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Abstract: The transitional-continental facies of the Tremp Formation within the South-Pyrenean Central Unit 

(Spain) contain one of the best continental vertebrate records of the Upper Cretaceous in Europe. This Pyrenean 

area is therefore an exceptional place to study the extinction of continental vertebrates across the 

Cretaceous/Paleogene (K/Pg) boundary, being one of the few places in Europe that has a relatively continuous 

record ranging from the upper Campanian to lower Eocene. The Serraduy area, located on the northwest flank of 

the Tremp syncline, has seen the discovery of abundant vertebrate remains in recent years, highlights being the 

presence of hadrosaurid dinosaurs and eusuchian crocodylomorphs. Nevertheless, although these deposits have 

been provisionally assigned a Maastrichtian age, they have not previously been dated with absolute or relative 

methods. This paper presents a detailed stratigraphic, magnetostratigraphic and biostratigraphic study for the first 

time in this area, making it possible to assign most vertebrate sites from the Serraduy area a late Maastrichtian age, 

specifically within polarity chron C29r. These results confirm that the vertebrate sites from Serraduy are among the 

most modern of the Upper Cretaceous in Europe, being very close to the K/Pg boundary. 
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Introduction 

Recognizing the K/Pg (Cretaceous/Paleogene) boundary in continental deposits is a 

complicated task due to several biases that affect the continental record (Barret et al., 2009; 

Butler et al., 2011; Smith et al., 2001; Mannion et al., 2011; Smith and McGowan, 2011; 

Upchurch et al., 2011). Even so, great efforts have been made in recent years to detect the 

continental K/Pg boundary and ascertain its relation with faunal and floral extinctions, especially 

in North America (e.g., Fastovsky and Sheehan, 2005; Archibald et al., 2010; Brusatte et al., 

2015; and references therein), but also in Europe (Canudo et al., 2016; and references therein) 

and Asia (Jiang et al., 2011; and references therein). 

In the European scenario, the greatest difficulty in knowing how the vertebrate faunas 

were affected by the K/Pg extinction event is as a result of the fragmentary nature of the 

continental geological record during the Late Cretaceous and early Paleogene. Nonetheless, 

major advances have been made in the last few years, and new outcrops, mainly in Romania, 

France and Spain, are being discovered and datings carried out (Puértolas-Pascual et al., 2016; 

and references therein). 

In Eastern Europe (Romania), the Maastrichtian continental vertebrate assemblages 

have been examined and dated by biostratigraphy, magnetostratigraphy and radioisotopic 

techniques (Antonescu et al., 1983; Van Itterbeeck et al., 2005; Codrea et al., 2010, 2012; 

Panaiotu and Panaiotu, 2010; Bojar et al., 2011; Panaiotu et al., 2011; Vremir et al., 2014; Csiki-
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Sava et al., 2015). However, the vertebrate sites are located in excessively broad age ranges, the 

correlation between the different sites remains problematic and more accurate datings are 

required (Buffetaut and Le Loeuff, 1991; Gheerbrant et al., 1999; Codrea et al., 2012; Vremir et 

al., 2014). 

Similar concerns occur with respect to the Upper Cretaceous and lower Paleogene of 

France. Apart from the Provence area, where several biostratigraphic, magnetostratigraphic, 

chemostratigraphic and sedimentological studies with a good chronostratigraphic control have 

been carried out (Cojan et al., 2003; Cojan and Moreau, 2006), most of the northern Pyrenees 

still lack accurate datings or correlations (Buffetaut and Le Loeuff, 1991; Laurent et al., 2002). 

Therefore, despite the abundant Maastrichtian vertebrate fossil record recovered from southern 

France, only limited biostratigraphic data (Bessiére et al., 1980, 1989; Bilotte, 1985; Garcia and 

Vianey-Liaud, 2001; Marty, 2001) and one new magnetostratigraphic study (Fondevilla et al., 

2016b) are available, and further studies and correlations are still necessary (Dinarès-Turell et 

al., 2014). 

The continental vertebrate record of the uppermost Cretaceous of Spain is one of the 

most complete and most studied in Europe (e.g., Company and Szentesi, 2012; Ortega et al., 

2015; Pereda-Suberbiola et al., 2015; Canudo et al., 2016). Most of these vertebrate sites are 

located within the Tremp Basin, in the Pyrenees of Aragon and Catalonia (Spain), specifically in 

the Maastrichtian transitional and continental facies of the Tremp Formation. The Tremp 

Formation has been exhaustively prospected and studied, providing abundant new vertebrate 

fossil remains including dinosaurs, crocodylomorphs, testudines, mammals, fishes, amphibians 

and squamates (e.g., López-Martínez et al., 1999, 2001; Peláez-Campomanes et al., 2000; Riera 

et al., 2009; Pereda-Suberbiola et al., 2009; Blain et al., 2010; Cruzado-Caballero et al., 2010, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2013, 2015; Puértolas et al., 2011; Marmi et al., 2012, 2016; Vila et al., 2012, 2013, 2015; 

Moreno-Azanza et al., 2014; Puértolas-Pascual et al., 2014, 2016; Sellés et al., 2014a, 2014b, 

2016; Blanco et al., 2014, 2015a, 2015b, 2016, 2017; Company et al., 2015; Torices et al., 2015; 

Canudo et al., 2016). 

In addition to the record of the vertebrates themselves, there is a relatively continuous 

geological record ranging from the Maastrichtian to the end of the Thanetian (López-Martínez et 

al., 2006), which is probably the best dated and correlated in Europe for this time interval and 

which may contain the Cretaceous/Paleogene boundary. This makes the southern Pyrenees and 

the Tremp Basin one of the best areas in the world for studying vertebrate associations across the 

K/Pg boundary, allowing comparisons with the extinction patterns reported from other parts of 

the world (Brusatte et al., 2015; Csiki-Sava et al., 2015; Canudo et al., 2016; Puértolas-Pascual 

et al., 2016). 

Ever since the 1980s, therefore, a great effort has been put into dating the fossil 

vertebrate sites and searching for the K/Pg boundary within the transitional and continental 

deposits of this sector of the Pyrenees. Outstanding in this context are works on the 

biostratigraphy of rudists (Vicens et al., 2004), charophytes and palynomorphs (Feist and 

Colombo, 1983; Médus et al., 1988; Galbrun et al., 1993; López-Martínez et al., 2001; Villalba-

Breva and Martín-Closas, 2011, 2013; Villalba-Breva et al., 2012; Vicente et al., 2015), 

foraminifers (López-Martínez et al., 2001; Díez-Canseco et al., 2014), on eggshells (Vila et al., 

2011; Sellés et al., 2013; Sellés and Vila, 2015), magnetostratigraphy (Galbrun et al., 1993; Oms 

et al., 2007; Pereda-Suberbiola et al., 2009; Vila et al., 2011, 2012; Canudo et al., 2016; 

Fondevilla et al., 2016a) and dinosaur occurrences (Riera et al., 2009; Vila et al., 2016). 
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The Serraduy area, located in the Aragonese northwestern branch of the Tremp Basin, 

has been prospected by the Aragosaurus-IUCA research group of the University of Zaragoza for 

over 10 years. This has resulted in the discovery of around 40 new paleontological sites with 

hundreds of vertebrate remains. These findings include important specimens such as the holotype 

of the eusuchian crocodylomorph Agaresuchus subjuniperus (Puértolas-Pascual, Canudo and 

Moreno-Azanza, 2014) and the smallest hadrosaurid known in Europe to date (Company et al., 

2015), probably a new dwarf taxon. 

Despite the importance and potential of these vertebrate sites, a chronostratigraphic 

framework for the Serraduy sector has not yet been provided. Serraduy is located between other 

areas with vertebrate sites such as Campo to the west and Arén to the east, corresponding to the 

northwestern-most branch of the Tremp Formation within the Tremp Basin. In these nearby 

sectors (Campo and Arén, Huesca), previous magnetostratigraphic studies have stated that the 

vertebrate sites of the Tremp Formation in these areas lie within magnetic polarity chrons C30n 

and C29r, being late Maastrichtian in age (Pereda-Suberbiola et al., 2009; Canudo et al., 2016). 

On the basis of works of magnetostratigraphy (Fondevilla et al., 2016a) and 

biostratigraphy (Díez-Canseco et al., 2014) on the more eastward-lying Isona sector of the 

Tremp syncline, however, some authors have detected the possible presence of important 

hiatuses in some areas of the Tremp Basin. These gaps reveal that most of the succession and 

vertebrate content in that area correlates to the early Maastrichtian (mostly chron C31r), 

suggesting an older age (Fondevilla et al., 2016a) for many vertebrate sites than previously 

thought (Vila et al., 2012). In accordance with these new datings (Pereda-Suberbiola et al., 2009; 

Díez-Canseco et al., 2014; Canudo et al., 2016; Fondevilla et al., 2016a), the chronostratigraphic 

study of the areas of Campo-Serraduy-Arén may thus acquire greater relevance, given that the 
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lower part of the Tremp Formation exposed in Campo and Arén contains the only continental 

record of chron C30n in the whole Tremp syncline (Fondevilla et al., 2016a). 

To test all these hypotheses, we here describe for the first time the magnetostratigraphy, 

biostratigraphy and a preliminary study of the fossil vertebrate assemblage of the Serraduy area. 

According to our biostratigraphic and magnetostratigraphic results, most of the “lower red unit” 

of the Tremp Formation up to the top would be included within magnetic polarity chron C29r, 

and most of the vertebrate sites would therefore have a late Maastrichtian age, being located very 

close to the K/Pg boundary. Unfortunately, the paleomagnetic and biostratigraphic data from the 

lower half of the studied sections are not conclusive enough to give a specific age or reveal the 

presence of hiatuses in this area. 

