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ABSTRACT

Sky classification is a complex problem, due in part to such abstract conceptual definitions 

as clear, intermediate, and overcast, as well as other intermediate ranges. The CIE 

(Commission Internationale de L’Éclairage) Standard classification offers a solution to this 

problem, although its application requires data on the luminance distribution of the whole 

sky that are less commonly available. A benchmarking and classification system of ten 

meteorological indices is introduced in this study to classify the sky types from overcast to 

clear. The indices can be calculated from measurements of global, diffuse, and direct 

irradiance that are widely available from meteorological ground stations. The classification 

system uses confusion matrices, a machine-learning tool that generates a visual display of 

the results of supervised-learning algorithms. The CIE Standard skies classification, applied 

to half hourly sky-scanner measurements in Burgos (Spain), over the period June 2016 - 

May 2017, is used in this study as a baseline reference for a comparative review of the 

results from the meteorological indices and their results. They are classified by four 

performance ratings: Accuracy, Jaccard, Cohen, and Matthews, which feature both 

classification similarity and the randomness of any agreement. All meteorological indices 

yielded a high average degree of accuracy - close to 80% - in a detailed review of their 

classification. Neverthless, the results suggested that Perez’s Clearness Index based on 

global, diffuse and direct radiation measurements offered the most precise classification of 

the skies, followed closely by the Klucher Clearness Index and the Perraudeau Nebulosity 

Index. 
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NOMENCLATURE

Greek symbols: 

 Scattering angle𝜒

 Gradation function𝜑(𝑍)

 Angle of elevation, solar elevation.𝛾,𝛾𝑠

 Azimuth angle, solar azimuth.𝛼, 𝛼𝑠

 Indicatrix function𝑓(𝜒)

 Perez’s clearness index ∈

 Average value of the orbital eccentricity 𝜀0

of the Earth.

 Perez’s brightness index Δ

 Cohen Kappa𝜅 

   Angle from zenith, angle between 𝑍, 𝑍𝑠

sky zenith and sun. 

a, b, c, d, e Coefficients of the gradation 

and indicatrix function for CIE standard 

skies classification

 Reference number of each band. bp

xtraterrestrial irradiance constant 𝐵𝑠𝑐  E

(1361.1 W/m2).

Beam irradiance (W/m2)𝐵(𝑛) 

 Extraterrestrial direct solar 𝐵𝑒𝑥𝑡(𝑛)

irradiance (W/m2)

 Standard cloudiness fraction𝐶𝑒𝑠   

 Extraterrestrial global solar 𝐺𝑒𝑥𝑡(0)

irradiance on a horizontal plane

 Cloudless Index𝐶𝑙𝑒

Diffuse luminance (𝐷𝑉 𝑐𝑑/𝑚2)

 Diffuse horizontal irradiance (W/m2)𝐷(𝑂)

 Clearness Function 𝐹

 Klucher Clearness Index 𝑭𝑲

Perraudeau Nebulosity Index, 𝑭𝑷  

 Standard global irradiance𝐺𝑠𝑡

 Clear-sky irradiance (W/m2)𝐺𝑐𝑙𝑒𝑎𝑟(0)

  Global horizontal irradiance (W/m2)𝐺(𝑂)

   Horizontal direct fraction 𝒌𝒃

  Horizontal diffuse fraction 𝑘𝑑

  Horizontal diffuse fraction for a clear 𝑘𝑑0

sky. 

  Batlles Clearness index 𝒌𝒌

Clearness Index𝒌𝒕 

  Auxiliary parameter for Batlles 𝑘𝑡𝑡

Clearness Index calculation

 Luminance of a sky patch measured by 𝐿𝑝

the Sky-scanner ( )𝑐𝑑/𝑚2

  Zenith luminance 𝐿𝑧 (𝑐𝑑/𝑚2)

MI Meteorological index

 Optical air mass𝑚

 Number of patches in band b.np

NR  Luminance normalization ratio ( )𝑐𝑑/𝑚2

 Reference number of a scanned sky p

patch
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dn  Day number of year, 1 on 1st January 

and 365 on 31st December. February has 

28 days.

 Igawa Index 𝑺𝒊

1. INTRODUCTION

A key aspect in the modelling of solar radiation and daylighting is sky classification. Many 

models for the calculation of global, direct, and diffuse irradiation and illumination (i.e. 

luminous efficacy) are defined for different sky types, based on the values of different 

climatic parameters. Searching for parameters that can quantify abstract concepts such as 

clear, partially cloudy, and overcast skies, as well as all possible intermediate classes, is a 

complex problem that researchers have addressed using different strategies. Sky conditions 

of the same category should have similar solar radiation and sky luminance distributions and 

the corresponding climatic parameters should be within certain ranges (Li and Lam, 2001). 

In 2003, 15 standard sky types were defined in the CIE categorization (Uetani et al., 2003). 

The classification included five types of clear sky, five intermediate types, and five types of 

cloudy skies. Sky types of the same category have the same well-defined sky luminance 

pattern. Once the sky types are identified, the basic solar irradiance and daylight illuminance 

on the surfaces of interest can be obtained through simple mathematical expressions (Li et 

al., 2013). The luminance distribution for each standard sky type can help arrive at accurate 

determinations of daylight illuminance (Kittler et al., 1997). Several works have reported that 

the CIE standard sky classification provides a good overall framework for representing the 

actual sky conditions and covers the whole probable spectrum of skies found in nature 

(Alshaibani, 2011; Li and Cheung, 2006; Li et al., 2008; Li et al., 2007; Markou et al., 2005; 

Markou et al., 2004; Torres et al., 2010a, b; Tregenza, 2004; Wong et al., 2012). Each CIE 
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General Standard Sky is well defined by the straightforward approach for sky classification: 

the sky luminance pattern. The standard instrument for measuring sky luminance distribution 

is a sky scanner and basic sky luminance data are available at many locations across the 

world. 

When interpreting sky conditions, meteorological data are initially used as weighting factors  

to show the degree of sky clearness, but different researchers have each adopted different 

kinds of Meteorological Indices (MIs), each with a different range (Li et al., 2007; Lou et al., 

2017; Umemiya and Kanou, 2008). Their selection depended on the availability of 

meteorological variables. Some previous attempts have been made to use specific MIs to 

classify sky conditions. The diffuse fraction, and the clearness index, were used in 𝑘𝑑, 𝑘𝑡,  

(Brunger and Hooper, 1993) for the classification of sky conditions. Igawa (Igawa et al., 

2004) defined a clear-sky index, Si, that can be used as an index with no dependency on 

the solar altitude for the classification of sky conditions. (Baharuddin et al., 2010) and (Rahim 

et al., 2004) classified daylight data into three sky conditions – clear, intermediate, and 

overcast – using two methods: sunshine duration and cloud ratio methods. The sunshine 

duration method estimates the frequencies of the occurrence of clear, intermediate, and 

overcast sky from the monthly mean value of the relative sunshine duration. The cloud ratio 

method classifies the sky condition into three sky classes, based on the observation of the 

pattern of diffuse fraction graphs. (Kong and Kim, 2013) evaluated the ability of the diffuse 

fraction, Perez’s clearness index, and the clearness index to classify the skies by means of 

a frequency distribution. (Umemiya and Kanou, 2008) introduced a sky classification 

method, by using different combinations of nine “insolation” or irradiation indices. In (Lou et 

al., 2017), the CIE Standard Skies identified by the luminance scan were correlated with 

fourteen meteorological parameters (solar altitude angle, clearness index, diffuse fraction, 
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turbidity, air temperature, relative humidity, wet bulb temperature, and direct normal solar 

irradiance, among others) using the Classification Tree algorithm. (Li and Lam, 2001) 

investigated the prevailing sky conditions in Hong-Kong in terms of different climatic 

parameters (cloud cover distribution, hours of sunshine,  and ) and highlighted the merits 𝑘𝑡 𝑘𝑑

of each one. In terms of modelling solar radiation and outdoor illuminance components, the 

authors concluded that  was the best parameter from among the four indices under study. 𝑘𝑡

(Li et al., 2014) analysed different alternative approaches to perform the CIE Standard skies 

classification, the clearness index, and the turbidity index, among others.

