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Abstract

The active materials constitute the heart of any battery so that
unambiguous determination of their intrinsic properties is of
essential importance to achieve progress in battery research.
A variety of in situ techniques with high lateral resolution has
been developed or adapted for battery research. Surprisingly,
nanoelectrochemistry is not attracting sufficient attention from
the battery community despite the existing examples of rele-
vant in situ and highly resolved spatiotemporal information.
Herein, the important role of nanoelectrochemistry in battery
research is highlighted to help encourage its use in this field. In
the first part, two examples in which the use of nano-
electrochemistry is a must are provided, that is, determination
of intrinsic kinetics of active materials and understanding of
relationships between particle structure and electrochemical
activity. In the second part, pros and cons of three mature
nanoelectrochemistry techniques in battery research, that is,
particle-on-a-stick measurements, nanoimpact measurements,
and scanning electrochemical probe microscopy, are
discussed providing representative examples.
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Introduction
Batteries have revolutionized our society, enabling
commercial success of various smart devices used in day-
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to-day life, for example, portable electronics (mobile
phones, tablets, and so on). More importantly, batteries
are also the power sources of choice for the emerging
electrified transport model as well as the energy storage
technologies necessary for relying on renewable energy
sources, for example, wind and solar radiation. Conse-
quently, interest in developing new battery chemistries
and improving existing battery technologies has gained
much attention in recent years. Although the basic
composition of a battery can be simply summarized
into three elements, that is, positive electrode, elec-
trolyte solution, and negative electrode, it is not a
simple electrochemical device at all. Many electro-
chemical processes occur simultaneously, which
hinder unambiguous investigation of the separate re-
actions and components. Aware of it, the battery
research community has devoted much effort in devel-
oping and adapting advanced characterization tech-
niques, which help putting together all pieces of the
scientific puzzle. Without proper understanding of the
individual elements of the complex system, progress in
battery research at the cell level cannot be achieved. In
general, efforts have been focused on the development
of two groups of techniques. (1) Iz situ and operando
techniques are of vital importance because information
is obtained under relevant conditions (as close as
possible to operating conditions) [1—3]. (2) Spatially
resolved techniques allow the study of a group of in-
dividuals instead of evaluating the average response of
thousands [4—6]. The battery research community has
shown high interest in several advanced techniques, for
example, in situ transmission electron microscopy as
illustrated by the large number of citations attracted by
pioneering works [7—9]. Surprisingly, efforts in nano-
electrochemistry and microelectrochemistry did not
appear to have gained the expected attention by the
battery research community, despite the fact that these
techniques were shown to provide in situ information
with spatiotemporal resolution in this field years ago
[10—12]. At least two important aspects of nano-
electrochemistry are identified to contribute to it: why
and how. On the one hand, the message of why nano-
electrochemistry is necessary in battery research may
not have been convincingly transmitted. On the other
hand, how nanoelectrochemical measurements are
conducted and the differences among the various
techniques may not have been sufficiently clear for
nonspecialized scientists.
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The overarching aim of this review article is to increase the
scientific awareness of why nanoelectrochemistry is
important for battery research. In the first part, the unique
and relevant information that nanoelectrochemistry
provides in battery research is highlighted. In the second
part, the various nanoelectrochemical techniques used in
battery research so far are revised.

Why is nanoelectrochemistry necessary in
battery research?

Electrochemical processes occurring in a battery
electrode

Although engineering of the battery cell is very impor-
tant to improve the overall performance, the properties
of the battery active materials, in which electrochemical
reactions and energy storage take place, determine key
parameters of the battery, for example, cell voltage,
energy density, power density, safety, and cycle life.
Therefore, more efforts are being devoted to study the
intrinsic properties of active materials. However, a bat-
tery electrode is an ensemble of thousands of active
material particles forming a porous film of tens of mi-
crometers thick (Figure 1). Because energy storage
mainly occurs in the bulk of the particles in battery
materials (in contrast to capacitive or pseudocapacitive
materials in which reactions only occur at the near sur-
face), both electrons and ions must reach the electro-
active center located in the bulk of an individual active
material (Figure 1) [15]. Because many processes occur
simultaneously in a battery electrode, approximations in
which processes are neglected are necessary to simplify
the evaluation and extract the intrinsic properties. Un-
fortunately, valid assumptions in other type of sub-
strates/research fields are no longer valid for battery
electrodes. Valid assumptions may even vary within the
battery field depending on the nature of the active

Figure 1

material. At this point, one can already sense that
nanoelectrochemistry is of special interest for battery
research. Two exemplary cases are selected and
discussed in the following section to illustrate the po-
tential and unique contribution of nanoelectrochemistry
in battery research.