 

Geographical and geological context 

The studied area is located in the Aragonese part of the Tremp Basin within the 

Pyrenean range (Serraduy area, Huesca, Spain) (Fig. 1A, B). The Pyrenees are a 430-km-long 

east-west-oriented continental collisional fold-and-thrust belt, located in the northeastern Iberian 

Peninsula between France and Spain (Fig. 1A); they formed as the result of the oblique collision 

and compressive episodes between the Iberian microplate and the European plate. This process 

took place during the Alpine orogeny, from Late Cretaceous until early Miocene times (Garrido-

Megías and Ríos, 1972; Puigdefabregas and Souquet, 1986; Muñoz, 1992; Ardèvol et al., 2000; 

Sibuet et al., 2004; Teixell, 2004). The Tremp Basin is located within the South-Pyrenean 

Central Unit or SPCU (Séguret, 1972), which corresponds with the central sector of the Southern 

Pyrenees (between the Nogueras thrust fault in the north and the Sierras Marginales frontal thrust 

in the south) (Fig. 1A). Several syn-sedimentary synclines (Ager, Tremp, Coll de Nargo and 
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Vallcebre) associated with the emplacement of south-verging thrust-sheets developed during the 

Late Cretaceous, acting as different sub-basins (Fondevilla et al., 2016a; Oms et al., 2016). The 

fossil remains studied here are from the Arén and Tremp Formations (Mey et al., 1968) within 

the Tremp Basin and the northern flank of the east-west-oriented Tremp syncline.  

The Tremp Formation, which forms part of what is informally known as the 

“Garumnian” facies (Leymerie, 1862), was deposited during the Upper Cretaceous–Paleocene, 

when the Pyrenees Basin was completely filled by coastal and continental deposits due to the 

end-Cretaceous marine regression (Rosell et al., 2001), representing the last infilling episode of 

the South-Pyrenean Basin (Mey et al., 1968; López-Martínez et al., 1999; Oms et al., 2016). The 

SPCU has an extension of 5000 km2, of which the Tremp Formation is estimated to encompass 

about 1000 km2 (López-Martínez et al., 2006). This formation crops out in the central and 

western part of the SPCU, reaching a thickness of about 900 m in the depocenter near the locality 

of Tremp (López-Martínez et al., 1999).  In the northern areas, such as the Tremp syncline, the 

bottom of the Tremp Formation is underlain by and laterally interdigitated with upper 

Campanian–Maastrichtian mixed-platform marine deposits that correspond to the beach, barrier-

island and deltaic sandstones of the Arén Formation (Fig. 1C) (Ardèvol et al., 2000). In the 

southern outcrops, such as the Àger syncline, the Arén Formation is replaced by more calcareous 

deposits corresponding with the limestones Les Serres Formation (Souquet, 1967; López-

Martínez et al., 2006). Above, the Tremp Formation is overlain by Ilerdian (lower Eocene) 

marine sediments of the alveoline limestones Cadí Formation, or marly deposits laterally 

equivalent to the Figols Group (Fonnesu, 1984; Eichenseer and Luterbacher, 1992; López-

Martínez et al., 1999, 2006). 
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The sedimentary succession of the Tremp Formation can be linked with two main stages 

of compressive tectonics (Puigdefàbregas and Souquet, 1986). The first stage occurred during the 

late Santonian–late Maastrichtian and was characterized by active tectonics, particularly intense 

during the late Santonian and Campanian, which caused the inversion of the previous Mesozoic 

rift structures and the development of a foreland basin. During this period, the basin was filled by 

mainly siliciclastic deposits which progressively passed to marine facies towards the west, where 

the open sea was located. The second stage occurred during the late Maastrichtian–early Eocene, 

this being a period of smooth tectonics and almost uniform subsidence represented 

predominantly by carbonate-marl deposits.  

The Tremp Formation has been divided into different local units by several authors. 

Cuevas (1992), and later Pujalte and Schmitz (2005), divided the series into five formations and 

four members, elevating the Tremp Formation to the category of group. However, the 

classification of the Tremp Formation as a group is not widespread within the literature and some 

authors indicate that the boundaries between the formations of this group can be confusing (Riera 

et al., 2009). For this reason, Galbrun et al. (1993) and Rosell et al. (2001) divided the Tremp 

Formation into informal units with a wider regional rank. The correspondence between the 

different units of each author is as follows (Fig. 2): “grey unit” or “Grey Garumnian” of Rosell et 

al. (2001) (Posa Formation according to Cuevas, 1992; Unit 1 according to Galbrun et al., 1993); 

“lower red unit” or “Lower Red Garumnian” of Rosell et al. (2001) (Conques Formation and 

Talarn Formation according to Cuevas, 1992; Unit 2 according to Galbrun et al., 1993); 

“Vallcebre limestones” and lateral equivalents of Rosell et al. (2001) (Suterranya Formation and 

St. Salvador de Toló Formation according to Cuevas, 1992; Unit 3 according to Galbrun et al., 

1993); “upper red unit” or “Upper Red Garumnian” of Rosell et al. (2001) (Esplugafreda 
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Formation and Claret Formation according to Cuevas, 1992; Unit 4 according to Galbrun et al., 

1993). In this study we have used the division proposed by Rosell et al. (2001) since this is the 

most widespread in the literature. Thus, the four units into which the Tremp Formation is divided 

are the following (Galbrun et al., 1993; Rosell et al., 2001, López-Martínez et al., 1999, 2006): 

“Grey unit” (Posa Formation, Cuevas, 1992): Peritidal deposits composed of grey marls, 

calcarenites and limestones. The fossil assemblage is formed by marine to freshwater taxa, such 

as charophytes, foraminifers, molluscs, ostracods, rudists, corals, plants and vertebrates (Liebau, 

1973; Álvarez-Sierra et al., 1994; Arribas et al., 1996; López-Martínez et al., 2001, 2006; Díez-

Canseco et al., 2014; Vicente et al., 2015; Canudo et al., 2016). In some sectors of the Tremp 

Basin, swampy deposits with an abundant accumulation of vegetal remains and lignite are 

observed (Oms et al., 2014). This unit was deposited in wide and shallow protected areas of 

variable salinity that are interpreted as tidal-plain, lagoonal and estuarine environments, located 

laterally and proximally to the barrier-island or deltaic deposits of the Arén Formation 

(Nagtegaal et al., 1983, Díaz-Molina, 1987; Ardèvol et al., 2000; López-Martínez et al., 2006; 

Riera et al., 2009; Díez-Canseco et al., 2014).  

“Lower red unit” (Conques Formation–Talarn Formation, Cuevas, 1992): Detrital 

deposits composed of violet, brown, ochre, greenish or reddish lutites with a high degree of 

bioturbation and alternated with brown and ochre hybrid sandstones organized in channeled or 

tabular strata. This unit may also contain grey marls and microconglomerates and, more rarely, 

limestones and gypsum. In several areas, such as the Ager and Vallcebre synclines, the top of the 

"lower red unit" is characterized by the presence of the so-called “Reptile Sandstone”, where the 

last vertebrate remains before the K/Pg boundary can be found just a few meters below the 

overlying “Vallcebre limestones” (Llompart, 1979; Masriera and Ullastre, 1983; Lopez-Martínez 
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et al., 1998; Gómez-Gras et al., 2016; Vicente et al., 2015; Canudo et al., 2016). Between the 

last levels with evidence of dinosaurs and the Danian “Vallcebre limestones” and lateral 

equivalents, there is a transitional section composed of lutitic–marly deposits and local 

intercalations of gypsum, where the presence of fossils is practically non-existent. This 

transitional section, which may contain the K/Pg boundary, is associated with a change in the 

sedimentary conditions from detrital to chemical deposits (López-Martínez et al., 2006). Among 

the fossil content of this unit, red algae, foraminifers, charophytes, ostracods, crustaceans, 

molluscs, plants and vertebrate remains have been recovered (Liebau, 1973; López Martínez et 

al., 1998, 2001, 2006; Díez-Canseco et al., 2014; Vicente et al., 2015; Canudo et al., 2016). This 

unit has been interpreted as overbank facies deposited on tidal floodplains laterally associated 

with point bars of tide-influenced meandering fluvial channels (Díaz-Molina, 1987; Eichenseer, 

1987; Cuevas, 1992; Rosell et al., 2001; López-Martínez et al., 2006; Oms et al., 2007; Riera et 

al., 2009; Díez-Canseco et al., 2014). 

“Vallcebre limestones” and lateral equivalents (Esplugafreda Formation, Cuevas, 1992): 

Carbonatic unit composed of highly recrystallized, nodular and brecciated whitish massive 

limestones. It is highly variable in thickness, ranging from being absent (Isclés, Tremp and 

Barcedana–Toló sections) or just 4 m thick (Serraduy section) up to 100 m thick (Sta. Mª de 

Meyá and Campo sections) (López-Martínez et al., 2006). The fossil content is very scarce, but 

Microcodium, charophytes, benthic and planktonic foraminifers, ostracods, molluscs, dasycladal 

algae and calcispheres may appear (López-Martínez et al., 2006; Díez-Canseco et al., 2014). 

This unit has been associated with lacustrine environments of variable salinity near the coast 

(Rosell et al., 2001; López-Martínez et al., 2006). The 87Sr/86Sr isotopic ratio and the presence 

of euhaline seawater dasycladal algae and planktonic foraminifera may indicate sporadic 
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connections of these lakes with the open sea (López-Martínez et al., 2006; Díez-Canseco et al., 

2014). Unlike the Arén Formation and the lower units of the Tremp Formation, the K/Pg 

transitional strata and the Danian “Vallcebre limestones” and lateral equivalents are isochronous 

throughout the Tremp Basin (López-Martínez et al., 2006; Vila et al., 2013). 

“Upper red unit” (Esplugafreda Formation–Claret Formation, Cuevas, 1992): This 

Paleocene unit is the most heterolithic, and is formed by a succession of lutites, sandstones, 

carbonates and gypsums. The bottom is characterized by the presence of lutites with an intense 

red color. Towards the top, the succession may contain conglomerates, paleosols and 

occasionally evaporite deposits, indicating a paleoclimatic shift towards more arid conditions. 

The presence of oncolites, stromatolites and Microcodium is also common (Rossi, 1993; Arribas 

et al., 1996; López-Martínez et al., 2006). This unit shows a new phase of detrital sedimentation 

in the basin with thick textured deposits including conglomerates, especially in the eastern sector 

of the Tremp syncline. In contrast, in the Ager syncline and the northwest sector of the Tremp 

syncline, the presence of carbonated deposits representing internal platform environments is 

more common (López-Martínez et al., 2006). 

