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Abstract: Assignment methodologies attempt to determine the traffic flow over each network arc 

based on its characteristics and the total flow over the entire area. There are several 

methodologies—some fast and others that are more complex and require more time to complete 

the calculation. In this study, we evaluated different assignment methodologies using a computer 

simulation and tested the results in a specific case study. The results showed that the 

“all-or-nothing” methods and the incremental assignment methods generally yield results with an 

unacceptable level of error unless the traffic is divided into four or more equal parts. The method of 

successive averages (MSA) was valid starting from a relatively low number of iterations, while the 

user equilibrium methodologies (approximated using the Frank and Wolfe algorithm) were valid 

starting from an even lower number of iterations. These results may be useful to researchers in the 

field of computer simulation and planners who apply these methodologies in similar cases. 
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1. Introduction 

Traffic assignment techniques can be used to assess traffic intensities on a track or road system 

based on its physical and functional characteristics and the potential traffic that can use it. 

An assignment process has two stages. First, it is necessary to determine the possible traffic that 

can be used by the network, which is usually expressed through current and future 

origin/destination matrices. Based on this data, in the second stage of the process, this potential 

traffic is assigned to each of the sections of a given road network. There are a multitude of 

procedures for this purpose, most of which are empirical and based on statistical observations of 

user behavior, certain track conditions, and the traffic itself. Procedures with a higher level of 

precision are, of course, more complicated. However, we cannot forget that we are starting from an 

estimate of future potential traffic; therefore, each result must be studied by a decision-maker in 

order to develop appropriate contrasts and produce final results that are consistent with the 

analyzed situation. 

There are several assignment methodologies, some of which have already been compared in 

certain case studies, although usually not all at once, and only sometimes using simulation 

techniques [1,2]. The assignment stage has been analyzed at times as an intermediate problem 

between optimization and equilibrium issues [3]. We can also attempt to analyze the zonal 

distribution and assignment stages together, as was performed by Tan et al. [4] in a study in which 

the use of Intelligent Transport Systems (ITS) was incorporated. The number of possible applications 

of assignment methodologies is enormous, among which we can include their adaptation to 

multimodal networks as especially novel [5], their use to minimize the environmental impact of 

traffic [6] and the damage caused to infrastructure by traffic [7], or to optimize the process of 

searching for a place to park a vehicle [8]. In addition, if we add the use of simulation with computer 

tools to this [9,10], the number of possibilities is greatly increased. 
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However, the assignment problem is not only associated with road traffic, but also with other 

means of transport. For example, within road networks, assignment methods are applied to private 

vehicles, including taxis and autonomous vehicles and public transportation (PT). For example, 

Long et al. [11] introduced the concept of the expected rate of return of taxi drivers and performed a 

dynamic taxi traffic assignment problem supposing real-time traffic information provision; Bischoffa 

and Maciejewski [12] analyzed the possible effect of a city-wide replacement of private cars with 

autonomous taxi fleets; Heilig et al. [13] used a microscopic travel demand model to simulate the 

mode choice behavior in the assumption of the existence of a large autonomous mobility on demand 

service instead of private cars; and Poulhès and Berrada [14,15] analyzed the effect of dial-a-ride 

services on the assignment problem. Within the PT assignment problem, Liu and Ceder [16] and 

Eltved et al. [17] considered different schemes for that; Cats and Hartl [18] focused on the discomfort 

that causes congestion on PT users and how it affects their choices; and Nuzzolo and Comi [19] 

included big data issues to this modeling. 

With railway transport, there are also interesting studies that employ these techniques to 

estimate the passenger load on each route. Thus, Lin et al. [20] investigated the railway passenger 

pricing problem, supposing that operators could modify ticket prices to optimize the system’s 

performance; Xu et al. [21] proposed a dynamic assignment problem for urban rail transit networks 

considering queuing process, capacity constraints, and congestion effects; and Gao and Wu [22] 

proposed a method to calculate the proportion of passengers on each path based on the entry and 

exit time records of users. 

In the maritime domain, assignment methods are also applicable and there are several studies 

that have analyzed the assignment problem by considering traffic assignment close to seaports. 

Venturini et al. [23] and Iris et al. [24] studied the integrated berth allocation in seaport container 

terminals; Li and Jia [25] modeled the traffic scheduling problem as a mixed integer linear program 

to minimize the berthing and departure delays of vessels; Han et al. [26] studied a storage yard 

management problem if the loading and unloading activities are both heavy and concentrated; and 

Iris et al. [27] formulated a mathematical model for the containership loading problem, where the 

terminal has the right to decide which specific container to load for each slot. 

In air transportation, we can find some examples of the application of assignment methods. For 

instance, Ganić et al. [28] and Ho-Huu et al. [29] developed mathematical models of air traffic 

assignment in order to minimize the noise effects on population, and Starita et al. [30] considered 

future capacity provision in terms of the available man-hours of air traffic controllers. 

Finally, several studies have considered two or more means of transport simultaneously in a 

multimodal scenario. Thus, Yu and Guo [31] developed a tri-level combined-mode traffic 

assignment model; Pi et al. [32] included heterogeneous traffic on roads, parking availability, and 

travel modes (such as solo-driving, carpooling, ride-hailing, public transit, and park-and-ride); 

Macedo et al. [33] proposed an efficient traffic assignment, where users are not only concerned about 

travel times, but also about global and local pollutant emissions; Jiang et al. [34] included the car–

truck interaction paradox in assignment problems; and Dimitrov et al. [35] modeled the interaction 

between buses, passengers, and cars on a bus route. 

