),

(34)

where coefficients ai, with i ∈ {0, 1, 2, 3}, are functions

of the corrected solar heigth h′s, which is related with

the solar heigth hs in degrees:

h′s = 0.01hs, (35)

hs = 90 − 180

π
θzs. (36)

a0 = −0.897 − 3.364h′s + 3.960h
′2
s − 1.909h

′3
s , (37)

a1 = 4.448−12.962h′s+34.601h
′2
s −48.784h

′3
s +27.511h

′4
s ,

(38)

a2 = −2.770+9.164h′s−18.876h
′2
s +23.776h

′3
s −13.014h

′4
s ,

(39)

a3 = 0.312 − 0.217h′s − 0.805h
′2
s + 0.318h

′3
s . (40)

Functions F1G(θzp) and F2G(h′s) estimate the distri-

bution of the background irradiance and are a function

of the tilting angle and the corrected solar heigth respec-

tively. F1G(θzp) is defined by:

F1G(θzp) =
1 + b0 sin2 θzp + b1 sin

(
2θzp

)
+ b2 sin

(
4θzp

)
1 + b0

,

(41)
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where coefficients b j, with j ∈ {0, 1, 2}, are b0 =

−0.2249, b1 = 0.1231 and b2 = −0.0342. Expression

for function F2G(h′s) is:

F2G(h′s) = 0.408−0.323h′s+0.384h
′2
s −0.170h

′3
s . (42)

On the other hand, Rd1 is defined as:

Rd1 =
1 + cos θzp

2
+

2b
π(3 + 2b)

(
sin θzp − θzp cos θzp

)
− 2b

3 + 2b
1 − cos θzp

2
,

(43)

Although the sky distribution index value varies locally,

Gueymard estimates a global mean value b = 1.5 for

totally covered skies and b = 0.5 + NG for clear and

partially covered ones.

NG = max {min [Y(kd), 1] , 0} , (44)

where function Y(kd) is defined for two diffuse fraction

ranges:

Y(kd) =

{
6.6667kd − 1.4167 si kd ≤ 0.227,
1.2121kd − 0.1758 si kd > 0.227.

(45)

Finally, for specular surfaces:

Rr = fb
ρb

ρ

B(n) cos ξgp

G(0)
+
ρd

ρ

1 − cos θzp

2
kd, (46)

where ρ is the apparent reflectance of the surroundings

(usually ρ = 0.2). fb is a shadowing coefficient which

value is fb = 1 where no obstacles shadow the direct

beam irradiance and fb = 0 for total shadowing. For

partial shadowing its value must be determined empiri-

cally. ξgp is the incident angle of the reflected irradiance

on the tilting surface, which can be calculated through

the following expression:

cos ξgp = sin θzp sin θzs cos
(
γs − γp

)
− cos θzp cos θzs.

(47)

3.10. Hay & Davies (D10)

Rd = AiRb + (1 − Ai)
1 + cos θzp

2
. (48)

Ai is the anisotropy index or modulation function. It

is defined in the same terms than the diffuse function F:

Ai = F =
G(0) − D(0)

Bext(0)
=

B(0)

Bext(0)
, (49)

where the horizontal extraterrestial irradiance Bext(0)

can be approximated by:

Bext(0) = Bsc [1 + 0.033 cos (0.017202N)] cos θzs.
(50)

3.11. Klucher (D11)

Rd =
1 + cos θzp

2

[
1 + AK

i sin3

(
θzp

2

)] (
1 + AK

i cos2 θsp sin3 θzs

)
,

(51)

where AK
i is the particular definition of the anisotropy

index or modulation function defined by the expression:

AK
i = 1 −

[
D(0)

G(0)

]2

= 1 − k2
d. (52)

3.12. Ma & Iqbal (D12)

Rd = kt cos θsp + (1 − kt)
1 + cos θzp

2
, (53)

where kt is the clearness index.

3.13. Muneer (D13)
This model is defined for a sunlit surface under non-

overcast sky:

Rd = TM (1 − Ai) + AiRb, (54)

where TM is a radiance distribution function defined by

the author.

The Muneer’s radiance distribution function is de-

fined by:

TM =
1 + cos θzp

2
+

2b
π (3 + 2b)

(
sin θzp − θzp cos θzp

)
− 2b

3 + 2b
sin2

(
θzp

2

)
,

(55)

where θzp must be introduced in [rad].

In equation (55), parameter b is the radiance distribu-

tion index, proposed for the first time in [80] and lately

analysed by other authors [91]. Muneer states its value

to b = 5.73, for surfaces with no direct beam irradiance,

and b = 1.68 for the rest [66, 92]. As global average,

b = 2.5 is acepted for covered sky conditions. For clear

skies, the author propose the following expression:
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2b
π(3 + 2b)

= 0.0400 − 0.820Ai − 2.026A2
i . (56)

Nevertheless, for South European locations, the au-

thors advise to use the following equation (validated for

Geneve and Switzerland):

2b
π(3 + 2b)

= 0.00263 − 0.712Ai − 0.6883A2
i . (57)

This last expression is the one applied in the current

work as it results more precise to the measurement lo-

cation.

3.14. Perez et al. (D14)
In 1983 Perez et al. propose a model based in the

superposition of the isotropic background diffuse irra-

diance, circunsolar component and horizon brightening

which is then optimised in [68, 32]. Final version from

1990 [32] is used in this work:

Rd = (1 − F1)
1 + cos θzp

2
+ F1Rb + F2 sin θzp, (58)

where F1 and F2 are the circunsolar and horizon bright-

ening coefficients respectively. Coefficients F1 and F2

are defined as a function of the zenith angle (θzs), the

Perez’s clearness index (ε) and the sky brightness index

(Δ), described in equations (61) and (62) respectively.

F1 = max(F11 + ΔF12 + θzsF13, 0), (59)

F2 = F21 + ΔF22 + θzsF23, (60)

where the zenith angle θzs is measured in [rad]. Average

global values for coefficients Fi j are given by Perez et

al. in Table 4.

ε =

D(0) + B(n)

D(0)
+ kθ3zs

1 + kθ3zs
. (61)

In equation (61) k = 1.041 for θzs measured in [rad].

Δ =
mD(0)

Bext(n)
. (62)

The optical air mass, m, is defined by Kasten in [93]:

m =
p
p0

1

sin hs + 0.00176759(94.37515 − hs)−1.21563
,

(63)

where p is the site’s atmospheric pressure in [mbar] and

p0 = 1 013.25 mbar.

3.15. Perez et al. opt. (D15)
Coefficients Fi j can be locally optimized or fitted.

The following procedure has been applied to calculate

the locally fitted coefficients:

1. For the training dataset the Perez’s clearness index

(ε), the brightness index (Δ), the Kasten’s optic rel-

ative air mass (m) and the zenith angle (θzs) are cal-

culated.

2. The dataset is divided in 8 intervals according to

the ε value.

3. For each interval, a multi-parameter regression is

conducted guaranteeing the normality and the ho-

mocedasticity of the residuals. Thus, the absolute

value of the studentized residuals is observed to

be less than 2. Linear regression expression is ob-

tained by rearranging terms in equation (58):

Rd−1 + cos θzp

2
=

(
Rb − 1 + cos θzp

2

)
F1+sin θzpF2.

