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A B S T R A C T   

There are several compilations of sky classifications that refer to Meteorological Indices (MIs) (variables usually 
recorded at meteorological ground stations), due to the scarcity of sky scanner devices that can supply the 
experimental data needed to apply the CIE standard sky classification. The use of one rather than another MI is 
never justified, because there is no standardized criterion for their selection. In this study, forty-three MIs, 
traditionally used to define different sky conditions, are reviewed. Feature Selection (FS) is a key step in the 
design of a sky-classification algorithm using MIs as an alternative to data from sky scanners. Four procedural 
methods for FS -Pearson, Permutation Importance, Recursive Feature Elimination, and Boruta- are applied to an 
extensive data set of MIs that includes CIE standard sky classification data, which was used as a reference. The 
use of FS procedures significatively reduced the original set of MIs, permitting the construction of different 
classification trees with high performance for the sky classification. In the case of the Pearson FS method, the 
classification tree only used two MIs. The advantage of the Pearson FS method is that it functions independently 
from the machine-learning algorithm used latter for the sky classification.   

1. Introduction 

Daylight, as part of the solar irradiance is an essential natural 
resource even for human health. In building design, projection of 
daylight can increase the energy efficiency of buildings (Dubois et al., 
2016; Fouquart et al., 1990; Li, 2010) and will have positive effects on 
the well-being of occupants (Aries et al., 2015; Edwards and Torcellini, 
2002). Natural lighting availability is highly dependent on luminance 
levels and sky conditions. In 2003, the Commission International de 
L’Eclairage (CIE) (Uetani et al., 2003) and the International Organiza
tion for Standardization (ISO) (ISO, 2004) both adopted 15 Standard Sky 
Luminance Distributions (SSLD), five clear, five overcast and five partly 
cloudy sky conditions. They provide the most versatile definition of 
skylight at various localities and daylight climate regions, making it 
possible to simulate an annual daylight profile at any point on earth in 
absolute units, based on typical luminance sky patterns. 

The sky scanner is the standard instrument for measuring sky lumi
nance distribution (Li, 2010). Despite the high interest in those mea
surements, very few studies at only a handful of European (Markou 
et al., 2005; Markou et al., 2004; Suárez-García et al., 2018; Torres et al., 
2010a, b; Tregenza, 1999) and Asian (Chaiwiwatworakul and 

Chirarattananon, 2004; Li and Tang, 2008; Ng et al., 2007; Zi et al., 
2020) locations have been conducted to characterize the sky under the 
CIE standard, mainly due to the scarcity of sky scanner devices available 
to gather sky luminance data. 

Different alternatives to the use of sky scanners have been proposed 
for classifying the skies (Li et al., 2014b), including the use of different 
climatic parameters or meteorological indices (Li et al., 2004; Lou et al., 
2017; Umemiya and Kanou, 2008; Wong et al., 2012), vertical (Chen 
et al., 2019; Darula et al., 2013) and horizontal illuminance data 
(Alshaibani, 2016b; Alshaibani, 2017), as well as satellite data (Janjai 
et al., 2008). Added difficulties for sky classification (Allard et al., 2015) 
include the variability of sky conditions and their sensitivity to many 
stochastic variables. 

Sky classification in various studies relies on Meteorological Indices 
(MIs), factors usually recorded at meteorological ground stations that, to 
a greater or lesser extent, affect the luminance and radiance distribu
tions: sun position, cloud coverage, turbidity, and weather conditions, 
among others. Such climatic indices within certain ranges will lead to 
sky luminance and radiance distributions with similar features, and a 
straightforward approach is to describe those distributions by sky con
ditions (Lou et al., 2017). The selection of the MIs depends on their 
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availability. The number of MIs used and the conditions that define each 
sky type vary in each study, complicating the task of defining a taxon
omy that could unequivocally describe the specific characteristics of 
each sky type (Dieste-Velasco et al., 2019; Perez et al., 1990a), even in a 
reduced classification with only three sky types: clear, partly cloudy, and 
overcast conditions. 

In recent years, machine learning (ML) tools, such as Artificial 
Neural Networks (ANN’s) (Li et al., 2010) and classification trees have, 
among others, been applied to sky classification. Supervised machine 
learning tools permit the identification of patterns and relationships 
between inputs and outputs, as long as the algorithm has sufficient ex
amples to train recognition. In this paper, a set of sky type samples 
labeled as CIE Standard Sky Classification will be used as the training set 
for sky classification purposes and a test set of available MIs will be used 
as input for the algorithm. 

The work flow of a supervised Machine-Learning (ML) tool is shown 
in Fig. 1. The first step for every ML tool is to filter and to analyze the 
input data so as categorize it and to control its quality. The second step is 
the Feature Selection (FS) procedure: the identification of related fea
tures within a set of data and the removal of irrelevant or less important 
features that contribute little or nothing to the definition of the target 
variable, so as to achieve models of greater accuracy. FS is one of the 
core concepts of ML that will impact on the performance of the devel
oped model, improving its precision and reducing its complexity and 
overfitting as well as its runtime. 

Following acceptable FS, the algorithm is trained using part of the 
input data set (training set), typically 80% of the total, using the 
remaining 20% for validation tests. Training set data and test set data 
are exchanged as many times as necessary, until the algorithm is 
considered validated. 

In this study, a total of forty-three MIs describing sky conditions are 
borrowed from past studies for their use as variables to define sky types. 
The use of one rather than another MI is not justified, because there is no 
standardized criterion for selecting MIs. It is necessary to compare the 
information that each of them offers, removing those that offer redun
dant or insignificant information for the definition of sky types (Yang 
and Pedersen, 1997). Therefore, FS is a key step in the design of a sky 
classification algorithm using MIs as an alternative to data from sky 
scanners. The main objective of this study is to determine, through a FS 
procedure, the most suitable MIs and their precise number for the 
optimization of the sky classification algorithms. Forty-three MIs were 
included in the study, calculated from half-hourly experimental data 
records collected at Burgos, Spain, between September 2016 and 
December 2019. The following FS criteria were selected: Pearson (Bie
siada and Duch, 2007), Permutation Importance (Gregorutti et al., 
2017), Recursive Feature Elimination, and Boruta (Degenhardt et al., 
2019). 