Some researchers have applied these methodologies in a specific case study, often with the 

support of computer simulation [36–39], while others have attempted to assess different techniques 

or even propose novel ones [40–45]. Among the first ones, Zhang et al. [36] integrated an 

activity-based travel demand model with a dynamic traffic assignment model for the Baltimore 

Metropolitan Council; Shafiei et al. [37] developed a simulation-based dynamic traffic assignment 

model of Melbourne, Australia; Zhu et al. [38] used dynamic traffic assignment for a case study in 

Maryland; and Kucharski and Gentile [39] applied the Information Comply Model on different 

situations, including a corridor in the North of Kraków, Poland, and the Sioux-Falls network. Within 

the latter ones, Zhang et al. [40] analyzed the calibration of dynamic traffic assignment models 

applying the extended Kalman filter; Prakash et al. [41] presented a dimensionality reduction of the 

assignment model’s calibration problem based on principal components; Du et al. [42] focused on 

the dynamic traffic assignment problem on large-scale expressway networks, especially under the 
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condition of traffic events (such as severe weather, large traffic accidents, etc.) and proposed an 

approximate solution algorithm; Lin and Chen [43] developed a simulation-based multiclass, 

multimodal traffic assignment model for evaluating the traffic control plans of planned special 

events; Batista and Leclercq [44] studied a regional dynamic traffic assignment framework for a 

macroscopic fundamental diagram considering stochasticity on both the trip lengths and the 

regional mean speed; and Bagdasar et al. [45] examined discrete and continuous optimization and 

equilibrium-type problems and made a comparison of them with the Beckmann cost function. 

Finally, we can cite some interesting studies that consider multi-class, multi-modal, and elastic 

demand traffic for assignment models. Cascetta [46] covered all the issues on traffic assignment; 

Cantarella [47] provided a highlight on traffic assignment with elastic demand; and Cantarella et al. 

[48–50] proposed an overview of solution algorithms for traffic assignment, presenting a general 

fixed-point formulation for the multi-user stochastic equilibrium assignment with variable and 

elastic demand and comparing it with other approaches. 

Following this line of research, the main objectives of this study are: (1) to develop an 

assignment model for a specific case study (the new B-40 highway in Barcelona, Spain) and 

implement it using traffic macro-simulation tools; and (2) to evaluate the influence of the use of 

different assignment models on the results and the numbers of iterations in them. 

This paper is structured as follows. After a brief introduction, Section 2 outlines the main 

techniques used in the modeling work performed in this study. Section 3 contains a description of 

the case study and the principles adopted for delimitation, zonification, and obtaining the base 

origin/destination matrix. The principles adopted for applying the general methodologies to the 

specific case study that is being analyzed are then set out in Section 4. Section 5 contains an 

evaluation of the best assignment methodology for the specific case study to be analyzed. Finally, in 

Section 6, we discuss our results and the main conclusions drawn from the full study. 

2. Methods for Traffic Assignment 

Potential users of a transportation system in which there are different alternative itineraries 

generally have incomplete information about the conditions of each section; however, they must 

make their decision with these inaccurate data. These data include the length of each segment, the 

quality of the track (in terms of layout, pavement, and safety conditions), and, finally, the degree of 

congestion at all times, which decisively affects the vehicle’s speed and, therefore, the time spent on 

the route. The possibility of knowing the above data ranges from high to low. In addition, with 

regard to congestion, the knowledge that each driver has is very subjective and is generally based on 

his/her previous experiences, since in very few cases does he/she have information about the actual 

situation. 

Typically, when choosing from several possible itineraries, we consider different types of 

factors (e.g., distance, travel time and/or cost, comfort, and toll, if any) that are usually grouped into 

a single variable called generalized cost. In practice, the process that we need to follow in order to 

assign traffic to the existing road network in a given area of study has the following steps: 

 Zone division. First, the entire study area to be analyzed must be divided into zones of more or 

less homogeneous characteristics. 

 Origin/destination matrix construction. Once the study area has been divided into zones, we 

need to construct a matrix that lists the movements of each origin/destination pair. We should 

also distinguish between light and heavy vehicles, since the conditions for the assignment of 

each type of vehicle are different. 

 Definition of road networks. Each defined zone is represented by its centroid, which is the 

fictional place that generates or attracts all trips in the area. All zones must be joined to one 

another through the existing transportation system and, if applicable, through the future one 

(constituting two separate transport networks: a current one and a future one). 

 Calculation of travel costs and/or times. For each of the sections of the considered network 

(current and future), the generalized cost of travelling along it under certain traffic conditions 

must be determined. It is desirable to calculate the costs for various traffic levels in order to take 
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into account the capacity of each segment, or even do it dynamically at each iteration of the 

process, depending on the traffic supported by each part of the network. 

 Assignment. Using the origin and destination data, it is advisable to calculate the traffic 

intensities for the existing network in the current situation, and then compare the results 

obtained with the traffic accounts that have been made. Once this check has been carried out, 

each of the movements in the origin/destination matrix is assigned to the current and future 

networks. A separate assignment should be performed for light and heavy vehicles and for 

various driving conditions. The application of computer tools to traffic assignment models has 

resulted in the creation of new methods that introduce a greater number of theoretical 

complications but are perfectly applicable nowadays. 