(64)
If we define Rd − (1 + cos θzp)/2 = y, Rb − (1 +

cos θzp)/2 = a0 and sin θzp = a1, then it is obtained:

y = a0F1 + a1F2. (65)

Expressions (59) and (60) are introduced in the

previous equation:

y = a0 max (b0 + Δb1 + θzsb2, 0)+a1 (b3 + Δb4 + θzsb5) ,
(66)

or in a matrix form (∀(b0 + Δb1 + θzsb2) ≥ 0):

y = (b0, b1, b2, b3, b4, b5) ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a0Δ

a0θzs

a1

a1Δ

a1θzs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= b · x. (67)

Vector’s components b result to be coefficients Fi j

from the model. Thus, regression of y over x is

carried out.

Results of the optimization are shown in Tables 5, 6,

7 and 8. In these tables, parameter n is the dataset size.

3.16. Reindl (D16)

Rd = (1 − Ai)
1 + cos θzp

2

[
1 + AR

i sin3

(
θzp

2

)
+ AiRb

]
.

(68)
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Table 4: Perez et al.’s proposed coefficients for diffuse irradiance calculation. Source: [32].

ε F11 F12 F13 F21 F22 F23
[1.000, 1.065) −0.0083 0.5877 −0.0621 −0.0596 0.0721 −0.0220

[1.065, 1.230) 0.1299 0.6826 −0.1514 −0.0189 0.0660 −0.0289

[1.230, 1.500) 0.3297 0.4869 −0.2211 0.0554 −0.0640 −0.0261

[1.500, 1.950) 0.5682 0.1875 −0.2951 0.1089 −0.1519 −0.0140

[1.950, 2.800) 0.8730 −0.3920 −0.3616 0.2256 −0.4620 0.0012

[2.800, 4.500) 1.1326 −1.2367 −0.4118 0.2878 −0.8230 0.0559

[4.500, 6.200) 1.0602 −1.5999 −0.3589 0.2642 −1.1272 0.1311

[6.200,∞) 0.6777 −0.3273 −0.2504 0.1561 −1.3765 0.2506

Table 5: Locally fitted Perez et al.’s coefficients for the North direction.

ε F11 F12 F13 F21 F22 F23 n
[1.000, 1.065) 4.916 0.170 −3.304 2.533 −0.204 −1.649 2 529

[1.065, 1.230) 3.670 −0.844 −2.194 1.810 −0.887 −0.923 461

[1.230, 1.500) 26.01 −15.58 −15.34 12.98 −8.394 −7.430 294

[1.500, 1.950) 8.119 −1.622 −5.151 4.035 −1.466 −2.259 287

[1.950, 2.800) 14.26 −4.796 −9.291 7.066 −3.400 −4.136 362

[2.800, 4.500) −11.52 −2.111 7.966 −5.700 −3.731 4.783 407

[4.500, 6.200) −29.13 83.10 12.25 −14.25 −11.47 −1.402 344

[6.200,∞) 0.000 0.000 0.000 0.777 −16.34 1.853 352

Table 6: Locally fitted Perez et al.’s coefficients for the South direction.

ε F11 F12 F13 F21 F22 F23 n
[1.000, 1.065) 0.026 0.515 −0.096 −0.048 0.463 −0.060 2 353

[1.065, 1.230) 0.268 0.268 −0.123 0.275 −0.196 −0.090 319

[1.230, 1.500) 0.097 0.239 0.051 0.548 −0.986 −0.070 253

[1.500, 1.950) 0.663 0.035 −0.303 0.406 −1.015 0.105 311

[1.950, 2.800) 0.831 0.180 −0.449 0.459 −1.804 0.304 306

[2.800, 4.500) 0.656 0.509 −0.294 0.146 −0.373 −0.034 467

[4.500, 6.200) −2.264 7.269 1.238 0.261 −2.832 0.558 210

[6.200,∞) −6.399 −1.200 6.256 2.002 −5.796 −0.925 346

Table 7: Locally fitted Perez et al.’s coefficients for the East direction.

ε F11 F12 F13 F21 F22 F23 n
[1.000, 1.065) −0.180 0.674 0.065 −0.036 0.161 0.056 2 533

[1.065, 1.230) 0.760 0.148 −0.432 0.436 −0.502 −0.086 382

[1.230, 1.500) 1.288 −0.023 −0.776 0.694 −0.532 −0.278 259

[1.500, 1.950) 1.596 −0.380 −0.884 0.893 −0.755 −0.349 198

[1.950, 2.800) 1.724 −1.244 −0.766 0.913 −1.765 0.014 358

[2.800, 4.500) 2.784 −6.428 −0.946 1.175 −6.576 0.268 446

[4.500, 6.200) 2.826 −9.515 −1.014 1.135 −7.987 1.023 422

[6.200,∞) 1.757 −7.971 −0.340 0.901 −8.413 1.015 398
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Table 8: Locally fitted Perez et al.’s coefficients for the West direction.

ε F11 F12 F13 F21 F22 F23 n
[1.000, 1.065) 0.000 0.405 −0.040 0.205 0.060 −0.188 2 593

[1.065, 1.230) 0.454 0.191 −0.251 0.440 −0.344 −0.208 409

[1.230, 1.500) 0.727 0.011 −0.343 0.433 −0.526 −0.077 270

[1.500, 1.950) 0.731 −0.058 −0.304 0.335 −0.440 0.052 234

[1.950, 2.800) 0.987 −0.501 −0.507 0.522 −1.278 0.106 321

[2.800, 4.500) 0.103 6.398 −1.116 0.188 −0.171 0.204 394

[4.500, 6.200) −1.381 17.82 −0.882 −1.018 1.824 1.309 393

[6.200,∞) −3.842 35.81 −0.257 −1.217 9.590 0.505 274

Particular anisotropy index, AR
i , is described by:

AR
i =

√
B(0)

G(0)
=

√
kb. (69)

3.17. Skartveit & Olseth (D17)

Rd = AiRb+AS
i cos θzp+ (1−Ai−AS

i )
1 + cos θzp

2
, (70)

where AS
i is the Skartveit & Olseth’s modified modula-

tion function or anisotropy index an it is defined by:

AS
i = max [(0.3 − 2Ai) , 0] . (71)

This model can be only applied if Ai ≥ 0.15 is veri-

fied.

Furthermore, notice that in case there exist obstacles

in the horizon, the following expression is proposed:

R′d = −
∫

1 − Ai − AS
i

π
cos ξsp cos ξop sin ξopdξop,

(72)

where ξop is the zenith angle between the obstacle in the

observed sky vault and the surface direction (defined by

vector p).

3.18. Steven & Unsworth (D18)

Rd = scRb +
1 + cos θzp

2

+
2b

π (3 + 2b)

[
sin θzp − θzp cos θzp − π sin2

(
θzp

2

)]
.