This study reports an extensive review of the MIs that define different 
sky conditions and features that are suitable for sky classification. 

Structured and rigorous FS procedures can determine the usefulness of 
the information in these indices, with a high degree of success, for the 
problem of sky classification, the informative equivalence between some 
of the MIs, and the number of MIs that may be needed for sky classifi
cation in line with the CIE standard. It was proven that the Pearson FS 
procedure performed accurate sky classification into three sky condi
tions (clear, partly cloudy and overcast conditions), in accordance with 
the CIE Standard Classification, requiring only two MIs. The FS results, 
processed in a classification tree to test their validity, confirmed that the 
intervals of definition of the MIs for each sky type were close to the 
intervals that were established in each study for the individual use of 
each MI. 

The structure of this paper will be as follows. Following the Intro
duction in Section 1, the methodology will be explained in Section 2, 
where the experimental facility and the data processing needed to 
calculate the MIs and the experimental campaign is introduced in Sec
tion 2.1. In Section 2.2, the CIE Standard Sky classification of Burgos, 
Spain, gathered during the experimental campaign will be described, as 
reference data for sky classification. The MIs with their data on sky 
conditions that were available for the FS procedures will be reviewed in 
Section 2.3. Then, the different FS procedures used in this work and the 
results of their application to the experimental MIs will be described in 
Section 2.4. In Section 2.5, the classification trees will be introduced, 
together with the machine learning algorithm used to test the perfor
mance of the FS procedure; and in Section 2.6 the metrics used to test FS 
performance will be presented. Finally, the main results and the con
clusions of the study will be summarized in Sections 3 and 4. 

2. Methodology 

The present work was developed in four steps: data collection, 
Feature Selection (FS), classification trees, and classification metrics. 
Several meteorological variables were collected between 21 September 
2016 and 31 January 2020. The dataset contained over eight-thousand 
samples that were used for the evaluation of 43 MIs. The size of the data 
set lent support for the conclusions of this work. Following the calcu
lation of the MIs, the classification tree was employed in conjunction 
with the FS procedure to classify sky cloudiness (clear, partial or over
cast) following the established CIE patterns. The ML classification tree 
algorithm was selected, because it can process and extract the rules for 
sky labelling. FS, for maximum simplification of the classification trees, 
was applied, in an effort to reduce the number of MIs serving as ML 
algorithm inputs to a minimum. Finally, the outputs of the classification 
tree algorithm were analyzed using several metrics. 

2.1. The experimental facility 

The experimental campaign during which the meteorological data 
were recorded for the processing of each MI in this study was performed 

Fig. 1. Workflow of Supervised Machine-Learning tool.  
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in Burgos, Spain. Data collection took place at a meteorological facility 
located at the Higher Polytechnic School of Burgos University (LON. 
42◦21′04′′N, LAT. 3◦41′20′′W, 856 m above mean sea level). A com
mercial sky scanner from Eko instruments, model MS-321LR, was used 
for CIE Standard classification. Its technical specifications are shown in 
Table 1. Measurements from 4-minute scans were taken every 15 min, 
from September 2016 to December 2017. From January 2018, the scans 
were taken every 10 min. The device was adjusted on a monthly basis to 
measure from sunrise to sunset. First and last daily records were dis
carded, to avoid measurements with solar altitudes equal to or lower 
than 7.5◦. Data higher than 50 kcd/m2 and lower than 0.1 kcd/m2 were 
also discarded, following the technical specifications of the sky scanner. 
Seven lux sensors, EKO, model ML-020S-O, technical specification listed 
in Table 2, were also used: four of them recorded vertical global illu
minance in the four cardinal orientations and three lux sensors recorded 
horizontal, global, beam, and diffuse illuminance. Horizontal global, 
diffuse and beam irradiance were measured using Hukseflux pyran
ometers, model SR11 and a Hukseflux pyrheliometer, model DR01. The 
technical specifications of the pyranometers and the pyrheliometer are 
shown in Table 3. The beam illuminance and irradiance sensors were 
installed on a sun tracker, model Sun-Tracker 3000, from Geónica. The 
diffuse illuminance and irradiance sensors were obscured from direct 
sunlight by a shadow hat. Illuminance and irradiance data were recor
ded every 10 min (averaging recorded scans of 30 s). Fig. 2 shows the 
experimental equipment. 

CIE quality criteria (Comission Internationale de, L.E, 1995) were 
used for analyze and filter illuminance data while irradiance data were 
analyzed and then filtered using conventional quality criteria (Guey
mard and Ruiz-Arias, 2016). To match simultaneous records of illumi
nance and irradiance data, half-hourly and hourly sky scanner 
measurements were used in this study, from September 2016 to 
December 2017, and from January 2018, ten minutes records. If the 
illuminance and irradiance data failed to pass the quality criteria, then 
all the simultaneous data sets were rejected. 

The measurement campaign extended between 21 September 2016, 
and 31, January 2020. Following their analysis and the filtering process, 
the experimental data amounted to 8829 items. 

