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R E SUM E N

El big data es uno de los temas del momento. Su popularidad dentro del
mundo de la ciencia, especialmente en campos relacionados con las ciencias
de la computación como pueden ser la inteligencia artificial y el aprendizaje
máquina, es indiscutible. Además, esa popularidad también existe fuera del
mundo de la ciencia, pues es cada vez más común la aparición de noticias
donde se habla de unanueva aplicación revolucionaria del big data, ya sea en
medicina, en industria, en agricultura, en economía, o incluso en deporte.
Se puede decir por tanto, que el big data ya forma parte de nuestra vida
cotidiana, y su presencia e importancia va a ser cada vez mayor.

El foco de la presente tesis se centra en el papel que tiene el big data den-
tro de la nueva revolución industrial que está teniendo lugar actualmente.
Comúnmente nos referiremos a ella con el término Industria 4.0. La car-
acterística que más nos interesa de esta nueva industria, es el creciente uso
de sensores capaces de monitorizar y registrar de forma continua el fun-
cionamiento de sumaquinaria. Gracias a ello surgen nuevas oportunidades
para optimizar procesos como el mantenimiento, avanzando hacia nuevas
estrategias más eficaces que contribuyan a abaratar costes y maximizar los
beneficios. Es el caso del mantenimiento predictivo, el cual, a través de la
detección temprana de fallos en todo tipo de maquinaria, como motores
de inducción por ejemplo, se pueden programar mantenimientos que ayu-
den a evitar paradas inesperadas en el proceso de producción. Fruto de ello
surgen líneas de investigación sobre el desarrollo de nuevos algoritmos pre-
dictivos, o la adaptación de los existentes para hacerlos capaces de trabajar
con las grandes cantidades de datos que se generan en estos problemas. Para
este último caso, el tipo de adaptación escogida ha sido la paralelización al-
gorítmica para su ejecución en plataformas de cómputo en la nube.

La investigación realizada en esta tesis tiene como resultado cuatro pub-
licaciones científicas. La primera aborda la detección extremadamente tem-
prana de fallos, aislados o simultáneos, en motores de inducción a través
de una estrategia basada en PCA y árboles de decisión multi-etiqueta. La
segunda propone una implementación paralela del conocido algoritmo de
ensembles Rotation Forest. La tercera es un estudio experimental sobre el
impacto que tiene el desequilibro de datos en big data. Y la última es una
nueva implementación del conocido algoritmo de sobre-muestreo SMOTE,
especialmente diseñada para big data.
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A B S T R AC T

Big data is a topic of our day and age. Its popularity in the scientific world,
and especially in the fields of computer science such as artificial intelligence
and machine learning, is beyond discussion. Moreover, that popularity is
also present outside the scientific world so that it is increasingly common to
hear news of a revolutionary new application of big data, be it in medicine
or industry, agriculture or economics, and even in sport. It can therefore be
said that big data is already part of our daily routine, and its presence and
importance can only increase.

The focus of this thesis is on the role of big data in the new industrial
revolution, commonly referred to as Industry 4.0, that is currently taking
place. The most interesting aspect of Industry 4.0 is the increasing use of
sensors that can continuously monitor and record the operating conditions
of machinery. Thanks to this innovation, new possibilities arise that allow
processes such as maintenance to be optimized, moving towards new, more
efficient strategies that help to reduce costs and to maximize profits. Predic-
tive maintenance is one good example, that assists the early detection of
faults in all sorts of machinery, such as induction motors, so that mainte-
nance can be scheduled and unexpected outages can be prevented in the
production process. As a result, new research lines are emerging about
the development of new predictive algorithms or the adaptation of existing
ones, so that they can process large volumes of data generated in these sorts
of problems. Algorithmic parallelization for execution on cloud computing
platforms, was the type of adaptation chosen.

The research conducted in this thesis has resulted in four scientific pub-
lications. In the first one, the extremely early detection of isolated or simul-
taneous faults in induction motors was studied, by employing a strategy
based on PCA and multi-label decision trees. In the second publication, a
parallel implementation of the well-known Rotation Forest ensemble algo-
rithmwas proposed. The third reports an experimental study on the impact
of data imbalance on big data. Finally, the fourth and last paper presented a
new implementation of the well-known SMOTE over-sampling algorithm,
specially designed for big data.

v





AG R A D E C I M I E N T O S

Creo que no me confundo al afirmar que los agradecimientos son esa parte de la
tesis donde todo cuanto decimos a quienes nos han apoyado incondicionalmente
a lo largo de estos años, se queda corto. No obstante, si te sientes parte de ello, te
invito a complementarlo con el recuerdo de una sonrisa, un abrazo, una broma,
o una canción que hayamos compartido en multitud de momentos de esta etapa
de mi vida. Ese gesto también era un «Gracias».

Quiero empezar agradeciendo a César y Álvar, mis directores, toda la con-
fianza, cariño, ayuda, y saber que han compartido conmigo en todo momento.
También me habría gustado incluir a Carlos López entre mis directores; él supo
ver (y pulir) mi brillo incluso antes de terminar el Grado, y desde entonces siem-
pre se ha preocupado por guiarme y darme consejo en todo cuanto he necesitado.
Tras ellos, quiero dar las gracias a Juanjo, hombre de pocas palabras pero infini-
tud de preciosos gestos. Trabajar contigo y aprender de tí siempre es un placer y
un lujo extraordinario. Tampoco puedo dejar pasar la oportunidad de agradecer
a todos mis compañeros del grupo ADMIRABLE el excelente trato que tienen
conmigo, así como su preocupación por mi éxito tanto personal como laboral.
Finalmente quiero terminar los agradecimientos académicos acordándome de
David Lowe y Lucy Kuncheva, mis dos anfitriones de estancias investigadoras,
los cuales me trataron con gran aprecio y haciéndome sentir como si fuese uno
de sus propios doctorandos. Todos me habéis acompañado en este viaje y estas
palabras nunca podrían haberse escrito aquí sin vuestra cercanía y humanidad.

En lo personal quiero dar las gracias a mi círculo de amigos más íntimo:
Manu, Ponce, Loreto, Álvaro, y Ángel. Vosotros habéis vivido (y sufrido) esta
tesis de cerca, y aun así, vuestra amistad siempre ha permanecido inalterable. Os
quiero sobremanera. Tampoco me quiero olvidar de mostrar mi eterna gratitud
a Pedro, mi entrenador, quien cada vez que piso las pistas me hace sentir seguro.
Eres una de esas personas que hacen del mundo un lugar un poquito menos
hostil.

Para terminar, este último párrafo se lo quiero dedicar a mi familia. Espe-
cialmente a mis padres, Mª Jesús y Óscar, así como a mi hermana Laura, quienes,
aunque no tienen del todo claro a qué me he estado dedicando a lo largo de estos
años, saben que es importante para mí y lo han apoyado con fé ciega. Soy con-
sciente de quemuchas de las horas de sueño que la tesis y otras circunstanciasme
han quitado, también os las han robado a vosotros. Supongo que no hay mayor
expresión del amor que esa. Gracias, desde lo más profundo de mi corazón.

vii





AC K N OW L E D G E M E N T S

I believe I amnotwrongwhen I say that the acknowledgements are that part of a thesis
where everything we say to those who have supported us unconditionally throughout
the years somehow falls short of the mark. However, if you feel you were part of it, I
would invite you to complement it with the memory of a smile, a hug, laughter, or a
song that we may have shared during the many moments of this stage of my life. That
gesture also meant “Thank you”.

I would like to start by thanking César and Álvar, my supervisors, for all their
trust, affection, help, and wisdom that they have shared with me at all times. I would
have also liked to include Carlos López among my supervisors; even before I finished
my college degree, he has known how to perceive (and even to improve) my talents,
and has since then always been concerned about guiding me and giving me useful
advice in relation to everything I might ever need to know. After my two supervisors
and guide in life, I would like to thank Juanjo, a man of fewwords yet infinite precious
gestures. Working with you and learning from you has always been a great pleasure
and a extraordinary luxury. Nor can Imiss the opportunity to thank all my colleagues
in the ADMIRABLE research group for their excellent treatment towards me, as well
as their concern for my personal and professional success. Finally, I would like to
end my academic acknowledgements by thanking my two research stay hosts, David
Lowe and Lucy Kuncheva, who treated me with great appreciation and made me feel
as if I were one of their own PhD students. All of you have accompanied me on this
journey and these words could never have been written here without your warmth
and humanity.

On a personal note, I would like to thankmy closest friends: Manu, Ponce, Loreto,
Álvaro, and Ángel. You have lived alongside (and suffered) the work of this thesis
closely. Your friendship has been unwavering and I hope it will continue to be so.
I love you all very much. I also do not want to miss this opportunity to show my
eternal gratitude to Pedro, my coach, who makes me feel safe every time I step onto
the athletics track. You are one of those people whomake the world a little less hostile.

Finally, I would like to dedicate this last paragraph to my family. Especially to my
parents, Mª Jesús and Óscar, as well as to my sister Laura. Although you were not
entirely clear about what I have dedicated myself to over these years, you knew that it
was important to me and you have supported me with blind faith. I am aware that the
very many hours of sleep that the thesis and other related circumstances have wrested
from me have also somehow affected you. I guess that there is no greater expression
of love than your continued support. Thank you most warmly.

ix





La tesis «Paralelización y adaptación a plataformas de cómputo en la nube
de algoritmos de mantenimiento y detección de fallos», que presenta D.
Mario Juez Gil para optar al título de doctor, ha sido realizada dentro del
programa «Tecnologías Industriales e IngenieríaCivil», en el área de Lengua-
jes y Sistemas Informáticos, perteneciente al departamento de Ingeniería In-
formática de la Universidad de Burgos, bajo la dirección de los doctores D.
César Ignacio García Osorio y D. Álvar Arnaiz González. Los directores au-
torizan la presentación del presente documento como memoria para optar
al grado de Doctor por la Universidad de Burgos.