No previous studies have presented analyses of each MI and its sky classification capability. 

The frequency of occurrence of clear, intermediate, and overcast skies is determined by 

combining various MIs through mathematical algorithms. Likewise, no simultaneous 

comparison between the different approaches to sky classification has been conducted. The 

comparison is usually done in terms of frequency of appearance. Very few of the works just 

reviewed included comparisons of their results with the CIE Standard sky classification. 

Nevertheless, the CIE Standard skies are internationally considered as sufficiently 

comprehensive to simulate skylight luminance and radiance distributions, crucial factors in 

passive energy efficient building designs and in active solar energy applications. Even a 

simple sky classification with only three categories (clear, partial, and cloudy) would allow a 

major improvement in lighting control systems (Li, 2010; Li et al., 2008), a precise selection 

of the models to estimate solar irradiance and for its prediction (Djafer et al., 2017; Ruiz-

Arias and Gueymard, 2018), more accurate determination of the spectral components of 

solar radiation (Escobedo et al., 2009; Jacovides et al., 2007), and better prediction of 

photovoltaic production, to improve grid integration (Perveen et al., 2018). 
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In this study, a review of the different MIs used for sky classification and their benchmarking 

has led to the selection of those calculated with three standard variables recorded at many 

meteorological stations: global, beam, and diffuse irradiance. Sky conditions and 

characterization of CIE Standard sky types were reported in a previous publication with a 

full year of data recorded at Burgos, northwestern Spain, (Suárez-García et al., 2018). The 

sky classifications using these MIs were compared to the CIE cloudiness categories (cloudy, 

partial, and clear), adapting the original intervals to match the number of categories. 

The main objective of this study is to assess the selected MIs presented as alternatives to 

the CIE classification, so as to perform sky classifications of acceptable accuracy. For sky 

classification, the appropriate MIs would be expected to require less expensive and more 

common equipment at meteorological ground stations than the sky scanner that is used to 

measure sky luminance and its distribution. Calculation of simple MIs is fast and allows an 

efficient implementation of control systems of daylighting and active solar energy 

applications. The use of confusion matrices as a benchmaking tool is a novelty in the study 

of sky conditions. In this way, both the MI classification and the CIE Standard, may be 

compared against the same timestamp, rather than through a frequency distribution that can 

only be done at the end of the data collection period.

This study is structured as follows: the CIE Standard classification will be described in 

Section 2. In Section 3, the MI derived from global, beam, and diffuse irradiation will be used 

to define the sky types. Section 4 will examine the main characteristics of the confusion 

matrices classification and the indicators used for the MIs benchmarking process. The 

experimental facility and data used in this work, as well as the results of the study, will be 
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described in Section 5 and in Section 6, respectively. Finally, the principal observations will 

be presented in Section 7 together with the main contributions of the study.

2. CIE STANDARD CLASSIFICATION

The CIE standard sky classification describes the luminance ratio of any given sky patch, 𝐿𝑝 

 normalized by the sky's zenith luminance,  as the product of the (𝑘𝑐𝑑 𝑚2), 𝐿𝑧  (𝑘𝑐𝑑 𝑚2),

relative gradation function, , and the relative scattering indicatrix function, 𝜑(𝑍) 𝜑(0)

, as shown in Eq. 1:𝑓(𝜒) 𝑓(0)

Eq. 1.
𝐿𝑝

𝐿𝑧
=

𝑓(𝜒) ∙ 𝜑(𝑍)
𝑓(0) ∙ 𝜑(0)

The gradation function (Eq. 2) gives the luminance/radiance variation from horizon to zenith 

and the indicatrix function (Eq. 3) expresses the decrease of luminance from the solar disc 

to sky patches far away from the sun:

  Eq. 2.𝜑(𝑍) 𝜑(0) =
1 + 𝑎 ∙ exp (𝑏 cos 𝑍)

1 + 𝑎 ∙ exp 𝑏

 Eq. 3.

𝑓(𝜒)

𝑓(0) =
1 + 𝑐 ∙ [exp (𝑑 ∙ 𝜒) ― exp (𝑑 ∙

𝜋
2)] + 𝑒 ∙ 𝑐𝑜𝑠2𝜒

1 + 𝑐 ∙ [exp (𝑑 ∙ 𝑍𝑠) ― exp (𝑑 ∙
𝜋
2)] + 𝑒 ∙ 𝑐𝑜𝑠2𝑍𝑠

Z is the angle between sky zenith and the sky patch under scrutiny, ( ).  is the angle 𝑟𝑎𝑑 𝑍𝑠

between sky zenith and the Sun. Coefficients a, b, c, d, and e can be adapted to depict the 

15 CIE sky conditions: five overcast, five partly cloudy, and five clear sky types, as shown 

in Table 1.  is the scattering angle ( ) that represents the shortest distance from the sky 𝜒 𝑟𝑎𝑑

patch to the solar disc and is calculated from Equation 4:
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 Eq. 4,𝜒 = arccos (cos 𝑍𝑠 ∙ cos 𝑍 + sin 𝑍𝑠 ∙ sin 𝑍 ∙ cos |𝛼 ― 𝛼𝑠|)

where, is the azimuth angle of the sky patch and  is the solar azimuth. 𝛼 𝛼𝑠

Figure 1 shows a sky image of three different sky conditions classified by the CIE Standard 

as: a) Clear (IV.4 type); b) partial (III.2); and, c) cloudy (II.2). 

Table 1. Parameters of CIE standard Sky types (Uetani et al., 2003).

Type a b c d e Description

I.1 4.0 -0.70 0 -1.0 0.00 Overcast with a steep gradation & azimuthal uniformity

I.2 4.0 -0.70 2 -1.5 0.15 Overcast with a steep gradation & slight brightening toward the Sun

II.1 1.1 -0.80 0 -1.0 0.00 Overcast with a moderate gradation & azimuthal uniformity

II.2 1.1 -0.80 2 -1.5 0.15 Overcast with a moderate gradation & slight brightening toward the SunC
LO

U
D

Y

III.1 0.0 -1.00 0 -1.0 0.00 Overcast, foggy or cloudy, with overall uniformity

III.2 0.0 -1.00 2 -1.5 0.15 Partly cloudy with a uniform gradation & slight brightening toward the Sun

III.3 0.0 -1.00 5 -2.5 0.30 Partly cloudy with a uniform gradation & a brighter circumsolar effect

III.4 0.0 -1.00 10 -3.0 0.45 Partly cloudy, rather uniform with a clear solar corona

IV.2 -1.0 -0.55 2 -1.5 0.15 Partly cloudy with a shaded sun positionPA
R

TI
A

L

IV.3 -1.0 -0.55 5 -2.5 0.30 Partly cloudy with brighter circumsolar effect

IV.4 -1.0 -0.55 10 -3.0 0.45 White-blue sky with a clear solar corona

V.4 -1.0 -0.32 10 -3.0 0.45 Very clear / unturbid with a clear solar corona

V.5 -1.0 -0.32 16 -3.0 0.30 Cloudless polluted with a broader solar corona

VI.5 -1.0 -0.15 16 -3.0 0.30 Cloudless turbid with a broader solar coronaC
LE

A
R

VI.6 -1.0 -0.15 24 -2.8 0.15 White-blue turbid sky with a wide solar corona effect

The luminance distributions of individual standard skies were modelled and compared with 

the scanned sky luminance readings. The standard sky that was assigned had the lowest 

Mean-Square Error (RMSE), (Tregenza, 2004). The original criterion to define the sky type, 

known as the Standard Sky Luminance Distribution method (SSLD) (Kittler et al., 1997), 

uses a theoretical assemblage of curves that represent the relation between the zenith 

luminance/diffuse luminance ( ) ratio and the solar elevation angle. These curves 𝐿𝑧 𝐷𝑉

converge at solar elevation values higher than 35º, making it difficult to apply this method in 
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certain areas and at times when the solar elevation angle is higher than 35º (Li et al., 2013), 

which is the case at the location under study, especially in summer. Various procedures to 

circumvent this issue are proposed, using various methods of normalization (Li et al., 2014). 