Among the wide variety of methods for traffic assignment (or methods for calculating the traffic 

load on the network), we used the following, which are those that are used in practice in most cases 

[51]: 

 all-or-nothing assignment 

 stochastic assignment 

 simulation methodologies 

 proportion-based methodologies 

 assignment with congestion 

 wardrop equilibrium 

 speed adaptation 

 incremental assignment 

 the successive averages method  

2.1. All-or-Nothing Assignment 

This is the simplest of all assignment methods and results from the load of all journeys to the 

minimum cost path between the nodes. The costs are initially fixed for all segments in the network: 

i.e., the speed/flow ratio function is not considered. 

While it is simple, it has significant drawbacks. It is an unstable method because small changes 

in the travel time of a segment can drastically change which routes are chosen to form the minimum 

cost path. This method ignores limits on the capacity of each segment and the number of times that 

they have been used in the assignment, so the result may result in little relation to the real flow in the 

network. In addition, it does not allow for variations between users. For these reasons, if in a study 

we include a new alternative route and use this methodology, we usually find that all trips head for 

the new path (the so-called “vacuuming effect”), when, in reality, there will be a distribution of 

travel through the segments of the network. 

A number of modifications have been made to this “base” methodology, such as the one by Lee 

and Oduor [52], which includes parameters from a GIS (Geographic Information System) network 

that improve the model’s results. 

2.2. Stochastic Assignment 

Stochastic assignment distributes the trips of each O/D (Origin/Destination) pair between 

different paths of the multiple alternatives that connect them. We can sort these methodologies into 

two kinds: those based on simulation and those based on proportions. 

In simulation-based methodologies, which often use the Monte Carlo simulation [53] to 

represent the variability among users in terms of their perception of network costs, the following 

assumptions are often made: 

 For each segment, it is necessary to differentiate the objective costs, which are measured or 

estimated by an observer (modeler), from the subjective costs, which are perceived by each 

user. It is accepted that the target cost roughly matches the average of the subjective costs, 
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which are randomly distributed according to a given probability function. By analyzing the 

literature on this topic, we can find different assumptions regarding the distribution of these 

subjective costs. For example, Burrel [53] adopts a uniform distribution, while other authors 

adopt a normal distribution. 

 The distributions of costs perceived by users are independent. 

 Users choose the route that minimizes their perceived travel cost: i.e., the sum of the costs of 

each used section. 

Although these methods are simple and relatively quick to apply, they have certain drawbacks. 

For instance, the assumption that the perceived costs of each section are independent may not be 

true when users have a certain predisposition to the use of certain types of infrastructure 

(high-capacity highways, as an example). In addition, the effect of congestion is not explicitly taken 

into account. However, these methods do allow us to distribute the trips in such a way that the 

“optimal” paths for the modeler turn out to be the ones with the highest amount of traffic; however, 

they do not convey the total number of trips. Moreover, it is not necessary to know the flow–speed 

functions of each section, which makes these methods easier to apply, although sometimes this can 

be a limitation. 

In proportion-based methods, as their name suggests, the fraction of trips assigned to a 

particular path is equal to the probability of choosing it, which is calculated using a logit-type route 

choice model. The lower the generalized cost of one path as compared with the others, the greater its 

chance of being chosen. However, with this methodology, the only alternative paths that have traffic 

are those that are considered to be “reasonable”—that is, those that separate the user from the origin 

point and bring them to the destination point. The travel time for each segment in a stochastic 

assignment is a fixed set of input data and is not dependent on the volume that it supports. 

Therefore, these methods are not equilibrium methods, nor are they valid in situations of congestion. 

According to the single path method [54], the trips between an i–j origin/destination pair along 

the r-path, Tijr, would result in: 

���� = ���

�������

∑ �������
�

 (1) 

where Tij is the total number of trips from i to j, Cijk is the generalized cost from i to j using the k-path, 

Ω is a parameter (usually 1), and k is the number of reasonable paths from i to j. Ω can be used to 

control the distribution of trips between routes; thus, depending on their (always positive) value, 

cheaper routes tend to concentrate trips, or, on the contrary, distribute them more uniformly among 

the possible reasonable paths. 

2.3. Assignment with Congestion 

Regarding congestion-side assignment techniques, the methodologies that researchers most 

commonly use when requiring an adequate level of detail are equilibrium methods. These methods 

take into account the dependence between the flow of a section and its generalized travel cost, and 

calculate both of them simultaneously so that they are consistent. Equilibrium algorithms require the 

iteration of flow assignments and the recalculation of travel times. Despite the additional 

computational load, equilibrium methods are almost always preferable to other assignment 

methods. 

The main behavioral assumptions are that each traveler has all of the information about the 

attributes of network alternatives, all travelers choose routes that minimize their travel time or cost, 

and all travelers—of the same category—assign the same value to all of the network attributes. 

According to the first equilibrium principle, which was proposed by Wardrop [55] and is called 

“user equilibrium” (UE), no individual traveler can reduce his/her travel time unilaterally by 

changing his/her path [56]. One consequence of the UE principle is that all of the roads that an O/D 

pair uses have the same minimum cost, while unused roads have equal or higher costs. 