2.2. CIE standard classification of Burgos skies 

Supervised Machine Learning needs examples for training the clas
sifier algorithm. In this work, the CIE standard classification served as a 
benchmark for estimating the performance of the supervised machine 
learning algorithm and for testing the FS procedure. Several works have 
reported that the CIE Standard sky classification provides a good overall 
framework for representing the actual conditions for homogeneous skies 
(Li et al., 2011b; Li et al., 2004; Li et al., 2010; Markou et al., 2005). 
Tregenza (Tregenza, 2004) gave a detailed description of the CIE stan
dard classification procedure following a discrete integration method
ology, the same method that was used for sky classification in Burgos. 
The labelling of CIE sky types was as follows: I.1 to III.1: cloudy; III.2 to 
IV.3: partially cloudy; and, IV.4 to VI.6: clear skies. More information on 
the classification method can be obtained from a previous work (Suárez- 
García et al., 2018). In the experimental campaign between 21 
September 2016, and 31 January 2020, clear skies predominated in 

Burgos (52%) while overcast skies were present in 15% and partially 
cloudy skies in 33% of cases, as shown in Fig. 3. 

2.3. Meteorological indices 

Skies of the same category are assumed to share identical well- 
defined sky luminance patterns (Darula and Kittler, 2002), which is 
the straightforward approach for sky classification. Once the skies have 
been identified, the daylight on any surface can be estimated, by inte
grating the luminance distribution of the sky dome over each surface 
(Granados-López et al., 2020). Therefore, any climatic parameter based 
on lighting measurements can potentially identify a given sky condition. 
Table 4 describes the 43 MIs reviewed in this work. 

The US National Bureau of Standards (NBS) recommends the use of 
the horizontal diffuse fraction, kd, for sky classification (Fakra et al., 
2011): low kd values indicate clear sky conditions and high values are 
usually present, but not exclusively so, in overcast conditions (Li et al., 
2015). Alternatively, high values of the horizontal direct fraction, kb, are 
representative of clear skies, due to the high values of the solar irradi
ation beam component (Ferraro et al., 2010) while low kb values pre
dominate on cloudy days,. 

Perez’s Sky clearness, εp, maybe one of the most widely used MIs for 
sky characterization, was originally proposed to define the ratio of 
illuminance and irradiance, known as luminous efficacy, K. The sky’s 
brightness index, Δ, is often used with the clearness index, εp, for sky 
classification (Li et al., 2004; Perez et al., 1990a). 

Luminous efficacy, K, can be modeled through different parameters 
such as the solar zenith angle, Zs; Perez’s sky clearness index, εp; the 
sky’s brightness index, Δ, and, the atmospheric precipitable water 
content (Perez et al., 1990a). 

Relative heaviness, Ω, (Chung, 1992) is proportional to the amount 
of solar radiation entering into clouds. Cloud cover, CC, is often used as 
an indicator of sky conditions (Muneer et al., 2007): 0 oktas is the CC 
value for clear skies and 8 oktas is assigned in overcast conditions. A sky 
classification based on MIs was performed by Igawa et al. (Igawa et al., 
2004) using Igawa’s sky index, Si, the clear sky index, kc, and the 
cloudless index, Cle.

A CIE-based standard classification of skies using global horizontal 
illuminance, LxGH, and Kittler’s index, kt , was proposed by Lou et al. 
(2019). Kittler’s index, kt , is widely used for illumination studies, due to 
the high information content that it provides when only global irradia
tion data are available. However, kt is only available when the zenith 
sun angle is under 80◦, Zs < 80◦

. An alternative and globally valid 
definition was proposed by Perez et al. (1990b), kt2, that used cloud 
cover, CC, together with relative humidity, RH, among other factors, 

Table 1 
Sky scanner specifications.  

Model MS-321LR Sky Scanner 

Dimensions (W × D × H) 430 mm × 380 mm × 440 mm 
Mass 12.5 kg 
FOV 11◦

Luminance 0 to 50 kcd/m2 

Radiance 0 to 300 W/m2 

A/D Convertor 16 bits 
Calibration Error 2%  

Table 2 
Luxmeter technical specifications.  

Model ML-020S-O 

Illuminance Range 0 to 150,000 lx 
Output 0 to 30,000 μV 
Impedance 280 Ω 
Operating temperature range − 10 ◦C to 50 ◦C 
Temperature response 0.4%  

Table 3 
Pyranometers and Pyrheliometer technical specifications.  

Model SR11 DR01 

Measurement Range 0–3000 W/m2 0–4000 W/m2 

Calibration uncertainty <1.8% (k = 2) <1.2% (k = 2) 
Spectral Range 285–3000 × 10− 9 m 200–4000 × 10− 9m 
Sensitivity (nominal) 15 × 10− 6 V/(W/m2) 10 × 10–6 V/(W/m2) 
Operating temperature 

range 
− 40 ◦C to 80 ◦C − 40 ◦C to 80 ◦C 

Temperature response <± 2% (− 10 ◦C to 40 ◦C) <± 1% (− 10 to +40 ◦C)  
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effectively contributing to better definition of the atmospheric 
conditions. 

The cloud ratio on irradiance, Ce (Rahim et al., 2004) originally 
defined as the proportion of diffuse to global irradiance, was used in the 
estimation of solar radiation. Umemiya and Kanou (2008) introduced a 
new definition in terms of illumination, Cv, and used it for sky tree 
classification. The cloud ratio is 1 in overcast sky conditions and 0 for 
clear skies, and it will vary quickly and with some frequency when the 
sky is partly cloudy. The cloudless index, Cle, is often defined in terms of 
the standard cloud ratio, Ces, and the cloud ratio, Ce. Ces is defined as a 
polynomic fit of the lower limit of Ce. 

Perraudeau’s nebulosity index, OFP, introduced by Perraudeau in 
1989 (Kambezidis et al., 1998), classifies the skies into five categories 
(Kambezidis, 2018). This index has since been modified by other authors 
(Fakra et al., 2011) and is defined in this work as FP. The clearness 
function, F, was compared to the MIs Δ, εp, and kt for sky classification 
(Muneer, 2007). Low values of F, indicate overcast sky conditions and 
values near to 1 are obtained under clear sky conditions. 