(73)

The first term in equation (73) quantifies the irra-

diance from the circumsolar region, which is consid-

ered in this model proportional to the diffuse irradiance,

and the rest quantifies the background irradiance. For

a zenith angle in the range [35◦, 65◦], authors propose

sc = 0.51 ± 0.02 and b = −0.87 ± 0.07, as general ap-

proach. The azimuth angle is measured in [rad].

It must be taken into account that if this model is

applied to diffuse irradiance measures from shadowing

devices (shadowband or shadowdisc mounted on a sun-

tracker) the circumsolar component of the diffuse irra-

diance can not be measured and then, factor sc must be

modified:

s′c =
sc − fc
1 − fc

, (74)

where fc is the fraction of the circumsolar region

blocked by the shadowing device.

3.19. Temps & Coulson (D19)

Rd =
1 + cos θzp

2
f1 f2, (75)

where coefficients f1 and f2 are defined as following:

f1 = 1 + cos2 θsp sin3 θzs. (76)

f2 = 1 + sin3

(
θzp

2

)
. (77)

In this model, Temps and Coulson propose the fol-

lowing expression for the ground reflected irradiance,

espcially validated for a grass environment:

Rr =
1 − cos θzp

2

[
1 + sin2

(
θzs

2

)]
sin2 θzs. (78)
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3.20. Willmott (D20)

Rd =
AW

i

cos θzp
+C(θzp)

(
1 − Ai

cos θzp

)
, (79)

where AW
i is the Willmott’s modulation function or

modified anisotropy index, defined as:

AW
i =

B(n) cos θsp

Bsc
. (80)

Function C(θzp) is the Revfeim integration of the as-

sociated geometry to the diffuse irradiance on a tilted

surface [94], which can be approximated by:

C(θzp) = 1.0115 − 0.20293θzp − 0.080823θ2zp, (81)

where 0.5 ≤ C(θzp) ≤ 1.0; and θzp is measured in [rad].

This model also offers a modified expression for the

transposition of the reflected irradiance:

Rr =

(
1 +

1 − cos θzs

2

)
| cos(γs−γp)|ρ1 − cos θzp

2
. (82)

3.21. Brunger & Hooper (D21)

This model describes the spatial distribution of solar

radiance as:

I(θz, ξs)

D(0)
=

a0 + a1 cos θz + a2 exp(−a3ξs)

π(a0 + 2a1/a3) + 2a2J(θzs, a3)
, (83)

where the coefficients ai, with i ∈ {0, 1, 2, 3}, are calcu-

lated through the horizontal clearness index, kt, and the

diffuse fraction, kd, depending on the sky conditions.

Their values are tabulated in [76]. ξs is the angle be-

tween a point in the sky and the Sun’s position. The

gradient function J(θzs, a3) is defined as:

J(θzs, a3) =
1 + exp(−a3π/2)

a2
3
+ 4

[
π − fa(a3) fb(θzs)

]
, (84)

where θzs is expressed in [rad], and functions fa(a3) and

fb(θzs) are defined as follows:

fa(a3) = 1 − 2

πa3

1 − exp(−a3π)

1 + exp(−a3π/2)
. (85)

fb(θzs) = 2θzs sin θzs − 0.02π sin(2θzs). (86)

3.22. CIE 2004 (D22)

This model is based on the Perez et al.’s all-weather

model for luminance distribution in the sky dome. It

is used by the International Commission of Luminance

(CIE) to describe the standard general sky through the

composition of a gradient and an indicatrix functions for

the relative radiance:

ir(θz, γ) =
f (ξs)g(θz)

f (θzs)g(0)
, (87)

where f (ξs) is the indicatrix function, g(θz) is the zenith

gradient function.

f (ξ) = 1 + c
[
exp(dξ) − exp

(
dπ
2

)]
+ e cos2 ξ. (88)

g(θz) = 1 + a exp

(
b

cos θz

)
. (89)

Coefficients a, b, c, d and e can define up to 36 dif-

ferent sky conditions. However, the standard model de-

fined by CIE simplifies all combinations to just 15 sky

types which coefficient values are tabulated in [95].

3.23. TCCD (D23)

This model, also called Hooper and Brunger (1980)

model, expresses the irradiance function as:

I(θz, γ)

D(0)
= a0+a1

(
2θz
π

)2

+a2 exp[−cξs exp(dθzs)], (90)

where coefficients a0, a1 and a2 cuantify the isotropic

background radiance, the horizon brightening and the

circumsolar anisotropic radiance. In absence of mea-

surements, in [96] values for Toronto are offered. Coef-

ficients c and d are constants that, according to [73], are

estimated to c = 0.0145423 and d = 0.0231798 respec-

tively.

3.24. Igawa et al. (D24)

This models adopts the same expression for ir(θ, γ)
than the CIE2004 model, shown in equation (87), but

coefficients a, b, c and d are expressed as functions of

the sky index Si instead of being tabulated.

a =
4.5

1 + 0.15 exp(3.4Si)
− 1.04. (91)

b =
−1

1 + 0.17 exp(1.3Si)
− 0.05. (92)
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c = 1.77(1.22Si)3.56 exp(0.2Si)(2.1 − Si)0.8. (93)

d =
−3.05

1 + 10.6 exp(−3.4Si)
. (94)

e =
0.48

1 + 245 exp(−4.13Si)
. (95)

The sky index Si is defined by Igawa et al. as:

Si =
G(0)

Gst
+
√

Cle, (96)

where Gst is the standard global solar irradiance with a

Linke turbidity of 2.5 and Cle is the cloudless index.

The expression to calculate Gst is:

Gst = 0.84
Bsc

m
exp(−0.0675m), (97)

Cle =
1 − kd

1 − Ces
, (98)

where Ces is the standard nubosity fraction, which can

be obtained by a polynomic regression to the relative

optical air mass:

Ces = 0.01299 + 0.07698m − 0.003857m2

+ 0.0001054m3 − 0.000001031m4. (99)

3.25. Moon & Spencer (D25)
This is one of the most classical models in this group

and it describes the relative radiance as:

ir(θz) =
1 + b cos θz

1 + b
. (100)

In [80], b = 2 was established for standard covered

skies. Furthermore, this value is also adopted by the CIE

standard with non-uniform nature for covered skies.

3.26. Siala & Hooper (D26)
This stochastic model proposed in 1987 express the

sky radiance as:

I(θz, γ) =
a1a2Bsc

4π cos θzs

1 − g2

(1 + g2 − 2g cos ξs)3/2[
δθzθzs f1(θzs) + (1 − δθzθzs ) f2(θz, θzs)

]
, (101)

where δθθzs is the Kroeneker’s delta function for vari-

ables θz and θzs, where, if θz = θzs, then δθzθzs = 1, and

δθzθzs = 0 otherwise. f1(θzs) and f2(θz, θzs) are the fol-

lowing functions:

f1(θzs) = exp

( −a2

cos θzs

)
. (102)

f2(θz, θzs) = exp

( −a2

cos θz

)
− exp

( −a2

cos θzs

)
. (103)

Coefficients a1 and a2 can be obtained empirically

by no-linear regression and g is the asimetry factor of

the phase function. Values for Toronto (Canada), which

has similar latitude and weather conditions than the case

study, are a1 = 1.287, a2 = 0.460 and g = 0.438, re-

spectively [81]. These values have been adopted in the

current study.