Unfortunately, this is not an absolutely realistic description of congested traffic networks, although 

it can be considered to be sufficiently approximate. The mathematical notation for these expressions 
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is as follows (bearing in mind that, in addition, the conditions of continuity, conservation, and 

non-negativity of flows must be met): 

∀� ∈ � → �� �
= �� ∀� ∈ �� / ℎ� > 0

≥ �� ∀� ∈ �� / ℎ� = 0
 (2) 

where cp is the unit cost in the equilibrium state, Pw is the set of paths that connect the pair w, and hp 

is the flow of path p. 

In addition, Wardrop [55] proposed a second alternative to assigning traffic to the network, 

which takes the name of “system equilibrium.” According to this alternative, under balanced 

conditions, traffic should be distributed so that the total cost of operation of the network is the 

minimum possible cost. Computationally, it is similar to the first principle, as expressed in Equation 

(2), but it replaces unit costs with marginal costs: 

���(��) =
���� ∙ ��(��)�

���
 (3) 

 ����ℎ�� =
� �ℎ� ∙ ���ℎ���

�ℎ�

  (4) 

where fa and hp are the flows of section a and path p, respectively, CMa and CMp are their respective 

marginal costs, and ca and cp are their respective unit costs. 

In either case (the first principle is most commonly used, since it responds more to the actual 

“self-interested” behavior of users), we obtain a system of equations, the solution of which would be 

the flows in sections or on paths. 

Another type of model is that of speed adaptation. The simplest of these models, called direct 

adaptation, is based on all-or-nothing methodologies. However, it differs from them in that, once it 

assigns traffic, it recalculates the travel times or costs of each section, and then reapplies the 

all-or-nothing method with the new values. This process can be iterated indefinitely. However, this 

approach has a major drawback, as the selected paths usually change at each iteration, and the 

method does not converge to a single solution. 

Therefore, in order to try to reduce these oscillations, a methodology was proposed that uses 

the average of the speeds of two or more all-or-nothing assignments in each iteration. This 

methodology, called speed-weighted adaptation, is not a real improvement, as it continues to assign 

all traffic to a single minimum path, which is also usually different in each iteration. 

The incremental assignment methodologies are, again, based on the all-or-nothing concept. In 

this case, however, they introduce a significant improvement by making the results more realistic. In 

the first step, the demand matrix is split into parts (not necessarily equal ones). The first portion is 

assigned using the all-or-nothing method and, once the flows are entered, the travel times of each 

section are recalculated. Then, with the new travel times, the second fraction of the demand matrix is 

allocated using the all-or-nothing method, and the travel times of each section are recalculated again. 

This continues until all of the fractions have been assigned. Commonly used values for the fractions 

are [51]: 0.4, 0.3, 0.2, and 0.1. The end result provides us with flows that are distributed between 

routes and not assigned in their total to the initially shorter one, which more closely approximates 

reality. 

Theoretically, the larger the number of fractions considered, the more likely it is that trips will 

be distributed among a greater number of roads. However, even if the demand matrix is divided 

into very small fractions, this method may never converge to the solution when using the Wardrop 

balance, as the flow that is already assigned to a section cannot be suppressed or modified. In any 

case, it is clear that its simplicity and ease of use and the possibility of interpreting its results as the 

accumulation of congestion during peak periods make it an interesting method. 

Finally, the method of successive averages (MSA) is another variant of the all-or-nothing 

method. In each iteration, the flow of a section is calculated as a linear combination of the flows 
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assigned in the previous iterations and the auxiliary flow resulting from an all-or-nothing 

assignment in that iteration. Thus, the resulting flow in each iteration is: 

��
� = (1 − ∅)��

��� + ∅�� (5) 

where Van is the flow of section a in iteration n, Fa is the auxiliary flow in section a from an 

all-or-nothing assignment, and ϕ is a value between 0 and 1. The different variations of this 

algorithm lie in the value of the parameter ϕ. One approach is to assign it a fixed value of 0.5. 

However, one of the best-performing techniques [57] assigns a value of ϕ = 1/n. In this situation, each 

auxiliary flow Fa always has the same weight, and that is why it is called the method of successive 

averages (MSA). In fact, it has been demonstrated [56] that, with this value, it is possible to obtain a 

convergent solution with Wardrop’s equilibrium principles. 

Frank and Wolfe’s algorithm [58] aims to determine the optimal values of ϕ in order to ensure a 

rapid convergence of the MSA methods with the user equilibrium principle. The problem of 

searching for “the lowest point of the valley on a day of thick fog” is often used as an allegory to 

explain it [51]: 

 Since we do not know the optimal downward direction in global terms, we start by descending 

to where it looks optimal at that point. 

 We continue descending until the slope starts to rise again. 

 We stop at that point, look again for a new downward direction, and take it. We continue and 

repeat the previous step. 

 We continue like this until there are no downward directions. By that time, we will have 

reached the bottom of the valley. 

In our case, in each iteration of the MSA method, a feasible solution (equivalent to a position in 

the valley) was obtained. The all-or-nothing assignment is the one that marks the direction of 

descent. The Frank–Wolfe algorithm tends to converge quickly in the first few iterations; however, it 

will converge more slowly as it approaches the optimal value [59]. 