The Klucher index, FK, (Klucher, 1979) depending only on kd, has 
also been used for sky classification. Markou et al. (2005) prepared a 
simple sky classification by modelling direct solar irradiance data, Pe, 
characteristic of each sky type. This proposal suggested the use of 
experimental MIs for sky classification: horizontal global irradiance, 
RaGH; horizontal diffuse irradiance, RaDH; horizontal beam irradiance, 

RaBH; and south-facing global vertical irradiance, RaGVS. 
Umemiya and Kanou (2008) proposed the turbidity index, TURV,

permeability, PERM, Unemiyas’s Cloud Ratio, CLDV, and global, diffuse, 
and beam illuminance, EVGM, EVDM, and EVSM, normalized to the 
optical mass, Mv, as effective sky condition sorters. They produced a sky 
classification with 7 types of skies that used a classification tree based on 
the turbidity index, TURV; Kittler’s index, kt ; sky brightness, Δ; and, 
normalized global illuminance, EVGM. A similar proposal was intro
duced by Lou et al. (2017) using solar altitude, αs; Kittler’s index, kt; the 
turbidity index, TURV; air temperature, T; and, relative humidity, RH.

Other variables, used for meteorological forecasting have been proposed 
among which MIs for sky classification such as wind speed, WS; relative 
humidity, RH; cloud cover, CC; and air temperature, T, among others 
(Inman et al., 2013). 

Li et al. [12] proposed a group of MIs that obtained a very accurate 
sky classification. They used a ratio of zenith illuminance, Lz, and hor
izontal diffuse illuminance, LxDH, named LERT, as a measure of sky 
brightness (Li et al., 2006; Markou et al., 2005). The luminous turbidity 
index, tv, refers to the attenuation of solar radiation in the atmosphere, 
due to the molecules contained into the air (water, dust or aerosols) (Li 
et al., 2016; Pasero and Mesi, 2010). In overcast sky conditions, tv, is 
very high, because there is no direct solar-irradiation component. Under 
clear or partly cloudy sky conditions, tv is a very interesting parameter, 
due to its high sensitivity to ambient pollution (Lou et al., 2017). It is 
related to CIE standard sky types VI.6, VI.5, and IV.4 (Kocifaj, 2011). 

Fig. 2. Experimental equipment on the roof of the Higher Polytechnic School of Burgos University, Spain.  

Fig. 3. Monthly distribution of the Frequency of Occurrence (FOC) and total FOC (%) of clear, partly cloudy, and overcast sky conditions in Burgos, Spain (from 
September 21st, 2016 to January 31st, 2020). 
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C1, defined as the ratio of horizontal global illuminance, LxGH, and 
horizontal extraterrestrial illuminance, L0h, evaluates the ambient 
clarity. Low values of C1 are characteristic of the passage of a cloud on a 
clear day while a high C1 value can reflect a cloud opening zone on a 
completely overcast day (Alshaibani, 2016a; Kittler and Danda, 2000). 
C2 is defined as the ratio of horizontal diffuse illuminance, LxDH, and 
horizontal extraterrestrial illuminance, L0h, so high C2 values are char
acteristic of partly cloudy skies, while low C2 values are characteristic of 
cloudy or completely clear skies (Li et al., 2006; Li et al., 2010; Markou 
et al., 2005). 

The vertical sky component, VSC, was also proposed as an MI for sky 
classification (Li et al., 2011b). Defined as the ratio of the vertical diffuse 
illuminance and horizontal diffuse illuminance, it can easily be obtained 
experimentally. Littlefair established an international standard for the 
indoor daylight evaluation of buildings (Littlefair, 2012) based on VSC, 
which is highly dependent on the solar altitude, αs, and the scattering 
angle, χ (Alshaibani, 2011; Li et al., 2014a). 

2.4. Feature selection 

43 MIs were selected (Table 1) for the study. Each one represents 
certain characteristics of the sky that are suitable for sky classification. 
The final objective of the present work is to distinguish the most 
representative MIs for sky classification according to the CIE taxonomy. 

The most simple and demanding methodology is the full combina
torial method. It proposes to test all the possible combinations of all MIs: 
at first, only one MI would be considered for the CIE classification; then, 
all combinations of two MIs would be used for the task and so on (Visa 
et al., 2011). Li et al. (2011a) followed this path to evaluate the per
formance of several MIs in neural networks for weather data classifi
cation. It was feasible because only five MIs were considered which 

meant a total of 30 sets of MIs for testing. In the present study, an 
analysis of the 43 variables implied over a trillion combinations, which 
was not feasible. FS was therefore essential to solve this task. 

Several FS techniques are used widely in the ML field to find the most 
important variables or to reject the most redundant ones. There are 
different types of FS algorithms. On the one hand, no clustering algo
rithms are used with the Filter Methods that base their decision on a 
statistical index that evaluates the dependence between the MIs. On the 
other hand, the Wrapper Methods evaluate the information provided by 
each MI using clustering algorithms, which implies a higher computa
tional cost (Solorio-Fernández et al., 2019). 

The FS Filter methods are used to study the similarity of MIs through 
a statistical parameter, a mathematical expression that serves to elimi
nate redundant or non-informative indices. These methods are inde
pendent from the ML algorithm used later on (Mitra et al., 2002; Yu and 
Liu, 2003). Hence, their results may be used as an input of any ML al
gorithm. They are an efficient procedure, in so far as they reduce the 
input dimensionality of the ML algorithm and prevent overfitting. In this 
study, a widely used statistical parameter will be used: the Pearson 
correlation coefficient. 