V.B. del Director:

Dr. César Ignacio
García Osorio

V.B. del Director:

Dr. Álvar
Arnaiz González

El doctorando:

D. Mario
Juez Gil

En Burgos, a 28 de Mayo de 2021

xi





TA B L E O F C O N T E N T S

List of Tables xvii

List of Figures xix

I PhD dissertation 1

1 Introduction 3
1.1 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Cloud computing . . . . . . . . . . . . . . . . . . 4
1.2 Data mining and machine learning . . . . . . . . . . . . . 5

1.2.1 Supervised learning . . . . . . . . . . . . . . . . . 6
1.2.2 Unsupervised learning . . . . . . . . . . . . . . . 8
1.2.3 Semi-supervised learning . . . . . . . . . . . . . . 10
1.2.4 Time series . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Ensemble learning . . . . . . . . . . . . . . . . . . 12
1.2.6 Evaluating and comparing machine learning models 16

1.3 Parallel computing . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Data and task parallelism . . . . . . . . . . . . . . 21
1.3.2 Parallel frameworks . . . . . . . . . . . . . . . . . 22
1.3.3 MapReduce . . . . . . . . . . . . . . . . . . . . . 23

1.4 Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Predictive maintenance . . . . . . . . . . . . . . . 24
1.4.2 Induction motors . . . . . . . . . . . . . . . . . . 24

2 Motivation and goals 27

3 Discussion of results 29
3.1 Journal papers . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Original Software Publications . . . . . . . . . . . . . . . 30
3.3 Communications . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Open source repository . . . . . . . . . . . . . . . . . . . 31
3.5 Other Journal papers . . . . . . . . . . . . . . . . . . . . . 31
3.6 Other communications . . . . . . . . . . . . . . . . . . . 32

xiii



Table of
contents

4 Conclusions 33
4.1 Applied machine learning . . . . . . . . . . . . . . . . . . 33
4.2 Methodological contributions . . . . . . . . . . . . . . . . 34
4.3 Experimental research . . . . . . . . . . . . . . . . . . . . 35

5 Future lines 37
5.1 Rotation forest . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Semi-supervised learning . . . . . . . . . . . . . . 37
5.1.2 Imbalanced learning . . . . . . . . . . . . . . . . . 38
5.1.3 Changes and improvements . . . . . . . . . . . . . 38

5.2 Predictive maintenance . . . . . . . . . . . . . . . . . . . 38
5.2.1 Rotation forest . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Imbalanced learning . . . . . . . . . . . . . . . . . 39

II Publications 41

1 Early and extremely early multi-label fault diagnosis in induc-
tion motors 43
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.2.1 Time-domain FDD methods . . . . . . . . . . . . 47
1.2.2 Frequency-domain FDD methods . . . . . . . . . 48
1.2.3 Time-frequency-domain FDD methods . . . . . . 48
1.2.4 Artificial Intelligence-based FDD methods . . . . . 48
1.2.5 Unresolved Issues . . . . . . . . . . . . . . . . . . 49
1.2.6 Our proposal vs. related works . . . . . . . . . . . 49

1.3 Theoretical background . . . . . . . . . . . . . . . . . . . 50
1.3.1 Principal Component Analysis . . . . . . . . . . . 51
1.3.2 Classification trees . . . . . . . . . . . . . . . . . . 52
1.3.3 Multi-label and multi-output learning . . . . . . . 53

1.4 Experimental study . . . . . . . . . . . . . . . . . . . . . . 54
1.4.1 Data set description . . . . . . . . . . . . . . . . . 54
1.4.2 Evaluation metrics for multi-label problems . . . . 58
1.4.3 Determining the number of principal components 59

1.5 Multi-fault early diagnosis method . . . . . . . . . . . . . 60
1.6 Results and discussion . . . . . . . . . . . . . . . . . . . . 63

1.6.1 Full transient state results . . . . . . . . . . . . . . 63
1.6.2 Reducing the time interval . . . . . . . . . . . . . 64

xiv



Table of
contents

1.6.3 Insensitivity to IM operating frequency . . . . . . 67
1.6.4 Testing another type of fault: bearing defect . . . . 67
1.6.5 Weakness of FFT when simultaneous faults occur . 70

1.7 Conclusions and future lines . . . . . . . . . . . . . . . . . 72

2 Rotation Forest for Big Data 75
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.1 Random Forest . . . . . . . . . . . . . . . . . . . 79
2.3.2 Rotation Forest . . . . . . . . . . . . . . . . . . . 80
2.3.3 MapReduce . . . . . . . . . . . . . . . . . . . . . 80

2.4 Rotation Forest for Big Data . . . . . . . . . . . . . . . . . 81
2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . 85

2.5.1 Experimental framework . . . . . . . . . . . . . . 85
2.5.2 Accuracy performance . . . . . . . . . . . . . . . 87
2.5.3 Execution time analysis . . . . . . . . . . . . . . . 90
2.5.4 Study of ensemble size . . . . . . . . . . . . . . . . 93
2.5.5 Influence of bootstrap in Big Data . . . . . . . . . 95

2.6 Conclusions and future work . . . . . . . . . . . . . . . . 98

3 Experimental evaluation of ensemble classifiers for imbalance
en Big Data 101
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2 Ensemble learning for imbalanced problems . . . . . . . . 104
3.3 Imbalanced data pre-processing for Big Data . . . . . . . . 105
3.4 Experimental set-up . . . . . . . . . . . . . . . . . . . . . 107

3.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.2 Experimental framework . . . . . . . . . . . . . . 109
3.4.3 Performance metrics . . . . . . . . . . . . . . . . 111

3.5 Results and discussion . . . . . . . . . . . . . . . . . . . . 113
3.5.1 Resampling before training ensemble . . . . . . . 113
3.5.2 Resampling within the ensemble . . . . . . . . . . 118
3.5.3 Comparing the two strategies . . . . . . . . . . . . 121
3.5.4 Execution time analysis . . . . . . . . . . . . . . . 125
3.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . 127

3.6 Conclusions and future work . . . . . . . . . . . . . . . . 128
Appendix A. Full results . . . . . . . . . . . . . . . . . . . . . . 131

xv



Table of
contents

4 Approx-SMOTE: fast SMOTE for Big Data on Apache Spark 143
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2 Problems and Background . . . . . . . . . . . . . . . . . . 144
4.3 Software Framework . . . . . . . . . . . . . . . . . . . . . 145

4.3.1 Software Architecture . . . . . . . . . . . . . . . . 145
4.3.2 Software Functionalities . . . . . . . . . . . . . . . 145

4.4 Implementation and Empirical Results . . . . . . . . . . . 146
4.4.1 Experimental framework . . . . . . . . . . . . . . 146
4.4.2 Results and discussion . . . . . . . . . . . . . . . . 148

4.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . 150
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

xvi



L I S T O F TA B L E S

Early and extremely early multi-label fault diagnosis in induction mo-
tors
1.1 Number of principal components selected . . . . . . . . . . . 61
1.2 Number of sensors measurements . . . . . . . . . . . . . . . . 64
1.3 Results for 3 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.4 Results for 30 Hz . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.5 Results for direct supply . . . . . . . . . . . . . . . . . . . . . 65
1.6 Results for all frequencies . . . . . . . . . . . . . . . . . . . . 68
1.7 Results for bearing defect . . . . . . . . . . . . . . . . . . . . 69

Rotation Forest for Big Data
2.1 Experimental data sets. . . . . . . . . . . . . . . . . . . . . . . 86
2.2 Experimental results in terms of accuracy . . . . . . . . . . . . 88
2.3 Bayesian correlated t test results . . . . . . . . . . . . . . . . . 90
2.4 Comparison of different ensemble size variants . . . . . . . . . 96

Experimental evaluation of ensemble classifiers for imbalance en Big
Data
3.1 Sampling techniques used . . . . . . . . . . . . . . . . . . . . 108
3.2 Ensemble methods used . . . . . . . . . . . . . . . . . . . . . 108
3.3 Datasets used in the experiments . . . . . . . . . . . . . . . . 110
3.4 Resampling before training: results . . . . . . . . . . . . . . . 114
3.5 Resampling before training: average ranks . . . . . . . . . . . 115
3.6 Resampling before training: Bayesian hierarchical test . . . . . 117
3.7 Resampling within the ensemble: results . . . . . . . . . . . . 119
3.8 Resampling within the ensemble: average ranks . . . . . . . . 120
3.9 Resampling within the ensemble: Bayesian hierarchical test . . 122
3.10 Comparing the two strategies: average ranks . . . . . . . . . . 123
3.11 Resampling before training: results (F1-score) . . . . . . . . . 131
3.12 Resampling before training: results (MCC) . . . . . . . . . . . 131
3.13 Resampling before training: results (G-mean) . . . . . . . . . 132
3.14 Resampling before training: results (AUC) . . . . . . . . . . . 132
3.15 Resampling before training: average ranks (all) . . . . . . . . . 133
3.16 Resampling before training: Bayesian test (all) . . . . . . . . . 135
3.17 Resampling within the ensemble: results (F1-score) . . . . . . 136

xvii



List of tables

3.18 Resampling within the ensemble: results (MCC) . . . . . . . . 137
3.19 Resampling within the ensemble: results (G-mean) . . . . . . 138
3.20 Resampling within the ensemble: results (AUC) . . . . . . . . 139
3.21 Resampling within the ensemble: average ranks (all) . . . . . . 139
3.22 Resampling within the ensemble: Bayesian test (all) . . . . . . 140
3.23 Comparing the two strategies: average ranks (all) . . . . . . . 141