In a previous paper (Suárez-García et al., 2018), the Normalization Ratio (NR) introduced 

by Littlefair (Littlefair, Paul J., 1994; Littlefair, P. J., 1994) was used to obtain the CIE 

Standard sky types in Burgos, Spain.

a) Clear sky b) Partly cloudy sky c) Overcast sky

Figure 1: Sky Image of diferent sky conditions classified by CIE Standard as a) Clear (IV.4 type), b) partial 

(III.2) and c) cloudy (II.2), taken by a SONA201D All-Sky Camera-Day in Burgos, Spain, on 6/22/17 at 10:30 

UTC, 3/11/2017 at 16:45 UTC and 8/23/2017 at 13:00 UTC, respectively. 

3. METEOROLOGICAL INDICES FOR SKY CLASSIFICATION.

The sky classification by luminance distribution is reliable, but it has several restrictions (Li 

et al., 2014). The most significant problem is that luminance measurements are only 

available at a few sites in the world and only over short measurement periods. Alternatively, 

sky conditions can be evaluated using MIs calculated from meteorological variables readily 

accessible from most weather stations. In this study, different MIs traditionally used to 

classify the sky conditions were used to correlate the CIE Standard Skies determined by the 
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luminance scan in terms of confusion matrices. The correlation can be easily interpreted and 

used to analyse the long-term sky conditions at sites that share similar climatic variables 

with the location under study. In the following paragraphs, the different MIs contemplated 

here are briefly described. For comparative purposes, a common classification is used in all 

cases, i.e., the CIE cloudiness categorization (cloudy, partial and clear, as shown in Table 

1). As highlighted in Section 1, the definition of clear, partial, and cloudy sky conditions may 

be ambiguous, and the limits between these words are fuzzy. However, cloudy sky can be 

defined at one end of a continuous scale with clear sky at the other end.

The problem addressed in this work is the homogenization of the sky categories in the same 

number of classes without changing the original limits established by their authors. This 

follows a similar approach to that in (Gueymard et al., 2019) where the authors compared 

different MI models in an attempt to classify clear skies. Different intervals were tested, in 

order to mitigate the semantic effects and to maximize MI performance, keeping the class 

limits that the respective authors set in their original works. Figure 2 shows the possible 

combinations of the limits of the intervals for the different MIs studied, keeping the ordinal 

relationship between cloudy, partial, and clear-sky conditions. For some of the MIs, no 

adaptation was needed. When more than three intervals were defined in the original work, 

all possible combinations for merging the intervals were tested. The adapted interval is the 

one that maximized the classification metrics for each MI. The original and the adapted 

values of the intervals selected by each index are summarized in Table 2. The MIs are 

calculated using global horizontal irradiance, ; diffuse horizontal irradiance, ; and 𝐺(0) 𝐷(0)

beam irradiance, . 𝐵(𝑛)
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Figure 2: Interval adaptation procedure of the original MIs. 

3.1. Horizontal Diffuse Fraction, .𝒌𝒅

The horizontal diffuse fraction (or cloud ratio or cloudiness index or diffuse ratio),  (Eq. 5), 𝑘𝑑

is defined as the ratio between the diffuse horizontal irradiance,  and the global 𝐷(0),

horizontal irradiance,  (Erbs et al., 1982).  refers to the cloudiness of the sky and/or 𝐺(0) 𝑘𝑑

the turbidity of the atmosphere: the higher the proportion of the diffuse radiation in the global 

one, the higher the  (Kambezidis, 2018). 𝑘𝑑

 Eq. 5.𝑘𝑑 =
𝐷(0)
𝐺(0)
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Conversely, low values mean that the global radiation mainly consists of the direct 

component that predominates under clear skies. The cloud ratio method classifies the sky 

condition into three skies based on the observation of the pattern of  graphs defining a sky 𝑘𝑑

as either clear or overcast when the value of  remains close to either 0 or 1, respectively, 𝑘𝑑

and as intermediate when  changes frequently and rapidly (Baharuddin et al., 2010). 𝑘𝑑

Different works have used the diffuse fraction for the classification of radiation data into three 

sky conditions. Hence, its value can be divided into three intervals from 0 (clear sky) to 1 

(overcast sky). (Baharuddin et al., 2010; Kong and Kim, 2013; Li and Lam, 2001; Rahim et 

al., 2004). In this work, three equal intervals were applied assigning a cloudiness type to 

each one, which unifies the intervals used in the previously mentioned studies. Both, the 

original and the adapted intervals are shown in Table 2. 

3.2. Horizontal Direct Fraction .𝒌𝒃

As an alternative to , the horizontal direct fraction, , is defined as the ratio between the 𝑘𝑑 𝑘𝑏

direct horizontal irradiance,  and the global horizontal irradiance,  as shown in 𝐵(0), 𝐺(0)

Equation 6. Hence, the direct horizontal irradiance can be calculated through the direct 

irradiance on a plane facing the Sun,  and the solar altitude angle, . As with , a 𝐵(𝑛), 𝛾𝑠 𝑘𝑏

number of intervals can be defined between its minimum (0, overcast sky) and its maximum 

(1, clear sky) value. Three equal intervals were taken assigning a cloudiness type to each 

one of them as can be seen in Table 2. The pattern is the inverse of the one used for  𝑘𝑑,

due to the complementarity of both indices ( . 𝑘𝑏 = 1 ― 𝑘𝑑)

 Eq. 6.𝑘𝑏 =
𝐵(0)
𝐺(0) =

𝐵(𝑛) cos 𝑍𝑠

𝐺(0) =
𝐵(𝑛)sin 𝛾𝑠

𝐺(0)
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3.3. Clearness index, . 𝒌𝒕

The clearness index, , (Iqbal, 1983) (Eq. 7) is the ratio between the global horizontal 𝑘𝑡

irradiance, , and the extraterrestrial global horizontal irradiance, .𝐺(0) 𝐺𝑒𝑥𝑡(0)

Eq. 7.𝑘𝑡 =
𝐺(0)

𝐺𝑒𝑥𝑡(0) =
𝐺(0)

𝐵𝑠𝑐 𝜀0 cos 𝑍𝑠

 is the extraterrestrial irradiance constant (1361.1 W/m2 (Gueymard, 2018; Gueymard 𝐵𝑠𝑐

and Ruiz-Arias, 2016)),  is the average value of the orbital eccentricity of the Earth, 𝜀0

calculated from Eq. 8, and  is the angle between sky zenith and sun. 𝑍𝑠

Eq. 8,𝜀0 = 1 + 0.033 ∙ 𝑐𝑜𝑠[2 ∙ 𝜋 ∙ 𝑑𝑛 365]

where,  is the day the year.  has often been adopted to indicate the relative clearness 𝑑𝑛 𝑘𝑡

of the atmosphere for sky categorization (Djafer et al., 2017; Escobedo et al., 2009; Kong 

and Kim, 2013; Wang et al., 2013) and it indicates the percentage of solar irradiance that 

radiates through the atmosphere. (Mellit et al., 2008) suggested that the choice of interval 𝑘𝑡 

values would also differ from one site to another. In general, when the atmosphere is clear, 

a small fraction of the solar radiation is scattered, resulting in a predominance of direct 

sunlight yielding a high  reading. Under overcast skies, a large portion of the solar radiation 𝑘𝑡

is dispersed, so the main component is diffuse with a small  value. Several empirical 𝑘𝑡

relationships between  and  have been developed to calculate diffuse irradiation on 𝑘𝑑 𝑘𝑡

horizontal and tilted surfaces from the global irradiation using a different time basis (Iqbal, 

1983) that has been the object of numerous reviews (Khorasanizadeh and Mohammadi, 

2016; Khorasanizadeh et al., 2016; Muneer et al., 2007; Tapakis et al., 2016; Torres et al., 
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2010a). As many categories as required may be generated for the indices  and . The 𝑘𝑑 𝑘𝑏

selected intervals are depicted in Table 2.