 

Stratigraphy  

Stratigraphic succession of the Serraduy area 

The characterization of the sedimentary succession of the Tremp Basin in the Serraduy 

area is mainly derived from two detailed stratigraphic sections studied in the field, the Larra (La) 

and Barranco Serraduy (BS) profiles (Fig. 3A), an exhaustive analysis of several outcrops in the 

whole area, as well as a new detailed mapping (Fig. 3B). The Larra profile is located in the 

western sector and comprises a 67-m-thick outcropping succession, whereas the Barranco 
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Serraduy profile, which is 175 m thick, is situated in the eastern area (Fig. 3). On the basis of 

these profiles, the studied infill consists of sandstones that progressively pass into heterolithic 

deposits comprising marls, calcarenites, mudstones, sandstones and limestones. According to 

regional data, these deposits correspond to the Arén Formation and the lower part of the Tremp 

Formation, with an age range from Maastrichtian to Danian. 

The lower part of the succession corresponds to the Arén Formation and presents a well-

exposure of outcrops, about 67 m thick, in the Barranco Serraduy area (Fig. 3A). This unit 

consists of brownish fine to coarse-grained sandstones with a massive texture, with medium to 

large-scale trough cross-bedding or parallel and cross-lamination contained in m-thick tabular 

beds. The presence of fragmentary dinosaur, turtle and crocodylomorph bones at the top of this 

formation is common. The unit exhibits a coarsening-upwards trend, except for the last seven 

meters, which change to a fining-upwards trend, and the sandstones grade up into an alternation 

of greyish massive marls and brownish calcarenites that represents the transition to the Tremp 

Formation (Fig. 3A). This transition is easily recognized in the area as a whole and is 

characterized by intensive bioturbation, oxide haloes, abundant bioclasts of bivalves and isolated 

bone remains. 

The Tremp Formation is a very heterogeneous lithological unit that has been divided 

into four subunits (the “grey unit”, “lower red unit”, “Vallcebre limestones” and “upper red 

unit”). In this work, we focus only on the three lower subunits, which represent mixed 

carbonate–terrigenous deposits at the base, a middle section composed mainly of terrigenous 

deposits and an upper carbonated part. 

The basal deposits, the “grey unit” (~15 m thick), correspond to a succession of greyish 

massive marls and calcarenites in dm- to m-thick tabular strata (Fig. 3A), with bioturbation, 
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carbonate nodules, soft intraclasts and oxide haloes. Invertebrates such as bivalves, ostracods and 

gastropods, and vertebrate remains such as dinosaur and turtle bones, are common in the 

calcarenite levels. 

The “lower red unit” consists of m-thick tabular mudstone bodies with tabular or 

channeled dm- to m-thick intercalations of fine- to coarse-grained sandstones, and rare cm- to 

dm-thick calcretes and marls; isolated channels comprising very coarse-grained sandstones are 

also present. The thickness of the unit changes from 56 to 77 m between the Larra and Barranco 

Serraduy profiles respectively (Fig. 3A). The mudstones (of varied colors) are massive, with 

common bioturbation and carbonate nodule mottling. The presence of coal, amber and 

microvertebrate remains is also common in the darkish beds. The root traces are filled with sand, 

carbonates or oxidations. Occasionally, they intercalate with cm- to dm-thick lenticular strata of 

brownish fine-grained sandstones with irregular bases and vertically bioturbated towards the top. 

The brownish sandstones appear in tabular or erosive levels: the former are massive beds 

although they sometimes present parallel lamination, scattered floating pebbles and vertical 

burrows; the latter exhibit a pervasive development of sedimentary structures dominated by 

trough cross-bedding, parallel and cross lamination, and asymmetric ripples. Rare calcrete levels 

with spherical carbonate nodules or crusts and frequent oxidizations have also been recognized. 

These deposits, especially the coarse- and very coarse-grained, include most of the vertebrate 

paleontological sites in the Serraduy area, with a great variety of fossil remains including 

hadrosaurid, testudine and crocodylomorph bones, as well as hadrosaurid and crocodylomorph 

ichnites.  

The upper part of the profiles comprises a 5-m-thick tabular body of whitish limestones 

(mudstone to wackestone), with scarce fossil content mainly restricted to foraminifers and 
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charophytes. This has been ascribed to the “Vallcebre limestones” subunit (Fig. 3). Above it is 

the upper part of the Tremp Formation called the “upper red unit”. This unit is more terrigenous 

and has similar lithological characteristics to the “lower red unit”. Nevertheless, its fossil content 

is scarce, and no vertebrate remains have been recovered.  

 

Stratigraphic correlation 

The stratigraphic correlation of the area has been based mainly on photogeology, the 

accurate physical correlation of beds in the field, and the lithological features of sedimentary 

bodies. The “grey unit” and the “Vallcebre limestones” represent two distinctive rock bodies, 

and this has also allowed the physical correlation between profiles (Figs. 3B and 4). Since most 

of the studied sediments of the “lower red unit” do not clearly crop out (Fig. 4), the detailed 

physical correlation of deposits has only been possible for thick sandstone beds located along the 

subunit (Figs. 3 and 4). These sandstones form m-thick tabular packages that have been 

physically correlated from visual inspection during fieldwork, as well as from analysis of aerial 

photographs (1:18000-scale) and 1:5000-scale satellite orthoimages. 

In the area as a whole, the lower and upper boundaries of the “grey unit” and the lower 

boundary of the “Vallcebre limestones” are considered good correlation levels since: i) the 

thickness of these subunits is relatively homogeneous (Fig. 3A); ii) the contacts between subunits 

are not related with erosive surfaces; iii) the boundaries present the same lithofacies and 

sedimentary characteristics in different zones; and iv) lateral facies changes to other units are not 

recognized. Thus, these boundaries can be considered continuous and isochronous limits, at least 

in the study area, allowing their use as a regional datum. 
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On the other hand, the correlation of the “lower red unit” is based on five characteristic 

packages of sandstones, two of which can be recognized in the whole area and permit the 

correlation between the Larra and Barranco Serraduy profiles (Fig. 3A, B). Throughout the 

whole area, the first correlation level (L1 in Figs. 3 and 4) presents numerous dinosaur ichnites at 

the base and is always associated with a purple-greyish mudstone (Fig. 3A). In the western area, 

L1 comprises a tabular body of brownish fine- to medium-grained sandstones with parallel 

lamination that grade upwards to massive sandstones with bioturbation on the top. The 

underlying tabular body of grey-purple mudstones exhibits root bioturbation, vegetal remains 

and fossil vertebrates. Towards the southeast, L1 passes laterally into a thick body of greyish 

medium- to coarse-grained sandstones, which is composed of tabular and channeled strata. These 

beds are interfingered with purple bioturbated mudstones and show hadrosaurid dinosaur tracks 

at the base (Fig. 3A). 

The second level (L2 in Figs. 3 and 4) comprises fine- to medium-grained massive 

sandstones with intense pedogenization and bioturbation in the western zone; L2 shows a 

negative-upwards trend. L2 corresponds to greyish sandstones that are fine- to very coarse-

grained with trough cross-bedding, cross-lamination and ripples. This level displays sharp 

variations in thickness between the Larra and Isábena River outcrops. Towards the east, in the 

Barranco Serraduy outcrop, the variation in thickness continues to increase, and L2 forms a 

group of strata (~7 m thick) with a coarsening-upwards trend located 5 m above L1. The 

presence of hadrosaurid ichnites is also common at the base. 

Level 3 is a cm-thick bed of brown fine-grained massive sandstones with scarce lateral 

continuity. L3 is located near to the Isábena River outcrop (Fig. 3B) and is not observed in other 

areas. 
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The fourth correlation level, which is up to one meter thick, is constituted by brown 

medium-grained sandstones with parallel lamination that passes vertically into cross-lamination. 

L4 presents a characteristic small slump (~20 cm thick) at the base and massive bioturbated 

sandstones (~15 cm thick) in the upper part. This level is easily recognizable in both western and 

eastern areas, from the Isábena River outcrop to near Barranco Serraduy (Fig. 3B). 

The fifth level (L5 in Figs. 3 and 4A) is a fining-upward bed composed of 20 cm of 

greyish microconglomerates with slight channel geometry at the base and 60 cm of fine-grained 

massive sandstones with bioturbation. In the western area, from the Larra to Isábena River 

outcrops (Figs. 4A, B), this level presents good lateral continuity (Fig. 3B) and shows 

spectacular hadrosaurid dinosaur ichnites at its base. 

On the basis of the vertical arrangement of the guide levels, chronostratigraphic 

refinement is possible for the studied sediments. Comparison of the thickness of the “lower red 

unit” between the Larra and Barranco Serraduy profiles shows clear variations, the succession 

being thicker in the latter (Fig. 3A). Accordingly, the average sedimentation rate for the 

Barranco Serraduy succession was slightly higher than for the Larra section. Consequently, the 

correlation results also allow us to constrain the vertical position of paleontological sites. This 

new correlation reveals that the most recent Cretaceous vertebrate remains correspond to 

dinosaur tracks and bones in L5 (the Camino de Rin 2 site) near the Larra section, which is 

located ca. 15 m lower than the Danian “Vallcebre limestones” (Fig. 3A). 

 

Sedimentological interpretation 

Characterization of the sedimentary environments requires exhaustive sedimentological 

analysis in order to establish and interpret correctly the different facies associations not studied 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

in this work. Even so, the Serraduy area deposits may correspond with the evolution from coastal 

to continental environments, an interpretation previously proposed by several authors for the 

Tremp Basin (e.g., Eichenseer, 1987; Díaz-Molina, 1987; Cuevas, 1992; Rosell et al., 2001; 

López Martínez et al., 2006; Díaz-Molina et al., 2007; Oms et al., 2007, 2016; Riera et al., 2009; 

Villalba-Breva et al., 2012; Díez-Canseco et al., 2014; Canudo et al., 2016; Fondevilla et al., 

2016a).  

