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Abstract. Surface functionalisation and protection have been used since a long time for 

improving specific properties of materials such as lubrication, water repellence, brightness, and 

for increasing durability of objects and tools. Among the different kinds of surface treatments 

used to achieve the required properties, the use of coatings is fundamental to guarantee 

substrate durability in harsh environments. Extreme working conditions of temperature, 

pressure, irradiation, wear and corrosion occur in several applications, thus very often requiring 

bulk material protection by means of coatings. In this study, three main classes of coatings 

used in extreme conditions are considered: i) hard and superhard coatings for application in 

machining tools, ii) coatings for high temperatures (thermal barrier coatings), and iii) coatings 

against corrosion. The presence of critical elements in such coatings (Cr, Y, W, Co, etc.) is 

analysed and the possibility to use CRMs-free substitutes is reviewed. The role of multilayers 

and nanocomposites in tailoring coating performances is also discussed for thermal barrier and 

superhard coatings.  
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1.  Introduction 

Profound understanding of the role of critical elements in the properties of high tech bulk and coating 

materials is a prerequisite to design new materials with reduced or no critical elements content. 

Substitution of critical raw materials (CRMs) is one of the challenges of the European Innovation 

Partnership (EIP) on Raw Materials, together with the improvement of the mining processes and the 

increase in recovery and recycling rates. The criticality of a raw material for the EU is defined basing 

on its supply risk and economic importance for the EU, which depend on geopolitical issues and can 

therefore change in a dynamic way. For this reason CRMs list is updated periodically by the EC, 

which released the latest list of CRMs in September 2017 [1]. 

 

Table 1. List of critical raw materials (CRMs) for the EU [1]. 

CRMs (as defined in 2017 by EC) 

Antimony Gallium Magnesium Scandium 

Barite Germanium Natural graphite Silicon metal 

Beryllium Hafnium Natural rubber Tantalum 

Bismuth Helium Niobium Tungsten 

Borate HREEs PGMs Vanadium 

Cobalt Indium Phosphate rock  

Fluorspar LREEs Phosphorous  

 

 

With the aim to reduce EU dependence on these raw materials, both substitution or reduction in the 

use of CRMs should be pursued, although even reduction represents often a challenging task. This 

goal becomes even more important when the considered CRM has got a high impact on environment 

and health. We have already examined the substitution of CRMs in bulk materials in a previous study 

[2], where we highlighted also the fundamental role of coatings for protection of bulk materials for 

application under extreme conditions in terms of wear, temperature and corrosion, and for saving 

critical elements. Literature is very reach of examples of high performing single layer and multilayer 

coatings, however, none of the papers reports about the role of critical elements in such coatings. In 

this study, we review on hard, thermal barrier and anticorrosion coatings, analysing CRMs content 

(Cr, Y, W, Co, etc.) and describing already existing or novel CRMs-free solutions.  

 

2. State of the art of coatings for extreme conditions and analysis of CRMs content 

 

2.1 Hard coatings for machining tools 

With the increasing of cutting tools speed, the demand for heat resistant materials has increased, 

resulting in a progressive substitution of high-speed steels with carbides and superhard materials as 

main tool constituents. The cemented carbides are a set of composite materials that consist of hard 

carbide particles in a metallic matrix. The most commonly used material is WC-Co.  It is estimated 

that more than 60% of cemented carbides tools are coated to increase their lifetime and to allow faster 

machining. Examples of coatings for cutting tools include nitrides (CrN, TiN, Ti(C)N, TiAlN, ZrN, 

ZrAlN, a-CN), diamond-like carbon (DLC), oxides (Al2O3, TiO2, etc.) and carbides (SiC, WC, VC, 

TiC, Cr3C2, BC, etc.). Many of these coatings are already CRM-free, so the quest for further optimized 

coating composition and architecture becomes important to save the CRMs contained in the 

underlying bulk tools (e.g. W and Co). Apart from economic and supply reasons, another driving force 

for Co substitution is its toxicity, since the WC‐Co mixture is considered as a possible carcinogenic 

material, according to the International Agency for Research on Cancer. 
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 Among the different coating materials used on machining tools, the most widespread are 

represented by DLC and nitride-based coatings like monolayers and multilayers based on AlTiN, 