Intrinsic kinetics of active materials

Mass (ion) transport in the electrolyte often does not
prevent the estimation of kinetic parameters by conven-
tional electroanalytical techniques. However, this is not
always the case as for the oxygen reduction reaction [16].
Nanoelectrochemistry has been successfully used in
those cases in which mass transport plays a critical role
[17—19]. For conventional battery electrodes, mass
transport is known to limit battery performance when fast
charging or low temperatures are required [20—22].
However, it is usually neglected when evaluating the
properties of active materials. Electron transport to
the electroactive center is usually not an issue in standard
electrochemical measurements. However, electrons must
cross many solid—solid interfaces to reach the active
center in the case of battery electrodes [23]. Again, this
parameter is usually disregarded in battery research.

Nanoelectrochemistry addresses simultaneously both
issues for the determination of intrinsic kinetics of
active materials. The evaluation of a single entity of
battery material ensures enough mass transport from the
electrolyte and enhances electron transport by reducing
significantly the number of solid—solid interfaces
Therefore, nanoelectrochemistry is a reliable and
necessary analytical tool for the estimation of intrinsic
properties, which are of key importance, for example,
when new materials are proposed or storage mechanisms
are elucidated.
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Involved steps during (de)lithiation. (a) Schematic of a lithium-ion battery being charged. Adapted with permission from Harris et al. [13]. (b) Schematic
illustration of a composite electrode in lithium-ion batteries. Adapted with permission from Orikasa et al. [14]. (¢) Schematic illustration of possible rate-
limiting steps upon lithiation of an intercalation material. Adapted with permission from Léffler et al. [15].
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Relationships between the active material structure
and electrochemical activity

The electrochemical activity of active battery materials
has been proposed to be influenced by the size [24—26]
and morphology [26—28]. Tedious experiments were
necessary, in which a group of particles with a range of
sizes and morphologies are insulated and then evalu-
ated. Even in this case, a range of sizes and morphologies
are evaluated together with obtaining the average
response of this narrower distribution. Obviously, the
evaluation of a single entity is highly desired because it
can unravel unexpected behaviors and correlations hin-
dered under the average response of the heterogonous
ensemble. The uniqueness of nanoelectrochemistry to
elucidate structure—activity correlations has been
widely demonstrated in other fields such as electro-
catalysis [29—31].

How is nanoelectrochemistry applied in
battery research?

Particle-on-a-stick measurements

Fixation of a single particle in a nanoelectrode allows
clectrochemical evaluation of the individual particle
(Figure 2a). The main advantages of this strategy are the
following. (1) It does not require complicated instru-
mentation. (2) The generated electrochemical data are
casily evaluated. (3) The particle can be evaluated using
basically any type of electroanalytical method (chro-
noamperometry, cyclic voltammetry, and so on). (4) The
particle is easily located for postanalysis, for example,

Figure 2
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SEM [32] and transmission electron microscopy
[35,36]. Examples of particle-on-a-stick measurements
can be found in other fields, for example, electro-
catalysis [35—37], but also for battery materials, for
example, Ni(OH); [32], in which the influence of mass
transport was discussed.

There are two major limitations. (1) Fixation of a
presynthesized particle, for example, commercial ma-
terial, is often not possible. (2) The sample preparation
is time demanding because each particle needs to be
fixed on one small electrode. Therefore, development of
a fast and easily implementable universal approach to fix
the particle on the electrode will certainly enhance in-
terest in particle-on-a-stick measurements. The use of
clectrostatic forces appears to be a promising solution
[38,39].