3.4. Clearness Function 𝑭

The anisotropic sky-diffuse models use the horizontal diffuse fraction, , and the clearness 𝑘𝑑

index, , to describe the prevailing sky conditions. Under non-overcast conditions, the 𝑘𝑡 

constituent components of sky-diffuse irradiance are a circumsolar (Sun’s aureole) part and 

background diffuse irradiance. The sky clarity indices are used to relate the above-

mentioned components (Muneer, 2007), the most common of which is the clearness 

function, , defined by Eq. 9:𝐹

Eq. 9.𝐹 =
𝐺(0) ― 𝐵(0)

𝐺𝑒𝑥𝑡(0) =
𝐺(0) ― 𝐵(𝑛)cos 𝑍𝑠

𝐵𝑠𝑐 𝜀0 cos 𝑍𝑠

Muneer (Muneer, 2007) established four types of sky in function of the  value that were 𝐹

reduced to three, which are used in this work, as shown in Table 2. 

3.5. Batlles Clearness Index 𝒌𝒌

Two new indices,  and , have been introduced by (Batlles et al., 2000), based on solar 𝑘𝑡𝑡 𝑘𝑘

altitude, and are defined in Eqs. 10 and 11 as: 

Eq. 10,𝑘𝑡𝑡 = ―0.3262 ― 0.0032 𝛾𝑠 +0.6843log (𝛾𝑠)

Eq. 11.𝑘𝑘 = 1.0827 ― 0.3893log (𝛾𝑠)

 index is restricted to clear skies, simultaneously defined by  and  (Muneer 𝑘𝑘 𝑘𝑡 > 𝑘𝑡𝑡 𝑘𝑑 < 𝑘𝑘 

et al., 2004). This index therefore only distinguishes two categories of skies: clear and 

overcast. The original criteria were maintained for this study.
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3.6. Klucher Clearness Index 𝑭𝑲

Klucher (Klucher, 1979) proposed a model for estimating irradiance on a tilted surface and 

developed the function , depending on  and as defined by Equation 12. The 𝐹𝐾 𝐷(0), 𝐺(0), 

original and the adapted classification of cloudiness using this index, shown in Table 2, is 

equal to the one established in the clearness function F. 

Eq. 12.𝐹𝐾 = 1 ― (𝐷(0)
𝐺(0))2

= 1 ― 𝑘2
𝑑

3.7. Perez’s Clearness Indices  and 𝝐 ∆

Equations 13 and 14 introduce the sky clearness index, , and the brightness factor, , 𝜖 Δ

respectively, both defined by Perez in 1987 (Perez et al., 1987) and revised in 1990 (Perez 

et al., 1990).  predicts cloud conditions using the ratio between the diffuse horizontal 𝜖

irradiance and the direct one on the same plane.  quantifies cloud thickness or aerosol Δ

loading .

Eq. 13,𝜖 =
𝐷(0) + 𝐵(𝑛)

𝐷(0) + 𝑘 𝑍3
𝑠

1 + 𝑘 𝑍3
𝑠

Eq. 14.∆ =
𝑚 𝐷(0)
𝐵𝑒𝑥𝑡(𝑛)

 is the angle between sky zenith and sun (rad) and  (or  if  is 𝑍𝑠 𝑘 = 1.04 𝑘 = 5.53 ∙ 10 ―6 𝑍𝑠

expressed in degrees).  is the extraterrestrial direct irradiance ( and 𝐵𝑒𝑥𝑡(𝑛) 𝐵𝑒𝑥𝑡(𝑛) = 𝐵𝑠𝑐 𝜀0) 

 is the optical air mass calculated using the Kasten model (Kasten, 1993). Classification 𝑚

of the cloudiness sky types using and are shown in Table 2 𝜖 ∆ 
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3.8. Perraudeau Nebulosity Index, 𝑭𝑷

Derived from the original work of Perraudeau (Perraudeau and Chauvel, 1986), the 

nebulosity index, , is defined by Eq. 15 (Kambezidis et al., 1998). This index models the 𝐹𝑃

degree of the sky covered by clouds using the diffuse horizontal fraction,  and the diffuse 𝑘𝑑,

horizontal fraction for a clear sky, , given by Eq. 16. 𝑘𝑑0

Eq. 15,𝐹𝑃 =  
1 ― 𝑘𝑑

1 ― 𝑘𝑑0

Eq. 16.𝑘𝑑0 =  
𝐺𝑐𝑙𝑒𝑎𝑟(0)

𝐺𝑐𝑙𝑒𝑎𝑟(0) + 𝐵(𝑛)

Here  , given by eq. 17, is the clear-sky irradiance and  is the beam irradiance. 𝐺𝑐𝑙𝑒𝑎𝑟(0) 𝐵(𝑛)

𝐺𝑐𝑙𝑒𝑎𝑟(0) = (0.5528 + 0.8785 ∙ 𝛾 ― 0.01322 ∙ 𝛾2 + 0.0003434 ∙ 𝛾3) ∙
 (6.9731 + 0.042496 ∙ 𝛾 ― 8.5275 ∙ 10 ―4 ∙ 𝛾2 ― 8.6088 ∙ 10 ―5 ∙ 𝛾3 + 1.984 ∙ 10 ―6 ∙ 𝛾4 ― 1.6222 ∙ 10 ―8 ∙ 𝛾5 + 4.7823 ∙ 10 ―11 ∙ 𝛾6)

Eq. 17

Depending on the  value, five sky types can be identified that are shown in Table 2.𝐹𝑃

3.9. Igawa Index 𝑺𝒊

The Igawa Index (Igawa et al., 2004), , defined by Eq. 18, uses the standard global 𝑆𝑖

irradiance, , the cloudless index, , and the standard cloudiness fraction, , 𝐺𝑠𝑡 𝐶𝑙𝑒 𝐶𝑒𝑠

calculated from equations 18-21.

 Eq. 18,𝑆𝑖 =  
𝐺(0)
𝐺𝑠𝑡

+ 𝐶𝑙𝑒

Eq. 19,𝐺𝑠𝑡 = 0.84 
𝐵𝑠𝑐

𝑚  𝑒 ―0.0657 𝑚
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Eq. 20,𝐶𝑙𝑒 =  
1 ― 𝑘𝑑

1 ― 𝐶𝑒𝑠

𝐶𝑒𝑠 = 0.01299 + 0.07698 𝑚 ― 0.003857 𝑚2 +0.0001054 𝑚3 ―0.000001031 𝑚4 

Eq. 21.

 is calculated considering the Linke turbidity factor as 2.5 in the Kasten model (Kasten, 𝐺𝑠𝑡

1993) of global irradiance for a clear sky;  is given by a polynomial fit adjustment using 𝐶𝑒𝑠 

the optical air mass as the independent variable and  is the extraterrestrial irradiance 𝐵𝑠𝑐

constant (1361.1 W/m2 ). The original criterion used by Igawa and the adapted one 

stablished following the procedure described by Figure 2 (Section 3) are shown in Table 2.

Table 2. Summary of the MIs used to classify the skies, the original intervals used to define the clear, partial 

and cloudy sky conditions and the adapted ones used in this work.