3. Case Study 

In the study report of the Barcelona Orbital Highway B-40 (from Terrassa to Granollers (link 

with AP-7/C60 roads)) it was necessary to carry out a traffic study in Barcelona, Spain to analyze the 

different considered alternatives. This traffic study was divided into two phases, each with a 

different scope: 

 Phase A. This phase included a comprehensive background study and the collection of 

numerous previous traffic, mobility, urban planning, and socio-economic data. 

 Phase B. This phase contained the traffic study itself, including the complete modeling of the 

network, the network’s simulation via a computer, and the final results and conclusions. 

In November, 2017, Phase A of the study was conducted. In September, 2018, Phase B was 

completed. We used the results obtained in this traffic study as the basis for a further assessment of 

the influence of the used type of model on the level of observed error. 

In total terms, the road network of Catalonia (Spain) consists of 12,076 km of tracks, of which 

1648 km are high capacity. The regional government is responsible for 50.4% of these tracks, the local 

government is responsible for 34.8% of them, and the country’s government is responsible for 14.9% 

of them [60]. 

For the analysis of traffic in the area, all of the roads parallel and perpendicular to the new 

network were considered, regardless of their ownership. We collected data from the Ministry of 

Development of Spain [61] and the Government of Catalonia [62]. In particular, we collected 

information from 16 metering stations belonging to the Ministry of Development (three of them 

permanent ones) and 42 stations of the Government of Catalonia. 
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3.1. Zonification 

Seventeen (17) municipalities were directly affected by the layout of the different considered 

corridors. All 17 belonged to the province of Barcelona (Spain). However, as the study area 

obviously could not be limited to these municipalities, we extended it to a much larger territorial 

area that included the entire province of Barcelona, the neighboring provinces, and the rest of Spain. 

Therefore, we defined two distinct areas: 

 The internal area, which incorporated the areas on which the new infrastructure had a direct 

impact. This area included the municipalities directly affected by the new infrastructure and 

almost the entire Metropolitan Area of Barcelona. 

 The external area, which incorporated some areas that supported penetration or crossing trips 

and usually contained more than one municipality. In the external area, we had large areas that 

modeled long-distance relationships in the corridor, such as trips from the Mediterranean area 

or Portugal to Europe or Girona.  

The model consisted of 38 zones (34 internal zones plus four external macro zones), with 

municipal disaggregation in the area most directly influenced by the new highway, and with less 

detail when moving away from the area of action. All areas were composed of individual 

municipalities or aggregations thereof. The final zonification set is shown in Figure 1. 

  
(a) (b) 

Figure 1. Geographical distribution of zones. (a) The whole of Spain; (b) Catalonia in detail. 

3.2. Determining the Basic Origin/Destination Matrix 

The main source of data used in the project was anonymized mobile phone data from a network 

operator with an important market share of total users in Spain. To do so, information on the 

geolocated positions of mobile devices was gathered and recorded during March, 2018. The study 

population consisted of residents of Spain over 16 years old. The resulting data from this process 

were: four origin/destination matrices for light vehicles (with different travel reasons) and one 

origin/destination matrix for heavy vehicles on an average working day. 

After adding the different travel reasons, a global origin/destination matrix was obtained for an 

average working day. Finally, based on data collected from the Movilia survey [63], we noted that 

the proportion of private vehicle travel on a working day was 40.6%, and that the average occupancy 

of vehicles was 1.22 people/vehicle on a working day. Taking into account all of these corrective 

elements, the final base matrices of light and heavy vehicles were obtained for the 38 considered 

zones. These tables were found to yield values similar to those obtained in the Movilia survey for the 

province of Barcelona, which gave us some confidence in the reliability of the process. 
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However, when applying these matrices to the network model, the traffic values recorded at the 

actual metering stations were not accurately reproduced. Therefore, we needed to make one last 

adjustment after developing the offer model (or network model). 

4. Methodological Application 

This section describes the particularities of the methodology that we used for the modeling in 

the case study. We differentiate between an offer model (a model of the road network on which the 

future highway is framed) and an assignment traffic model (consisting of a choice model with 

multiple paths according to the generalized cost). 

4.1. Network Model 

The offer model consists of a representative structure of the characteristics of the road network 

on which the travel matrices assignment was to be carried out. We included, as prescribed by 

Spanish regulations [64], all of the sections of roads belonging to corridors, from which the new road 

could take a significant amount of traffic, all of the sections of roads that connected the new road 

with alternative corridors, all of the roads that crossed the new road, and all of the connections to the 

traffic generation/attraction centers in the immediate area. 

In other words, all of the main types of road infrastructure included in the new road’s area of 

influence were modeled. The scenario was complemented by the inclusion of other roads of the 

province of Barcelona that could potentially be in competition with the new infrastructure or may 

have influenced the results of the model. Furthermore, sections where movement was free were 

distinguished from those where a toll was applied. This incorporated an additional cost into the 

latter sections depending on the travelled distance. 

Figure 2 shows the explanatory graph of the modeled network and the connections of the 

centroids on it. 

 

Figure 2. The base road network. 