Approx-SMOTE: fast SMOTE for Big Data on Apache Spark
4.1 Characteristics of the datasets . . . . . . . . . . . . . . . . . . 147
4.2 Experimental results (Random Forest with 100 trees) . . . . . 148
4.3 Execution times of SMOTE-BD and Approx-SMOTE . . . . . 149

xviii



L I S T O F F I G U R E S

Early and extremely early multi-label fault diagnosis in induction mo-
tors
1.1 Experimental test bench used . . . . . . . . . . . . . . . . . . 55
1.2 Sensor measurements . . . . . . . . . . . . . . . . . . . . . . 56
1.3 Experimental faults . . . . . . . . . . . . . . . . . . . . . . . . 57
1.4 Graphical representation of the approach . . . . . . . . . . . . 62
1.5 Confusion matrices of the three predictive models . . . . . . . 63
1.6 Multi-label evaluation . . . . . . . . . . . . . . . . . . . . . . 66
1.7 Confusion matrices (extremely early detection) . . . . . . . . 67
1.8 Confusion matrices of the general predictive models . . . . . . 68
1.9 Induced bearing defect . . . . . . . . . . . . . . . . . . . . . . 69
1.10 Confusion matrices of the four predictive models . . . . . . . 70
1.11 Conventional condition monitoring assessment . . . . . . . . 72

Rotation Forest for Big Data
2.1 MapReduced rotation matrix generation . . . . . . . . . . . . 84
2.2 Bayesian hierarchical test heatmap . . . . . . . . . . . . . . . 88
2.3 Bayesian correlated t test density plots . . . . . . . . . . . . . 89
2.4 Training and prediction times . . . . . . . . . . . . . . . . . . 91
2.5 Execution times for susy dataset . . . . . . . . . . . . . . . . . 93
2.6 Speedup for susy dataset . . . . . . . . . . . . . . . . . . . . . 93
2.7 Ternary plot comparing the influence of ensemble size . . . . . 94
2.8 Ternary plot (number of trees per rotation) . . . . . . . . . . . 97
2.9 Ternary plots comparing the influence of bootstrap size . . . . 97

Experimental evaluation of ensemble classifiers for imbalance en Big
Data
3.1 Resampling before training: Friedman–Nemenyi test . . . . . 116
3.2 Resampling within the ensemble: Friedman–Nemenyi test . . 121
3.3 Average ranks for all ensemble methods . . . . . . . . . . . . 124
3.4 Bayesian hierarchical test heatmaps . . . . . . . . . . . . . . . 125
3.5 Comparison of execution times . . . . . . . . . . . . . . . . . 126
3.6 Resampling before training: Nemenyi test (all) . . . . . . . . . 134
3.7 Resampling within the ensemble: Nemenyi test (all) . . . . . . 136
3.8 Bayesian hierarchical test heatmaps (RUS) . . . . . . . . . . . 137

xix



List of figures

3.9 Bayesian hierarchical test heatmaps (ROS) . . . . . . . . . . . 138
3.10 Average ranks for all ensemble methods . . . . . . . . . . . . 142

Approx-SMOTE: fast SMOTE for Big Data on Apache Spark
4.1 Bayesian hierarchical tests . . . . . . . . . . . . . . . . . . . . 149
4.2 Execution times of SMOTE-BD and Approx-SMOTE . . . . . 150

xx



Pa rt I
•

P h D d i s s e r t a t i o n





1
I N T R O D U C T I O N

This introductory chapter explains which ideas, concepts, and research top-
ics have been addressed throughout the development of the thesis. If we
had to choose the main, cross-cutting topic for all the research carried out,
it has to be big data; undoubtedly one of the most fashionable and interest-
ing topics nowadays. Although big data can be related to almost anything,
its relationship with data mining and machine learning has been studied
in this thesis, always with a view towards possible applications within the
industrial world.

“Information is
the oil of the
21st century,
and analytics
is the
combustion
engine”

– Peter
Sondergaard

1.1 B IG DATA

Ever-larger volumes of data are now generated and stored. In (Fernández
et al., 2014), the emergence of big data is ascribed to three reasons: (1)more
and more of the devices and services we use are continuously recording in-
formation, thanks to the advances in sensors and connectivity; (2) the de-
velopment of storage technologies is advancing by leaps and bounds, so that
data collection is less expensive than ever; (3) constant advances inmachine
learning are enabling the acquisition of a higher degree of knowledge from
data. Generally, larger data volumes make it increasingly difficult to extract
useful information and knowledge from the data. However, the complex-
ity of the task hardly makes it any less necessary or useful. On the con-
trary, thanks to the emergence of large data sets, problems that not so many
years ago were considered as bordering on science fiction, can nowadays
be tackled and solved. Problems such as colouring black-and-white images
(Zhang et al., 2016), improving industrial manufacturing processes (Qi and
Tao, 2018), implementing predictive maintenance in industry (Yan et al.,
2017), predicting protein structures (Callaway, 2020), spotting medical dis-
eases before the appearance of symptoms (Cukier andMayer-Schoenberger,
2013), and developing strategies for effective prevention and management
of epidemics such as COVID-19 (Wang et al., 2020), among many others.
Although each problem is solved using different types of techniques, the

3



Big Data

common ground is that they are all trained and tuned using large volumes
of data.

When discussing big data, mentionmust bemade to the fiveVs (Luengo
et al., 2020): Volume, Velocity, Variety, Veracity, and Value. Volume refers
to large volumes of data; velocity refers to the high speed at which the data is
transmitted; a wide variety of formats i.e, structured, semi-structured, and
unstructured, are usually found in big data; veracity is how accurate, precise,
and trusted the data are; finally, the usefulness of the data is linked to the
value of the data.

The main issue with big data is the scalability (Hu et al., 2014b). Tra-
ditional data collection, processing, and analysis techniques become inad-
equate when the amount of data they have to work with increases notably.
As a solution, distributed computing paradigms are emerging that are able
to scale up or down dynamically in a way that depends on the growth of the
data.
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The five V’s of
big data

1.1.1 Cloud computing

Cloud computing is very most closely related to big data. It refers to a set of
hardware and software resources that are delivered as services over the In-
ternet. The services have been referred to as Software as a Service (SaaS), In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), and lately, Big
Data as a Service (BDaaS). One of the most characteristic aspects of cloud
computing, is the appearance of infinite computing resources available on
demand (Hashem et al., 2015), which is undoubtedly a game changer for
addressing the new problems associated with big data.

The tech giants of our World such as Google, Amazon, and Microsoft
have huge data centres containing the infrastructures they offer to their
clients in a flexible manner, charging only for the use of certain resources
(e.g., networks, computing units, storage, applications, and ad services) over
certain periods of time. Both the resources and the time required will de-
pend on the quantity of data processing, as well as the type of processing or
analysis that is applied. The companies can therefore use fewer resources at
the beginning and will increase them only when their needs increase. This
radical advantage eliminates the need to acquire and to maintain expensive
proprietary hardware and software licenses in the context of planning for a
‘worst requirements’ scenario.

In addition to flexibility and “infinite” computing resources, the other
fundamental advantage of cloud computing is its reliability. Cloud com-
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puting providers have certain Service Level Agreements (SLA) where they
ensure high availability of all their services. The software that is provided is
also specifically configured and carefully tested under their infrastructure,
to ensure the best possible performance.

It is worth noting that, although cloud computing is revolutionising the
world of the Internet, data science, and even industry, it will not always
be the best possible solution, due to certain intrinsic drawbacks. As a gen-
eral rule, and although cloud providers offer tools for pricing (e.g., Google
Cloud pricing calculator1), it is very difficult to predict the costs associated
with each specific use case. Moreover, costs are always invoiced after the
services have been used, so it is not possible to avoid cost overruns by con-
tracting the service before using it. It is therefore necessary to have a very
detailed knowledge of the problem to be solved in a cloud environment, as
well as its optimal requirements, in order to achieve good cost forecasting.
Another scenario where cloud computing may not be the best solution, is
for infrastructures that will support the same workload for long periods of
time where hardware and software flexibility is not necessary. For example,
an industrial predictive maintenance application that will be used to mon-
itor and to process the same amount of data all the time. Having therefore
a proprietary infrastructure for that purpose, will in the medium and long
term be much cheaper than using cloud-based solutions. However, cloud
computing is the perfect solution for training the predictive model used by
that application, because it is only done once, despite its high computational
requirements. In this case, setting up a proprietary infrastructure, that will
be underutilised most of the time, is much more expensive than using a
cloud-based service for a certain period of time.

1.2 DATA M IN ING AND MACH INE L EARN ING

In data science, a distinction is often made between data, information, and
knowledge. As explained above, increasingly greater volumes of data are
generated and stored every day. However, such raw data are of no value
until converted through proper pre-processing and cleaning into what is
called information, which in turn can be used to search for underlying pat-
terns from which to obtain what is really valuable: knowledge. In the com-
mercial world, knowledge leads to insights that offer potential competitive
advantages in economic terms. Data mining and machine learning are the ����

�����������

���������

1See the GCloud pricing calculator at: https://cloud.google.com/products/calculator.
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two concepts that make all of the above feasible. Although there is no con-
sensus on the definition and boundaries of the two terms, one of the most
widespread formulations is described in (Witten et al., 2011), where data
mining is defined as the process of finding and describing patterns in data,
and machine learning, as the set of techniques used to achieve it. In other
words, data mining comprises the set of information discovery tasks that
we wish to undertake, and machine learning is the set of tools that we have
to solve these tasks.

In the following, various concepts related to data mining and machine
learning will be explained within the framework of this thesis.

1.2.1 Supervised learning

Supervised learning is the most common type of machine learning task. It
consists of using a labelled data set to train or to fit a model that will be
able to label new examples that were not used during training (Mohri et al.,
2018). Therefore, obtaining machine learning models in a supervised man-
ner is about discovering the underlying relationships between the features
of the training examples and the labels to be predicted. Data labels can be
of two types: categorical or numerical, so depending on their type, we will
use the term “classification problem” when they are of the first, or “regres-
sion problem” when they are of the second. For example, in an industrial
scenario, when machinery is susceptible to a particular type of failure, pre-
dicting that failure using historical data from past failures is a classification
task. In contrast, predicting the economic losses as a result of that failure is
a regression task.