The sedimentary features, especially the sedimentary structures and grain-size 

distribution, indicate that the Arén Formation in this area corresponds with a barrier-island or 

deltaic environment. The presence of m-scale coarsening-upwards sequences, facies associations 

and stacking patterns in the studied interval are similar to those described by Navarrete et al. 

(2013) for barrier-island and washover fan deposits interbedded within mudflat lagoonal 

deposits. The Tremp Formation mainly represents terrestrial environments, but the presence of 

planktonic foraminifers (see below) indicates continuous entrances of marine water into the more 

protected areas. Thus, the lowermost subunit (“grey unit”) has been interpreted as a transitional 

marine-to-continental environment connecting tidal systems with the barrier island. The “lower 

red unit” is predominantly composed of reddish-brownish and greyish-darkish mudstones 

representative of back-barrier mudflats, whereas the brownish tabular and erosive sandstones 

represent fluvial channels and their overbank deposits in the floodplains. Thus, frequent water-

level oscillations and cyclic flooding of the mudflat area can be inferred from the sedimentary 

features. Several characteristics, such as mottling, oxide haloes and crusts, resulted from the 

migration and differential accumulation of iron, also indicating common water-table oscillations. 

In this context, the reddish colors of the mudstones suggest frequent subaerial exposure, 

probably in low water-level events. The vertical bioturbation and carbonate precipitation in the 
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traces indicate the existence of vegetation with root penetration in search of the water level 

during dry periods. Darkish and greyish mudstones were deposited under anoxic conditions that 

favored the preservation of organic matter. This facies indicates the occurrence of high water-

level periods, in which the mudflat areas were flooded. Isolated and anastomosed channeled 

sandstone bodies with freshwater charophytes (see below) indicate the existence of low-energy, 

meandering fluvial channels. Tabular, poorly sorted sandstone bodies and bioturbation traces 

filled with sands in mudstones reveal sharp flooding events related to high-energy water 

discharges. These floods occurred as a consequence of the overflow in the fluvial channels and 

the floodplain. The “Vallcebre limestones” represent the establishment of an extensive 

freshwater lake. 

 

Material and methods 

In order to ensure the replicability of this research, all the paleontological material 

figured in this study, including the vertebrate remains and foraminifers, is properly labeled with 

MPZ abbreviations (Museo Paleontológico de la Universidad de Zaragoza) and housed in the 

Museo de Ciencias Naturales de la Universidad de Zaragoza (Zaragoza, Spain). 

The methodology applied in this study (magnetostratigraphy and biostratigraphy) is 

detailed and explained in the corresponding section. 

 

Magnetostratigraphy 

Paleomagnetic sampling and laboratory procedures 

115 levels were sampled as part of the Serraduy magnetostratigraphic study, 21 from the 

Arén Formation (SB) and 94 from the Tremp Formation (SR). Both magnetostratigraphic 
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profiles were generated in the vicinity of the Barranco Serraduy (BS) stratigraphic section. SB 

consists of 6 levels of blue-grey marls from the Campo Member, and 14 levels of sandstones 

with one level of grey marls from the Arén Formation. In the SR profile, 17 levels correspond to 

the “grey unit” of marls and calcarenites of the Tremp Formation. Another 73 levels are defined 

as an alternation of red, grey and versicolor mudstones, with some levels of sandstones in the so-

called “lower red unit”. Finally, 4 levels of the Paleocene “Vallcebre limestones” were sampled 

at the top of the SR section (Fig. 5). 

The complete SB profile was sampled with a portable gas-powered and water-cooled 

drill and directly oriented in the field with a magnetic compass and an inclinometer, providing 

from 1 to 3 samples per level, each divisible into 1 to 3 standard-sized specimens. In the SR 

profile, 62 levels were drilled with a portable electrical water-cooled drill, hand samples (blocks) 

were taken from 29 levels and in 3 levels both drilled and hand samples were collected. These 

were oriented in situ with a magnetic compass. Hand samples were collected because of how 

easily broken up (being disaggregated) the finest materials corresponding to the “lower red unit” 

were. They were consolidated with sodium silicate dissolved in distilled water to try to make the 

consolidator percolate to the interior of each piece. Once hardened, about 3 cubes per block were 

sectioned with a disc cutter, maintaining the face perpendicular to the strike line and parallel to 

the dip line, both oriented in the field, as the marker for the paleomagnetic analysis. 

The sampled levels in the SB profile were established each 1 m from the SB01 to SB06 

marls, every 2–4 m at the beginning of the sandstones, and every 6 m afterward, due to the 

homogeneity of the materials. The sampled SR profile levels were separated by 1 m whenever 

possible. In total a sequence of 173 m was sampled. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Thermal (Th) and alternating field (Af) demagnetizations were carried out in the 

paleomagnetic laboratory of the University of Burgos, using a 755 superconducting 

magnetometer (2G) with an alternating field inductor demagnetizer system (for automatic Af), a 

TD48-DC (ASC) oven and a LDA3 (Agico) alternating field demagnetizer (for manual Af). A 

total of 198 samples (1 to 3 samples per level) were demagnetized with different stepwise 

temperatures and applied alternating fields according to the sample lithology. 145 of these were 

Th-demagnetized, heating up to 400–575°C for marls, sandstones, calcarenites and limestones, 

and up to 475–675°C for mudstones (several samples of all lithologies were heated up to 675°C 

in order to check their magnetic behaviors), 39 with automatic Af, 14 with manual Af trying to 

improve the accuracy of the method, and an Af protocol with an initial thermal step of 130°C to 

delete the part of the signal carried by goethite (all Af up to 100 mT). 

Principal component analysis (PCA) and great circle (GC) analysis were performed 

with Remasoft 3.0 software (Chadima and Hrouda, 2006). Virtual Geomagnetic Poles (VGPs) 

were calculated, through the isolated paleomagnetic directions considered primary. In cases 

where overlapping prevents the isolation of stable paleomagnetic components, GCs were 

calculated. Together with the stratigraphic column, the VGP latitudes obtained from PCA 

paleomagnetic directions are symbolized with a point, whereas for the primary components 

verified by GC a bar occupies the status corresponding to normal or inverse latitude   (-90° to 0° 

or 0° to 90°) (Fig. 5). 

In addition, rock-magnetic measurements were carried out at the University of Burgos 

with a variable field translation balance (VFTB). Powdered whole-rock specimens from 14 

representative samples from all lithologies were submitted to experiments on IRM acquisition 

and backfield curves, hysteresis loops and strong field magnetization versus temperature (Ms-T) 
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curves. Analysis of these measurements was performed with RockMagAnalyzer 1.0 software 

(Leonhardt, 2006). 

 

Paleomagnetic behavior 

The natural remanent magnetization (NRM) behavior was analyzed separately in 

accordance with the lithology because of the big variations among lithologies. Sandstones and 

green/violet mudstones in general show low NRM intensities (0.1–0.5 mA/m) and a 

heterogeneous paleomagnetic behavior, being paleomagnetically unstable (it is not possible to 

isolate a reliable paleomagnetic component). In marls and red beds two paleomagnetic 

components can be identified on the basis of the unblocking temperature ranges and the 

coherence of the directional data. 

Blue-grey marls 

These rocks appear below the Arén Formation (Campo Member), at the bottom of the 

Tremp Formation (“grey unit”) and intercalated with continental sediments of the Tremp 

Formation (“lower red unit”) (Fig. 5). 

Marls of the Campo Member (samples SB01-SB06 and SB11) show homogeneous 

paleomagnetic behavior, with NRM intensities between 1.1 and 1.78 mA/m, and display two 

different components in thermal (Th) demagnetization. A low-temperature component MB 

(unblocking temperatures between 250/300–450 ºC) with a northwards direction and positive 

inclinations (Fig. 6A) is isolated in all samples. This component does not go to the origin in 

some samples (Fig. 6B, C), going systematically to the southern quadrant with negative 

inclination (Fig. 6B). Great circle analysis (Fig. 6E) allows us to infer this high-temperature 

component (up to 500 ºC) with negative inclination (component MA), but this cannot be isolated 
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because of spurious component formation during heating. Alternating field (Af) demagnetization 

diagrams show only one recognizable component (6/15–40/60 mT), which corresponds with 

component MB (Fig. 6A) with a slight overlapping with MA when this appears, as can be 

observed in the equal-area demagnetization diagram (Fig. 6B), but it is noteworthy that the 

overlapped component is almost trending to the origin, preventing recognition of the presence of 

two components. 

The NRM intensity is lower in the marls of the Tremp Formation (SR samples), around 

0.4–0.5 mA/m. A low-temperature component (250–400 ºC) is recognizable, and with some 

exceptions it goes to the origin, mainly in the basal marls (SR01-SR17); this component shows 

the same behavior as the already described MB component for the SB samples. However, a few 

samples (SR-01A, SR26-1) show an overlapping of components either (i) in the definition of 

great circles (Fig. 6E), indicating the presence of a high component (Fig. 6C), or (ii) by a cluster-

end showing a south declination and negative inclination (Fig. 6D). 

Therefore, most samples of SB and SR marls show the low-temperature MB component 

(between 250/300 ºC and 350/400 ºC) with normal polarity (positive inclination towards the 

north). This component does not go to the origin because of the presence of a high-temperature 

component (up to 350/400 ºC) with reversed polarity, which cannot be isolated because of the 

formation of spurious components but is clearly evidenced by analyzing the great circles. 

According to the NRM behavior (low coercivity and unblocking temperatures between 

150–500? ºC), and the magnetic rock properties (Fig. 6F), both components are carried by 

magnetite. Thermomagnetic curves show a major growth of magnetic minerals (magnetite 

according to the Curie temperature in the cooling curve) in agreement with that observed in the 

NRM. 
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Red mudstones 

Red and orange mudstones appear throughout the Tremp Formation, mainly in the 

upper section. Most samples show low–medium NRM intensities ranging from 0.1 to 1.8 mA/m, 

but some of them have higher intensities around 3 mA/m. Low-intensity samples (~0.2–0.8 

mA/m) usually show a single component (Fig. 7A) with unblocking temperatures from 350/550 

ºC up to 620 ºC; however, the end of the component is obliterated because of a spurious 

component generated during heating. In some samples, generally those of a higher intensity (> 1 

mA/m), component A overlaps with an intermediate temperature component between 350 ºC and 

550 ºC (Fig. 7B, C); this overlapping component has low inclination and does not go to the 

origin. In these samples, component RA can be observed at temperatures up to 500 ºC (Fig. 7B). 