Symbol MI Ref. ORIGINAL ADAPTED

𝑘𝑑
Diffuse 
fraction

(Kong and Kim, 
2013)

(0.00, 0.33]      clear 
(0.33, 0.8)        partial
[0.8, 1)           cloudy

(0.00, 0.33]      clear 
(0.33, 0.8)      partial
[0.8, 1)           cloudy

𝑘𝑏
Direct 
fraction

[0.66, 1)          clear (0.33, 
0.66)     partial
(0, 0.33]          cloudy

𝑘𝑡
Clearness 
Index

(Wang et al., 
2013)

[0.65, 1)          clear
(0.35, 0.65)     partial
(0, 0.35]         cloudy

[0.65, 1)          clear
(0.65, 0.35)     partial
(0, 0.35]             cloudy

𝐹
Clearness 
Function (Muneer, 2007)

[0.61, 1.00)    
completely clear
[0.51, 0.61)    clear
[0.18, 0.51)    partial
[0.00, 0,18)    
completely cloudy

[0.51, 1.00)     clear
[0.18, 0.51)    partial
(0.00, 0.18)    cloudy

𝑘𝑘

Batlles 
Clearness 
Index

(Batlles et al., 
1998)            clear

𝑘𝑡 > 𝑘𝑡𝑡
𝑘𝑑 < 𝑘𝑘

          clear
𝑘𝑡 > 𝑘𝑡𝑡
𝑘𝑑 < 𝑘𝑘

𝐹𝐾
Klucher 
Clearness 
Index

(Klucher, 1979)
[0.61, 1.00)    
completely clear
[0.51, 0.61)    clear

[0.51, 1.00)     clear
[0.18, 0.51)     partial
(0.00, 0.18)     cloudy
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[0.18, 0.51)    partial  
[0.00, 0,18)    
completely cloudy

𝜖
Perez’s 
clearness 
index

(Perez et al., 
1990; Perez et al., 
1987)

[6.20, )        
completely clear
[2.80, 6.20)    clear
[1.50, 2.80)    partial 
[1.065, 1.50)   cloudy
[1.00,1.065)   
completely cloudy

[2.4, )         clear
[1.50, 2.4)     partial
[1.00, 1.50)     cloudy

Δ
Sky 
brightness

(Perez et al., 
1990; Perez et al., 
1987)

[0.48, )         very bright
[0.30, 0.48)    bright
[0.10, 0.30)    partial 
[0.00, 0.10)    very dark 

[0.30, )         clear
[0.10, 0.30)     partial
[0.00, 0.10)    cloudly

𝐹𝑃
Nebulosity 
Index

(Kambezidis et al., 
1998) 

[0.90, 1.00]      blue sky
[0.70, 0.90)      partial
[0.20, 0.70)      partially 
blue
[0.05, 0.20)       partially 
cloudy
[0.00, 0.05)       totally 
cloudy

[0.70, 1.00]      clear
[0.05, 0.70)      partial
[0.00, 0.05)     cloudy

𝑆𝑖 Igawa Index (Igawa et al., 
2004)

[1.70, )           clear
[1.50, 1.70)      almost 
clear
[0.60, 1.50)       partially 
clear
[0.30, 0.60)        partially 
cloudy
[-, 0.30]            totally 
cloudy

[1.70, )          clear
(0.30, 1.70)      partial 
[-, 0.30]         cloudy

4. CONFUSION MATRICES

In the field of machine learning, a confusion matrix is used for measuring the performance 

of classification algorithms. Classification is known as a supervised learning approach, 

because the machine is trained with selected examples of the data from which it is said to 

learn. After the learning process, the model that has been tuned by the data inputs will 

classify a new observation or sample into a given number of classes. The classification can 

be binary (e.g. a dichotomous classification of email as either spam or not spam) or multi-
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class (e. g. recognition of handwritten numbers). When the algorithm attempts to classify a 

sample, it processes an individual measurable property or feature. For example, in binary 

classification the algorithm attempts to detect the presence of a relevant feature. If it is 

detected, the sample is labelled as “positive” and, if otherwise, “negative”, (Figure 3 ). 

Comparing the prediction with reality, there are four possible scenarios: the predicted 

positive will agree with the actual one (True Positive or TP), the predicted positive will not 

agree with the actual one (False Positive or FP), the predicted negative will agree with the 

actual one (True Negative or TN) and the predicted negative will not agree with the real one 

(False Positive or FP). Each row of the matrix represents the instances of the predicted 

class, while each column represents instances of the reference class (Powers, 2011). The 

matrix was so-named, because it easily visualizes whether the algorithm is confusing or 

mislabelling two classes. 

Figure 3 :  Confusion matrix: possible scenarios in the comparison of the prediction to the actual data.

In this present work, the reference labels are established by the CIE methodology for sky 

classification and the predicted labels by the MIs. Hence, the latter are the algorithms or 
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predictive models under analysis. As mentioned above, the CIE defines fifteen types of sky 

that can be grouped into three types of cloudiness: clear, partial, or cloudy. The MIs 

distinguish between the features in an attempt to define these three classes. This task can 

be analyzed as a multiclass problem that can be decomposed as a multiple dichotomous 

classification where each cloudiness categorization is predicted against the other remaining 

ones (Figure 4). At the end of the process, the dichotomous classification of the MIs is 

evaluated using several performance ratings explained in the following sections. 

Figure 4 : Multiclass to dichotomous transformation.

4.1. Accuracy Index

The Accuracy Index, also known as the Simple Matching Coefficient, represents the ratio of 

correct predictions, positive or negative, amongst all the cases evaluated by the algorithm 

expressed by Eq. 22:
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Eq. 22.𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

As can be appreciated, it represents the overall portion of agreement and it is usually the 

starting point for analyzing the quality of a predictive model. The main weakness of the so-

called Accuracy Paradox is that models of a given accuracy may have greater predictive 

power than others of higher accuracy (Kundel and Polansky, 2003). An illustration of this 

fact would be a comparison of two different algorithms designed to detect insurance frauds 

for the same set of 100 samples, represented in Figure 5. Given a confusion matrix (with 

notation [TP FP; FN TN]) for the first one of  and for the second one of 𝑀1 = [1 2;2 95] 𝑀2

, then the accuracy of the first and the second algorithm would be 0.95 and 0.98, = [0 2;0 98]

respectively. In comparison with the first model, the second model would show fewer 

incorrect predictions and improved accuracy, globally; however, its fraud detection power 

would be weaker. This paradox arises in imbalanced data where there is a substantial 

difference in the size of the categories. The use of other metrics may therefore be advisable.

Figure 5: Confusion matrices for a fraud detection example.
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In multiclass classification performance, there are two types of averages: micro-averages 

and macro-averages. The micro-average sums up all the TP, TN, FP, and FN cases of all 

the classes, aggregating their contributions before calculating the metrics. The result would 

be dominated by the performance of the common categories and it would be similar to 

weighting it against the population size of each category. A bad performance labelling one 

of the classes could be masked. The macro-average - the average type used in this work- 

is computed by averaging the metrics after their calculation. Therefore, equal weight was 

given to each category, regardless of its frequency. Using the latter, the classification 

performance must be good in all of the (cloudy, partial and clear) classes, if it is to be among 

the highest positions of the metric ranking.

4.2. Jaccard Index

The Jaccard Index (Jaccard, 1912) expressed by Eq. 23, measures the similarity between 

the number of true positives in all the cases under evaluation. The main difference to the 

Accuracy Index is the omission of , meaning that the Jaccard Index only takes into 𝑇𝑁

account successful detection of the relevant attribute. In the above insurance fraud example, 

the Jaccard Index is 0.20 for  and 0 for , showing a better reflection of the predictive 𝑀1 𝑀2

power of the first algorithm.

Eq. 23.𝐽𝑎𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The Jaccard Index is focused on the detection of the relevant feature or true positives. It 

makes no distinction between FP and TN. There are some scenarios where such a 

distinction is crucial. For example, in medical diagnostics, a model with a confusion matrix 

[90 10; 0 0] and another characterized by [90 0; 10 0] would have the same Jaccard Index 
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of 0.9. However, the first model would have 10 FP cases and the second one 10 FN. The 

second model would have harmful consequences, so the use of the first one would be 

recommendable. Depending on the field of application, the use of another metric or full 

information would be recommendable before taking the final decision.