Multi-label problems

Normally, when we talk about either classification or regression, we are
thinking of the prediction of a single value (either categorical or numeri-
cal). However, there are a variety of real-world problems where more than
one value, either categorical or numerical, needs to be predicted. Returning
to the example of industrial machinery, it is common for several failures of
a different nature to occur simultaneously. The prediction of these simul-
taneous failures cannot be done using classical methods that only predict a
single label, so it is necessary to use extended learning methods with which
several values may be predicted at the same time. We refer to such prob-
lems as multi-label, multi-target, or multi-output problems, and there are a
multitude of approaches for dealing with each one (Tsoumakas and Katakis,
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2007). Generally, these approaches fall into two categories: problem trans-
formation methods and algorithm adaptation methods.

On the one hand, problem transformation methods transform multi-
label data in such away that single-label algorithms can be used (Tsoumakas
et al., 2009). For example, Label Powerset processes each combination of
labels in a data set as one single label; and Binary Relevance creates as many
data sets as targets and builds a single-label model for each one.

On the other hand, algorithmadaptationmethodsmodify the behaviour
of machine learning methods, so as to provide many outputs at the same
time. For example, the C4.5 algorithm was adapted in (Clare and King,
2001) leaving multiple labels at the leaves of the tree and modifying the en-
tropy calculation. Other algorithms such as neural networks or radial basis
function networks (Lowe, 2015) can very easily be adapted, by adding as
many output neurons as there are labels to be predicted.

The imbalanced problem

Thequality ofmachine learningmodels is usually strongly influenced by the
quality of the data used in the training step. For example, some algorithms
have difficulty finding relationships between attributes that do not share the
same scale, i.e., they tend to be less accurate if trained on non-normalised
data. In such cases, the solution is trivial: data normalisation. However,
other types of shortcomings may be present in the data, such as imbalance.
In this case the solution is not so simple, in fact, there is no perfect solu-
tion because, although continuous development has continued within this
field for over two decades, it is still a focus of intense research (Krawczyk,
2016). We say that a data set is imbalanced when the number of examples
for each of the labels is unevenly distributed. In a binary classification prob-
lem, where there are examples belonging to one of two classes, a data set is
imbalanced when the number of examples of one class is much less than
that of the other class. Moreover, the minority class is usually the one of
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An imbalanced
data set

interest. For example, in industry, most of the time, all machinery operates
without any issues and breakdowns occur only sporadically. However, in
the worst-case scenario, such an unforeseen event could bring a production
line to a complete halt. A data set recorded in that scenario will be imbal-
anced, becausemost of the examples belong to an expected behaviour of the
machinery, while only a very small part corresponds to breakdowns, which
are also crucial.
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Machine learning algorithms commonly assumebydefault that the num-
ber of examples belonging to each of the labels under consideration, is al-
most the same. So, when using imbalanced data sets in training, the gener-
ated models are biased in favour of the most representative label. In a simi-
lar way tomulti-label, there are twomain families of approaches for tackling
imbalanced problems: data-level methods and algorithm-level methods.

Data-level methods transform the data set to alter its imbalance ratio.
Usually the desired output is a data set with a balanced distribution of ex-
amples for each label, but depending on the specific problem, other strate-
gies such as reversing the imbalance ratio may be more effective. The most
popular approaches are Random Under-sampling (RUS), which randomly
removes examples until the desired imbalance ratio is achieved; Random
Over-sampling (ROS), which follows the same idea, but duplicates exam-
ples instead of removing them; and SyntheticMinorityOver-samplingTEch-
nique (SMOTE), which synthesises and adds new examples to the data set.

Algorithm-level methodsmodify machine learning algorithms for tack-
ling imbalance. For example, some tree-based methods can be modified
to assign different weights to different examples depending on their label.
These weights are then taken into account when adjusting the decision
boundaries of the model.

On a final note, it should be pointed out that the emergence of big data
has underlined a need to advance further down this line of research.

1.2.2 Unsupervised learning

In unsupervised learning, the data used for training are unlabelled. The
possible outputs of the model are therefore unknown before the training
process, and the algorithm learns the patterns, relationships, and structure
of the data without any assistance. Arguably, while the goal of supervised
learning was predictive, that of unsupervised learning is descriptive. Data
clustering or dimensionality reduction are among the most popular unsu-
pervised learning tasks.

In data clustering, similarities are found between training data. Similar
examples are grouped together while different examples belong to differ-
ent groups (Rokach, 2009). Distance and similarity measures are used to
determine whether two examples are similar or dissimilar.
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Data-level
methods

Dimensionality reduction consists of extracting themost valuable infor-
mation from all the features of the examples, in such a way that a new set of
features may be obtained. The new set must be smaller but still capable of
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describing each of the examples with equal or even higher fidelity than the
complete set. On some occasions, dimensionality reduction is also used for
visualisation purposes.

Principal Component Analysis

Principal Component Analysis (PCA) is one of the most well-known and
popular methods for dimensionality reduction (Jolliffe and Cadima, 2016).
However, it should be noted that it can also be used to obtain more rep-
resentative projections of data without reducing its dimensionality. PCA
seeks for the mutually orthogonal directions of greatest variance of the data.
The output of PCA is therefore a set of principal components ordered from
highest to lowest variance. Up to n principal components can be computed,
where n is the number of features that the examples in the data set have. If
some of the features in a data set have some kind of linear relationship with
each other, i.e., they are correlated, the quality of the models trained on
these data may be negatively affected. With this in mind, another strength
of PCA is that the generated principal components are uncorrelated, i.e., a
principal component cannot be linearly predicted from another principal
component.

From amoremathematical point of view, PCA is defined as the eigende-
composition of a covariancematrix. Having a centred data setX2 composed
of m features and n observations, its covariance matrix is calculated as:

CX =
XTX
n− 1

(1.1)

which is am×m squarematrix. That covariancematrix can be decomposed
into the following product of matrices: ����
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PCA 3D to 2D
reduction

CX = WΛW−1 (1.2)

where Λ is a diagonal matrix containing the eigenvalues of CX, and W is
a matrix whose columns are the associated eigenvectors. Using matrix al-
gebra, the previous formula can be solved for computing both, Λ and W.
The eigenvectors present as columns ofW are called principal components.
Using the eigenvalues of Λ, the order of the principal components can be

2That is the data set obtained after subtracting the mean.
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determined, such that the larger the eigenvalue, the larger the variance ex-
plained by its corresponding principal component. Rotating the data to the
new PCA coordinate system, is as simple as multiplying X by W.

However, it has to be taken into account that multiplyingXTX for calcu-
lating the covariancematrix and then computing its eigendecomposition, is
not themost computationally efficient way to calculate PCA. Singular Value
Decomposition (SVD) is a computationally more efficient and widely used
alternative for that purpose. For example, the PCA implementation avail-
able in the Apache Spark big data framework takes advantage of SVD when
computing the principal components in a parallel efficient way. The lin-
ear algebra behind SVD works by decomposing the real-valued data set X
matrix into three matrices:

X = UΣVT (1.3)

where U and V are the left and right singular vectors respectively, and Σ
is a diagonal matrix containing the singular values. In relation to the cal-
culation of PCA, the matrix V contains the same values as the matrix W
described before, i.e., the right singular vectors correspond to the principal
components. One of the properties of this decomposition is that the sin-
gular vectors in both, U and V, are unitary. It means that UTU and VTV
result in the identity matrix. Thus, rotating the data to the PCA coordinate
system can be done as follows:

XR = XV = UΣVTV = UΣ (1.4)

SVD can be rapidly computed, especially when data matrices are large, so
it has been commonly used in big data scenarios instead of the classical
approach, based on the eigendecomposition of the covariance matrix.

1.2.3 Semi-supervised learning

There is a third type of machine learning called semi-supervised learning.
It is mainly supervised learning aided with additional unlabelled data to im-
prove its performance (Seeger, 2002). While using fully labelled data sets
may appear to be the best option for building the best possible learning
models, in practice it is often almost impossible to obtain such data sets.
Data labelling processes are normally costly because, for example, the inter-
vention of a human expert might be indispensable. It might involve a lot of
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time-consuming work, in order to label a data set consisting of a large num-
ber of examples. One strategy to alleviate the workload of the expert may
be to label only a small part of the examples corresponding to those that are
most representative. The rest of the examples will remain unlabelled but
will also be used in the learning process.

In semi-supervised learning, two main groups of methods can be dis-
tinguished (van Engelen and Hoos, 2020): inductive, and transductive. Re-
lating these methods to what has been seen so far, inductive methods have
a greater similarity to supervised learning than to any other methods. They
involve the construction of a model with both labelled and unlabelled data
that will process data as yet unseen in the future. The idea behind transduc-
tive methods, however, may prove to be groundbreaking, because a model
is constructed in such a way that it will only be able to predict those labels of
the unlabelled examples used for its training. Thus, there is no distinction
between training and prediction when using transductive methods; if there
were a need to predict new unlabelled data, then a new model would have
to be trained over that data.

Semi-supervised learning has been attracting extra attention from the
scientific community over recent years. It is becoming a clear trend that is
addressed from various fields related to machine learning, such as neural
networks, ensemble learning, and generative learning among others.

1.2.4 Time series

A time series is a set of data where all observations have a temporal cor-
relation with each other, i.e., the value of one observation depends on the
previous value andwill influence the subsequent value. This particular char-
acteristic of this type of data requires the use of machine learning and/or
statistical methods specifically designed for them, which are commonly re-
ferred to as time series analysis. The values describing a time series are
usually numerical, but discrete-valued time series also exist.

����������
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The nature of time series data has certain similarities with big data, as
(Fu, 2011) states that some of its characteristics include: large data sizes,
high dimensionality and continuous updating. Therefore the use of cer-
tain pre-processing techniques commonly applied within big data environ-
ments, such as dimensionality reduction, could also be beneficial for some
time-series problems. Industry-related time series problems may be a good
example in that case. Let us consider the aforementioned example where
industrial machinery is continuously monitored for inconsistent measure-
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ments that can help predict a possible future failure. Such recorded data is
considered time series data for which there is also a clear need for efficient
processing to gain the highest possible degree of anticipation of unexpected
events.