The FS Wrapper methods perform a global evaluation of the entire 
set of variables that creates a ranking of relevance. The ML algorithm 
executes the ranking and, consequently, the score is not universal and 
they cannot be applied to any other ML algorithm (Wald et al., 2014). In 
other words, the Wrapper methods will produce different rankings for 
different ML algorithms. Wrapper FS approaches are commontly used in 
the field of renewable energy applications due to their higher perfor
mance (Salcedo-Sanz et al., 2018). Permutation Importance, Recursive 
Feature Elimination and Boruta methods are all included within this 
category. In this work, the FS algorithms used for simplifying the clas
sification trees are: Pearson correlation coefficient, Permutation 

Table 4 
Definition of the 43 MIs reviewed as candidates for sky classification. L0 is the Luminous solar constant (133.8 kLux) and ISC is the standard global irradiance 

(1361.1
W
m2) (Gueymard, 2018).  

Ratio Zenith Illuminance 
to horizontal diffuse 
Illuminance 

Ratio Global Illuminance Ratio Diffuse Illuminance Luminous Turbidity index Vertical Sky Component 

LERT =
LZ

LxDH  C1 =
LxGH
LOh  

C2 =
LxDH
LOh  tv =

Ln(
LOh

LxBH
)

AVMV  

VSC =
RaDH
RaDV  

Normalized Global 
Illuminance 

Normalized Beam 
Illuminance 

Normalized Diffuse Illuminance Cloudless Index Igawa’s Sky Index 

EVGM = MV
LxGH

L0  
EVSM = MV

LxBH
L0  

EVDM = MV
LxDH

L0  
Cle =

1 − kd

1 − Ces(M)
Si =

RaGH

0.84
ISC

Mv
e− 0.0675Mv

+
̅̅̅̅̅̅̅
Cle

√

Direct Fraction Cloud Cover Illuminance Cloud Ratio Irradiance Cloud Ratio Standard Cloud Ratio 

kb =
RaBH
RaGH  

CC(%Clouds) CV =
LxDH

LxDH + LxBH  
Ce =

RaDH
RaDH + RaBH  

Ces = 0.01299 +

0.07698MV − 0.003857MV
2 +

0.0001054MV
3 − 0.000001031MV

4  

Umemiya’s Cloud Ratio Relative Heaviness Clear Sky Index Clearness Index Zenith Angle Independent Clearness Index 

CLDV =
LxDH
LxGH  Ω =

LxGH
Sinαs  

kC =
LxGH

0.84
ISC

Mv
e− 0.0675Mv  

kt =
RaGH
IOSinαs  

kt2 =
kT

1.031e
−

1.4
0.9 + 9.4MV + 0.1  

Luminous Efficacy Brightness Index Perez’s Clear sky index Original Perraudeau’s 
Nebulosity Index 

Perraudeau’s Nebulosity Index 

K =
LxGH
RaGH  

Δ =
RaDHMv

Iscεosinαs  εp =

(RaDH + RaBH)

RaDH
+ 1.04Z3

1 + 1.04Z3  

OFP =
1 − kD

1 −
Eclear

Eclear
+ RaGH  

FP =
1 − kD

1 − 0.12037(SinZS)
− 0.82  

Klucher’s Clearness 
Index 

RaBH,RaDH,RaGHRaGVS,
LxGH  

Optical Mass Scattering Angle Ref Turbidity 

FK = 1 − k2
D  Direct, Diffuse, Global 

(Horizontal and Vertical South 
oriented) Irradiance global 
horizontal Illuminance 

Mv =

(sinαs+0.50572(αs + 6.07995)− 1.6364  

χ = arcos(cosZscosZP +

sinZssinZPcos|ϕP − ϕs|)
TURV =

1 + 0.0045MV

0.1MV
Ln(

L0

LxBH
)

T,RH,WS,Lz,αs  Diffuse fraction Clearness Function Modeled direct solar 
irradiance 

Permeability 

Temperature, Relative 
humidity, Wind speed, 
Zenith luminance, solar 
altitude. 

kd =
RaDH
RaGH  F =

RaGH − RaBH
Iscεosinαs  

Pe =
RaGH − RaDH

sin(αs)
PERV = MV

̅̅̅̅̅̅̅̅̅̅̅̅
LxBH

L0

√
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Importance, Recursive Feature Elimination and Boruta. The following 
paragraphs describe them and their use in other fields of the ML. 

2.4.1. Pearson correlation coefficient criterion (P) 
The Pearson criterion is based on the Pearson correlation coefficient, 

r. If two datasets X and X’ are strongly correlated, the Pearson coefficient 
is 1 (direct correlation) or − 1 (inverse correlation). However, a Pearson 
coefficient near 0 implies a weak or null correlation. 

In this work, the Pearson criterion was applied in two steps: firstly for 
selecting the MIs with a strong correlation to the CIE cloudiness classi
fication. Only the MIs with Pearson correlation coefficients above a 
certain threshold were selected and used in the next step for detecting 
the MIs with high correlations between them and for selecting the most 
important ones. After both steps, only the most important independent 
MIs for the classification were selected. 

2.4.1.1. Permutation Importance (PI). Permutation Importance (PI) or 
the Mean Decrease in Accuracy (MDA) (Nembrini, 2019) algorithm is 
used to analyze how the score of the prediction model decreases when 
the data of a single variable is randomly permuted, generating random 
noise. Permutation feature importance is defined as decreasing in a 
model score when a single feature value is randomly shuffled (Bommert 
et al., 2020). A PI index of 0% means null relevance of this feature for the 
classification. Usually, a threshold of 5% is employed, considering only 
MIs with a permutation importance above 5% as important and dis
carding any others (Altmann et al., 2010). 