AlCrN, TiCN, as well as quaternary coatings, which are grown by Physical Vapour Deposition (PVD) 

or Plasma Assisted Chemical Vapour Deposition (PACVD) techniques. They currently represent one 

of the best solutions due to their high thermal stability, hot hardness and oxidation resistance, and they 

can be used to coat tools made of different materials (steel alloys, cemented carbides, Ti alloys, etc.). 

In TiAlN coatings, alloying with Al improves the hardness and the oxidation resistance and the 

thermal stability of the TiN material, thanks to a dense Al2O3 scale forming on the surface of the 

coating [3]. Other alloying elements are Cr, Y, Zr, V, Si, B and Ta, where: i) Cr and Y are known for 

improving oxidation and corrosion resistance [4-6]; ii) Zr improves the wear resistance of TiN based 

coatings, stabilizes the fcc TiN lattice and forms a very thin stable oxide layer similar to Al2O3 [3,4]; 

iii) V increases TiN hardness [4,7]; iv) Si increases the hardness and chemical resistance of (Ti,Al)N 

coatings [8]; v) B in (Ti,Al)N lattice improves the lubricated cutting performance [4]; vi) Ta improves 

the hardness, thermal stability and oxidation resistance, thus increasing maximum milling time with 

respect to conventional TiAlN [9]. 

 High Velocity Oxygen Fuel (HVOF) sprayed WC-Co and WC-Co-Cr coatings deposited on high 

strength steel (HSS) are also considered as an alternative to the use of bulk WC-Co [10].  

2.2 Thermal barrier coatings 

Thermal barrier coatings (TBCs) are high refractory materials applied to metallic (generally Ni 

superalloys) surfaces of components such as gas turbine or aero-engine parts, which operate at 

elevated temperatures. These coatings are used to insulate structural components from large and 

prolonged heat loads, limiting the thermal exposure and therefore extending their durability by 

reducing oxidation and thermal fatigue. The insulating capability of TBCs enables higher operating 

temperatures and/or permits a reduction in the required amount of cooling air, thereby improving 

efficiency, reducing emission and increasing thrust/weight ratio. A typical TBC system is composed of 

a metallic bond coat adherent to the metallic substrate and a ceramic top coat (Fig. 2.). In these 

systems the main role of the superalloy substrate is to support the mechanical load. The role of the 

very thin bond coat (mainly NiCoCrAlY or NiAl based alloys) is to protect the metal substrate from 

oxidation/corrosion, particularly from oxygen and corrosive elements that penetrate the porous 

ceramic top coat. Bond coat also contains the source of elements to create the next thermally grown 

oxide (TGO) layer that provides bonding of TBC to bond coat and slows subsequent oxidation.  

 

 

 
 

Figure 1. Schematic representation of ceramic thermal barrier coatings. 
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Critical elements are contained both in the bond and top coat. The most commonly used top coat is 

Yttria Stabilized Zirconia (YZS), i.e. ZrO2 partially stabilised with about 6–8 wt % (3-4 to 6-8 mol %) 

Y2O3, usually deposited by Electron Beam Physical Vapour Deposition (EB-PVD) and Plasma Spray 

techniques.  Alumina, mullite, ceria and perovskites are also used due to their high melting point and 

low thermal conductivity [11]. Commercial zirconia powders doped with 9.5%Y2O3-5.6%Yb2O3-

5.2%Gd2O3 Metco 206A agglomerated powder have been proposed for fabrication of thermal barrier 

coatings operating at temperatures up to 1500°C and they are considered as one of the best available 

material system for thermal protection of propulsion systems for aeronautics [12]. 

State of the art of bond coat is based on MCrAlY ternary system, where M stands for Fe, Co or Ni 

[13].  