Time-series problems are usually approached as forecasting problems
where historical data are used to predict the next values of the series. Meth-
ods based on exponential smoothing orAuto-Regressive IntegratedMoving
Average (ARIMA) models (De Gooijer and Hyndman, 2006), are among
themostwidely used andwell-knownmethods. However, alternatives based
on more modern techniques are still emerging and becoming more popu-
lar, as may be the case of Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997). Despite the popularity of time-series forecast-
ing, the problems related with this particular kind of data could be solved
from other perspectives such as classification (supervised learning), clus-
tering (unsupervised learning), and semi-supervised classification (semi-
supervised learning).

Although research in the field of time series started several decades ago,
it is still one of the most fashionable topics, especially in the machine learn-
ing community. This popularity is probably due to its presence within di-
verse areas such as industry, healthcare or finance, where new problems that
require solutions are continuously emerging.

1.2.5 Ensemble learning

Ensemble learning refers to the combination of several machine learning
models in such a way that the output of the ensemble is somehow “agreed”
by all models (i.e., base models) in the ensemble. For example, a popular
“agreement” for classification is to give the class which is predicted by most
of the base classifiers as the final prediction (i.e., majority voting); whereas
for regression, it is to provide the mean of the values predicted by each of
the base regressors as the output value. The idea behind ensemble learn-
ing is that training several base models and combining their outputs could
improve, or at least equal the performance of a single model.

When all the base models forming an ensemble are constructed using
the same algorithm, we call it an homogeneous ensemble. ARandomForest
model is an example of an homogeneous ensemble, as all the base models
are constructed using the random tree algorithm. In contrast, an heteroge-
neous ensemble is composed of models of a different nature, e.g., decision
trees, and neural networks.

12



Introduction

Diversity

Agreat explanation about diversity can be found in (Kuncheva, 2014)where
Kuncheva highlights the vital importance of diversitywithin ensemble learn-
ing, because without it there is nothing to combine (i.e., if there is no diver-
sity, the models obtained with each use of the algorithm will be the same).
Imagine an ensemble combining several base models whose estimates have
no errors, i.e., all of them are perfect models. The combined output will
therefore be equal to the output provided by a single perfect model, so that
the ensemble will merely waste computational power. Obviously, the per-
fect model does not exist, because there will always be some error, however
small. With this in mind, one of the fundamental requirements to make
ensembles worthwhile is to be able to ensure that each of the base models
makes errors on different instances, i.e., the models in the ensemble are di-
verse. In this way, the combination of all the models will mean individual
errors may be ignored and overall accurate estimations will be increased.

When talking about diversity, we usually refer to the terms strongmodel
and weak model. We say that a model is strong when it is highly accurate,
i.e., it makes a low number of errors. In contrast, if a model barely improves
the performance of a random model, we refer to it as a weak model. Hence,
in ensemble learning, the use of weak base models usually contribute to
more diverse ensembles. Given the above, one might think that the best
ensembles have to be composed of very weak models to maximise diversity,
but there is a point where diversity can be counterproductive. Therefore,
the main challenge of ensemble learning is to find an optimal amount of
diversity that will contribute to the accuracy of the ensemble estimates.

Bagging and boosting

There are several ensemble methods, of which two of the most popular are
bagging (Breiman, 1996) and boosting (Schapire, 1999). In these methods,
N base models are trained usingN random sub-samples from the training
data set. Usually, data are sampled with replacement, i.e., the same example
can be present several times in the same sub-sample. The aim of this idea
is to obtain diversity through specialisation of the different base models in
different parts of the hypothesis space. In bagging, all base models are in-
dependently trained, while in boosting, the errors made by the previously
trained model are used to weight the examples in the following sub-sample,
so that the next model will focus on correctly estimating the previously mis-
estimated examples. Thus, the bagging training process is considered to be
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parallel because there are no dependencies between the base models, and
the boosting training process is considered sequential. Adapting bagging to
be exploited in big data scenarios is straightforward and high-performance,
while adapting boosting is amore challenging task. In any case, adaptations
are currently available for both.

Decision tree-based ensembles

Decision tree-based algorithms (Breiman, 1984) are popular in machine
learning and data mining, mainly due to their simplicity and explainability.
A decision tree is formed of nodes and branches, it typically starts with a
single node, commonly referred to as the root node. Each node in the tree
indicates a decision to be made which, unless the node is a leaf node, will
indicate how the data should be divided according to the value of one of
its features. Branches serve to establish the path between decisions until a
leaf node is reached where no more branches appear and a final choice (i.e.,
model output) is decided upon.

The way a tree chooses which decision to make at each node and how
to split data into two branches is determined by the split criteria. There
are several criteria, the choice of which will depend on the type of problem
(e.g., classification or regression) and on the nature of the data. Two of the
most popular split criteria, used mainly in classification, are Gini impurity
and Information gain (based on entropy). The CART algorithm uses the
former, and otherwell-known algorithms, such as ID3 orC4.5, use the latter.
Equations 1.5 and 1.6 show how Gini impurity and Entropy are calculated,
respectively, for a classification problem:
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A decision tree
for predicting
motor faults Gini = 1−

C∑
i=1

pi
2 (1.5)

Entropy =
C∑
i=1

−pi log2(pi) (1.6)

where, C is the number of classes and pi is the probability of a class in a
certain branch. Since both criteria are probability-based, for imbalanced
data sets, split criteria will be biased in favour of the most represented class.
Weighted variants of both (Gini impurity and Entropy), could help to over-
come that issue because they assign (often unequal) weights to the different
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classes. In Equations 1.7 (Casquilho, 2020) and 1.8 (Singer et al., 2020), wi

refers to the weight to be applied to the i-th probability.

WGini =
C∑
i=1

wipi −
C∑
i=1

wipi
2 (1.7)

WEntropy =
C∑
i=1

−wipi log2(pi) (1.8)

One of themajor shortcomings of decision trees is that they are unstable.
So, small variations in the training data will result in completely different
tree models. Instability, however, is a desirable property for building en-
sembles based on decision trees, as it contributes to the generation of diver-
sity. Hence, this type of algorithm is very attractive for ensemble learning,
all the more so since decision-tree training is computationally inexpensive,
relatively speaking, and potentially parallelisable.

The most popular tree-based ensemble is Random Forest, which is a
simple, yet powerful method, that trains several random trees on several
bootstraps of the data (i.e., bagging of random trees) (Breiman, 2001). The
difference between a random tree and a decision tree and therefore between
RandomForest andbagging of decision trees, is that a random tree is trained
using only a random subset of features. The combination of both (boot-
strapping and feature sub-sampling) leads to very different and diverse base
models.

Rotation Forest (Rodriguez et al., 2006) is another well-known and suc-
cessful tree-based ensemble. Unlike Random-Forest training, Rotation-
Forest training uses the entire feature space, but different data set rotations
to train each of the base models in the ensemble. The rotations are com-
puted using PCA, which, although computationally expensive, helps to ob-
tain a diversity that enhances the overall performance of the ensemble.

Finally, decision tree-based algorithms can be particularly powerful, in
the sense that they provide extra information on how decisions are taken
(i.e., explainability). Thanks to this, an expert can acquire added knowledge
on a certain problem and how to solve it, which can be of interest in some
environments such as industry. In addition to predicting certain malfunc-
tions, knowing their causes can contribute to more efficient maintenance.
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1.2.6 Evaluating and comparing machine learning models

Measuring the performance of a machine learning model requires the use
of an evaluation strategy and a certain performance metric (or set of met-
rics) must be chosen to measure the performance of a model. Once the per-
formance has been quantitatively characterised, it will be possible to make
comparisons that allow us to choose between several algorithms, or to ad-
just the parameters of an algorithm. The cross-validation strategy will be
described below, as well as some of the most popular performance metrics
and how the comparisons are usually carried out using statistical tests.

Cross-validation

The most straightforward way to evaluate a machine learning method is to
divide the data set into two parts: a training set and a test set. The learning
method is used to obtain a model trained with the data from the training
set, and then the testing data set is used to estimate the error of the model
on new unseen instances. The differences between the actual and predicted
labels will be used to calculate the model performance. It is essential that
the test set examples are not used in the training phase, otherwise the perfor-
mance estimationwill be too optimistic. Themain drawback of this strategy
is that the evaluation is strongly conditioned by the division of the data set,
which is usually drawn at random.

Cross validation is an alternative approach to splitting the data set into
training and testing. In this technique all data instances are used in both
training and testing. For this purpose, the set is divided into k parts, named
folds, which are used to build k models. k − 1 folds are used to train each
of the models and the remaining fold is used to estimate the performance.
Each model is evaluated with a different fold, and the final evaluation re-
sult is the average of the k evaluations. Cross-validation therefore makes it
possible to obtain performance estimations that are less conditioned by the
random division of the data set. In addition, several repetitions of cross-
validation (i.e., repeated k-fold cross-validation) can be used, in order to
achieve even more reliable performance estimations. Finally, it must be
noted that this technique is not perfect and it has some drawbacks. The
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k-fold cross-
validation

major one is its computational expense, because the number of models to
be trained can be very high depending on the value of k and the number
of repetitions chosen. This consideration has to be carefully taken into ac-
count, especially in big data, where training a single model may require a
lot of time and computational resources.
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Performance metrics

A quantitative characterisation of the performance of machine learning
methods is necessary for their evaluation. This is done through the use of
performance metrics that summarise in a single numerical value how good
or bad the model predictions are. There are a wide variety of metrics that
can be used, some of which are suitable for classification problems, while
others are intended for regression, clustering, etc. Moreover, depending on
the domain, a certain metric or set of metrics will be preferred over others,
because different performance metrics measure different trade-offs in the
predictions made by a machine learning model, and therefore, according to
some metrics the performance of a model could be good, while for other
metrics the same performance could be worse (Caruana and Niculescu-
Mizil, 2006). Since all the publications forming part of the present thesis are
focused on classification problems, for the sake of simplicity, only classifica-
tion metrics, and specifically those related to binary classification problems
are discussed below.