In total, the modeled network consisted of 1232 sections and 519 intersections and had a total 

length of 1593 km (3251 km if we divided the roads by lane). Considering that the total length of the 

road network of the province of Barcelona was 3929 km during the same period, these data reflect 

the high degree of detail achieved in this study. 
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4.2. Traffic Assignment Model 

The network model was implemented using the AIMSUN software. In this case, we used 

macro-simulation tools, as they have been adapted for studies in which the size of the study area is 

large. Each section of the network was delineated in this software from the basic information 

contained in the OpenStreetMap platform [65], updating the new or modified infrastructures with 

respect to it if necessary. The generalized cost of each section was determined using a function that 

considered the economic cost, the cost of spent time, and other variables, such as toll rates, if needed. 

The general expression of the unit generalized cost was: 

�� =
������� ∙ ���

60
+ ������� �� ∙ �����ℎ (6) 

where SVT is the subjective value of time. The average value of time was extracted from the Spanish 

regulations [66], which set a value of 23.03 euros/h for the year 2013, which we updated in 

accordance with the official Euribor [67]. 

The model assigned both types of trips—light vehicle trips and heavy vehicle trips—together to 

the network by applying an equivalence factor, which, in our study, was initially equal to 3.0, as this 

value corresponded to undulating terrain in the Highway Capacity Manual [68]. The network was 

simulated over various assignment models, and the results obtained with each of them were 

compared with the actual data from the existing metering stations. 

5. Results 

In this section, we compare the assignment models described in Section 2 in order to initiate a 

brief discussion on the quality of the different alternatives. Specifically, we performed experiments 

with five types of static traffic assignment (all-or-nothing, stochastic assignment with a 

simulation-based method, the method of successive averages (MSA), incremental assignment, and 

user equilibrium, applying the Frank and Wolfe algorithm). We compare the results obtained with 

each of these methodologies with the traffic data that were actually measured by the detectors in the 

network. We also qualitatively assess the ability of each methodology to estimate the traffic flow in 

the modeled network. To this end, we followed the guidelines established by Spanish legislation 

[64], which indicate that a valid model satisfies two conditions: 

 Regression analysis. A scatter plot should be developed containing the pairs of traffic volume 

values obtained in each section by the model (vertical axis) and by the actual observations in 

metering stations (horizontal axis). Above it, a regression line must be adjusted, where the slope 

value should be close to 1, the intercept value on the vertical axis should be close to 0 (compared 

with the analyzed traffic volume ranges), and the coefficient of determination R2 should be 

greater than 0.7. 

 Root–mean–square error (RMSE) index. The total set of observations should be divided into 

two groups: a “contrast” sample containing at least 10% of the values and a sample containing 

the rest of the values. For each group, the following indicator should be calculated, and the 

values in all cases should be less than 30%: 

%���� = 100
�∑(�� − ��)�

� − 1
∑ ��

�

 (7) 

where Ei is the estimated flow by the model, Oi is the observed flow in the metering station, and 

N is the number of observations. In our case study, the data were divided into a sample 

containing 29 observations (representing 28% of the total data) and a sample containing the 

remaining 73 observations. These proportions were used in all considered models. 
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5.1. All-or-Nothing Assignment 

By comparing the data recorded by the metering stations with those estimated by the model, we 

obtained Figure 3. A regression analysis was performed between the observed and the estimated 

values. In Figure 3, the estimated values are shown on the vertical axis and the observed ones are 

shown on the horizontal axis. We found an R2 coefficient of 80.1% for light vehicles and an R2 

coefficient of 69.1% for heavy vehicles. Since the value for heavy vehicles was less than 0.7 [64], this 

methodology can be directly discarded in the current case. 

In addition, the RMSE index was calculated, resulting in a value of 27.6% for the sample of 29 

observations, and a value of 43.3% for the sample of 73 observations. These results were also 

inadmissible [59], so we again arrived at the above conclusion. 

 

Figure 3. All-or-nothing assignment: regression analysis. 

5.2. Stochastic Assignment with a Simulation-Based Method 

For the application of this methodology, we tested seven different utility functions. All of these 

functions were dependent on the generalized cost of travel and were calculated according to 

Equation (6) with a 95% level of confidence. These functions are shown in Table 1. 

Table 1. Stochastic assignment: utility functions. 

Function Equation 

U1a  ���� = 100
���

�   

U1b  ���� = 100
���

�.��   

U1c  ���� = 100
���

��   

U2a  ���� = −0.1���  

U2b  ���� = −0.3���  

U2c  ���� = −0.5���  

U2d  ���� = −���  

where Uijr is the utility within path r for trips from i to j and cij is the generalized cost of the trip from i to j. 

After comparing the data recorded in the metering station with the estimated values from the 

model, the results shown in Table 2 were obtained by a regression analysis. Table 2 shows that, in 

general terms, this methodology did not allow us to obtain a sufficient degree of approximation to 

the actual situation. Only the U2d utility function yielded admissible R2 coefficients [64]. Table 3 

contains the results of the calculation of the RMSE indices for each considered utility function. In this 

case, there was no utility function that yielded values lower than 30% in all cases. Therefore, this 

methodology should also be discarded in the current case study. 
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Table 2. Stochastic assignment: regression analysis. 