2.3 Coatings against corrosion 

According to National Association of Corrosion Engineers (NACE), worldwide cost of corrosion has 

been estimated to be nearly $2,5 trillion per year [14]. Prevention is the best practice to fight against 

corrosion. Coatings are essential for corrosion protection because they provide a physical barrier 

which impedes the access of aggressive species to the metallic substrates and/or inhibit the corrosion 

process. The chemical species largely used for long time against corrosion is Cr(VI), due to its ability 

to form a passive oxide layer (chromate conversion coating (CCC)) on the metallic substrates (e.g. Zn, 

Al, Mg based alloys). These layers not only provide an effective physical barrier against corrosive 

agents, but they have also the self-healing ability in the event of surface damage [15]. Despite its high 

economic importance, Cr was recently removed from the latest CRMs list of the EC, due to the 

decrease of its supply risk. However it is right at the edge of the criticality threshold for the EU, and it 

remains still a high value metal with a fundamental role in protection against oxidation.  In addition, 

due to its toxicity, REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) 

identified Cr(VI) among substances of very high concern (SVHC), the use of which is restricted and 

must be authorised [16]. Cr(VI) use is actually allowed in aeronautic and aerospace industries, even 

though great concern is also increasing in these sectors. 

 Cr is contained in several coatings: i) chromate conversion coatings and corrosion inhibitors in 

pigments for preventing wet/aqueous corrosion; ii) NiCrAlY materials for protection against oxidation 

in high temperature gas environments; iii) CoCrAlY for improving the resistance to sulfidation; iv) 

NiCoCrAlY to provide an acceptable balance of both oxidation and sulfidation resistance; v) thermal-

sprayed WC-CrNi, Cr3C2–NiCr, WC-CoCr, etc. for protection against corrosion, erosion, and wear. 

 

3. Beyond the state of the art: CRMs-free solutions 

Concerning the coatings for cutting tools, one of the best choices is the use of CRM-free nitride-based 

coatings like (Ti,Al)N, TiCN, etc., deposited by PVD.  Indeed, thanks to their good balance of 

hardness, wear resistance and high-temperature oxidation resistance, they represent an optimal 

improvement for protection of machining tools and mechanical components. Further enhancements in 

the properties of hard PVD coatings can be achieved by using graded layers, nanocomposite layers, 

multilayers or superlattices [17,18,19]. For example, nanocomposite superhard coatings (H>40 GPa), 

formed by nanometer size MeN particles (Me = metal element) embedded in amorphous or crystalline 

matrices, the so called “third generation ceramic coatings”, exhibit enhanced mechanical, electronic, 

magnetic and optical properties, thanks to their nanocrystalline structure made by nanometric (5-10 

nm) features.  

 Superlattices are multilayers obtained by alternating several layers of different materials with 

nanometric thickness (up to 10 nm). An example of ZrN/TiN superlattice deposited by PVD is 

reported in Fig. 3. Similar multilayers were used to coat a WC-Co tool, resulting in an increased 

milling time of about 30% [20]. Due to their enhanced mechanical properties, such coatings may be 

applied to CRM-free substrates having lower performances with respect to WC-Co, so to tailor those 

to ones necessary for cutting tools, at least in some applications. Possible CRM-free bulk materials 
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candidates are composites having NiAl matrix and ceramic reinforcement (Al2O3), that were recently 

developed by reactive sintering and successfully tested. Even though the wear resistance does not 

reach the performances of WC-Co composites, it exceeds the properties of current cold work tool 

steels without the need for heat treatment [21]. At present, these materials are relatively brittle at room 

temperature and therefore need further optimization, in terms of chemical composition and/or 

production technology, in order to achieve the necessary ductility for the application as tool materials 

[2]. 

 

 
 

Figure 2. Cross-sectional high-resolution TEM image of a ZrN/TiN multilayer [20]. 