3.27. Multi-Layer Perceptron (D27)
MLP is an artificial neural network (ANN) which can

operate as an universal approximator, in other words,

it can approximate the output of any given function by

its inputs and a training process. By using multiple lay-

ers, this model can be used to solve non-separable linear

problems [97]. The architecture of the ANN is based on

the model of neuron, firstly presented in [98] and lately

modified in [99], where an input escalar pi is weighted

by factor wi, and a bias factor bi is added to the result:

ni = wi pi + bi. (104)

In this model, ni is the network input to the transference

or activation function fi(ni), which produces the escalar

output ai (see Figure 5). Multiple neurons in parallel

form a layer. MLP model is characterized because the

activation function is a sigmoid function, such as the log

function, the hyperbolic tangent function or the identity

function.

ai(p) = fi(W · p + b). (105)

There exist several options to configure the MLP

model for our purposes. In the case study, configuration

of the MLP has been optimized by the Monte Carlo’s

method in such a way several combinations of input pa-

rameters and hidden layers have been compared. Re-

sults showed that the best configuration (lowest values

of RMSD and MBD in training and validation datasets)

must be the one shown in Table 9. The training dataset

includes the 80% of the data and it is used for the super-

vised training of each configuration of the neural net-

work. The validation dataset includes other 10% of the

data and allows backpropagation. Finally each configu-

ration performance is conducted through the results on
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Figure 5: Multiple inputs neuron model. Adapted from [82].

the remaining 10% of the data (test dataset). To ob-

tain a general model (avoiding overfitting), the previous

optimization algorithm was applied to each cardinal di-

rection and final model is obtained by a non-parametric

aggregation procedure.

Table 9: MLP optimal configuration.

Parameter Value
Inputs D(0), G(0), R(θzp), θsp

Outputs D(θzp, γp)

Activation function Logistic function

Hidden layers 1

Neurons in hidden layers 5

Training method Lavenberg-Marquardt

Training epochs 100

Tolerance 0.001

3.28. Radial Basis Function Neural Network (D28)

These ANNs are configurated as three layers feed-

forward networks with radial basis activation functions.

This sort of functions calculate the euclidian distance of

an input vector p with respect to a center ci:

fi(p) = ||p − ci||, (106)

where each neuron in the hidden layer is associated to a

radial basis function Φ(||p − ci||) and a weighting factor

wk
i :

ak
i (p) =

n∑
i=1

wk
iΦi(||p − ci||), (107)

where n is the number of neurons in the layer. Typi-

cal radial basis functions are the gaussian function, the

multicuadratic function and the inverse multicuadratic

function.

The output layer makes a linear combination of the

activated neurons in the hidden layer.

To achieve the optimal configuration, a similar pro-

cedure than the one followed for the MLP configuration

was carried out. Results show that the best configuration

must be the one expressed in Table 10.

Table 10: RBF optimal configuration.

Parameter Value
Inputs D(0), G(0), R(θzp), θsp

Outputs D(θzp, γp)

Activation function Logistic function

Layers 2

Neurons in radial basis

function layer

150

Training method Bayesian regularization

Tolerance 0.001

3.29. Generalised Regression Neural Network (D29)

This sort of ANNs are a particular case of radial basis

function neural networks where the weighting matrix is

obtained by applying an analytic method without train-

ing. Thus, it just needs one iteration to be trained or

adapted [100]. These ANNs follow a feedforward al-

gorithm and need supervised training. Moreover, the

application of the risk bayesian criteria increases signif-

ficantly their accuracy [101].

GRNNs are configured with two layers. The first one

gets the inputs and includes the radial basis functions. It

has got as many neurons as inputs-targets pairs in vector

p. Bias value is asigned 0.8326/σ, where σ is the maxi-

mum amplitude of the radial basis function. The second

layer has got the same number of neurons as the first

one but it implements linear basis functions instead.

As shown before, an optimization algorithm has been

applied to obtain the best results from the model. The

final optimal configuration for the estimation of vertical

diffuse irradiance on several cardinal directions is ex-

posed in Table 11. In this table di is the average distance

between values in the i-th estimator.

3.30. Artificial Network Fuzzy Inference System (D30)

ANFIS models combine the learning hability of

ANNs with the flexibility of fuzzy inference models

[51]. They tipically include five layers. The first one
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Table 11: GRNN optimal configuration.

Parameter Value
Inputs D(0), G(0), R(θzp), θsp

Outputs D(θzp, γp)

Bias 0.9max(di)

contains fixed nodes that define the membership func-

tions to the fuzzy sets. The second layer contains as

many adaptative nodes as inference rules. Commonly,

they are defined as many inference rules as fuzzy sets.

The third layer normalizes the outputs of the previous

layer. Next layer includes two fixed nodes which inputs

are the normalized outputs of the third layer and the ini-

tial inputs. Finally, the last layer defuzzyfies the model

outputs.

Including fuzzy sets in ANNs allows the network to

behave more smoothly than those which use classical

transfer functions. In the particular case of ANFIS, the

Sugeno-Tsukamoto fuzzy inference model is applied

[102]. Finally, ANFIS training process is carried out

in two steps. The first one is a feedforward process

where the membership functions parameters are inicial-

ized. The second one consists in the backpropagation of

the obtained error from the output of the model.

Table 12: ANFIS optimal configuration.

Parameter Value
Inputs D(0), G(0), R(θzp), θsp

Outputs D(θzp, γp)

Fuzzy sets Ωi,1: low, Ωi,2: mid, Ωi,3: high

Membership

function

Generalized bell

Rules 43 = 64

Epochs 42

To obtain the optimal configuration of the ANFIS

model for the case study, which can be seen in Table

12, first a preliminar analyis of the model with just one

epoch, three fuzzy sets for each variable and nm rules

is carried out (n is the number of variables and m the

number of fuzzy sets). Then, the RMSD value for the

training and checking datasets is compared for the Ck
n

candidate models with n candidate input parameters and

k ∈ {1, 2, 3, 4} model inputs. Finally, the optimal num-

ber of epochs is selected by comparing results from 1 to

100 epochs (see Figure 6).

Figure 6: ANFIS training (green) and checking (red) error curves.

4. Results and discussion

Tables 13, 14, 15 and 16 show the results for the

statistic estimators for the 30 evaluated models with data

measured on North, South, East and West directions re-

spectively.

Taylor diagrams with the models results for the same

directions are presented in Figures 7, 8, 9 and 10. Tay-

lor diagrams allow the graphical intercomparison of the

centered RMSD (RMSDc), the standard deviation and

the coefficient of correlation R, which is the squared

root of the coefficient of determination R2, through a

geometrical relation [46]. Let’s notice that the cen-

tered RMSD is related to the RMSD and MBD statistics

through expression (108).