Nanoimpact measurements

Instead of fixing a single particle on a small electrode,
the electrode is immersed in a suspension of particles.
When the suspension is sufficiently diluted, the elec-
trochemistry of a single entity can be evaluated during
the short time of the collision with the electrode
(Figure 2b) leading to the so-called nanoimpact mea-
surements [40]. The main advantages of nanoimpact
measurements are (1) simplicity of the experiment and
(2) time-saving property because populations of a large
distribution of characteristics are investigated in one
single experiment. Nanoimpact measurements are been
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Techniques of nanoelectrochemistry. (a) lllustration and SEM images of a particle stuck on a nanoelectrode. Adapted with permission from Clausmeyer
et al. [32]. Royal Society of Chemistry. (b) Representation of a single particle collision on an ultramicroelectrode and the corresponding electrochemical
response. Adapted with permission from Xiao and Bard [33]. Copyright 2016 American Chemical Society. (c) Schematic of the scanning electrochemical
cell microscopy (SECCM) setup, with a transmission electron microscopy (TEM) image of a double-barreled quartz nanopipette (radius, r = 50 nm) inset.
Adapted with permission from Unwin et al. [34]. Copyright 2016 American Chemical Society. SEM, scanning electron microscopy.
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already used to investigate battery materials for aqueous
media [41—45] and nonaqueous electrolytes (Li-ion
battery electrolyte) [15].

The main limitations are as follows: (1) some electro-
analytical methods are restricted owing to the short
duration of the particle—electrode interaction and (2)
the generated data are not simple to be analyzed by
nonspecialists. The development of easy-to-use data
analysis software for data analysis of nanoimpact mea-
surements will certainly encourage the use of this
powerful tool in a variety of fields including battery
research.

Scanning electrochemical probe microscopy

A third option to study the electrochemical activity of
single entities of battery materials is to use scanning
electrochemical probe microscopy. The scanning elec-
trochemical microscopy has been widely used to inves-
tigate battery electrodes, providing unique in situ and
spatiotemporal resolved information [46]. However, the
lateral resolution is still not sufficiently high to inves-
tigate single nanoparticles. The scanning electro-
chemical cell microscopy (SECCM) has emerged as a
very suitable technique for the study of single entities
[47]. The high lateral resolution of SECCM has been
widely shown in other electrochemical processes [48—
50]. There are several relevant examples of the suc-
cessful application of SECCM for battery research [51—
54]. Recently, SECCM was also installed inside an Ar-
filled glove box to investigate the Li-ion battery elec-
trode in nonaqueous electrolytes [55]. The main ad-
vantages are as follows: (1) the electrochemical activity
of single particles can be evaluated by any conventional
electroanalytical method, (2) the generated data are
easy to be analyzed, and (3) the technique is fast and
time-saving (many single particles can be evaluated in
one single experiment).

The main limitation of SECCM for battery research is
probably the perception of highly specialized instru-
mentation. Considering the potential of this technique,
initial collaborations between battery and analytical
chemistry communities are highly encouraged to break
down this perception.

Conclusions and outlook

Conventional evaluation of macroelectrodes in battery
research often prevents unambiguous determination of
intrinsic properties of active materials. However, im-
provements in battery performances require reliable
acquisition of intrinsic properties of active materials for
a variety of purposes ranging from modelling, electrode
design, material selection, battery management, and so
on. For example, when a high value is reliably deter-
mined for the diffusion coefficient in the active mate-
rial, mass transport through the battery electrode will be

the diffusion-limiting step so that special attention
must be paid to porosity/tortuosity of this porous elec-
trode. Otherwise, denser and more compact electrodes
could be pursued because diffusion inside the particle
will anyways be the limiting aspect. Consequently,
nanoelectrochemistry in battery research is necessary to
deconvolute the various contributions to the average
response obtained using conventional macroscopic en-
sembles of active materials. This step is of essential
importance for understanding bottlenecks and storage
mechanisms of the battery electrode, which in turn will
lead us to better batteries.

There are at least three mature techniques available to
conduct nanoelectrochemical measurements in battery
research, that is, particle-on-a-stick measurements,
nanoimpact measurements, and scanning electrochemical
probe microscopy, each of them possessing intrinsic pros
and cons. The various examples of unique information
provided by these techniques will eventually bring the
attention of the battery community. Still, there are two
critical aspects for this to finally occur: (1) to find the right
example that will mark a turning point and (2) to simplify
the methods to facilitate its use by nonspecialists.
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