 

 Besides the proper choice of coating composition and structure, alternative solutions to get coatings 

with further enhanced protective characteristics may be found in the use of innovative deposition 

techniques, such as the HiPIMS (High Power Impulse Magnetron Sputtering) [22, 23]. This PVD 

technique is an evolution of the conventional sputtering technique that exploits short pulses with a 

very high power, giving rise to a very high plasma density and a high ionization fraction and energy of 

the sputtered species, together with a high rate of dissociation of the gaseous species in the deposition 

chamber. Compared to other standard deposition techniques like cathodic arc and conventional 

magnetron sputtering, the HiPIMS techniques has been reported to allow the deposition of hard 

coatings presenting higher density, lower content of defects and droplets, and better adhesion to the 

coated component. Thanks to these improved properties, nowadays HiPIMS-deposited coatings are 

widely available as commercial protective coatings. 

 

 Nanostructured coatings, superlattices and functionally graded coatings are also very important to 

tailor properties of thermal barrier coatings and reduce mismatch and thermal gradients between top 

coat and bond coat, which are among the reasons of coatings’ failure [24-26]. In addition, they can 

provide a better barrier for oxygen diffusion.  

 The possible alternatives to YSZ top coats are constituted by Mullite (3Al2O3•2SiO2), La2Zr2O7, 

BaZrO3, -Al2O3, ZrO2, Al2O3-TiO2 and metal- glass composites (MGCs) [27]. Among these 

alternatives, some are CRM-free, but at present do not show comparable performances at high 

temperature with respect to YSZ. More recently, the search has been broadened by using insights from 

atomistic simulations and crystal chemistry, searching for new approaches for reflecting or scattering 

radiation and preventing it from reaching the metallic parts [28, 29]. Finally, novel compositions of 

high entropy alloys [30, 31] with reduced CRMs content, both metallic and oxides, could be 

investigated as possible bond coat and top coat, respectively.  
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 Regarding coatings against corrosion, several alternatives to CCC have been  proposed. 

Organosilane  compounds, having the  general formula RnSiX4-n (where X is the hydrolyzable group 

and R is an organofunctional group), are extensively investigated. These compounds show good 

corrosion protection properties when are deposited on different types of metal substrates: they form a 

barrier constituted by Si-O-Si networks [32-35]. Addition of corrosion inhibitors may further increase 

their corrosion resistance [36]. Highly crosslinked silane polymers made by a bis-sulfur/bis-amino 

(3/1) mixture showed good corrosion protection properties for many metals including aluminum alloys 

and galvanized steel [11].  

 Other already investigated alternatives to Cr are chemical conversion coatings of different nature: 

(i) phosphate–permanganate, fluoride and stannate for the protection of magnesium alloys [37, 38]; (ii) 

molybdates for zinc alloy [39] and aluminium alloy substrates [40]; (iii) permanganates, vanadates and 

Zr- and Ti-based coatings [40]. Some of the listed species were used as primers before the application 

of a top coat obtained by sol-gel or PVD techniques [41].  

 Recent findings showed also that compact and defect free TiO2 sol gel coatings, deposited at low 

temperature directly (i.e. without the need of a primer) on AA6082 substrate, showed improved 

corrosion resistance with respect to the uncoated alloy [42]. 

 Almost all authors who studied these solutions agree on the fact that they limitedly represent a 

viable alternative to CCC, apart from some cases where less demanding corrosion conditions are 

present.  

 In a recent work, however, the corrosion resistance of a commercial processes (PreCoat A32) on Al 

alloys was found comparable or even better than that of the widely used conventional CCC Alodine 

1200 [43].  

  Finally, much emphasis is given to self-healing and smart coatings with tailored functionalities for 

improved corrosion protection [44, 45].  

 

4. Conclusions 
Among the actions aimed to decrease the EU dependence on critical raw materials, it is important to 

find new solutions capable to replace or reduce the content of CMRs in several technological fields, 

due to reasons related to economic, supply and toxicity issues, although substitution and even 

reduction of CRMs content is difficult especially in certain applications. In particular, in this paper the 

presence of critical elements in coatings against wear, high temperature and corrosion is analysed 

together with the possibility to reduce their content. Possible alternatives are investigated in terms of 

use of other CRMs-free coatings, optimization of coating structure (nanocomposite coatings and 

superlattices), and exploitation of advanced deposition techniques, so to obtain coatings with enhanced 

performances thus allowing lower CRMs content or at least saving critical elements that are present in 

the coated components. 