Finally, SR53 (Fig. 7D) shows high intensity and a single component with positive inclination 

toward the north, which can be interpreted as component RA according to its unblocking 

temperatures (550–625 ºC). 

The unblocking temperatures and high coercivity (Fig. 7) point to hematite as the carrier 

of component RA. This is in agreement with the rock magnetism experiments (Fig. 7E), which 

are characterized by a high-coercivity magnetic phase with Curie temperatures over 600 ºC. 

Differences between the cooling and the heating in the thermomagnetic curve indicate the 

growth of magnetic minerals (probably magnetite or maghemite) during heating, at temperatures 

above 600 ºC. 

 

Interpretation of the paleomagnetic components 

Carbonatic rocks show the presence of two components with different unblocking 

temperatures. Component B, carried by magnetite, is characterized by low to intermediate 
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unblocking temperatures (300–450 ºC) and does not go to the origin. Several works (e.g. Juárez 

et al., 1994; Villalaín et al., 1994; Osete et al., 2007) evidence the presence of low to 

intermediate unblocking temperatures (below 450–500 ºC) for diagenetic secondary magnetite, 

and a high-temperature component (above 450 ºC) corresponding with primary magnetite. The 

unblocking temperatures of secondary minerals are usually lower than those of primary ones. 

This is because of the small size of secondary minerals, which range from the superparamagnetic 

to the stable single domain (see Jackson and Swanson-Hysell, 2014). This suggests a secondary 

origin for component B found in the marls, but does not ensure a primary origin for the high-

temperature component since the presence of two secondary magnetizations is also possible. 

The paleopole reference for the Late Cretaceous of Iberia from the Lisbon Volcanics 

(Van der Voo and Zijderveld, 1971) corresponds to an expected direction for the section location 

of D=1.08º and I=47.39º. In spite of the low dip of the studied materials, the mean direction of 

component B is in better agreement before than after the bedding correction (BBC and ABC 

respectively, Fig. 8B). This fact agrees with a secondary origin for this component. We can thus 

consider component B to be a chemical remanent magnetization (CRM). This was acquired 

probably during the early diagenesis, but after the tilting of the series (note that the tilting is 

Maastrichian–early Paleocene [Simó et al., 1985], slightly postdating the age of the rocks). 

Component B partially obliterates the high-temperature component (A), which cannot be 

calculated because of the growth of magnetic minerals during heating. However, this is clearly 

evidenced by the demagnetization great circles. 

Comparisons between the demagnetization great circles (Fig. 8C) calculated in 

carbonates (the NW–SE GC) and in red beds (the NE–SW GC) are coherent with the calculated 
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direction of component A (Fig. 8A). This agrees with the correspondence between component A 

as calculated in red beds and the high-temperature component observed in carbonates. 

As regards the assessment of the primary nature of component A in red beds, several 

hitches appear in this work regarding the interpretation of both components: (i) the thickness of 

the Upper Cretaceous in this locality is limited; (ii) the series shows significant changes in 

lithology and coloration which can produce different behavior in recording the paleomagnetic 

components; (iii) the absence of conglomerates and a near uniform and low dip (around 20º 

towards the east) along the section preclude the use of the field test to establish the primary 

nature of one of the components; and finally (iv) the presence of only one polarity prevents the 

use of the reversal test. However, several magnetostratigraphic works performed on longer 

sections of the same rocks (both in lithology and age) of the Tremp Basin (Galbrun et al., 1993; 

Oms et al., 2007; Pereda-Suberbiola et al., 2009; Vila et al., 2011, 2012; Canudo et al., 2016; 

Fondevilla et al., 2016a) show the presence of a component in red beds with similar 

paleomagnetic behavior. Reversal and tilt tests reveal a better concordance between the 

paleomagnetic direction and the reference in these works, showing a primary origin for this 

component. In accordance with these works, therefore, we consider that the component A 

observed in red beds is probably primary and can be considered a detrital remanence (DRM) 

carried by hematite. 

 

Biostratigraphy  

Planktonic foraminifera have been the basis for the micropaleontological dating of 

Pyrenean sections, from the deep sea to the continental shelf, mainly for Cretaceous materials. In 

the South-Central Pyrenees, the dinosaur-rich sites of the Arén Formation located west of the 
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Tremp syncline have been correlated with deep marine sediments containing planktonic 

foraminifera from the uppermost Maastrichtian Abathomphalus mayaroensis (Bolli, 1951) Zone 

near Campo (López-Martínez et al., 2001). Non-reworked planktonic foraminifera from the 

Maastrichtian were found in the “lower red unit” (Tremp Formation), suggesting transport after 

death landwards from the outer/inner shelf by tidal currents (Díez-Canseco et al., 2014). This 

and other biostratigraphic studies with planktonic foraminifera (Vicente et al., 2015) have 

indicated an early to late Maastrichtian age for the “grey unit” and “lower red unit” of the Tremp 

Formation and Danian for the “Vallcebre limestones”.  

 

 Micropaleontological sampling and methodology 

For micropaleontological studies, 94 samples were analyzed from the “grey” and “lower 

red units” of the Tremp Formation and the lower part of the “Vallcebre limestones”. Rock 

samples were disaggregated in water with diluted H2O2, washed through a 63-µm sieve, and then 

oven-dried at 50°C. In each sample, between 100 and 200 specimens of foraminifers were picked 

from the residues and mounted on micropaleontological slides. Some were selected for scanning 

electron microscopy using a JEOL JSM 6400 SEM at the Microscopy Service of the Universidad 

de Zaragoza (Spain), and SEM photographs are provided in Figure 9. 

  

Foraminiferal assemblages 

Foraminifers are absent from the “grey unit” of the Tremp Formation. In the lower part 

of the “lower red unit”, all samples contain planktonic foraminifers, and benthic foraminifers are 

very scarce. There are also relatively abundant fragments of echinoderms, marine bivalves and 
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continental microfossils such as calcified charophyte fructifications. The preservation of the 

microfossils varies from poor to moderate (Fig. 9). 

In the “lower red unit” of Barranco Serraduy, planktonic foraminifers indicate mixed 

assemblages with species of different ages. Some species are exclusively Maastrichtian, such as 

Pseudoguembelina hariaensis Nederbragt, 1991 and Globotruncanita fareedi (El Naggar, 1966). 

Other species have their first record before the Maastrichtian, but their ranges span this stage 

(Heterohelix globulosa (Ehrenberg, 1840), Htx. planata (Cushman, 1938), Htx. labellosa  

Nederbragt, 1991, Htx. glabrans (Cushman, 1938), Pseudotextularia nuttalli (Voorwijk, 1937), 

Globigerinelloides yaucoensis (Pessagno, 1967), Gdes. bollii Pessagno, 1967, Gdes. praevolutus 

Petters, 1977, Globotruncana arca (Cushman, 1926), Gna. aegyptiaca Nakkady, 1950, Gna. 

bulloides Vogler, 1941, Gna. linneiana (d'Orbigny, 1839), Gna. mariei Banner and Blow, 1960, 

and Contusotruncana fornicata (Plummer, 1931)). Finally, other species predate the 

Maastrichtian (Ventilabrella eggeri Cushman, 1928, Sigalia deflaensis (Sigal, 1952), 

Hedbergella flandrini Porthault, 1970 (in Donze et al., 1970), Dicarinella primitiva (Dalbiez, 

1955), Ticinella raynaudi Sigal, 1966, Favusella washitensis (Carsey, 1926), and Whiteinella 

spp.). The small benthic foraminifera mainly consist of calcareous trochospiral plano-convex 

species (such as Anomalinoides spp. and Gyroidinoides spp.) and planispiral Lenticulina spp. 

 

Interpretation of foraminiferal faunas 

Since planktonic foraminifers are almost absent from the “grey unit”, no unequivocal 

age attributions have been obtained for this interval. Although the distinction of in situ and ex 

situ specimens is difficult, the foraminiferal assemblages identified in the “lower red unit” 

suggest that they are reworked and mixed: some of the planktonic foraminifer species identified 
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are of different ages, and most of the benthic foraminifers indicate a contradictory bathyal depth. 

The studied stratigraphical interval cannot be assigned to any biozone with reworked specimens, 

but at least a minimum age can be assigned based on the most modern species identified in these 

horizons. The presence of P. hariaensis specimens in samples 35 and 49 suggests that the last 60 

m of the “lower red unit” are late Maastrichtian in age, since the first appearance of P. hariaensis 

was calibrated at 67.3 Ma (upper part of chron C30n) according to the time-scale GTS 2012 

(Gradstein et al., 2012). 

In the “Vallcebre limestones”, a few specimens of Guembelitria cretacea Cushman, 

1933 and Guembelitria blowi Arz, Arenillas and Náñez, 2010 have been identified in samples 80 

and 94. Guembelitria is the only genus whose survival beyond the Cretaceous/Paleogene mass 

extinction event has been clearly proven (Smit, 1982). However, these specimens are probably 

reworked, as the uppermost occurrence of Guembelitria is in the lower Danian, and these 

Guembelitria specimens were found in horizons equivalent to the Suterranya Limestone 

Formation belonging to the upper Danian (Díez-Canseco et al., 2014). 