RMSD2
c = RMSD2 +MBD2. (108)

Reference values (black circles on graphs) are the

measured data set, which has a known standard devi-

ation and null values of RMSD and R2. On the other

hand, ”Three components” refers to the test data ob-

tained by substraying the direct beam irradiance and the

albedo’s irradiance from the global tilted measured ir-

radiance (the closer the model icon in the graph to the

reference, the better).

It can be shown that most models have a similar cor-

relation coefficient to the reference data. Only 5 mod-

els (North) , 2 models (South), 12 models (East) and 4

models (West) show a correlation coefficient less than

0.8. The centered RMSD represented in the graphs

shows low values for most models but D06 (ASHRAE)

and D07 (Dı́ez-Mediavilla). On the other hand, D27

19



Table 13: Transposition models results and ranking positions for the North direction.

ID MBD RMSD R2 t d μ0.99
[W·m−2] [W·m−2] [-] [-] [W·m−2] [W·m−2]

Isotropic models
D01 −15.2 33.6 0.74 40.5 0.91 −16.0
D02 −15.2 33.6 0.74 40.5 0.91 −16.0
D03 −15.2 33.6 0.74 40.5 0.91 −16.0
D04 12.3 40.1 0.71 25.8 0.90 +13.4
D05 19.3 33.0 0.79 57.4 0.90 +20.0

Anisotropic models
D06 77.0 117.9 0.59 69.0 0.56 +79.6
D07 −45.8 83.5 0.08 52.4 0.42 −47.8
D08 −6.9 32.6 0.73 17.4 0.92 −7.8
D09 8.3 53.4 0.75 12.6 0.87 +9.8
D10 −14.2 29.9 0.80 43.4 0.93 −15.0
D11 −7.2 30.4 0.79 19.6 0.93 −8.1
D12 −50.2 65.3 0.53 96.3 0.40 −51.5
D13 −19.0 39.0 0.67 44.8 0.87 −20.0
D14 −33.4 44.1 0.78 93.1 0.80 −34.3
D15 −4.5 20.5 0.88 18.2 0.97 −5.1
D16 −24.7 48.5 0.51 47.3 0.78 −25.9
D17 −40.8 52.6 0.68 98.2 0.71 −41.8
D18 −65.1 73.3 0.84 155 0.27 −66.1
D19 10.6 40.6 0.66 21.6 0.89 +11.8
D20 −35.3 61.6 0.33 56.1 0.64 −36.8
D21 −39.0 51.3 0.72 93.6 0.69 −40.0
D22 −20.8 34.7 0.77 59.8 0.89 −21.6
D23 −14.4 33.4 0.74 38.3 0.91 −15.3
D24 −36.1 48.0 0.74 91.7 0.74 −37.0
D25 −32.3 42.9 0.77 91.8 0.82 −33.1
D26 −58.2 67.3 0.77 138 0.42 −59.2

Non-parametric models
D27 2.6 17.7 0.91 12.1 0.97 +3.2
D28 0.4 20.3 0.88 1.5 0.97 +1.0
D29 −0.01 26.6 0.80 0.03 0.95 −0.8
D30 0.4 19.8 0.88 1.5 0.97 +0.9

(Multi-Layer Perceptron) shows the best performance

for all directions, with extraordinary good results for

the South. In general terms, non-parametrical models

show better results in all cases than parametrical ones.

Isotropic models behave quite good for all directions but

the North. D14 and D15 (Perez et al.), D16 (Reindl) and

D18 (Steven & Unsworth) show the best performances

from the anisotropic group.

Table 17 shows the statistical significance calculation

for each model group benchmark. This non-parametric

statistical procedure for ranking the overall performance

of models was originally presented by Stone for models

results on different locations [44]. In this case, it has

been adapted to data from one location but several di-

rections of measurement. L statistic is defined in [44] as

a statistic of agreement which measures the success of

the alternative hypothesis in two respects. Firstly, it re-

flects success in predicting the order of the sample sum

of ranks. Secondly, it represents the tendency of the sum

of the ranks to be widely separated. E(L) is the expected

value of L, Var(L) is the variance of L, z is the conver-

sion of the L statistic to a standard score of the normal

distribution and, finally, α is the statistical significance

of the aggregation or global rank. Results for each pa-

rameter have been calculated for each model class and

for the complete selection of models.

Figures 11, 12 and 13 show the results of the bench-

marking for the MBD, RMSD and μ0.99 statistical es-

timators respectively. These graphs expose, including

a colourful scale, the position differences in the aggre-

gated ranking between the models in the horizontal axis

respect the vertical axis. A positive value xAB indicates

that model A, in the horizontal axis, is placed x positions

lower in the ranking with respect to the model B, in the

vertical axis. This means that model A would behave

worse than model B, according to the considered sta-

tistical estimator. A negative value of xAB would mean

the opposite. The greater the x value, the major the dif-
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Table 14: Transposition models results and ranking positions for the South direction.

ID MBD RMSD R2 t d μ0.99
[W·m−2] [W·m−2] [-] [-] [W·m−2] [W·m−2]

Isotropic models
D01 −42.6 67.3 0.75 65.5 0.78 −44.1
D02 −42.6 67.3 0.75 65.5 0.78 −44.1
D03 −42.6 67.3 0.75 65.5 0.78 −44.1
D04 −15.1 50.0 0.74 25.4 0.90 −16.5
D05 52.6 85.7 0.66 62.2 0.82 +54.5

Anisotropic models
D06 120 158.8 0.68 91.9 0.60 +122.8
D07 −73.2 109.6 0.24 71.9 0.38 −75.6
D08 35.8 62.2 0.75 56.5 0.89 +37.3
D09 −4.0 65.7 0.67 4.9 0.89 −6.0
D10 −41.7 67.4 0.74 63.0 0.78 −43.2
D11 −28.1 48.2 0.85 57.4 0.91 −29.2
D12 −32.8 55.0 0.81 59.4 0.87 −34.1
D13 −22.4 44.8 0.83 46.3 0.93 −23.5
D14 −19.5 40.7 0.86 43.6 0.94 −20.5
D15 −5.6 32.4 0.88 14.1 0.97 −6.5
D16 −15.6 38.3 0.86 35.7 0.95 −16.6
D17 −44.1 62.0 0.80 81.2 0.84 −45.4
D18 25.4 64.3 0.60 34.3 0.85 +27.1
D19 14.9 49.4 0.74 25.3 0.91 +16.2
D20 −11.6 58.1 0.65 16.3 0.89 −13.2
D21 7.3 49.4 0.73 11.9 0.90 +8.7
D22 −15.9 37.9 0.86 37.1 0.95 −16.9
D23 −40.7 65.8 0.76 63.1 0.79 −42.2
D24 −19.8 41.0 0.85 44.1 0.95 −20.9
D25 −59.7 82.5 0.76 84.1 0.63 −61.4
D26 28.6 56.7 0.74 46.9 0.90 +30.0

Non-parametric models
D27 0.2 7.7 0.99 2.6 1.00 +0.5
D28 0.3 36.0 0.85 0.6 0.96 +1.3
D29 −0.4 47.9 0.75 0.6 0.93 −1.8
D30 0.2 29.5 0.90 0.5 0.97 +1.0

ference in ranking positions and model’s performance.