Utility 

Function 

Light Vehicles Heavy Vehicles 

Equation R2 Equation R2 

U1a y = 1.0312x − 753.67 0.7886 y = 0.8523x + 1296.8 0.6146 

U1b y = 1.0258x − 41.031 0.7808 y = 0.889x + 1563.3 0.5308 

U1c y = 1.02x + 553.03 0.7738 y = 0.9241x + 1690 0.4754 

U2a y = 1.7822x − 9943.3 0.715 y = 0.7287x + 2677.2 0.2442 

U2b y = 1.6037x − 7780.3 0.7405 y = 0.7797x + 1954.1 0.4494 

U2c y = 1.4134x − 5076.1 0.7688 y = 0.8021x + 1578.5 0.5765 

U2d y = 1.1243x − 975.06 0.7969 y = 0.92x + 927.58 0.7445 

Table 3. Stochastic assignment: root–mean–square error (RMSE) index. 

Utility Function Sample Rest 

U1a 25.5% 43.5% 

U1b 26.9% 45.5% 

U1c 28.2% 47.6% 

U2a 87.5% 108.7% 

U2b 65.5% 90.2% 

U2c 43.2% 72.1% 

U2d 20.9% 49.1% 

5.3. Incremental Assignment 

For this methodology, we tested six different configurations. In the first five configurations, the 

demand was divided equally—specifically, into 2, 3, 4, 5, and 10 parts, respectively. In the sixth 

configuration, we used the scheme proposed by Ortúzar and Willumsen [51] with declining 

proportions (40%–30%–20%–10%). 

Similar to the previous cases, after comparing the data recorded by the metering stations with 

those estimated using the model, the results shown in Table 4 were obtained by a regression 

analysis. Table 4 shows that all of the considered schemes yielded admissible R2 coefficients [64]. On 

the other hand, Table 5 shows the results of the calculation of the RMSE indices in each analyzed 

case. This time, we can see that only homogeneous partitions with four or more divisions yielded 

values less than 30%, so they were the only permissible ones [64]. Therefore, this methodology can 

be accepted, but only in the case of four or more homogeneous partitions. 

Table 4. Incremental assignment: regression analysis. 

Partitions 
Light Vehicles Heavy Vehicles 

Equation R2 Equation R2 

2 x 50% y = 1.0539x − 1335.1 0.8691 y = 0.8557x + 610.06 0.7918 

3 x 33% y = 1.0528x − 1670.4 0.8872 y = 0.85x + 607.36 0.8046 

4 x 25% y = 1.0436x − 863.34 0.8984 y = 0.8692x + 559.38 0.8429 

5 x 20% y = 1.0345x − 642.87 0.9049 y = 0.8503x + 646.15 0.824 

10 x 10% y = 1.0389x + 475.52 0.8976 y = 0.8632x + 604.35 0.8466 

40–30–20–10% y = 1.0381x + 475.58 0.883 y = 0.8519x + 654.53 0.8162 

Table 5. Incremental assignment: RMSE index. 

Partitions Sample Rest 

2 x 50% 21.4% 34.7% 

3 x 33% 22.4% 31.0% 

4 x 25% 20.3% 29.1% 

5 x 20% 19.4% 28.0% 
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10 x 10% 18.8% 29.3% 

40–30–20–10% 18.3% 31.7% 

5.4. Method of Successive Averages (MSA) 

For this methodology, we tested five different configurations with a maximum number of 5, 10, 

20, 50, and 100 iterations to determine the value needed to achieve the required level of detail [64].  

Table 6 shows the results of the regression analysis. The results showed that all of the 

considered schemes yielded admissible R2 coefficients [64]. Table 7 shows the evolution of the RMSE 

indices based on the number of iterations. From Table 7, we can see that all configurations with 10 or 

more iterations yielded permissible values [64]. 

Finally, Figure 4 shows a summary of the evolution of these indices based on the number of 

iterations. We can see there that the level of accuracy increased rapidly over the first several 

iterations, and then remained practically stagnant even though the number of iterations significantly 

increased. 

Table 6. Method of successive averages (MSA) assignment: regression analysis. 

No Iterations 
Light Vehicles Heavy Vehicles 

Equation R2 Equation R2 

5 y = 1.031x + 4306.5 0.864 y = 0.8644x + 718.37 0.8615 

10 y = 1.0257x + 2670.5 0.9153 y = 0.8799x + 602.54 0.8826 

20 y = 0.9967x + 2370.5 0.9324 y = 0.8965x + 510.79 0.8866 

50 y = 0.9872x + 1888.3 0.9341 y = 0.9095x + 440.84 0.888 

100 y = 0.9861x + 1671.5 0.9335 y = 0.9143x + 412.01 0.8893 

Table 7. MSA assignment: RMSE index. 

No Iterations Sample Rest 

5 21.6% 37.1% 

10 15.5% 28.8% 

20 14.3% 24.3% 

50 14.9% 23.0% 

100 15.3% 22.8% 

 

Figure 4. MSA assignment: comparison by number of iterations. 

5.5. User Equilibrium Using the Frank and Wolfe Algorithm 

As in the previous case, the main issue to consider was the maximum number of iterations with 

which to limit the process. Again, we tested five different configurations with a maximum number 

of 5, 10, 20, 50, and 100 iterations. 

After comparing the data recorded by the metering stations with those estimated using the 

model, the results shown in Table 8 were obtained by a regression analysis. Table 9 shows the 
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evolution of the RMSE indices based on the number of iterations. Tables 8 and 9 show that all of the 

considered schemes yielded admissible R2 coefficients and that all configurations, even the one that 

only had five iterations, yielded adequate RMSE values [64]. 