In binary data sets there are examples belonging to two possible classes:
positive (P ) and negative (N ). While predicting binary data sets, four basic
indicators can be derived: True Positive (TP ), which refers to the number
of positive examples correctly classified as positive; True Negative (TN ),
which refers to the number of negative examples correctly classified as neg-
ative; False Positive (FP ), which refers to negative examples wrongly classi-
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fied as positive; and False Negative (FN ) which refers to positive examples
wrongly classified as negative. From the aforementioned indicators, several
different metrics could be calculated. Some of them such as accuracy (equa-
tion 1.9) take no account of data imbalance, while others such as precision
(equation 1.10) or recall (equation 1.11) do take imbalanced data into ac-
count.

Accuracy =
TP + TN

TP + TN + FP + FN
(1.9)

Precision =
TP

TP + FP
(1.10)

Recall =
TP

TP + FN
(1.11)
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There are many other popular metrics such as Area Under the Curve
(AUC), F1 Score, Matthews Correlation Coefficient (MCC), and Geometric
Mean, which may be very useful to use for certain problems such as imbal-
ance. As each metric reflects a certain type of behaviour of the machine
learning method under evaluation, it is important to use a broad set of per-
formance metrics, in order to obtain as accurate a picture as possible of the
overall performance of the algorithm.

Statistical tests

Part of the process of evaluating and validatingmachine learning algorithms
is the comparison of differently parameterised variants, or even with other
state-of-the-art algorithms. The aim of these comparisons is to demonstrate
that the proposed algorithm yields an improved performance over the rest
of the alternatives. The standard procedure for these sorts of comparative
studies is to choose several data sets (commonly a well-known benchmark),
for each of the algorithms under comparison. The performance of the mod-
els were therefore evaluated using the appropriate metrics, and finally statis-
tical tests were applied to decide upon whether the improved performance
result from the proposal was really significant.

In statistics, there are two broad families of tests: parametric and non-
parametric. For parametric tests, the data to be compared must meet cer-
tain restrictions, some of which are often not met when comparing algo-
rithms. For example, one is the independence of the samples being com-
pared, which is not the case if cross-validation is applied. Therefore, non-
parametric tests are preferable. In (Demšar, 2006), a set of non-parametric
statistical tests for comparing algorithms over multiple data sets were pro-
posed. This way of testing, although with certain shortcomings, has been
adopted by the machine learning scientific community and can be found
in several state-of-the-art studies. Demšar proposed the Wilcoxon Signed-
Rank test for comparing two algorithms on several data sets, while he pro-
posed the Friedman test for comparing many algorithms on several data
sets.

The Wilcoxon Signed-Rank test ranks the absolute value of the differ-
ences in performance of two classifiers for each data set, and compares the
ranks for the positive and the negative differences. Let R+ be the sum of
ranks for the positive differences (i.e., the first algorithm outperforms the
second), and let R− be the sum of the opposite. When the difference is 0,
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the sum of ranks is split between R+ and R−:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (1.12)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (1.13)

The Friedman test ranks the algorithms for each data set separately, as-
signing 1 to the best performing algorithm, 2 to the second best, and so
on. In case of ties, average ranks are assigned. Then, this test compares the
average ranks of the algorithms, calculated as Rj = 1

N

∑
i r

j
i , where rji is

the rank of the j-th (of k algorithms) on the i-th of N data sets. The next
step is to compute a Friedman statistic proposed in (Iman and Davenport,
1980) for testingwhether the null-hypothesis (all algorithms are equivalent)
is rejected. Rejection allows us to proceed with the Nemenyi post-hoc test,
which states that the performance of two classifiers is significantly different,
if the corresponding average ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
(1.14)

where, qα is the critical value based on the Studentized range statistic di-
vided by

√
2.

Bayesian analysis

The tests described above, known as frequentist null-hypotesis testing, are
still in fairly widespread use. Nevertheless, they have several shortcom-
ings that make them unsuitable for comparing classifiers (Demšar, 2008;
Benavoli et al., 2017). Alternatives have therefore been emerging that em-
ploy Bayesian analysis which, among other aspects, permit a reliable esti-
mation of the probability of one classifier performing better than another,
or the probability that both classifiers may be considered equivalent, if their
performance difference is not over a certain threshold (e.g., 1%).

Bayesian analysis can be used to compare two algorithms on a single
data set, or on multiple data sets. For the first type of comparison, cross-
validation must have been used, because the results of each fold are used
to perform a Bayesian correlated t test (Corani and Benavoli, 2015), which
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accounts for the correlation due to the overlapping training sets. As a result,
a Student’s t-distribution shows how the probabilities are distributed. On
the other hand, for comparing two algorithms on multiple data sets there
are two types of test. The first type is a Bayesian Wilcoxon Signed-Rank test
based on theDirichlet process (Benavoli et al., 2014), which computes rank-
ings in a similar way to that seen on the frequentist Wilcoxon Signed-Rank
test. Then, these rankings are used to estimate the subsequent probabilities
using a Bayesian approach. The second type is a hierarchical test for us-
ing the cross-validation evaluations in pair-wise comparisons (Corani and
Benavoli, 2015). The results of the aforementioned tests can be depicted
through histograms or density plots. It is also possible to use ternary plots
(simplex). Graphical representations are usually divided into three areas of
interest (L, R and ROPE), although in density plots they can be reduced to
two (L and R):

• Right probability (R): The probability of the classifier on the right-
hand side of the comparison outperforming the classifier on the left-
hand side.

• Left probability (L): The probability of the classifier on the left-hand
side of the comparison outperforming the classifier on the right-hand
side.

• Region of Practical Equivalence (ROPE):The probability that the per-
formance of both classifiers will be equivalent. A threshold value set-
ting the width of the ROPE to 0 means that it is not considered pos-
sible for both classifiers to have equivalent performance.

Finally, it should be noted that the Friedman test for comparing multiple al-
gorithms onmultiple data sets also has its correspondingBayesian approach
(Benavoli et al., 2015), but it is not widely used and is not yet implemented
in the most popular libraries for these types of tests (e.g., Baycomp3).

1.3 PARAL L E L COMPUT ING

In parallel computing, several instructions are executed simultaneously. It
arises as an alternative to sequential computing where one instructionmust
wait for the previous one to finish before starting its execution. Many of the

����
��������

�
��������

�
��������
��������������������������
���������������������

�������������������������
����������������������


���������������������������
��������������������

������������������������
��������������������


����
��������

�
��������

�
��������

	��������������
������������������������


����
��������

�
��������

�
��������

3The Baycomp library is publicly available at: https://baycomp.readthedocs.io/.
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problems solved by computers can be divided into smaller problems that
are easier to compute, which can be executed in parallel. A very typical ex-
ample is matrix multiplication, where each element of the resulting matrix
can be computed independently of the rest. While parallel computing is not
new, the emergence of big data is driving the development of parallel infras-
tructures and algorithms specially designed and optimised to run on such
infrastructures. In the following, data and task parallelism will be detailed;
existing parallel frameworks such as Apache Spark will be introduced; and
finally, MapReduce, the most popular parallel computing paradigm, will be
described.

1.3.1 Data and task parallelism

When talking about parallelism, a distinction has been made between data
parallelism and task parallelism. Recently, along with deep learning, a new
formof parallelism calledmodel parallelism (Jia et al., 2018) has been emerg-
ing, but only the previous two are within the scope of this thesis.

Data parallelism consists of decomposing a data set into smaller parts,
before applying the same operation or function to each of them. The parts
are distributed across different parallel processor nodes, so that the opera-
tions are simultaneously performed. The amount of parallelism that can be
achieved depends on the size of the data set and the number of parts that
may be derived from it, which makes it a very effective type of parallelism
for big-data problems. The parallel matrix multiplication example is a case
of data parallelism: two matrices are decomposed into rows and columns
which are then distributed. Each processor node, which has only one row
of one matrix and one column of the other, will compute a single position
of the resulting matrix.

In task parallelism, each processor node performs a different operation
to the same data. The operations are independent of each other, so they
can be computed at the same time. The amount of parallelism that can
be achieved is limited by the number of different independent operations
(McCormick and Ahrens, 2005), which does not necessarily have to be in-
creased if the amount of data increases.

On a final note, when different types of operations on different parts of
the data are performed simultaneously, it is referred to as mixed data and
task parallelism.
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1.3.2 Parallel frameworks

The development of parallel algorithms is not a new topic. Libraries such
as OpenMP are specifically designed to exploit the full potential of parallel
architectures and have been available for years (Dagum and Menon, 1998).
Thanks to these tools, it is possible to obtain deeply optimized implemen-
tations. However, they require a high degree of knowledge of many aspects
such as the specific library, the parallelisation strategy designed for the par-
ticular algorithm, and the parallel architecture where the algorithm will
be executed. The emergence of cloud computing, with dynamic and flex-
ible configurations of distributed environments, has resulted in developers
having no control over where and how their algorithms will run. There is
therefore a need to extract from the algorithm, the way in which the differ-
ent parallel operations will be distributed. For this reason, parallel frame-
works such as Apache Hadoop or Apache Spark have emerged. They are
responsible for orchestrating where and when each of the parallel instruc-
tions should be executed, thus allowing the developer to worry only about
which operations to parallelise.

Apache Hadoop is a framework for processing large amounts of data
by implementing the MapReduce programming model. One of its main
features and strengths is the Hadoop Distributed File System (HDFS), de-
signed for reliable storage of very large data sets in clusters (Shvachko et al.,
2010). Despite its great popularity, Hadoop has some shortcomings that
slow it down in certain scenarios such as iterative jobs that repeatedly ap-
ply a function to the same data set. The way Hadoop uses the disk to en-
sure fault tolerance, significantly penalises its performance because it re-
quires the data set to be read from disk many times. In (Zaharia et al.,
2010), this issue was identified and a new framework called Apache Spark
was proposed (Zaharia et al., 2012, 2016). Spark introduces the Resilient
Distributed Dataset (RDD) concept, which is a read-only collection of ob-
jects partitioned across a set of machines that can be rebuilt if a partition
is lost. It means that an RDD as an in-memory object, is not stored on
disk, but is still fault-tolerant. This makes Spark almost 100 times faster
than Hadoop4. Another strength of Apache Spark over Hadoop, is its built-
in machine learning library (mllib) (Meng et al., 2016), which comes with
scalable algorithms for a broad variety of machine learning tasks like clas-
sification, regression, and clustering. It also defines useful interfaces for
growing the library with new parallel algorithms. As a result, Apache Spark

4Source: Apache Spark official website (https://spark.apache.org/).
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has become one of the most important analytic frameworks for large-scale
data processing.