 

Vertebrate assemblage 

Considering the limited extent of the outcroppings of the Tremp Formation in the 

Serraduy area compared to the rest of the outcrops within the Tremp syncline, this sector 

represents one of the areas with the richest and most diverse vertebrate assemblages in the Tremp 

Basin. In a studied area of approximately 1.5 km2 of outcrops of the Tremp Formation, nearly 40 

paleontological sites with more than 600 vertebrate remains distributed in about 17 stratigraphic 

levels have been found (Table 1). Although most of this material is currently under study, a 

preliminary review of the fossils recovered in recent years (mainly between 2009 and 2016) has 
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allowed the identification of dinosaurs (sauropods, hadrosauroids and theropods), 

crocodylomorphs, testudines and amphibians. Within the paleontological site Camino de Rin 2, 

located in the upper part of the “lower red unit”, a bone fragment has been recovered that could 

correspond to a pterosaur mandible. However, this fossil remnant is still under laboratory 

preparation. The presence of pterosaurs in the Serraduy area thus remains uncertain. The most 

representative material recovered in the area will be described below. 

Dinosaurs 

Hadrosauroids 

The most abundant taxa recovered in Serraduy correspond to hadrosauroids, 

representing between 60% and 75% of the identified dinosaur remains. This percentage variation 

is a consequence of the doubtful assignment of some remains to Hadrosauridae? due to their 

fragmentary nature. Around 20% of the bones were classified as Dinosauria indet., being unable 

to perform a more precise taxonomic assignment until now. The distribution of hadrosauroids 

through the studied stratigraphic sections and paleontological sites is also very extensive (Fig. 1), 

it being possible to find remains from the top of the Arén Formation through to the last levels 

with vertebrates before the K/Pg boundary, within the "lower red unit" of the Tremp Formation. 

Most of the hadrosauroid remains are disarticulated and correspond to vertebral 

elements, which represent more than half of the identified bones (Fig. 10). Most vertebrae are 

caudal, although there are representative elements from most of the vertebral column. In 

addition, fragments from ribs, chevrons, femora (Fig. 11D), pubis, isolated teeth, dentaries, 

maxilla, autopodial bones (Fig. 11B), humerus, scapula, isolated teeth, tibiae (Fig. 11C), ulna 

and coracoid (Fig. 11A) have also been identified. Because most of the material is fragmentary 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

and/or poorly diagnostic, most of the remains have been assigned to Hadrosauroidea indet. and 

Hadrosauridae indet. 

One of the most interesting aspects observed in Serraduy is the joint presence of mature 

medium to large-sized hadrosaurids and mature small-sized hadrosaurids that may represent new 

insular dwarf species (Cruzado-Caballero et al., 2014; Blanco et al., 2015b; Company et al., 

2015). The hypothesis of the presence of dwarf hadrosaurids in Serraduy is based on the 

recovery of several small vertebrae with mostly fused neural arches, several diminutive limb 

bones and a histological study of several rib fragments and representative elements such as a 

humerus and a femur (Company et al., 2015). These remains represented the first case of 

dwarfism in hadrosaurids registered in the Iberian Peninsula, this being the smallest hadrosaurid 

known in Europe to date (Company et al., 2015). In addition, the large amount of recovered 

vertebrae with unfused neural arches also indicates the presence of a great number of immature 

individuals in the area. 

The presence of hadrosauroid ichnites is very widespread throughout the sector, their 

preservation as natural casts (convex hyporeliefs) being common at the base of most sandstone 

channel beds (Fig. 12). All these ichnites have been attributed to the ichnogenus 

Hadrosauropodus (Vila et al., 2013).  

In addition, some eggshell fragments have also been recovered. Due to their external 

sagenotuberculate ornamental pattern, these eggshells have been tentatively assigned to 

Spheroolithus europaeus Sellés, Vila and Galobart, 2014a. However, to confirm this assignment 

further exhaustive microscopic study will be necessary. Spheroolithus europaeus  was first 

defined near the village of Pont d'Orrit (Lleida, Spain) within the "grey unit" of the Tremp 

Formation (chron C30n, late Maastrichtian), representing the youngest oological record of 
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hadrosauroids in Eurasia (Sellés et al., 2014a). The recovered eggshells from Serraduy have been 

identified up until the lower-mid part of the "lower red unit" of the Tremp Formation (172-i/04/f 

paleontological site). If their assignment to Spheroolithus europaeus is confirmed, these 

eggshells would therefore be even more modern than those recovered at the Pont d'Orrit locality. 

Theropods 

The presence of theropods within the Serraduy area is not very abundant, representing 

between 1% and 4% of the identified dinosaur remains. These theropod bones have been found 

from the “grey unit” to the middle part of the “lower red unit” of the Tremp Formation, thus 

constituting the youngest reliable record of non-avian theropods in the Iberian Peninsula and one 

of the youngest records in Europe. 

The most important record corresponds to two isolated teeth that belong to two different 

taxa, a medium–large form and a small-sized theropod. The first specimen (MPZ 2017/804; Fig. 

11F) corresponds to a medium–large tooth with serrated carinae, which was recovered at the top 

of the "grey unit" of the Tremp Formation, very close to the 172-i/04/e paleontological site. This 

tooth is very similar to Morphotype 1 described by Torices et al. (2015) in the Spanish sites of 

Blasi (Huesca, upper Maastrichtian), Montrebei (Lleida, upper Campanian–lower Maastrichtian) 

and Laño (Burgos, upper Campanian–lower Maastrichtian). Due to its limited diagnostic value, 

this morphotype has been assigned to Theropoda indet. (López-Martínez et al., 2001; Torices et 

al., 2004, 2015; Pereda-Suberbiola et al., 2015). The second specimen corresponds to a small 

tooth with smooth carinae, which was recovered at the Larra 4 paleontological site within the 

"lower red unit" of the Tremp Formation. This tooth is very similar to the teeth assigned to 

Coelurosauria indet. from Blasi (Huesca, upper Maastrichtian), Montrebei (Lleida, upper 

Campanian–lower Maastrichtian), Laño (Burgos, upper Campanian–lower Maastrichtian) and 
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Vicari 4 (Lleida, upper Campanian) (López-Martínez et al., 2001; Torices et al., 2004, 2015;  

Pereda-Suberbiola et al., 2015). 

The other remains, also recovered in the “grey unit” and the “lower red unit” of the 

Tremp Formation, correspond to a possible cervical vertebra of an avian theropod (Cruzado-

Caballero et al., 2012) and fragmentary long bones and a vertebral fragment that may correspond 

to undetermined theropods. Nevertheless, for the proper taxonomic assignation of these remains, 

further detailed studies will be necessary. 

Sauropods 

Among the dinosaur remains, the presence of sauropods is the scarcest, amounting to 

around 1% of the identified remains. The most important item is a proximal left femur fragment 

(MPZ 99/143; Fig. 11E) assigned to Titanosauria indet. (Canudo, 2001; Vila et al., 2012). This 

femur was recovered in the "grey unit" of the Tremp Formation, representing one of the youngest 

sauropods yet documented in Eurasia (Canudo, 2001; Vila et al., 2012; Sellés et al., 2016). 

Other possible sauropod remains consist of a caudal vertebra from the Barranco de 

Serraduy 4 site (Cruzado-Caballero et al., 2012) and a proximal fragment from a big autopodial 

bone from the Camino de Fornons 1 site. However, due to the fragmentary nature of these bones, 

their assignment to Sauropoda still remains doubtful. For the proper assignation of these 

specimens, further studies as well as the recovery of new remains will be necessary. Both these 

remains appeared in the middle part of the "lower red unit", so if their assignment to Sauropoda 

is confirmed, they would be more modern than the femur, extending the presence of sauropods to 

chron C29r, as already seen in other sectors of the Tremp Basin (Sellés et al., 2016). 

 

Testudines 
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Another common clade, comprising about 5% of the remains found in Serraduy, is 

Testudines. The presence of testudines has been recognized from the top of the Arén Formation 

to the last deposits with vertebrates of the “lower red unit” of the Tremp Formation. This clade is 

represented entirely by isolated and disarticulated plates, in most cases preventing a more 

accurate identification or classification in the preliminary study, and rendering further systematic 

studies necessary. Nevertheless, when the plates are well preserved, it is possible to observe their 

smooth and brilliant ornamentation crossed by very fine dichotomic sulci, suggesting highly 

vascularized shell bones. This characteristic ornamentation pattern is widely used to recognize 

bothremydids (e.g., de Lapparent de Broin and Murelaga, 1996; Murelaga and Canudo, 2005; 

Marmi et al., 2012), so most of these plates are assigned to Bothremydidae indet. 

In addition, better-preserved plates allowed more accurate anatomical identification, and 

a left xiphiplastron and a right mesoplastron belonging to Bothremydidae from the Rim 2 site at 

the top of the Arén Formation have been recognized (Murelaga and Canudo, 2005). 

 

Crocodylomorphs 

Representing about 4% of the recovered bone remains, crocodylomorphs are one of the 

most representative taxa in Serraduy. This group of archosaurs is mainly represented by isolated 

teeth, although some ichnites, a eusuchian vertebra, osteoderm fragments and a complete skull 

have also been found (Fig. 13E). All the recovered remains have been assigned to Eusuchia. 

These have a highly extended stratigraphic distribution, remains being found from the top of the 

Arén Formation up until the last levels with vertebrates before the K/Pg boundary. 

The most important taxon corresponds to the complete skull of the eusuchian 

crocodylomorph originally erected in Serraduy with the name of Allodaposuchus subjuniperus 
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(Puértolas-Pascual et al., 2014) (MPZ 2012/288; Fig. 13E). This taxon was later assigned to the 

new genus Agaresuchus and included within Allodaposuchidae (Narváez et al., 2016), a clade of 

endemic European eusuchian crocodylomorphs with a record until the K/Pg boundary. 

Agaresuchus subjuniperus was recovered in one of the last Maastrichtian sandstone strata (Amor 

3 site), so this taxon may represent the last and youngest record of Allodaposuchidae before the 

K/Pg extinction event (Puértolas-Pascual et al., 2014). 

As regards isolated teeth, at least two different morphotypes have been distinguished. 