Finally, Figure 5 shows that the level of accuracy increased even more rapidly over the first 

several iterations than in the MSA algorithm, and then remained practically stagnant even though 

the number of iterations significantly increased. This finding was consistent with those of Arezki 

and Van Vliet [59]. 

Table 8. Equilibrium assignment: regression analysis. 

No Iterations 
Light Vehicles Heavy Vehicles 

Equation R2 Equation R2 

5 y = 0.9809x + 3849.9 0.8889 y = 0.8544x + 733.41 0.8417 

10 y = 1.0006x + 2551.3 0.9224 y = 0.8867x + 578.03 0.8784 

20 y = 0.9917x + 2008 0.9324 y = 0.908x + 467.01 0.8876 

50 y = 0.9749x + 2019.3 0.9329 y = 0.907x + 444.57 0.8874 

100 y = 0.9784x + 1752.4 0.9325 y = 0.9143x + 410.07 0.8893 

Table 9. Equilibrium assignment: RMSE index. 

No Iterations. Sample Rest 

5 17.5% 29.8% 

10 15.5% 25.8% 

20 14.8% 23.6% 

50 15.4% 22.7% 

100 15.6% 22.7% 

 

Figure 5. Equilibrium assignment: comparison by number of iterations. 

6. Discussion and Conclusions 

From our analysis, we can draw the following conclusions: 

 The all-or-nothing and stochastic assignment methods are inadmissible in this particular case 

study. In our study, we did not obtain the same outcome as Chen and Pan [69], who concluded 

that stochastic algorithms can produce similar results to the UE and MSA. This may be due to 

the size of the simulated network; the examples they used were small in size, while we 

analyzed a large area. Further research is needed to verify this point. 

 The incremental assignment algorithms are valid only when they have four or more demand 

partitions of equal size; thus, no individual partition can exceed 25% of the total. 

 The method of successive averages (MSA) algorithm is valid only when working with more 

than 10 iterations. This result is consistent with those of Ameli et al. [1], who found that this 

method is good for small- and medium-sized networks, but is not the fastest one when 

estimating the traffic flow in a large network. 
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 Finally, the user equilibrium methods (approximated by the Frank and Wolfe algorithm) were 

found to be valid in all of the considered cases (five or more iterations). 

Table 10 shows a summary of the results obtained using those methodologies that were found 

to be valid for the case study. 

Table 10. Comparison of results obtained with valid methodologies. 

Algorithm 

R2 Index RMSE Index 

Light 

Vehicles 

Heavy 

Vehicles 
Sample Rest 

Incremental 

assignment 

4 × 25% 0.8984 0.8429 20.3% 29.1% 

5 × 20% 0.9049 0.824 19.4% 28.0% 

10 × 10% 0.8976 0.8466 18.8% 29.3% 

MSA 

10 iterations 0.9153 0.8826 15.5% 28.8% 

20 iterations 0.9324 0.8866 14.3% 24.3% 

50 iterations 0.9341 0.888 14.9% 23.0% 

100 iterations 0.9335 0.8893 15.3% 22.8% 

User 

equilibrium 

5 iterations 0.8889 0.8417 17.5% 29.8% 

10 iterations 0.9224 0.8784 15.5% 25.8% 

20 iterations 0.9324 0.8876 14.8% 23.6% 

50 iterations 0.9329 0.8874 15.4% 22.7% 

100 iterations 0.9325 0.8893 15.6% 22.7% 

From the results, we can conclude that the MSA and UE yield practically the same results when 

we have a sufficiently high number of iterations [59]. However, for lower numbers of iterations, the 

results of the UE algorithm are clearly better. The incremental allocation method provides a 

significantly lower level of detail. 

Therefore, we recommend the use of user equilibrium methodologies. To speed up the process, 

approximation with the Frank and Wolfe algorithm could be performed. This recommendation is in 

line with the results of Denoyelle et al. [70], who determined, by applying numerical simulation 

techniques, that this method is versatile and superior to other methodologies. 

However, as Bliemer et al. [71] note, planners have to evaluate a methodology’s applicability in 

terms of both its adjustment to real-world data and its computational flexibility and speed. In our 

case study, the Frank and Wolfe algorithm was found to satisfy all of these criteria. We can infer that 

a network’s size is a crucial variable to take into account when choosing a method [40,41,44,69,71]. 

To finish, we want to make a note about the limitations of this study and its scientific and 

practical implications. In this study, we used five different types of methods to estimate the traffic 

flow in a large network and compared the results with real-world data. These five methods were the 

ones included in the employed software. It would be interesting to use other methodologies, or even 

a higher number of different configurations within the considered ones. In addition, we determined 

whether the models complied with the Spanish regulations [64], since their verification, through the 

R2 and the RMSE indices, is a prerequisite of their use in our geographical area. However, it would 

have been interesting to use other goodness-of-fit indicators, or even to develop new ones, to 

enhance our knowledge of the adjustment of each methodology to real-world data. These are 

possible lines of future research in this field. 

Regarding scientific and practical implications, we want to note that the results obtained in this 

study can be considered to be valid for both the case study and other areas with similar 

characteristics. However, although they cannot be directly extrapolated to different cases, it may be 

possible to develop a similar methodology that allows, under the same conditions, for the selection 

of the optimal assignment method in eacvv cfdh case. The results of this study and the employed 

procedure may be useful to researchers in the field of computer simulation and planners who apply 

these methodologies in similar cases. 
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