Acknowledgments 

COST Action “Solutions for Critical Raw Materials under Extreme Conditions”, supported by COST 

(European Cooperation in Science and Technology) and H2020 Grant Agreement TWINNING 

692216 "The virtual Center for sustainable development of Advanced Materials operating under 

extreme conditions"- Acronym SUPERMAT are acknowledged. 

References 
[1] Study on the review of the list of Critical Raw Materials, September 2017, DOI: 10.2873/876644. 

Available online: https://publications.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-

11e7-b92d-01aa75ed71a1/language-en  

[2] Grilli ML, Bellezze T, Gamsjäger E, Rinaldi A, Novak P, Balos S, Piticescu RR  and Ruello ML 

2017 Materials, 10, 285, doi:10.3390/ma10030285 

[3] Knotek O, Bohmer M, Leyendecker T, and Yungblut F 1988 Mater. Sci. Eng. A 105/106, 481 



7

1234567890‘’“”

E-MRS 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 329 (2018) 012005 doi:10.1088/1757-899X/329/1/012005

[4] PalDey S, Deevi SC 2003 Materials Science and Engineering A, 342, 58-79 

[5] Jehn HA, Thiergarten F, Ebersbach E and Fabian D 1991 Surf. Coat. Technol. 50, 45 

[6] Zhujing J, Changqing L, Li Y and Weitao W 1991 Surf. Coat. Technol. 46, 307 

[7] Davies KE, Gan BK, McKenzie DR, Bilek MMM, Taylor MB, McCulloch DG and Latella BA 

2004 J. Phys.: Condens.  Matter 16, 7947 

[8] Takahashi K et al. 2011 Jpn. J. Appl. Phys. 50, 075802 

[9] Hollerweger R, Riedl H, Paulitsch J, Arndt M, Rachbauer R, Polcik P, Primig S and Mayrhofer PH 

2014 Surf. Coat. Technol., 257, 78 

[10] Tillmann W et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 181 012011 

[11] Cao XQ, Vassen R and Stoever D. 2004 J. Eur. Ceram. Soc., 24, 1-10 

[12] DSMTS-0099.5 – Zirconia Gadolinia Ytterbia Yttria Agglomerated and Sintered Powder, © 2017 

Oerlikon Metco, www.oerlikon.com/metco 

[13] Li WZ, Wang QM, Bao ZB, Yao Y, Gong J, Sun C and Jiang X 2008 Materials Science and 

Engineering A, 498, 487–494 

[14] Study Sets Course Toward Corrosion Management Practices to Increase Safety, Decrease $2.5 

Trillion Global Cost of Corrosion,  2016-03-07. Available online: 

https://www.nace.org/Newsroom/NACE-News/Study-Sets-Course-Toward-Corrosion-Management-

Practices-to-Increase-Safety,-Decrease-$2-5-Trillion-Global-Cost-of-Corrosion/ 

[15] Zarras P and Stenger-Smith JD 2015 Smart Inorganic and Organic Pretreatment Coatings for the 

Inhibition of Corrosion on Metals/Alloys Intelligent Coatings for Corrosion Control, Eds, A Tiwari, J 

Rawlins, LH Hihara, B Heinemann, (Elsevier, Oxford UK, Waltham, MA USA) chapter 3 pp 59-91 

[16] REACH and the impact of Hexavalent Chromium. Available online: 

http://www.sea.org.uk/blog/reach-and-the-impact-of-hexavalent-chromium.htm 

[17] Musil J 2000 Surf. Coat. Technol. 125, 322 

[18] Zhang S, Sun D, Fu Y and Du H 2003 Surf. Coat. Technol. 167, 113 

[19] Martinu L, Zabeida O and Klemberg-Sapieha JE 2010 Plasma Enhanced Chemical Vapor 

Deposition of Functional Coatings Handbook of Deposition Technologies for Films and Coatings, Ed. 