The first morphotype (Fig. 13A) corresponds to a slender conical tooth ornamented with well-

marked longitudinal ridges, which was found at the top of the Arén Formation (Barranco de 

Extremadura site). These tooth have been assigned to cf. Thoracosaurus (Puértolas-Pascual et 

al., 2016). This marine genus belonging to Gavialoidea is typical of the Upper Cretaceous–lower 

Paleocene of Europe and North America, which is consistent with its presence within the shallow 

marine facies of the Arén Formation. Teeth of the second morphotype (Fig. 13B, C) have been 

recovered from the “grey unit” up until the last levels with vertebrates within the “lower red 

unit” of the Tremp Formation. This morphotype corresponds to generalist conical teeth with an 

ornamentation that varies from smooth to gently longitudinally-ridged enamel. This generalist 

morphology is widely distributed within Crocodylomorpha and has little taxonomic value (e.g., 

Prasad and Broin, 2002; Turner, 2006; Andrade and Bertini, 2008; Buscalioni et al., 2008). 

However, as this dental morphology is also typical of Allodaposuchidae, the most common clade 

in Europe during the Campanian–Maastrichtian, this morphotype has been tentatively assigned to 

cf. Allodaposuchidae. Additionally, several isolated teeth similar to those present in A. 

subjuniperus were recovered in the same site where the holotype was recovered, so these teeth 

have been assigned to cf. Agaresuchus subjuniperus. 
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Other bone remains correspond to osteoderm fragments and a procoelous dorsal 

vertebra (Fig. 13D) that have been assigned to Eusuchia indet. Further evidence of 

Crocodylomorpha is the presence of about five tracks (MPZ 2012/832) composed of scratch 

marks and one pedal impression located on a fluvial channel deposit in the uppermost part of the 

“lower red unit” of the Tremp Formation (Serraduy Norte site, chron C29r). The scratch marks 

resemble Characichnos whereas the pes track has been assigned to cf. Crocodylopodus (Vila et 

al., 2015). 

 

Amphibians 

Due to their small size, amphibian remains have only been recovered by washing and 

sieving techniques. In the area of Serraduy, one of the paleontological sites with the greatest 

potential for the study of macrovertebrates and microvertebrates is Larra 4, located within the 

"lower red unit" of the Tremp Formation. This site is located in a dark grey lutite layer with a 

high organic content, where vegetal remains (wood and amber fragments), macrovertebrates 

(dinosaurs, crocodylomorphs and testudines) and microvertebrates are highly abundant. Most of 

the microvertebrate remains are very fragmentary and need a more thorough systematic study for 

their proper identification. 

Nevertheless, a very preliminary study of the micropaleontological content allowed us 

to identify several remains that may correspond with amphibians. The most outstanding remains 

are several distal parts of humeri. In spite of the low taxonomic value of the humerus (Evans and 

Milner, 1993), the large and spherical humeral ball shifted laterally and a rather long ulnar 

epicondyle allow us tentatively to assign these specimens to Discoglossidae indet., being very 
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similar to other humeri assigned to this clade in other sites within the Tremp Basin (Blain et al., 

2010; Blanco et al., 2016). 

 

Discussion 

Considering component A as primary (see “Magnetostratigraphy” section), the local 

magnetic stratigraphy of the Serraduy section can be correlated with the geomagnetic polarity 

time scale (GPTS) (Gradstein et al., 2012). According to our results, the “grey unit” and the 

“lower red unit” of the Tremp Formation can be assigned to a reverse polarity chron (Fig. 5).  

The presence of the planktonic foraminifer P. hariaensis in sample SR35 indicates that 

this level has a maximum age of 67.3 Ma (maximum age range of the species), or younger if it is 

reworked. The age range for this species is between 67.3 and 66.0 Ma, its lowermost and 

uppermost occurrences being coincident respectively with the upper part of C30n and the K/Pg 

boundary in the middle part of C29r. According to López-Martínez et al. (2006) and Díez-

Canseco et al. (2014), the “Vallcebre limestones unit” and lateral equivalents are late Danian in 

age. Because this biostratigraphic information indicates that the K/Pg boundary is located 

between the “lower red unit” and the “Vallcebre limestones unit”, all the reverse polarity section 

between levels SR35 and SR90 can thus only correspond with chron C29r (Fig. 5). As a result, 

the K/Pg boundary can be located within the last 25 m of the “lower red unit”, between the last 

horizon with dinosaur remains and the “Vallcebre limestone unit” (Fig. 5). Correlating the 

profile of Barranco Serraduy with Larra, located further west, the K/Pg boundary can be located 

with more precision within the last 5 m of the “lower red unit” (Figs. 3, 5). 

Therefore, the upper section of the “lower red unit” is well defined as reverse polarity, 

pointing to the C29r (Fig. 5). However, some inconsistencies can be observed in the middle part 
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of this formation. SR37, above the level marked by P. hariaensis, has reversed polarity 

(indicating C29r), whereas level SR53 shows normal polarity. Therefore, one part of this 

paleomagnetic information must be wrong. As regards its paleomagnetic properties, level SR35 

has similar behavior to samples from the uppermost levels, with a non-zero ending cluster up to 

500 ºC with reversed polarity. Otherwise, component RA of level SR53 (Fig. 7D) has been 

defined by its unblocking temperature range; however, it is possible that this component 

corresponds with the CRM defined as RB. The lithology of both samples can also be analyzed: 

the paleomagnetic component defined in SR35 is more reliable than that defined in SR53 

because the former is sampled in red mudstones, similar to the upper section where coherent 

paleomagnetic components appear, whereas SR53 is in a level of shale located between 

sandstones. The greater porosity of sandstones could have favored chemical processes in level 

SR53. In the light of these considerations, we consider that the section between levels SR37 and 

SR90 belongs to subchron C29r. 

The lower section of the Tremp Formation also shows reversed polarities (see 

“Magnetostratigraphy” section), so at the beginning it is possible to ascribe this to subchron C29r 

(Fig. 14). However, Fondevilla et al. (2016a) provide evidence of the presence of a major hiatus 

affecting chrons C31n, C30r and C30n in the Isona section located in the eastern sector of the 

Tremp syncline (Fig. 14), probably related to an abrupt migration of the basin depocenter. This 

would imply the presence of consecutive deposits associated with chrons C31r and C29r, with a 

hiatus lacking most of the upper Maastrichtian. Nevertheless, according to the 

magnetostratigraphic works of Pereda-Suberbiola et al. (2009) on Arén, and Canudo et al. (2016) 

on Campo, this major hiatus seems not to have affected the most western sectors of the Tremp 

Basin (Fig. 14). Therefore, the sections of Campo and Arén acquire greater relevance because 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

the “lower red unit” exposed there is the only continental record of chron C30n in the whole 

Tremp syncline (Fondevilla et al., 2016a).  

In summary, the magnetostratigraphic data presented in this work show that both the 

marls and red beds of the Tremp Formation in the Serraduy area are of reverse polarity. 

Biostratigraphic data ensure that the upper part of this formation (the last 60 m of the “lower red 

unit”) belong to chron C29r. However, although this cannot be fully confirmed for the lower part 

of the Tremp Formation (the “grey unit” and beginning of the “lower red unit”), these units 

probably also belong to the same chron C29r, unless there exists a hiatus such as that observed 

by Fondevilla et al. (2016a) in the Isona section. It should be pointed out that this hiatus has not 

been observed in Campo and Arén (Pereda-Suberbiola et al., 2009; Canudo et al., 2016), the 

sections closest to the Serraduy area. 

 

Conclusions 

In this work, a chronostratigraphic framework for the vertebrate sites of the Arén and 

Tremp Formations within the Serraduy sector of the Tremp Basin is proposed for the first time. 

The joint study of stratigraphy, field correlations, magnetostratigraphy and biostratigraphy has 

allowed most of the vertebrate sites in this area to be dated to within chron C29r, making this one 

of the areas with dinosaur sites closest to the K/Pg boundary anywhere in Europe. In addition, a 

complete faunal list of the taxa recovered in the Serraduy area is presented. This shows a great 

diversity of theropods, sauropods and hadrosaur dinosaurs, eusuchian crocodylomorphs, 

testudines, amphibians and probably pterosaurs. 

The presence of dinosaurs (ichnites and bones) in the highest levels of the series has 

pinpointed the range of the K/Pg boundary to the last 5 m of the “lower red unit” within the 
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Tremp Formation, below the “Vallcebre limestones”. This suggests a high abundance of 

hadrosaurid dinosaurs, eusuchian crocodylomorphs, amphibians and testudines just before the 

great extinction event of the Late Cretaceous. 

Although everything points to a late Maastrichtian age for the studied deposits, the 

lower half of the section unfortunately shows unclear paleomagnetic signals and inconclusive 

biostratigraphic content, so it has been assigned an undetermined polarity. The 

magnetostratigraphic results also seem to indicate the presence of a reverse polarity chron in the 

lower half of the section, yet we do not have the biostratigraphic data to be able to assign it to a 

specific chron (C31r, C30r or C29r). For this reason, the continuity of the lower part of the series 

or the presence of possible hiatuses cannot be determined. Further studies in the adjacent 

outcrops located between Serraduy and Campo (e.g. Rin or Larra sections) and between 

Serraduy and Arén (e.g. Iscles section) could be crucial to achieve more accurate knowledge of 

the chronostratigraphic framework of the northwestern-most branch of the Tremp Basin. 

In conclusion, these results show the great paleontological potential of the Serraduy 

area, which is one of the few and most important places in the world for studying, within 

continental deposits, the great extinction event which affected planet Earth at the end of the 

Cretaceous. 
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Figure captions 

Figure 1. Geographical and geological situation of the Serraduy sector (Huesca, Spain). A. 

location of the Pyrenees within the Iberian Peninsula; B. geological map of the Serraduy sector; 

the red stars indicate the areas with the highest concentration of vertebrate sites; the red 

rectangles indicate the magnetostratigraphic sections (SB, SR) studied in this work; C. composite 

stratigraphic section of the studied profiles and stratigraphic vertebrate distribution. 

 

Figure 2. Lithostratigraphic subdivision of the Tremp Formation according to different authors. 

Modified from Cuevas (1992) and Riera (2010). 

 

Figure 3. A. correlation panel of the stratigraphic profiles and vertebrate sites studied in this 

work; B. detailed geological map of the Serraduy sector and guide level locations. 