Notice that isotropic models D01 (Liu & Jordan), D02

(Tian et al.) and D03 (Badescu) have the same ranking

positions because their expressions for vertical surfaces

become strictly the same.

Overall behaviour of benchmarks is found to be sim-

ilar according to the three considered statistical esti-

mators, but certain ranking position differences can be

found.

For the North direction, it can be seen that most mod-

els have a good performance. Apart from models D06

and D07, RMSD value is always less than 80 W·m−2,

and apart from models D06, D07, D12, D13, D16, D17,

D19 and D20 the coefficient of determination R2 is in

the range (0.70, 0.96). Not important differences be-

tween isotropic and anisotropic models can be observed

in this case. According to Table 13, isotropic models

(3 out of 5) and most anisotropic ones (18 out of 21,

except D06, D09 and D19) tend to underestimate the

diffuse irradiance. On the other hand, non-parametric

models, except D29 (GRNN), tend to overestimate al-

ways the irradiance value. Nevertheless, D29 model

obtains the best results for the MBD, t-statistic and μ0.99

estimators. From a global point of view, isotropic mod-

els behave the best for the North direction in the case

study, specially D04 (Koronakis) and D05 (Olmo) mod-

els. Finally, focusing on the anisotropic models, ma-

jor differences between them can be observed rather

than between the isotropic ones. From this classifica-

tion, D15 (locally optimized Perez et al.) model be-

haves extremelly well, far away from the same model

with general coefficients (D14). Moreover, no signif-

icant differences between anisotropic by superposition

and anisotropic by gradient models can be found.

If we observe the South direction results, its asso-

ciated Taylor Diagram has a quite similar shape than

the one obtained for the North direction. In this case,

all models, except D07, have a correlation coefficient

21



Table 15: Transposition models results and ranking positions for the East direction.

ID MBD RMSD R2 t d μ0.99
[W·m−2] [W·m−2] [-] [-] [W·m−2] [W·m−2]

Isotropic models
D01 −42.9 73.2 0.48 58.0 0.68 −44.7
D02 −42.9 73.2 0.48 58.0 0.68 −44.7
D03 −42.9 73.2 0.48 58.0 0.68 −44.7
D04 −15.4 64.1 0.46 19.8 0.80 −17.2
D05 1.7 66.4 0.43 2.0 0.80 +3.6

Anisotropic models
D06 74.3 122 0.46 61.4 0.64 +77.1
D07 −73.5 115 0.06 66.8 0.18 −76.1
D08 −9.6 49.6 0.65 15.8 0.89 −11.0
D09 −11.3 57.9 0.69 15.9 0.89 −13.0
D10 −42.0 71.5 0.51 58.2 0.70 −43.7
D11 −31.5 58.4 0.64 51.2 0.83 −32.9
D12 −60.6 81.1 0.66 90.0 0.55 −62.2
D13 −33.4 54.1 0.75 62.7 0.85 −34.6
D14 −41.5 56.1 0.85 88.2 0.83 −42.6
D15 −4.4 29.6 0.87 12.1 0.97 −5.3
D16 −30.2 52.2 0.74 56.7 0.86 −31.4
D17 −55.1 70.0 0.79 102.1 0.72 −56.3
D18 −40.3 76.1 0.42 50.1 0.71 −42.2
D19 −5.5 55.4 0.56 7.9 0.85 −7.1
D20 −24.0 79.2 0.38 25.5 0.75 −26.2
D21 −32.1 58.3 0.68 52.9 0.81 −33.6
D22 −29.0 50.7 0.75 55.8 0.88 −30.2
D23 −41.6 72.2 0.49 56.4 0.69 −43.3
D24 −40.4 53.4 0.85 92.5 0.86 −41.4
D25 −60.1 84.4 0.50 81.0 0.52 −61.8
D26 −31.1 57.1 0.66 51.9 0.85 −32.5

Non-parametric models
D27 0.9 10.4 0.98 7.1 1.00 +1.2
D28 0.9 31.1 0.86 2.4 0.96 +1.8
D29 −0.3 58.2 0.56 0.4 0.86 −2.0
D30 0.8 29.1 0.87 2.2 0.97 +1.6

greater than 0.80, and the RMSD value is close to 50

W·m−2 for most models. Except model D06, obtained

standard deviations are in the range (48, 130) W·m−2.

It also can be observed that D09 and D05 models be-

have surprisingly similar and the non-parametric model

D27 offers extremely good estimations. Taking into

account the sign of the μ0.99 statistical estimator, most

models tend to underestimate the diffuse irradiance for

the South direction. Furthermore, it can be observed

again that non-parametric models behave the best. On

the other hand, in this case significant differences be-

tween anisotropic models and isotropic ones have been

detected. The best parametric models in this case are

D15 and D09 according to MBD and μ0.99 statistics.

However, the reader must be awarded that model D09

has a low value for the determination coefficient R2.

Best anisotropic by gradient models are D21 (Brunger

& Hooper) and D24 (Iwaga et al.) respectively. For this

direction, D04 model is the best isotropic one.

For the East direction case study, the Taylor Diagram

shows major dispersion on the results than the previous

cases. The average correlation coefficient decreases, but

the RMSD results do not increase significantly. It can

be observed again that D27 model obtains the best re-

sults. D28 (RBF), D29, D30 (ANFIS), D15, D24, D21

and D17 (Skartveit & Olseth) also show good results.

D06 model shows the highest value for the RMSD es-

timator. On the other hand, a higher average value for

RMSD for isotropic models can be observed. Further-

more, results on Table 15 show that models D06, D27,

D28 and D30 tend to underestimate. Model D27 shows

the best results for the RMSD, R2, d and μ0.99 statistical

estimators, but model D29 performs better according to

MBD and t-statistic. D05 shows the best performance

from the isotropic models group. However, it has been

observed that this model has a significantly low value of

the correlation coefficient. Finally, for this cardinal di-

rection, the best anisotropic models are D15, D19, D22
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Table 16: Transposition models results and ranking positions for the West direction.

ID MBD RMSD R2 t d μ0.99
[W·m−2] [W·m−2] [-] [-] [W·m−2] [W·m−2]

Isotropic models
D01 −21.4 41.8 0.73 47.9 0.88 −22.5
D02 −21.4 41.8 0.73 47.9 0.88 −22.5
D03 −21.4 41.8 0.73 47.9 0.88 −22.5
D04 6.0 39.0 0.72 12.5 0.92 +7.2
D05 30.8 50.1 0.68 62.3 0.85 +31.9