4.3. Cohen’s Kappa

Cohen’s Kappa,  is a measure of true agreement rather than a true prediction that reflects 𝜅,

the possibility that the algorithm agrees with the reference by chance. It indicates the 

proportion of agreement beyond that expected by chance, as shown in Eq. 24: 

 Eq. 24,𝜅 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 ― 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 ― 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =
𝑝𝑜 ― 𝑝𝑒

1 ― 𝑝𝑒

where  is the overall agreement given by Eq. 25;  is the expected agreement by chance 𝑝𝑜 𝑝𝑒

as calculated by Eq. 26 ,  is the fraction of cases on which agreement is not expected 1 ― 𝑝𝑒

to occur by chance, and  (Eq. 27) is the total number of cases analyzed by the algorithm. 𝑁

Eq. 25,𝑝𝑜 =
𝑇𝑃 + 𝑇𝑁

𝑁

Eq. 26,𝑝𝑒 = (𝑇𝑃 +  𝐹𝑃
𝑁 )(𝑇𝑃 + 𝐹𝑁

𝑁 ) + (𝑇𝑁 +  𝐹𝑃
𝑁 )(𝑇𝑁 + 𝐹𝑁

𝑁 )

Eq. 27.𝑁 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Table 3 shows the strength of agreement for various ranges of  suggested by (Landis and 𝜅

Koch, 1977). The choice of intervals is arbitrary, but is now in wide use (Kundel and 
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Polansky, 2003). In the previous example, Cohen’s Kappa scored 0.313 (fair strength) for 

 and 0 (poor strength) for , avoiding the Accuracy Paradox. 𝑀1 𝑀2

Table 3 Strength of agreement indicated with  values 𝜅

𝜅 strength

( , 0]― ∞ poor

[0, 0.20) slight

[0.20, 0.40) fair

[0.40, 0.60) moderate

[0.60, 0.80) substantial

[0.80, 1.00] almost perfect

Cohen’s Kappa takes into account the four classes of the confusion matrix and is more 

informative than other confusion-matrix measures. It can produce drastically different results 

to Accuracy and the Jaccard Index in scenarios where the positives cases are the 

predominant class. For example, a classification algorithm that produces the confusion 

matrix  would produce Accuracy 0.91, Jaccard Index 0.91, and  0.13. 𝑀3 = [90 5;4 1] 𝜅

Nevertheless, the Jaccard Index and Accuracy will provide indicative assessments of almost 

perfect predictive power and  will predict a performance near a random classifier with null 𝜅

predictive power, because of its incapacity to detect true negatives (Sim and Wright, 2005).

4.4. Matthews Correlation Coefficient

The Matthews Correlation Coefficient (Matthews, 1975) given by Eq. 28 is a measure of the 

quality of the binary classification: 

 Eq. 28.𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝑇𝑃 ∙ 𝑇𝑁 ― 𝐹𝑃 ∙ 𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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Essentially, it is a correlation coefficient between the reference and predicted classification 

returning a value between +1 (perfect prediction) and -1 (total disagreement). The 0 value 

is representative of a random prediction. Returning again to the Accuracy Paradox example, 

the Matthews Correlation is 0.31 for  and 0 for . As with Cohen’s Kappa, the Matthews 𝑀1 𝑀2

Correlation takes into account the four classes of the confusion matrix with the same 

implications as those seen in the Section 4.3 (Chicco, 2017).

4.5. Combination of the confusion matrix metrics

In the preceding sections, various metrics for a classification algorithm have been explained. 

All of them are attempts to sum up the confusion matrix associated with the algorithm using 

only one number. Inevitably, the process is associated with a loss of information, because 

a four dimensional matrix is collapsed into one number. Each dimension attempts to 

highlight one aspect of interest. However, they are correlated in some way because the 

starting data are all the same. In fact, the ranking offered by each one is very similar.

The different rankings produced by all the metrics are combined to arrive at the best MI for 

classifying sky cloudiness. At the end of the process, four rankings are thus obtained, one 

per confusion matrix. The one designated as best model holds the best positions in all of 

them. So, by using all of them simultaneously, the deficiencies of the metric and its biases 

are avoided.
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5. EXPERIMENTAL SECTION

5.1. The meteorological facility

The experimental data for this study were gathered at a meteorological weather station 

located on the roof of the Higher Polytechnic School building at Burgos University 

(42°21′04″N; 3°41′20″O; 856 m above mean sea level). This five-storey building is in an area 

with no other buildings of comparable height, free from any external obstructions. The 

experimental equipment is shown in Figure 6 . The following meteorological data were 

measured: temperature, wind velocity and direction, atmospheric pressure, humidity, and 

rainfall. Global, beam, and diffuse horizontal irradiation ( were all recorded 𝐺(0), 𝐵(𝑛), 𝐷(0))  

using first-class Hukseflux SR11 pyranometers and a Hukseflux DR01 pyrheliometer. The 

facility includes a SONA201D All-Sky Camera-Day, from Sieltec Canarias and an MS-321LR 

sky scanner, from EKO. The experimental variables were recorded with a CAMPBELL 

CR3000 datalogger. Tables 4, 5 and 6, respectively, show the technical specifications of the 

sky scanner, the pyranometers, and the pyrheliometer used for this study.
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Figure 6 :  Location of the meteorological station on the roof of the Higher Polytechnic School building at the 

University of Burgos, Spain. 

Table 4. Sky Scanner specifications

Model MS-321LR EKO Instruments
Dimensions (W x D x H) 430 mm x 380 mm x 440 mm
Mass 12.5 kg
Aperture 11 º
Luminance 0 to 50 kcd/m2

Radiance 0 to 300 W/m2/sr
A/D Convertor 16 bit
Calibration Error 2%

Table 5. Pyranometer specifications

Model SR11
ISO classification first class
Spectral range 300 to 2800 nm
Irradiance range 0 to 2000 W/m2

Sensitivity 15x10-6 V/(Wm-2)
Calibration uncertainty < 1.8%
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Table 6. Pyrheliometer specifications

Model DR01
ISO classification first class
Spectral range 200 to 4000 nm
Irradiance range 0 to 2000 W/m2

Sensitivity 7-15x10-6 V/(Wm-2)
Calibration uncertainty < 0.3%

5.2. Data Processing

Global, beam, and diffuse irradiance data are measured from June 2016 to May 2017, for 

the classification and benchmarking of the different MIs selected for this study. Both the 

pyranometers and the pyrheliometer are classified as “first class” in the ISO classification 

(ISO 9060:1990) with a WMO performance level that is of “good quality” (WMO, 2010). The 

calibration and the management of the meteorological facility is done following ISO (1992) 

and the WMO Guide to Meteorological Instruments and Methods of Observation (WMO, 

2008. (Updated 2010)). Global, diffuse, and beam irradiation data are recorded every ten 

minutes (averaging recorded scans of thirty seconds). The sky-scanner completes a full 

scan in four minutes and starts a new scan every fifteen minutes. So as to match 

simultaneous records of global, diffuse, and beam irradiation, only half-hourly and hourly 

sky-scanner measurements are used in this study. The irradiance data are analysed and 

filtered using traditional quality criteria (Gueymard and Ruiz-Arias, 2016). If irradiance data 

(global, diffuse, and beam irradiance data) fail to pass the quality criteria, then the three 

simultaneous data sets are rejected. 

The number of indices, once the data from both sources had passed the quality criteria, was 

above 300 per month, as shown in Figure 7. In the summer months there were fewer 

estimated indices than expected, because the weather station and Sky Scanner 
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experienced several shutdowns due to servicing works. Overall, over 3600 indices were 

correlated with their respective sky cloudiness.

Figure 7 . Number of sets of the MIs estimated per month

5.3. CIE standard classification of skies in Burgos, Spain

The sky scanner divides the sky into 145 patches or sectors (p) that cover the whole dome. 

The sectors are grouped into eight bands, named bp, and by their solar altitude, , 𝛾 = (
𝜋
2 ―𝑍)

where Z is the zenith angle. Figure 8 shows the location of the sectors in the whole dome. 