2.4.1.2. Recursive feature Elimination (RFE). The Recursive Feature 
Elimination (RFE) method fits a model, so as to remove the weakest 
features until a specified number of variables is reached. A great number 
of ML classification algorithms such as Decision Trees, Support Vector 
Machines (Weston et al., 2001), and Random Forests (Diaz-Uriarte and 
Alvarez de Andres, 2006), among others, attach a weight to each input 
for the classification. The features are ranked in each loop and a few 
features per loop are removed, in an attempt to lower their inter- 
dependencies and collinearity. Also, the final size of the feature set 
cannot be initially specified and the number is established when there is 
no global improvement in the accuracy of the model. This method has 
been widely used with high-dimensional data sets (Escanilla et al., 2018; 
Paul et al., 2015). Fields where the algorithm has successfully been 
applied include genetics (Darst et al., 2018), materials science (Sharp 
et al., 2018), cancer studies (Duan et al., 2005), sports (Paul et al., 2015) 
and solar and wind forecasting (Benamrou et al., 2020; Feng et al., 
2017). 

2.4.1.3. Boruta (BOR). The Boruta (BOR) method, rather than 
comparing features between each other, competes with a randomized 
version of so-called “shadow features”. In each iteration, the importance 
given by the classification algorithm to each original feature is 
compared with the highest feature importance recorded among the 
shadow features. Each time the importance of a feature is higher than 
this threshold, it is called a “hit”. A feature is considered useful, if it 
performs better than the best randomized feature. Counting the number 
of hits, the selection of a feature is decided after a number of trials. In the 
same way as RFE, the BOR method performs a top-down search for 
relevant features, progressively eliminating irrelevant ones (Kursa and 
Rudnicki, 2010). RFE and Boruta have been compared on many occa
sions and in scientific fields such as genetics (Kursa, 2014) and spec
troscopy (Poona et al., 2016). Permutation Importance is highly 
sensitive and effective (Gregorutti et al., 2017) when applied to bio
logical data (Degenhardt et al., 2019). 

2.5. Classification trees 

A classification tree is an algorithm that classifies datasets into 

certain outcome categories by using a sequence of “partitions”, or 
“splits”. However, the more complex the category analysis, the larger 
the sequence of splits that may be needed. Since the first implementation 
of Breiman et al. in 1984 (Breiman, 1984), classification trees have been 
used in a very large variety of disciplines, such as meteorology, medi
cine, and statistics, among others, and likewise CIE Standard skies 
classification (Umemiya and Kanou, 2008). 

The structure of the classification tree can be implemented by several 
criteria. The one chosen for the sky cloudiness classification is the 
Classification and Regression Tree (CART) (Breiman, 1984). It looks for 
successive binary splits that chooses the partitions, in order to obtain the 
highest performance. Both the Gini (D’Ambrosio and Tutore, 2011) and 
the Entropy (Witten et al., 2016) indices were considered to fit the 
classification tree. The Gini Index points to how often a randomly chosen 
element from the set would be incorrectly labelled. The entropy index 
considers the disorder of a grouping by the target variable. Both of them 
are performance measures of the classification tree. 

The classification tree algorithm was selected above other ML clas
sification algorithms, due to the transparency of the results it can obtain. 
The classification tree produces a diagram that can be more easily un
derstood than those produced by other ML techniques such as, Support 
Vector Machines, Neural Networks, Random Forest and Gradient 
Boosting, traditionally known as “black boxes”. 

2.6. Classification metrics 

Confusion matrices are a useful tool for the performance character
ization of an classification algorithm. Four possible cases can be ob
tained in a classification procedure: true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN). The number of each one 
in the confusion matrix summarizes the performance of a dichotomic 
classification, as shown in Fig. 4. 

From the confusion matrix Precision, Pr, and Recall, Re, indices are 
defined in Eqs. (1) and (2), respectively, in order to measure the per
formance of the classification algorithm. Pr is the probability that a 
positive prediction was correct, while Re is the percentage of correctly 
detected positive cases. Both indices are independent from each other 
and could be explained by a very precise and not a very sensitive algo
rithm. Both indices are grouped in the f1 factor, defined in Eq. (3) as the 
harmonic average of precision and recall. 

Pr =
TP

TP + FP
(1)  

Re =
TP

TP + FN
(2)  

f 1 =
2

1
Pr +

1
Re
=

2TP
2TP + FN + FP

(3) 

Sky classification is a multiclass classification. It is therefore neces
sary to sum up the indices for each category, which yields a global result 
for the classification algorithm performance, as shown in Fig. 5. Pr, Re, 
and F1 indices were calculated for each CIE Standard sky condition 
(Clear, Partial and Overcast). 

Two different procedures can be used to obtain the global values: the 
macro-average and the weighted-average. The macro-average calculates 
the global value for each index as the average of the index for each 
category, regardless of the size of the category within the sample. 
Therefore, a low performance of the classification algorithm in one of 
the categories may affect overall performance, despite performing well 
in the other categories. This problem is as common in imbalanced class 
distribution as it is for the case of sky classification (see Fig. 2, where the 
FOC of clear, partial, and overcast conditions differ). The weighted- 
average yields the global value, by adding the results for each cate
gory and the weighting that represents the category size over the total 
number of cases. Therefore, the weighted aggregation used in this work 
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Fig. 4. Confusion matrix: possible cases in the comparison of the prediction with the actual data.  

Fig. 5. Confusion Matrix for multi-class sky classification.  

Fig. 6. Absolute value of the Pearson correlation between the MIs under consideration and the CIE Standard Sky classification, r(MIi,CIE).  
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will reward those algorithms with good performance in the most 
numerous classes and will have a lesser effect on those with poor per
formance, in the classes with fewer samples. 