Anisotropic models
D06 88.2 123.1 0.70 82.3 0.61 +90.7
D07 −52.0 84.5 0.21 62.5 0.48 −54.0
D08 4.3 35.1 0.77 9.9 0.93 +5.3
D09 4.1 60.7 0.62 5.5 0.85 +5.9
D10 −20.5 41.2 0.73 46.0 0.88 −21.6
D11 −12.7 35.8 0.77 30.4 0.92 −13.7
D12 −45.4 61.5 0.69 87.6 0.67 −46.6
D13 −21.7 39.5 0.77 52.7 0.90 −22.7
D14 −29.9 42.6 0.83 78.8 0.87 −30.7
D15 −6.7 26.5 0.86 20.9 0.96 −7.4
D16 −25.3 44.6 0.71 55.0 0.87 −26.3
D17 −43.5 55.5 0.78 101 0.76 −44.5
D18 −34.1 72.9 0.32 42.4 0.68 −36.0
D19 12.0 38.3 0.74 26.5 0.92 +13.1
D20 −34.5 56.3 0.59 62.2 0.78 −35.8
D21 −21.0 43.4 0.70 44.5 0.87 −22.2
D22 −15.7 32.2 0.83 44.9 0.94 −16.6
D23 −20.2 41.0 0.73 45.3 0.89 −21.2
D24 −29.6 41.7 0.82 80.4 0.89 −30.4
D25 −38.6 53.8 0.74 82.5 0.77 −39.7
D26 −22.2 48.1 0.65 41.7 0.87 −23.4

Non-parametric models
D27 0.002 5.2 0.99 0.0 1.00 +0.1
D28 0.06 26.7 0.85 0.2 0.96 +0.8
D29 −0.7 42.9 0.64 1.3 0.89 −1.9
D30 0.2 24.6 0.87 0.7 0.96 +0.9

Table 17: Statistical values from the non-parametric aggregation.

Models L E(L) Var(L) z α

MBD

Isotropic 166 180 100 −1.400 0.075

Anisotropic 12 765 10 164 118 580 7.553 0.000

Non-param. 103 100 33.333 0.520 0.174

All 36 513 28 830 696 725 9.204 0.000

RMSD

Isotropic 159 180 100 −2.100 0.022

Anisotropic 12 795 10 164 118 580 7.640 0.000

Non-param. 116 100 33.333 2.771 0.004

All 36 074 28 830 696 725 8.679 0.000

μ0.99

Isotropic 166 180 100 −1.400 0.075

Anisotropic 12 792 10 164 118 580 7.632 0.000

Non-param. 110 100 33.333 1.732 0.044

All 36 470 28 830 696 725 9.153 0.000

(CIE 2004) and D26 (Siala & Hooper). Nevertheless, no

significant differences are observed between anisotropic

by superposition and anisotropic by gradient models in

this case.

On the other hand, Figures 11, 12 and 13 show the

benchmark matrix for the non-parametric aggregation

for the four cardinal directions and for the MBD, RMSD

and μ0.99 statistical estimators, respectively. The three

graphs show a similar behaviour in the colour scale. In

all cases several clusters can be observed, highlighting

the non-parametrical models (up right corner) and the

isotropic ones (low left corner). Differences between

models are much more highlighted in the RMSD bench-

mark graph than the one for the MBD. Although this

tool helps to compare models performances by pairs,

benchmark positions for anisotropic models change as

function of the considered statistical estimator.

According to previous models intercomparison stud-

ies, obtained results are coherent with them, although
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very few studies compare 10-min. averaged data on sev-

eral azimuth angles.

Let’s notice that previous studies, such as [60, 103]

highlight the fact that the correct modeling of the re-

flected irradiance, as well as the experimental appara-

tus, are of key importance when dealing with off-south

surfaces because the reflectance of a natural surface

is never perfectly isotropic. This may not affect sig-

nificantly south-facing tilting surfaces because the sky

diffuse is relatively large for this direction. However,

for other vertical orientations, errors in the calculated

reflected irradiance can be relatively significant, thus

yielding errors of opposite sign in the observed tilted

diffuse that is taken as the reference, but which is gener-

ally calculated as the difference between the total tilted

diffuse and the reflected irradiance. This can be avoided

adding a mask or shield to the sensor to block the re-

flected irradiance, but this cannot be perfect either.

On the other hand, current solar radiation models and

measures are rather comparable because of the abso-

lute measurement uncertainties [104, 105]. In many

cases, these uncertainties are of higher value than the

Figure 7: Taylor diagram for North direction estimations.

models bias errors. Thus, the challenge for solar ra-

diation misprints and models is to reduce the uncer-

tainty in measured data, as well as develop more robust

models with fewer input parameters and smaller residu-

als, under a wider variety of conditions [105]. In this

case, where measured diffuse irradiances were in the

range [0, 350] W·m−2, absolute uncertainties result al-

ways smaller than 20 W·m−2 (let’s also notice that max-

imum relative uncertainty is obtained for low values of

measured irradiance and it decreases as the measured

value increases) and, thus, observed differences on some

models, specially according to MBD estimator, may be

neglected, e.g. non-parametric models. This observa-

tion must be taken into account in order not to incur in

erroneous conclusions.

There exist many studies that compare radiation mod-

els, specially with measurements on tilted surfaces to

the South direction. It is also common to use hourly,

daily or monthly averaged values which reduce the rela-

tive uncertainty. Nevertheless, found results in our work

are coherent with those obtained in [34, 56, 106, 107,

108], where also find slight differences between ana-

Figure 8: Taylor diagram for South direction estimations.
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Figure 9: Taylor diagram for East direction estimations.

lyzed models and the MBD and RMSD values are in

a similar range than in this work. Morever, these stud-

ies also rank Perez et al. model in the top and Koron-

akis model have the best performance for isotropy con-

ditions under intermediate and overcast skies. Higher

discrepancies can be found related to the Skartveit &

Olseth and the Steven & Unsworth models, that are

ranked in better positions than in our study. Also, stud-

ies which evaluate transposition models on different az-

imuth angles find worse results for East and West direc-

tions rather than on the South one [106, 107].

Studies about non-parametric models [83, 109] also

conclude that this group of models have better accuracy

and a more realistic performance than the parametric

models group. However, [83] finds better performance

on GRNN models than on MLP models although this

one offers a better determination coefficient value on the

test.

One of the latest studies in this field is [87]. Although

it includes an extensive review of transposition models

(only isotropic and anisotropic by superposition mod-

els) and correct some errors in the literature some dis-

Figure 10: Taylor diagram for West direction estimations.

crepances are found with our work. Major discrepan-

cies are found on the interpretation of the Olmo’s model

and the circumsolar anisotropy in Steven & Unsworth

model. Nevertheless we agree with no universal model

can be concluded. The author also finds Perez et al.’s

one of the best models.

Finally, major differences have been found with [86,

110] because of the significantly different climatic con-

ditions and the reduced dataset used in the second case.

5. Conclusions

As result of the carried out review, four main

model classes can be distinguished: isotropic mod-

els, anisotropic superposition models, relative radiance

anisotropic models and non-parametric models.

According to the results, differences on the mod-

els performances for several directions were found.

The most accurate estimations for the case study and

the aggregation of the four directions have been ob-

tained by the non-parametric models. From these, the

Multi-Layer Perceptron (MLP) obtained the best results
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but uncertainties on the measurement made all non-

parametric models estimations almost indistinguishable

(as differences were lower than the measurement uncer-

tainties). From the parametric models, the one which

estimations were closest to the reference dataset was the

Perez et al. model with local fitted coefficients. Origi-

nal Perez et al., Reindl and Igawa et al. models also

performed well. On the other hand, the ASHRAE and

Dı́ez-Mediavilla models performed the worst in most

cases and they may be selected with caution for high

accuracy modelling.