A luminance measurement (kcd/m2) of each patch is taken four times per hour. Half-hourly 

and hourly measurements were recorded between June 2016 and May 2017. Continuous 

scanning yielded luminance data corresponding to the 145 patches (see Figure 8) 

recommended for the CIE in the Guide to Daylight Measurements (Tregenza et al., 1994), 

which were measured and registered. Likewise, the luminance corresponding to each of the 

commonly considered 15 standard sky types presented in Table 1 was calculated at the 

same time and for the same 145 patches. The standard sky type ascribed to each record 

expressed the lowest RMSD (Root Mean Square Deviation) between the 145 normalized 

luminance values that were measured and calculated. 
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Figure 8 : Sky divided into 145 sectors (p) grouped into 8 bands (bp). The number of patches per band (nb) is 

shown in the figure. Figure shows two ficticious cases illustrating how, depending on sun position, the patches 

adjacent to the position of the sun are excluded for the luminance calculation.

The sky scanner is adjusted each month to measure daylight hours from sunrise to sunset. 

The first and last measurement of the day (solar elevation angle equal or lower than 5º) were 

discarded, as were measurements higher than 50 kcd/m2 or lower than 0.1 kcd/m2, following 

the specification of the equipment. Figure 9 gives the frequency of occurrence (FOC) of the 

sky classification results by the method. One previous work (Suárez-García et al., 2018) 

described the details of the sky luminance measurement and classification methodology. All 

sky types of the CIE classification, shown in Table 1, can be found in Burgos, from overcast 

to very clear. The lowest frequency is for type I.2, corresponding to Overcast with the steep 

gradation and slight brightening toward the sun (1.7 %), and the highest frequency is for 

type V.5. (18.3 %) (Cloudless polluted with a broader solar corona). Cloudiness labelling 

was done with the CIE sky types: I.1 to III.1 classified as cloudy, III.2 to IV.3 as partially 

cloudy, and IV.4 to VI.6 as clear skies. These three categories reflect the characteristically 
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clear skies that are predominant in Burgos (56.3 %), while cloudy skies are presented in 

23.7% and partially cloudy in 20 % of cases, as shown in Figure 10. 

Figure 9: Frequency of occurrence (FOC) from June 2006 to May 2017 Burgos CIE Standard Skies 

Figure 10: Comparative study of cloudiness classifications in Burgos. 

6. RESULTS AND DISCUSSION

6.1. Results of cloudiness classification from the meteorological indices

In this section, the results of the calculation of each MI used for sky classification are 

presented. The calculated MIs have values inside the intervals defined by their authors 
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(Table 2). The box plots, presented in Figure 11,  show the data organized by quartiles. The 

high variability of their interquartile ranges (IQR) can be observed: ,  ,  , ,  and . 𝑘𝑡 𝑘𝑏 𝑘𝑑 𝐹𝐾 ϵ 𝑆𝑖

It might be thought that a wider dispersion of the values would mean a higher number of 

different cloudiness classifications. As will be seen later (Table 8),    , and  are ranked ϵ, 𝐹𝐾 𝑘𝑡

first,  third, and fourth in the cloudiness classification. However, the second best single index 

( ) had an IQR of low variance. The explanation could be a better adaption of its intervals 𝐹𝑃

originally established by the CIE types of cloudiness. 

Figure 11:  MIs calculated from the experimental data of global, beam, and diffuse irradiance measured in 

Burgos from June 2016 to May 2017.
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The results of each MIs for the cloudiness classification are summarized in Figure 12  and 

presented by month. Figure 13  shows the monthly cloudiness classification obtained from 

the standard CIE. 
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Figure 12 :  Monthly cloudiness classification obtained from each meteorological index calculated from the 

experimental data of global, beam, and diffuse irradiance measured in Burgos from June 2016 to May 2017. 
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Individual analysis of sky classification with the MIs shows that practically no index is able 

to identify the high percentage of clear skies indicated by the CIE classification. The Klucher 

clearness index ( )  is the one that identifies a higher percentage of clear skies, and at the 𝐹𝐾

opposite extreme, the Batlles clearness index identifies practically all cases as overcast. , 

,  and , identify most of the cases as partial cloudiness. The stacked bar graph shows 𝑆𝑖 𝐹𝑃, 𝐹

an imperfect match between the different approaches. A frequency graph would be 

insufficient for a complete comparison: the energy contribution of the Sun depends on its 

elevation above the horizon, which varies according to the time of day and day of year. It is 

therefore necessary to compare the classification at each timestamp. 

Figure 13: CIE monthly cloudiness classification

6.2. Confusion Matrices

Finally, the comparison between classifications at each instant is obtained and presented in 

terms of the confusion matrices and the rating variables: Accuracy, Jaccard, and 𝜅,  

Matthews. The overall power prediction of the MIs is shown using the data for all the months. 

Then, their estimations are compared with the CIE classification for all the samples that were 

registered. The maximum percentage of true positives in each sky type is limited by the CIE 

classification shown in Figure 10. For this reason, an ideal algorithm with no errors in its 

classification would obtain the following classification matrices, expressed as percentages: 
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,  and . In the matrices, the 𝑀𝑐𝑙𝑒𝑎𝑟 = [57 0;0 43] 𝑀𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = [24 0;0 76] 𝑀𝑐𝑙𝑜𝑢𝑑𝑦 = [19 0;0 81]

values are the maximum true positives and true negatives that the algorithms can obtain. In 

Figure 14 the confusion matrices for each MI used as a sky cloudiness classifier are 

presented. Percentages of true positives (tp), true negatives (tn), false positives (fp) and 

false negatives (fn) are depicted. The lowercase abbreviation is used to distinguish the 

percentage of the raw recount where uppercase is preferred. To give as much information 

as possible, the number of samples analyzed, N, is detailed in the title of each figure. For 

example, the confusion matrix for the  detecting clear skies is  in 𝑘𝑑 𝑀𝑐𝑙𝑒𝑎𝑟,  𝑘𝑑 = [15 24;43 18]

percentage terms or  in samples counting.𝑀𝑐𝑙𝑒𝑎𝑟,  𝑘𝑑 = [330 527;945 395]

A predominant behavior can be observed in each one of the sky types. The false negatives 

are predominant in the clear skies (Figure 14). There is a considerable number of cases 

where the MIs predict a non-clear sky (i.e. partial or cloudy) when the CIE model predicts a 

clear sky. Better than all of the other MIs,  stands out from the rest with a true positive 𝐹𝐾

ratio near 45%, ten percentage points higher than the rest. 

The behavior of the MIs slightly changes in the partly cloudy skies classification shown in 

Figure 14, where the false positives and true negatives are predominant. Clear and cloudy 

skies are clearly distinguished. However, MIs can hardly classify a partial cloudiness sky 

correctly. Finally, the true negatives predominate in the cloudy scenarios, with the rest of 

cases evenly spread out between the true positives, false positives, and false negatives. In 

both cloudiness scenarios, partial and cloudy skies, the true positive ratio is below 20 %.
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Figure 14:  Results of the Confusion matrices for cloudy skies (N = 2197), partly cloudy skies (N = 2197), and 

clear skies (N = 2197).

The confusion matrix metrics, shown in Table 7, summarize the performance of the MI 

classifications. The results are discussed in two groups: the indices that characterize 

similarity (Accuracy and Jaccard) and the indices that analyze randomness in the agreement 

(Cohen Kappa and Matthews Correlation). The results obtained by Accuracy, in some 

cases, show values, above 80 %, such as the classification of cloudy skies by the  and 𝐹𝑃

the  indices, and the average value was above 60% in five indices ( , , ,  and ). 𝑆𝑖 𝐹𝐾 𝐹𝑃 𝑆𝑖 𝑘𝑡, 𝑘𝑏

Nonetheless, these high values are reached, because the true negative ratios value are 

included in the accuracy computation. In the present study, where there are three classes 

(clear, partial, and cloudy), a true negative obtained in one class implies that the sample 
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could be in any of the other two. The Jaccard index shows an average of the meteorological 

classifiers below 35%. This considerable reduction is because the Jaccard Index only 

measures the similarity of the true positives, omitting the true negatives. The Jaccard index 

emphasizes the scoring capability of the algorithm to detect the desired value of the attribute 

under analysis. The Jaccard Index is nevertheless 45% when the Klucher Clearness 

classifies clear skies. Cohen’s Kappa and Matthews Correlation Coefficient both show a fair 

strength of agreement for most of the classifiers, as shown in Table 7. Poor performance 

under partly cloudy skies is also very visible from the values, below 10% obtained for both 

classifiers. The results obtained in the cloudy skies are the best ones, followed by the clear 

ones. In other words, the extreme situations are those that are detected with best accuracy. 