3. Results 

3.1. Feature selection 

Figs. 6 and 7 show the results of the FS using the Pearson correlation 
coefficient. Fig. 6 shows the absolute value of the correlation between 
each MI and the CIE classification, denoted as r(MIi,CIE). Following 
Thumb’s rule (Mukaka, 2012), three r intervals were considered: high 
(0.9 ≥ r ≥ 0.7), moderate (0.7 ≥ r ≥ 0.5), and negligible (r < 0.5) cor
relations. The MIs with r(MIi,CIE) ≥ 0.7 were moved to the second stage 
of the Pearson correlation coefficient criterion. In the second step, an 
effort was made to discard the redundant MIs. Here, two MIs, MIi and 
MIk, are redundant if r(MIi,MIk) > 0.9. Fig. 7 represents the correlation 
between the MIs. The MIs for which r(MIi,MIk) ≥ 0.9. are shaded in 
blue. The redundant groups of the MIs were formed by grouping the MIs 
with very high correlation represented as blue squares, for each column 
of the matrix of Fig. 7. Each MI was only included in one group, as shown 
in Table 5. In this Table 5, all MIs in the same group were considered to 
have the same information and only one of them, the one with the 
highest value of r(MIi,CIE), was needed to reflect the information of the 
rest. CC was related to the others MIs and was therefore included in the 
selection process. As can be seen, the original set of 43 MIs was reduced 
to two. 13 features (MIs) were selected from the Permutation Index (PI) 
results as necessary for CIE Standard Sky classification, as shown in 
Fig. 8. All of them caused a 5% decrease in the performance of the 
classification algorithm when they were randomly shuffled. The red line 
in the figure represents the aforementioned threshold. All the scores 
above the line, represent an impact higher than 5%. Other thresholds 
could be considered. However, the optimal threshold for each algorithm 
is a matter for further research. 

Thirteen MIs were selected using the Recursive Feature Elimination 
(RFE) FS procedure that sets a minimum number of MIs needed for ac
curate CIE Standard Sky classification at 13 MIs. Fig. 9 shows the curve 
produced by recursive reduction of the number of MIs. The curve 
maintains an excellent f1 above 13 features when the most suitable 
variables that the algorithm selected were CC,LxGH,VSC,WS,OFP,Cle,kt ,

K,LERT,Ce,RH,Lz. When fewer variables were in the classification tree, 

the performance of the classification algorithm drastically decreased, 
because the most informative features were removed from the model. 
Conversely, redundant information was included, whenever additional 
variables were added. 

One hundred trial tests of the Boruta (BOR) FS methodology were 
completed. Fig. 10 shows the hits of each one of the MI. All MIs got a hit 
and the maximum number of hits was below ten. The MI with a number 
of hits higher than one was selected. 

The MIs selected by each FS procedure are summarized in Table 6. 
With the exception of the Boruta method, the FS procedures reduced the 
original set of MIs to a little less than 75%, selecting different MIs. The 
reduction in the number of variables required for the classification 
process, reflects the usefulness of the FS. Fewer variables to be measured 
and/or calculated implies less instrumentation and data storage, and 
simplifies the classification algorithm. Simpler models reduced the 
necessary computing power and, for example, made its implementation 
easier for lighting control systems. 

The results of different feature methods selection, show the rela
tionship existing between the variables, which in some cases can be 
directly deduced from the definition thereof, shown in Table 1 while in 
other cases does not appear so clearly reflected. The MIs selected by the 
FS algorithms can be classified into three types: variables related to the 
cloud conditions, others related to daylighting, brightness or clearness 
conditions of the skies and geometrical variables. While the Pearson FS 
method eliminates those variables that are most related to each other, in 
order not to include redundant information, the Boruta method does not 
eliminate a priori, highly related variables that can add distinctive nu
ances useful for classification. PI and RFE methods reach a compromise 
between information and complexity. 

3.2. Classification trees 

The classification trees for CIE Standard Sky Classification from the 
MIs selected by Pearson, Permutation Importance, RFE and Boruta FS 
procedures are shown in Figs. 11–14. Starting in the main left node, if 
the condition is met, the path of the upper branch is followed and, if not, 
the path followed is the one indicated by the lower branch. Evaluating 
each node consecutively, the sky conditions would be obtained. The 
number inside the nodes represents the number of samples inside each 
partition. The number of binary partitions or levels of the classification 
tree is a previously set parameter. In this work all the classification trees 
have four levels. An increased number of levels might increase the 
precision of the classification algorithm in the same way as complexity. 
The starting MI and the number of levels of the classification tree were 
selected following the Gini and the Entropy criteria, previously 
introduced. 

FP and CC are MIs selected by the Pearson FS method for the clas
sification tree. Both MIs are related to the cloud conditions, through the 
diffuse horizontal fraction (ratio diffuse horizontal irradiation to global 
horizontal irradiation) and the percentage of sky covered by clouds, 
respectively. The CIE Standard decision tree obtained from the variables 
selected by the Pearson FS method identifies the clear sky type by one of 
these cases: a)FP > 0.51, and CC ≥ 0.53; b)FP > 0.78; c)FP ≤ 0.51and 
CC ≤ 0.66.

Although the PI FS methods selected 11 MIs for the CIE sky classi
fication, only three were used in the four-level classification tree: FP,CC,
and VSC. The Vertical Sky Component, VSC, linked the classification to 
the daylighting. 

The classification tree obtained with the MIs selected by the RFE FS 
method started with the CC, a variable which directly classified the skies 
as clear if <61.7%. On the second and third levels of the classification 
tree, original Perraudeau’s Index, OFP, and VSC, were evaluated. At the 
last level, the MI selected to fit the classification was luminous efficacy, 
K. Again, two of the MIs were related to daylighting (VSC,K) and OFP 
and CC were related to cloud coverage. 

Boruta FS methods selected 34 MIs for the CIE standard sky classi
Fig. 7. Pearson correlation absolute value between MIs, r(MIi,MIk), for MIs 
with r(MIi,CIE) ≥ 0.7. 
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fication, but four were necessary to build the four-level classification 
tree. The sky classification started by evaluating Perraudeau’s nebu
losity index, FP (Kambezidis et al., 1998). At the second level, cloud 
cover, CC, and the vertical sky component, VSCwere investigated. 