PM Martin, (Elsevier, Columbia Basin Thin Film Solutions LLC, Kennewick, WA, United States) 

chapter 9 pp 392-465 

[20] Rizzo A, Signore MA and Valerini D 2012 EAI Energia, 3, 102-108 

[21] Novák P, Šotka D, Novák M, Michalcová A, Šerák J, Vojtěch D 2011 Powder Metall., 54, 308-

313 

[22] Sarakinos K, Alami J and Konstantinidis S 2010 Surf. Coat. Technol. 204, 1661 

[23] Gudmundsson JT, Brenning N, Lundin D and Helmersson U 2012 J. Vac. Sci. Technol. A, 30, 

030801 

[24] Clarke DR and Levi CG 2003 Annual Review of Materials Research, 33, 383-417 

[25] Di Girolamo G, Blasi C, Brentari A and Schioppa M 2013, EAI Energia 1-2, 69-76 

[26] Di Girolamo G and Serra E 2015 Thermally sprayed nanostructured coatings for anti-wear and 

TBC applications: State-of-the-art and future perspectives, Anti-Abrasive Nanocoatings Current and 

Future Applications (Edition: Elsevier Ltd), pp 513-541 

[27] Huibin X and Hongbo G 2011 Thermal barrier coatings (Cambridge: Woodhead Publishing 

Limited) 

[28] Clarke DR and Phillpot SR 2005 Materialstoday, 8, 22-29 

[29] Clarke DR, Oechsner M and Padture NP 2012 MRS Bullettin, 37, 891-898 

[30] Gao MC 2013 JOM, Vol. 65, 1749-1750 

[31] Murty BS, Yeh JW and Ranganathan S 2014 High-entropy alloys (London: Butterworth-

Heinemann) 

[32] Calabrese L, Bonaccorsi L and Proverbio E 2012 J. Coat. Technol. Res., 9, 597–607 

[33] Zaferani SH, Peikari M, Zaarei D, Danaee I, Fakhraei JM and Mohammadi M 2012 Corrosion 

69(4), 372-387 

[34] Schaefer DW, Pan G and vanOoij W 2006 Los Alamos Science, 30, 172-177 



8

1234567890‘’“”

E-MRS 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 329 (2018) 012005 doi:10.1088/1757-899X/329/1/012005

[35] Brusciotti F, Snihirova DV, Xue H, Montemor MF, Lamaka SV and Ferreira MGS 2013 

Corrosion Science, 67, 82-90 

[36] Palimi MJ, Rostami M, Mahdavian M and Ramezanzadeh B 2015 J Coat Technol Res, 12, 277  

[37] Pommiers S, Frayret J, Castetbon A and Potin-Gautier M 2014 Corrosion Science, 84, 135–146 

[38] Chen XB, Birbilis N and  Abbott TB 2011 Corrosion, 67(3), 035005-1 – 035005-16 

[39] Walker DE and Wilcox GD 2008 Transactions of the Institute of Metal Finishing, 86(5), 251-259 

[40] Kulinich SA and Akhtar AS 2012 Russian Journal of NonFerrous Metals, 53(2), 176–203 

[41] Bagalà P, Lamastra FR, Kaciulis S, Mezzi A and Montesperelli G 2012 Surface & Coatings 

Technology, 206, 4855–4863 

[42] Mori S, Lamastra FR, Kaciulis S, Soltani P and Montesperelli G 2017 Corrosion Engineering 

Science and Technology, in press  

[43] Carreira AF, Pereira A M, Vaz EP, Cabral A M, Ghidini T, Pigliaru L and Rohr T, 2017 J. Coat. 

Technol. Res., 14 (4) 879–892 

[44] Cho SH, White SR, and Braun, PV 2009, Advanced Materials, 21, 645–649 

[45] Montemor M F 2014, Surface & Coatings Technology, 258, 17–37 

 

 