1.3.3 MapReduce

MapReduce (Dean and Ghemawat, 2008) is a successful programming mo-
del for processing large data sets in a parallel manner. The computation is
defined by the user through the functions map and reduce. The input data
is divided into several distributed parts formed by key/value pairs. Themap
function is applied to each key/value pair for computing a list of intermedi-
ate values that also consists of key/value pairs. Then, as many reduce func-
tions as intermediate keys are executed for merging intermediate values to-
gether for a specific key, forming a possibly smaller set of values. Zero or
one output values are typically returned after invoking the reduce function.

It should be noted that not all algorithms can be implemented follow-
ing a “mapreduced” strategy. There are methods such as bagging ensembles
that can be easily adapted to MapReduce, because each base classifier is in-
dependently trained with a bag of the data. In a very basic approximation,
one base model is trained in each map invocation. Then, all the base mod-
els are combined into the resulting ensemble model, by means of one or
more reducers. However, the same cannot be said for boosting ensembles,
because the training of one base model is conditioned by the errors of the
base model trained beforehand. This is inherently sequential and therefore,
there is no mapping option.
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MapReduce
execution flow

Although MapReduce is not perfect, its efficiency, fault tolerance, and
scalability, has turned it into one of the most widely used programming
models in big-data scenarios nowadays (Fernández et al., 2017; Ramírez-
Gallego et al., 2018a).

1.4 I NDU STRY 4 . 0

Throughout history, technological advances have been exploited by indus-
try to transform, to evolve, and to improve technological processes. Ifmech-
anization and the use of electrical energy gave a strong boost to the indus-
trialization process, we are now witnessing a new paradigm shift driven by
digitalization and the use of information technologies in certain industrial
processes. This is the so-called Industry 4.0 (Lasi et al., 2014). Thanks to the
growing use of sensors in all kinds of industrial machinery and the advent
of the Internet ofThings (IoT), their operation is starting to bemonitored in
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depth. Sensormeasurements are continuously recorded and it is possible to
apply data mining and machine learning techniques to provide intelligence
to various processes, thus moving towards a more productive and sustain-
able industry (Ge et al., 2017).

1.4.1 Predictive maintenance

Over time andwith use, it is inevitable that the components of industrialma-
chinery will gradually degrade. When degradation is severe, breakdowns
occur that will have to be repaired, thus leading to a forced shutdown of
a machine in the best-case scenario, or the shutdown of an entire produc-
tion line in the worst-case scenario. Another aspect that should be taken
into account is that a breakdown in one component can cause unexpected
breakdowns in other related components, increasing the costs of the repair
in both time and money. This strategy based on fixing the machine when it
breaks down, is known as run-to-failure management (Mobley, 2002). An
alternative is preventive maintenance, which is time-driven, i.e., mainte-
nance work is based on elapsed time or hours of operation. However, it has
been increasingly demonstrated that carrying out scheduled maintenance
is flawed and unreliable, because of random failure patterns that are not
dependent on operating times. Nowadays, the most widely accepted main-
tenance technique, which uses the actual operating condition of industrial
machinery, is called predictive maintenance.

Predictive maintenance is one of the most widely promoted techniques
that forms part of this evolution towards smart industry. Visual inspec-
tion, which is the oldest and yet the most powerful and widely-used pre-
dictive maintenance method, is being replaced by automated methods that
use advanced signal processing techniques based on artificial intelligence
(Hashemian, 2010). The use of these techniques can assist the experts re-
sponsible for maintenance with quick and efficient detection of anomalous
behaviours. Moreover, in the most extreme case, they could even replace
the expert completely, by autonomously detecting malfunctions and auto-
matically triggering the necessary maintenance task. Therefore, predictive
maintenance should improve productivity, product quality, and the overall
effectiveness of manufacturing and production plants.

1.4.2 Induction motors

Induction motors are a type of electric variable speed drive supplied with
alternating current. These motors, in general have many attractive features
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over other types of electric motors, such as simplicity, reliability, robust-
ness, low maintenance requirements, wide speed range, high reliability, low
torque noise, and low cost (Jain and Kumar, 2018). They can also operate
in hostile (i.e., dirty and explosive) environments. There are two types of
induction motors: wound-rotor and squirrel-cage. The latter is the most
commonly used in industry, due to its competitive prices and power effi-
ciency.

The way a squirrel-cage induction motor works is as follows: a three-
phase induction drive has three stator windings that develop a rotatingmag-
netic flux that rotates at synchronous speeds. Depending on the motor pole
number and supply frequency, this speed will vary. The rotating flux inter-
sects the rotor windings, inducing an electromagnetic field, which in turn
results in circulating current. The rotor currents produce a secondmagnetic
flux that interacts with the stator flux. As a result, torque that accelerates the
machine is produced. After rotor acceleration, when an equilibrium speed
is reached the induced rotor current is sufficient to produce the torque de-
manded by the load (Shakweh, 2018).

Sensors and physical magnitudes

As stated before, industrial machinery is starting to be equipped with dif-
ferent sorts of sensors to measure its operation. In induction motors, there
are sensors to measure magnitudes such as the voltage, the intensity of the
current, and the rotating speed. Accelerometers or acoustic sensors are in-
tended tomeasure vibrations; and temperature sensors can register the ther-
mal data. Although the list of useful sensors to measure induction motors
operation is greater, those mentioned above are the most widely used for
predictive maintenance.
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Operating conditions and mechanical faults

When industrial machinery operates as expected, i.e., without any issues,
it is generally said to be in a healthy operating condition. In addition to
being the most common condition, it is desirable to preserve it for as long
as possible. For that purpose, the scientific community has focused its at-
tention on reducing the occurrence of undesired conditions, which can be
either electrical ormechanical. This thesis only addresses mechanical faulty
conditions, some of which are described below.

Inductionmotors have rolling element bearings whose constantmotion
causes their degradation over time. This can lead to faults that may occur
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in the outer race, the inner race, the cage, or a rolling element (Randall and
Antoni, 2011). These faults are generally referred to as bearing defects and
its early diagnosis is usually through the use of vibration data. Another part
of the motor prone to deteriorate are the rotor bars. Usually made of alu-
minium, copper, or brass, the rotor bars are situated around the surface of
the rotor, passing from one end of the rotor to the other (Yu et al., 2011).
The movement and load on the motor can lead to the rupture of one or
more of these rotor bars. This fault is known as a broken rotor bar, and
motor vibrations can be useful for diagnosing it, as well as the motor cur-
rents (Combet, 2014). Rotor unbalance is a condition in which the centre
of mass of the shaft and its fixed components is not coincident with the
centre of rotation. It generates excessive vibration which may damage the
mechanical elements of the motor, so vibration due to unbalance must be
reduced, in order to extend the life of the machine (Saleem et al., 2012).
The last type of fault that will be discussed in this section is misalignment,
which occurs when the shaft of the rotor is improperly aligned. This type
of fault also causes machine vibration. It can be diagnosed by measuring
it and by analysing motor currents (Kumar et al., 2015). A wide variety of
alternative faults may occur and can also be diagnosed, nevertheless only
the most commonly studied in the literature, and the most relevant to the
topic of big data have been described.

Experimental test bench

Data sets generated in a laboratory or a controlled installation, rather than
data sets generated from machinery operating in production environments
are used in a large part of the experimental studies on predictive mainte-
nance and fault detection. An experimental test bench is carefully prepared
with a certain preset conditions such as power supply, and load current.
Commonly, the faulty condition is artificially induced by damaging cer-
tain parts of the machinery intentionally. For example, bearing or rotor
bar defects are induced by drilling holes on the surface of those elements.
Mass unbalance is simulated by coupling elements with a certain weight
such as bolts. Finally, misalignment can be easily provoked by shifting the
belt in the load pulley forward or backwards. This experimental method-
ology makes it possible to obtain data sets where the faulty conditions are
sufficiently well represented. As the data sets were recorded under the same
conditions, the results for each one are comparable.
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2
M O T I VAT I O N A N D G OA L S

One of the characteristics of a thesis based on a compendium of publica-
tions, is that each paper is the result of a kind of isolated research process.
Therefore, in these kinds of theses, there is no one single motivation, but
as many motivations as there are publications. Nevertheless, although it is
stated more explicitly in some parts of this thesis than in others, all the pub-
lications share some common ground: industrial maintenance and fault de-
tection within big data. Hereinafter, in this chapter, the main motivations
and goals of the research carried out in this thesis are summarised.

“The goal of
science is to
understand the
fundamental
reality and the
goal of
technology is
to change that
reality.”

– Kedar Joshi

As industry evolves, new technological advances are implemented with
the main objective of improving production processes. Basically, if the eco-
nomic costs are reduced and the profit margin increases, then a produc-
tion process may be considered to have been improved. Throughout his-
tory, there have been several industrial revolutions that have dramatically
improved and boosted production processes. The latest industrial revolu-
tion is said to be happening right now and is being driven by, among other
things, the adoption of the use of sensors to monitor the functioning of in-
dustrial machinery. This opens up new opportunities for the application
of data mining and machine learning techniques. One of the characteris-
tics of data sets that are generated from sensors is their sheer size (i.e., big
data). Because of this, the use of classical machine learning techniques may
not be sufficient and therefore, a move towards the implementation of so-
lutions specifically designed for big data is needed. These sorts of solutions
are still barely used in industry nowadays and are undoubtedly the way to
improve processes such as predictive maintenance and fault detection. The
objectives pursued in this thesis to address the problems described above
are twofold:

• The study and proposal of machine learning techniques to tackle big-
data problems.