Finally, the scattering angle, χ, a geometrical variable, was investigated. 
As regards the intervals established by the classification trees for 

each partition with respect to the one established by the authors in their 
original works, it is important to remark that the number of sky cate
gories is different for some MIs (for example FP establishes 5 sky cate
gories, instead of three). However, the original intervals and those 
obtained were in consonance. 

3.3. Analysis of the classification trees using different metrics 

Fig. 15 shows the results of the Pr, Re, and f1 metrics obtained for 
the classification trees calculated from the MIs selected by each FS 

Table 5 
Results of Pearson FS method.  

Group 1 kd  kb  Cle  Si  FK  FP  EVSM  CLDV  PERV  Pe  OFP  CV  

r(MIi,CIE) 0.762 0.761 0.770 0.747 0.764 0.771 0.714 0.755 0.762 0.729 0.769 0.740  

Fig. 8. Permutation Index (PI) results in feature selection of MIs for CIE Standard Sky classification.  

Fig. 9. Recursive Feature Elimination (RFE) results in FS of MIs for CIE Stan
dard Sky classification. 

Fig. 10. Results of the Boruta FS methodology for CIE Standard Sky Classification after 100 trial tests.  

Table 6 
Summary of the features (MIs) selected by each one of the FS algorithms.  

Feature Selection MI selected Number 

Pearson correlation 
coefficient criterion (P) 

FP,CC  2 

Permutation Importance 
(PI) 

Cle,Si,FP,αs,Mv,Ω,CC,VSC,RaGVS,EVSM,

LERT,CLDV,TURV  
13 

Recursive Feature 
Elimination (RFE) 

K,kt ,Cle,Ce,OFP,χ,RH,WS,CC,VSC,LxGH,Lz,

LERT  
13 

Boruta (BOR) C1,C2,CC,CLDV,Ce,χ,Cle,Cv,εp,EVDM,

EVGM,EVSMF,FK,FP,LERT,Lz,OFP,Ω,PERV,
Pe,RaBH,RaDHRaGVS,Δ,Si,TURV,VSC,kb ,

kc,kd,kt ,kt2 , tv  

34  
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procedure and for the different sky conditions (clear, partial, and 
overcast). The best results for all metrics were obtained in overcast sky 
conditions, with Pr and Reabove 85% and reaching 90% in the case of 
the classification tree that applied the four MIs selected for the RFE 
method (CC, OFP, VSC, K). The classification trees that used the MIs 
selected by both PI (FP,VSC,CC), and BORUTA (FP,VSC,CC, χ) obtained 
the same results. The simplest classification tree, from the two MIs 
selected by the P method, (CC, FP), yielded worse f1 metrics. 

In the identification of clear sky conditions, all classification trees 
presented more dispersion of the metrics value: f1 ranged from 65% (P 
method) to 87% (BORUTA method), but all indices exceeded 65%. The 
identification of partially covered skies was worse, lowering the values 
of all indices by between 55% and 70%. The irregularity of partially 
covered sky conditions, the high variability of the MIs for these condi
tions and the dependency of cloud cover with respect to the Sun might 
explain this fact. In every case, the RFE FS method yielded the closest 
values of the three metrics. 

The weighted-averaged global f1 is shown in Fig. 16. As can be seen, 
all the classification trees yielded results between 74% and 77%, the 
highest value of which was produced by the RFE FS procedure, very 
close to the BOR and PI FS procedure with the same value of f1. The 
Pearson method, also the simplest classification tree, showed the lowest 
f1 value. Taking into account the number of MIs used by each classifi
cation tree, perhaps the RFE FS methods offered the best performance 
with no high complexity, but the results highlighted no significant 

Fig. 11. CIE standard sky classification tree (MIs selected with the Pearson 
FS method). 

Fig. 12. CIE standard sky classification tree (MIs selected with the PI 
FS method). 

Fig. 13. CIE standard sky classification tree (MIs selected with the RFE 
FS method). 

Fig. 14. CIE standard sky classification tree. (MIs selected with the Boruta 
FS method). 
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advantages between the classification algorithms constructed from the 
different feature selection procedures used in this work. 

4. Conclusions 

This study has highlighted the usefulness of the FS procedure for 
adequate determination of MIs for sky classification in accordance with 
the CIE Standard classification, as an alternative to the use of sky- 
scanner devices. The maximum number of MIs can be identified with 
FS for use as an input for the ML algorithm, avoiding the introduction of 
redundant and useless information. Four FS (filter and wrapper) 
methods have been reviewed and applied. The initial set of 43 MIs was 
drastically reduced by three of the FS algorithms (Pearson, PI and RFE), 
although a less significant reduction was achieved with the Boruta FS 
method. The main advantage of the Pearson FS procedure over and 
above all the other methods that were tested was its independence from 
the ML algorithm used after the FS procedure, with the consequent 
saving of time when it was necessary to verify the operation of different 
ML algorithms. 

All the classification trees yielded performances that were similar to 
the CIE standard sky classification in terms of the Pr,Re and f1 metrics. 
The worse results were shown for the identification of partially cloudy 
conditions, while the overcast and clear sky conditions were identified 
with high success rates. No significant differences in the performance of 
the classification algorithms constructed from the MIs selected by the 
different FS methods have been pointed out, and the use of one or 
another FS method could be at the discretion of the researcher. 

The MIs selected by the FS algorithms can be classified into three 
types: variables related to the cloud conditions, (FP, CC, OFP), others 
related to daylighting, brightness or clearness conditions of the skies 
(VSC,K), and geometrical variables, such as αs and χ. 

Both the intervals established by the classification trees for each 
partition and those established by the authors in their original works 
were in consonance. However, the classification tree might be a good 
alternative, in order to set up these intervals independently from local 
climatic and meteorological conditions. 
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