Table 7: Results  of the confusion matrix indicators obtained by each of the MIs studied for the different 

cloudiness categories and on average by all cloudiness classification methods.

MI 𝒌𝒅 𝒌𝒃 𝒌𝒕 𝑭 𝒌𝒌 𝑭𝑲 𝝐 ∆ 𝑭𝑷 𝑺𝒊

Av. 0.6190 0.6077 0.6267 0.5375 0.5242 0.6779 0.6758 0.5397 0.6474 0.6147
cloudy 0.6579 0.5926 0.7105 0.6763 0.2863 0.7000 0.7211 0.7205 0.7358 0.7421
partial 0.5711 0.6063 0.5421 0.3858 0.7284 0.6658 0.6389 0.4511 0.5553 0.4558

A
C

C
U

R
A

C
Y

clear 0.6279 0.6242 0.6274 0.5505 0.5579 0.6679 0.6674 0.4474 0.6511 0.6463
Av. 0.2701 0.2465 0.2871 0.1494 0.0954 0.3268 0.3357 0.1596 0.3143 0.2525

cloudy 0.3810 0.3651 0.3309 0.1575 0.2863 0.3722 0.3735 0.0635 0.3597 0.1624
partial 0.1994 0.1624 0.2342 0.2827 0.0000 0.1511 0.1948 0.1813 0.2542 0.2713

JA
C

C
A

R
D

clear 0.2298 0.2119 0.2962 0.0081 0.0000 0.4570 0.4387 0.2341 0.3289 0.3239
Av. 0.1734 0.1436 0.1856 0.0423 0.0000 0.2366 0.2482 -0.0431 0.2318 0.1664

cloudy 0.3020 0.2431 0.2940 0.0857 0.0000 0.3247 0.3442 0.0671 0.3456 0.1862
partial 0.0275 0.0086 0.0551 0.0541 0.0000 0.0573 0.0796 -0.0777 0.0909 0.0638

𝜿

clear 0.1906 0.1792 0.2078 -0.0128 0.0000 0.3278 0.3207 -0.1186 0.2590 0.2493
Av. 0.2006 0.1813 0.1944 0.0812 0.0000 0.2392 0.2488 0.1120 0.2432 0.2051

cloudy 0.3278 0.2943 0.2940 0.0919 0.0000 0.3305 0.3456 0.1283 0.3457 0.2532
partial 0.0283 0.0086 0.0602 0.1043 0.0000 0.0593 0.0796 0.0890 0.1000 0.0892

M
A

TT
H

EW
S

clear 0.2456 0.2411 0.2291 0.0473 0.0000 0.3279 0.3213 0.1186 0.2840 0.2728
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Table 8 summarizes the average ranking obtained by the MIs.  was in first place in the 𝜖

Jaccard Index,  and Matthews evaluations. It was only surpassed by the  index in the 𝜅 𝐹𝐾

Accuracy ranking. Bearing in mind the similarity of the numerical values obtained by  𝜖,  𝐹𝐾 

and  in the evaluation indices, these three MIs may be identified as the best classifiers of 𝐹𝑃

sky cloudiness. When studying only the capacity of the MIs to identify clear skies,  𝐹𝐾

obtained first position in all the indicators. This result was already shown in Figure 12. None 

of the MIs under analysis have simultaneously shown good results in the rating variables, 

for the identification of either partial or cloudy skies,. 

Table 8. Ranking average summary

𝒌𝒅 𝒌𝒃 𝒌𝒕 𝑭 𝒌𝒌 𝑭𝑲 𝝐 ∆ 𝑭𝑷 𝑺𝒊

ACCURACY 5 7 4 9 10 1 2 8 3 6

JACCARD 5 7 4 9 10 2 1 8 3 6

𝜿 5 7 4 8 9 2 1 10 3 6

MATTHEWS 5 7 6 9 10 3 1 8 2 4

GLOBAL 5 7 4 9 10 2 1 8 3 6

7. CONCLUSIONS

A key aspect in the modelling of solar radiation and daylighting is sky classification. The use 

of MIs as an alternative to the CIE standard classification has been investigated in this work. 

Various MIs for sky classification have been reviewed. Ten classical MIs obtained from 

global, diffuse, and/or beam irradiance measurements, recorded at weather stations have 

been used. The baseline reference in the one-year experimental measurement campaign 

was the standard CIE classification for homogenous skies. Only three cloudiness sky 

categories have been established: clear, partial and cloudy. This homogenization has 

required scaling down the number of intervals of some MIs, keeping the class limits stated 

in the original works. An exhaustive analysis of all the possibilities has been made to merge 

the intervals, always respecting the original limits and selecting the option that optimized the 
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result of each MI. Confusion matrices have been used as a tool for benchmarking the MIs 

under study and four different quality metrics have been calculated, to determine the 

performance of each MI as a sky classifier.

Although the classification of the skies was limited to three categories, none of the MIs under 

analysis distinguished the large global number of clear skies that the CIE determined in the 

city of Burgos; the index was the closest to this classification, in terms of  frequency of 𝐹𝐾 

occurrence of each of the sky categories. The rest of the indices, in general, indicated 

partially or fully covered skies as the predominant ones in the area under study. The monthly 

distribution over the year-long analysis of the types of sky calculated by the different indices 

also differed from that offered by the CIE standard, which predicted predominantly clear 

skies in summer. 

The metrics for the cloudiness classification have shown that the performance of the MIs 

may, at best, be considered as “fair”. Classification accuracy reached values of over 70% 

for cloudy skies. However, this metric can lead to misunderstandings, as it accounts for the 

correct classification of true positives and true negatives (see the Accuracy Paradox in 

section 4.1). As Table 8 shows, the best MI for the sky classification was  followed closely 𝜖

by and  indices. and showed the worst results for the classification of cloudiness 𝐹𝐾 𝐹𝑃 𝑘𝑘  𝐹 

of the skies into three categories. No correlation was observed between the mathematical 

complexity of the MIs or the number of input parameters and the classification result of the 

MIs. As can be observed, the original definition of the intervals is one of the main factors 

that justifies the difference in the performance of the MIs. 

The experimental data of the present study were taken from a different location other than 

that used in the original studies for the definition of each MI. However, if subtle language 
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differences are neglected, the definition of "clear" or "cloudy" sky should be independent of 

the location. Attending to the metrics, regardless of the accuracy, the results were quite 

similar. The average accuracy almost reached 70 % in , and was above 50 % in all the 𝐹𝐾

MIs. However, this result is overoptimistic because of the accuracy paradox. The average 

value was below 33% for the Jaccard Index and below 25% for Cohen’s Kappa and 

Matthews correlation coefficient. In short, the capability of the MIs at classifying sky 

cloudiness can be considered “fair”. As demonstrated, their isolated use would not be 

advisable for the classification of sky cloudiness.

Several possible lines may be followed to improve on the results that have been presented 

here. Future work must address different combinations of these indices linked with other 

variables related to climatic and atmospheric conditions, which were not considered in the 

calculation of the indices. Another option would be to modify the original interval limits of 

each sky type to obtain the best classification results. The use of machine learning 

techniques should also be considered, to obtain models that will help to classify day 

cloudiness in real time. The final objective must be to reuse the big data available from 

meteorological stations, so as to classify cloudiness in the most reliable manner without the 

use of expensive sky scanner devices. 
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 Skies classification is needed to improve building’s energy efficiency and solar energy 

applications

 10 Meteorological indices (MI) for real-time sky classification were reviewed

 The baseline reference was the Standard CIE for homogenous skies.

 The confusion matrices have been used as a tool for benchmarking 

 Four quality metrics determined the performance of each MI as sky classifier.