The benchmark analysis for all directions and sky

conditions allowed clustering the best and worst mod-

els. For the three statistical estimators MBD, RMSD

and μ0.99, best models are found to be the non-

parametric models (MLP, RBF, GRNN and ANFIS),

CIE2004, Temps & Coulson, Perez et al. locally fit-

ted coefficients and Koronakis. On the other hand, the

worst results have been obtained by ASHRAE, Dı́ez-

Mediavilla, Ma & Iqbal, Skartveit & Olseth, Steven &

Unsworth, Moon & Spencer and Siala & Hooper. Dif-

ferences in the aggregated rank possitions have been

found intensified for the RMSD estimator.

If single directions are considered, apart from the

non-parametric models that achieve the best results in

all cases, the optimized Perez et al. model has the best

results for the statistical estimators for the North direc-

tion but the t-statistics, which lowest value has been ob-

tained by the Gueymard model. For this direction, ac-

cording to the MBD sign, most models tend to underes-

timate diffuse irradiance (22 out of 30). For the South

direction, optimized Perez et al. model obtains again the

best results for all statistical estimators but the MBD and

the μ0.99 which were achieved for the Gueymard model.

In this case, 20 models out of 30 tend to underestimate

the diffuse irradiance value. For the East and West di-

rections, optimized Perez et al. model performs the best

according to the RMSD and R2 values. However, for

the East direction, the Olmo model performs better for

the MBD and μ0.99 estimators, and the Temps & Coul-

son model obtains the best result for the t-statistic. On

the other hand, for the West direction, the Gueymard

model obtains the best value of the MBD, but the DOE-

2 model performs better according to the Willmott’s d
and the μ0.99 estimators. Moon & Spencer and Brunger

& Hooper models tend to underestimate the measured

diffuse irradiance for the East and West directions, re-

spectively.

Finally, models tendencies to underestimate or over-

estimate remain for all directions with the exception of

the Koronakis, Dı́ez-Mediavilla, DOE-2, Hay & Davies,

Steven & Unsworth, Brunger & Hooper and Siala &

Hooper models. According to the proposed classifi-

cation, the isotropic and relative radiance anisotropic

models tend to underestimate, but the non-parametric

models tend to overestimate for all studied directions.

Future development of solar radiation models will be

linked to increase accuracy when the reduction on the

uncertainty in measured data would be feasible and fu-

ture trends will lead to develop simplier models with

fewer input parameters and good performance under all-

sky wheather conditions.
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Appendix A. Notes on the nomenclature

To unify nomenclature about irradiance, the follow-

ing criteria have been applied. The general expression

is in the form: A(θz, γ), where A is the irradiance com-

ponent (B: direct beam, D: diffuse or R: reflected) and

terms in brakets refer to the zenith angle and azimuth

angle of the measurement, respectively. In case the

value is referred to a normal plane to the direct beam

irradiance, it is expressed with n in brackets. How-

ever, when the value is referred to the horizontal plane

(θz = 0), it results independent from the azimuth an-

gle. Thus, only 0 is indicated in brackets. For the re-

flectance irradiance in an horizontal surface opposite to

the ground, 180 is indicated instead.

References

[1] Z. Sen, Solar energy in progress and future research trends,

Progress in Energy and Combustion Science 30 (4) (2004)

367–416.

[2] A. Strzalka, N. Alam, E. Duminil, V. Coors, U. Eicker, Large

scale integration of photovoltaics in cities, Applied Energy

93 (2012) 413–421. doi:10.1016/j.apenergy.2011.12.

033.

[3] H. Bunyan, W. Ali, Performance evaluation of photovoltaic

module at different tilt angle in kuwait, in: 2014 International

Conference and Utility Exhibition on Green Energy for Sus-

tainable Development (ICUE), 2014, pp. 1–4.

[4] E. Roohollahi, M. A. Mehrabian, M. Abdolzadeh, Prediction

of solar energy gain on 3-D geometries, Energy and Buildings

62 (2013) 315–322. doi:10.1016/j.enbuild.2013.03.

008.

[5] M. De Carli, M. Tonon, Effect of modelling solar radiation on

the cooling performance of radiant floors, Solar Energy 85 (5)

(2011) 689–712.

26



Figure 11: Transposition models benchmark for all directions according to MBD.

[6] C. Stanciu, D. Stanciu, Optimum tilt angle for flat plate col-

lectors all over the World – A declination dependence formula

and comparisons of three solar radiation models, Energy Con-

version and Management 81 (2014) 133–143.

[7] M. de Simón-Martı́n, M. Dı́ez-Mediavilla, C. Alonso-Tristán,

Modelling solar data: reasons, main methods and applica-

tions, in: International Conference on Renewable Energies and

Power Quality (ICREPQ’13) Proceedings, Vol. 1, European

Association for the Development of Renewable Energies, Envi-

ronment and Power Quality (EA4EPQ), Bilbao (Spain), 2013,

pp. 1–5.

[8] C. Demain, M. Journée, C. Bertrand, Evaluation of different

models to estimate the global solar radiation on inclined sur-

faces, Renewable Energy 50 (2013) 710–721.

[9] European Commision, Treaty on European Union (Feb. 1992).

[10] The Johannesburg Renewable Energy Coalition, Communica-

tion from the Commission Europe 2020. A strategy for smart,

sustainable and inclusive growth (Mar. 2010).

[11] European Commission, Implementing the Energy Performance

of Buildings Directive (EPBD). Featuring Country Reports

2012, Electronic version, 2013.

[12] European Commission, Communication from the Commission

Europe 2020. A strategy for smart, sustainable and inclusive

growth (Mar. 2010).

[13] European Commission, Council Decision 2002/358/CE of 25

April 2002 concerning the approval, on behalf of the Euro-

pean Community, of the Kyoto Protocol to the United Nations

Framework Convention on Climate Change and the joint fulfil-

ment of commitments thereunder. (Apr. 2002).

[14] EU Commission, European directive 2010/31/EU, of 19 may

2010, on energy efficiency on buildings (May 2010).

[15] EU Commission, European directive 2002/91/EU, of 16 de-

cember 2002, on energy efficiency on buildings (Dec. 2002).

[16] A. Henemann, BIPV: Built-in solar energy, Renewable Energy

Focus 9 (6, Supplement) (2008) 14–19.

[17] M. Pagliaro, R. Ciriminna, G. Palmisano, BIPV: merging the

photovoltaic with the construction industry, Progress in Photo-

voltaics: Research and Applications 18 (1) (2010) 61–72.

[18] T. Schuetze, Integration of photovoltaics in buildings—support

policies addressing technical and formal aspects, Energies 6 (6)

(2013) 2982–3001.

[19] A. Strzalka, N. Alam, E. Duminil, V. Coors, U. Eicker, Large

scale integration of photovoltaics in cities, Applied Energy 93

(2012) 413–421.

[20] G. Quesada, D. Rousse, Y. Dutil, M. Badache, S. Hallé, A com-
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