 

Figure 4. Landscape views of the main areas with outcrops and paleontological vertebrate sites in 

the Serraduy sector. A. outcrop of the Larra stratigraphic section located on the west side of the 

Isábena River; B. succession of the Arén and Tremp Formation in the sector located west of the 

Isábena River; C. succession of the Arén and Tremp Formation in the Barranco Serraduy sector 

located east of the Isábena River. Red stars point to the main areas with vertebrate sites; the 
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white dotted lines mark the contact between different units; and the colored dotted lines point to 

the location of the different guide levels. 

 

Figure 5. Lithology, paleontological site positions, and the proposed magnetostratigraphy from 

the Barranco Serraduy section. VGP latitude logs along the Arén Formation (SB) and Tremp 

Formation (SR) profiles are shown by circles (black or white) when the polarity has been 

calculated from paleomagnetic directions obtained by principal component analysis (PCA) or by 

bars (white) when it has been obtained by great circle analysis (GCA). 

 

Figure 6. A to D. demagnetization diagrams, in geographic coordinates, showing the 

paleomagnetic behaviors in representative samples of carbonatic rocks; A to B. samples from the 

SB and SR sections showing an overlap between two components with opposite direction; D. 

sample of the SR section with a normal polarity component at low temperatures and a dispersed 

high temperature cluster; E. equal area projection of the MB component and the demagnetization 

great circles calculated in these rocks, before and after bedding correction (BBC and ABC 

respectively). Note the path from normal polarity to reverse polarity followed by all samples; F. 

representative rock magnetic experiments of this lithology. From left to right, acquisition of the 

isothermal remanent magnetization (IRM), non-corrected and corrected hysteresis loop, and 

thermomagnetic curve. The low coercivity may indicate the presence of magnetite as the main 

magnetic mineral, as can be observed in the IRM and hysteresis loops; the thermomagnetic curve 

shows an important growth of magnetite up to 400ºC. 
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Figure 7. A to D. demagnetization diagrams showing, in geographic coordinates, the 

paleomagnetic behaviors in representative samples of red beds; A. components RA and RB with 

the same polarity; B and C. component RB does not go to the origin and a non-zero end cluster 

reveals component RA with reversed polarity; in SR78-2B, RA is partially demagnetized before 

the growth of the magnetic mineral during heating (up to 620ºC); D. RA and RB with normal 

polarity; E. representative rock magnetic experiments of this lithology. From left to right, IRM, 

hysteresis loop and thermomagnetic curve. The high coercivity observed in the IRM and in the 

hysteresis loop and the presence of a magnetic phase with Curie temperatures above 620ºC 

indicate the presence of hematite as the main magnetic phase. The higher magnetization of the 

cooling curve indicates the growth of magnetite during heating. 

 

Figure 8.  Equal-area projection of component A (A) and component B (B) with their respective 

Fisher means (Fisher, 1953), before and after bedding correction (BBC and ABC respectively); 

C. calculated demagnetization great circles (GC) and mean direction of both components; note 

that both components overlap with the GC mean intersection, component A being almost 

coincident with its mean. n: number of samples. NW-SW GCs correspond with carbonates and 

NE-SW GCs with red beds. 

 

Figure 9.  Some representative planktonic and benthic foraminifer species identified in the 

Barranco Serraduy section. From left to right and from top to bottom: Laeviheterohelix glabrans 

(MPZ 2018/25), Heterohelix globulosa (MPZ 2018/23), Guembelitria blowi (MPZ 2018/28), 

Hedbergella flandrini (MPZ 2018/24), Ventilabrella eggeri (MPZ 2018/22), Pseudoguembelina 

hariaensis (MPZ 2018/21), Globigerinelloides praevolutus (MPZ 2018/27), Globotruncana 
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bulloides (MPZ 2018/26), Contusotruncana fornicata (MPZ 2018/20), Favusella washitensis 

(MPZ 2018/18), Gyroidinoides sp. (MPZ 2018/19). 

 

Figure 10. Vertebrae of Hadrosauridae indet. from Serraduy. A. caudal (juvenile MPZ 2017/796 

from AM2 site); B. caudal (adult MPZ 2017/797 from LAR3 site); C. caudal (juvenile MPZ 

2017/798 from LAR3 site); D. cervical (adult? MPZ 2017/799 from LAR3 site). In 

posterior/anterior, dorsal, lateral and ventral views respectively. Scale bar = 3cm. 

 

Figure 11. Dinosaur remains from Serraduy. A. coracoid of Hadrosauridae indet. (MPZ 2017/800 

from LAR2 site) in medial and lateral views; B. phalanx of Hadrosauridae indet. (MPZ 2017/801 

from LAR3 site) in dorsal, lateral and ventral views; C. tibia (distal fragment) of Hadrosauridae 

indet. (MPZ 2017/802 from LAR3 site) in anterior, posterior and distal views; D. femur 

(proximal fragment) of Hadrosauridae indet. (MPZ 2017/803 from LAR3 site) in anterior, 

lateral, posterior, medial and proximal views; E. femur (proximal fragment) of Titanosauria 

indet. (MPZ 99/143 from femur site) in posterior view; F. teeth of Theropoda indet. (MPZ 

2017/804 from 172-i/04/e site) in lingual and labial view (white boxes show the detailed 

denticles). Scale bar without number = 3cm. 

 

Figure 12. Dinosaur ichnites of Hadrosauropodus indet. from Serraduy (Pedregal site). 

 

Figure 13. Crocodylomorph (Eusuchia) remains from Serraduy. A. teeth of cf. Thoracosaurus 

(MPZ 2017/806 from EXT site); B. teeth of cf. Allodaposuchidae (MPZ 2017/807 from DL3 

site); C. teeth of cf. Allodaposuchidae (MPZ 2017/808 from PED site); D. dorsal vertebra of 
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Eusuchia indet. (MPZ 2017/805 from LAR3B site); E. skull holotype of Agaresuchus 

subjuniperus (MPZ 2012/288) (from AM3 site).  

 

Figure 14. Chronostratigraphic framework with indication of lithostratigraphy, paleomagnetic 

data, correlation and the K/Pg transition in the main Maastrichtian South Pyrenean continental 

sections with magnetostratigraphic data. 

 

Table 1. Vertebrate faunal list for Serraduy (Huesca, Spain), upper Maastrichtian. 
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Site Abbreviation Taxa Site Abbreviation Taxa 
172-i/04/a 172-i/04/a Hadrosauridae indet. Camino Rin 2 CRIN2 Hadrosauridae? indet. 

Theropoda? indet. 
Pterosauria? indet. 

172-i/04/b 172-i/04/b Dinosauria indet. Dolor 1 DL1 Hadrosauridae? indet. 
172-i/04/c 172-i/04/c Dinosauria indet. Dolor 2 DL2 Dinosauria indet. 

Avialae? indet. 
Bothremydidae indet. 

172-i/04/d 172-i/04/d Dinosauria indet. Dolor 3 DL3 Hadrosauridae indet. 
Avialae? indet. 
Bothremydidae indet. 
cf. Allodaposuchidae 

172-i/04/e 172-i/04/e Hadrosauridae indet.  
Theropoda indet. 

Barranco 
Extremadura 

EXT Dinosauria indet. 
Hadrosauridae indet. 
Bothremydidae indet. 
cf. Thoracosaurus 

172-i/04/f 172-i/04/f Hadrosauridae indet. Fornons 1 F1 Dinosauria indet. 
Hadrosauridae indet. 

Amor 1 AM1 Dinosauria indet.  
Hadrosauridae indet.  
Bothremydidae indet. 

Fornons 2 F2 Dinosauria indet. 
Hadrosauridae? indet. 

Amor 2 AM2 Hadrosauridae indet. 
Bothremydidae indet. 

Fornons 3 F3 Dinosauria indet. 
Theropoda? indet. 

Amor 3 AM3 Dinosauria indet. 
Hadrosauridae? indet. 
Bothremydidae indet. 
Agaresuchus subjuniperus 

Larra 1 LAR1 Vertebrata indet. 
Eusuchia indet. 

Barranco Serraduy 1 BS1 Dinosauria indet. 
Hadrosauridae indet. 

Larra 2 LAR2 Dinosauria indet. 
Ornithopoda indet. 
Hadrosauridae indet. 
Bothremydidae indet. 
cf. Allodaposuchidae 

Barranco Serraduy 2 BS2 Dinosauria indet. 
Hadrosauridae indet. 

Larra 3 LAR3 Dinosauria indet. 
Hadrosauridae indet. 
Eusuchia indet. 

Barranco Serraduy 3 BS3 Vertebrata indet. Larra 4 LAR4 Hadrosauridae indet. 
Coelurosauria indet. 
Bothremydidae indet. 
cf. Allodaposuchidae 
Discoglossidae indet. 

Barranco Serraduy 4 BS4 Dinosauria indet. 
Hadrosauridae indet. 
Sauropoda indet. 
Bothremydidae indet. 
Eusuchia indet. 

Larra 5 LAR5 Hadrosauridae indet. 
 

Barranco Serraduy 5 BS5 Hadrosauridae indet. 
Bothremydidae indet. 

Larra 6 LAR6 Dinosauria indet. 
Bothremydidae indet. 

Camino Fornons 1 CF1 Dinosauria indet. 
Hadrosauridae indet. 
Theropoda? indet. 
Sauropoda? indet. 
Osteichthyes indet. 
Bothremydidae indet. 

Pedregal PED cf. Allodaposuchidae 

Camino Fornons 2 CF2 Hadrosauridae indet. 
cf. Allodaposuchidae 

Rin 1 y 2 RIN1-2 Dinosauria indet. 

Color COL Dinosauria indet. 
Hadrosauridae indet. 
Bothremydidae indet. 

San Cristobal SCRI Dinosauria indet. 
Hadrosauridae indet. 

Camino Rin 1 CRIN1 Theropoda? indet. Sierra de Sis 1 SIS1 Dinosauria indet. 
Hadrosauridae indet. 
Bothremydidae indet. 

   Sierra de Sis 2 SIS2 Dinosauria indet. 
Hadrosauridae indet. 
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