• The application of big-data solutions to industrial-maintenance and
fault-detection tasks.
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The first objective is approached from the point of view of algorithmic
parallelisation. In particular, by adapting ensemble algorithms to big-data
frameworks and, more specifically, the Apache Spark framework. Thanks
to this, the new algorithms will be enabled to work at scale on cloud-based
cluster infrastructures. Within this objective the study of certain problems
are also considered, such as imbalance. These problems are intrinsic to the
characteristics of large data sets, especially those generated in industry. Fi-
nally, the second objective covers the early detection of faults that occur in
rotating machinery used in industry, specifically in induction motors.
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3
D I S C U S S I O N O F R E SU LT S

The scientific results of the present thesis are in form of journal papers, orig-
inal software publications, and other communications such as posters, or
conference papers. All the contributions are listed below.

3.1 JOURNAL PAPER S

“I think
combining
predictors is
one of the
two big
breakthroughs
in prediction.”

– Leo Breiman

1. Title: Early and extremely early multi-label fault diagnosis in induc-
tion motors.

Authors: Mario Juez-Gil, Juan José Saucedo-Dorantes, Álvar Arnaiz-
González, Carlos López-Nozal, César García-Osorio, David Lowe.

Journal: ISA Transactions (JCR: Q1, SJR: Q1).

Year: 2020
DOI: 10.1016/j.isatra.2020.07.002

2. Title: Rotation Forest for Big Data.

Authors: Mario Juez-Gil, Álvar Arnaiz-González, Juan J. Rodríguez,
Carlos López-Nozal, César García-Osorio.

Journal: Information Fusion (JCR: Q1, SJR: Q1).

Year: 2021
DOI: 10.1016/j.inffus.2021.03.007

3. Title: Experimental evaluation of ensemble classifiers for imbalance
in Big Data.

Authors: Mario Juez-Gil, Álvar Arnaiz-González, Juan J. Rodríguez,
César García-Osorio.

Journal: Applied Soft Computing (JCR: Q1, SJR: Q1).

Year: 2021
DOI: 10.1016/j.asoc.2021.107447
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3.2 OR IG INAL SOFTWARE PUBL ICAT ION S

1. Title: Approx-SMOTE: fast SMOTE for Big Data on Apache Spark.

Authors: Mario Juez-Gil, Álvar Arnaiz-González, Juan J. Rodríguez,
Carlos López-Nozal, César García-Osorio.

Journal: Under review at Neurocomputing (JCR: Q1, SJR: Q1).

3.3 COMMUN ICAT ION S

1. Title: Multi-labelClassification of InductionMotor FaultsUsingPCA
and Decision Trees.

Authors: Mario Juez-Gil.

Type of communication: Poster presentation.

Place: Bilbao Data Science Workshop (BIDAS).

Year: 2018.

2. Title: Doctoral Consortium: Paralelización y adaptación de algorit-
mos de mantenimiento y detección de fallos a plataformas de cóm-
puto en la nube.

Authors: Mario Juez-Gil.

Type of communication: Doctoral Consortium.

Place: XVIIIConferencia de laAsociaciónEspañola para la Inteligen-
cia Artificial (CAEPIA 2018).

Year: 2018.

3. Title: Early multi-fault diagnosis in induction motors.

Authors: Mario Juez-Gil, Juan José Saucedo-Dorantes, Álvar Arnaiz-
González, Carlos López-Nozal, César García-Osorio.

Type of communication: Extended abstract.

Place: 15th International Conference on Industrial Engineering and
Industrial Management (ICIEIM) - XXV Congreso de Ingeniería de
Organización (CIO2021).

Year: 2021.
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3.4 OPEN SOURCE REPO S I TORY

The source code of the algorithms developed in the thesis, as well as the
Jupyter Notebooks containing experimental evaluations, are publicly avail-
able on GitHub: https://github.com/mjuez.

3.5 OTHER JOURNAL PAPER S

This section lists other articles resulting from research inwhich the doctoral
student has actively collaborated. These papers have not been included in
the compendium, because the participation of the PhD candidate has not
been as relevant as in the other selected articles or because they are the re-
sult of research carried out on data sets that do not belong to the big data
category.

1. Title: A regression-treemultilayer-perceptron hybrid strategy for the
prediction of ore crushing-plate lifetimes.
Authors: Mario Juez-Gil, Ivan Nikolaevich Erdakov, Andrés Bustillo,
Danil Yurievich Pimenov.
Journal: Journal of Advanced Research (JCR: Q1, SJR: Q1).
Year: 2019
DOI: 10.1016/j.jare.2019.03.008

2. Title: An experimental evaluation of mixup regression forests.
Authors: Juan J. Rodríguez, Mario Juez-Gil, Álvar Arnaiz-González,
Ludmila I. Kuncheva.
Journal: Expert Systems With Applications (JCR: Q1, SJR: Q1).
Year: 2020
DOI: 10.1016/j.eswa.2020.113376

3. Title: Rotation Forest for multi-target regression.
Authors: Juan J. Rodríguez, Mario Juez-Gil, Carlos López-Nozal, Ál-
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4
C O N C LU S I O N S

In this thesis, big-data-related classificationproblemshave been approached
from three points of view: practical (i.e., application of methods to solve
real-world problems), methodological, and experimental. The conclusions
derived from these perspectives are discussed below.

4.1 APPL I ED MACH INE L EARN ING

“The hardest
problems of
pure and
applied science
can only be
solved by the
open
collaboration
of the
world-wide
scientific
community.”

– Kenneth G.
Wilson

Firstly, data mining, and machine learning techniques have been specifi-
cally applied within industry to solve, for example, predictive maintenance
problems in induction motors, thereby contributing to the progress of mul-
tidisciplinary science. The most notable result is accurate detection and
extremely early diagnosis of various types of faulty operating conditions,
by means of combining classical statistical techniques such as PCA with
simple yet powerful machine learning methods such as decision trees. An
approach that also addresses and solves the added difficulty of those cases
in which several faults occur simultaneously; known as the so-called multi-
label problem in the machine learning world.

In the literature, the different types of faults studied in this thesis, which
are disparate in nature, have mainly been addressed in isolation. For each
type of fault, different signal-processing strategies (based on time-domain,
frequency-domain, and time-frequency-domain analyses) have been pro-
posed for different types of sensors. For example, current signature analysis
has been used to diagnose unbalance, and vibration analysis has been used
to diagnose bearing defects. Within these research areas, the contribution
of this thesis consists of using large volumes of data recorded by sensors of
a different nature (e.g., voltages, currents, and vibrations). Each set of regis-
teredmeasurements are processedwith PCA to obtain a reduced alternative
representation and then, those representations are used to train a predictive
model (i.e., a decision tree). The resultingmodel can classify asmany as four
different operating conditions to a high degree of accuracy (over 87%), as
well as their combinations, using only the measurements from the first 0.5
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seconds of motor operation. Moreover, the model can produce accurate
predictions irrespective of motor load or its operating frequency.

4.2 METHODOLOG ICAL CONTR I BUT ION S

Many methods have been designed and implemented throughout the de-
velopment of the thesis. The parallel (i.e., MapReduced) adaptation of the
Rotation Forest algorithm is undoubtedly the most important one. Its good
performance with normal-sized data sets was reported in (Rodriguez et al.,
2006) and was expected for large data sets, although it had to be tested
and verified, due to the intrinsic peculiarities of big data. Rotation Forest
has also shown good scalability, outperforming state-of-the-art alternatives
that incorporate PCA such as PCARDE (García-Gil et al., 2018). Certain
insights were gained from the experimental study carried out to validate the
Rotation Forest adaptation that can be particularly useful when optimising
training times without sacrificing the accuracy of the resulting models. The
first of these, relating to the size of the bootstrap for calculating PCA, indi-
cates that values as low as 10% (as opposed to the 75% used in (Rodriguez
et al., 2006)) have no negative impact on the accuracy of the resultingmodel.
It occurs due to the large size of the data sets where a sample consisting of
10% of the instances will have a reasonable size. The second interesting in-
sight comes from the idea of rotation of random forests (Stiglic et al., 2011),
which demonstrated that reusing the same rotation for training several trees
with big data clearly improved the training time of the ensemble without
losing accuracy.

The other main methodological contribution of the thesis is an approxi-
mated SMOTE implementation for creating artificial instances. TheSMOTE
over-sampling method, originally used k-nearest neighbours (k-NN) for
creating artificial instances, the computational complexity of which is a
clear drawback when the size of the data sets increases, as happens with
big data. The proposal described in this thesis has demonstrated that us-
ing hybrid spill trees (Liu et al., 2004) for approximating the k-NN search
offers a useful SMOTE solution for big data. It is much faster and more
scalable than the existing alternative that uses a distributed exact k-NN ap-
proach (Basgall et al., 2018), and it replicates its benefits to overcome the
imbalanced classification problem (i.e., classifiers trained on over-sampled
data through exact and approximated SMOTE presented equivalent levels
of accuracy).
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4.3 EXPER IMENTAL RE SEARCH

The experimental methodology used with machine learning involves com-
paring and validating methods by testing their performance on several data
sets. Experimental studies carried out in the past used normal-sized data
sets, however, with the advent of big data, many of the findings of these
studies may not be transferable to large data sets.

In this thesis, it has been found that imbalanced learning is one of the
topics that should be carefully revisited. The use of data-level approaches
along with decision tree-based ensemble classifiers has led to some unex-
pected conclusions. For example, oversampling methods, such as SMOTE
and ROSE, based on the generation of synthetic examples, were not as ben-
eficial with large data sets as they were with normal-sized data sets. Hence,
simpler and faster pre-processing methods such as random over-sampling
are preferable. Moreover, the use of weighted impurities such as weighted
Gini, rather than any kind of pre-processing, were demonstrably faster and
equally effective at addressing imbalance.

Another interesting insight obtained from the experimentation on im-
balanced data sets was that the use of different evaluation metrics yielded a
more informed view of the results and, consequently, a better evaluation of
the performance of a classifier can be assured.

After evaluating the results from the experiments reported in the publi-
cations, it was concluded that a large number of benchmark data sets were
available for the comparison of algorithms in conventional machine learn-
ing studies, while there were far fewer benchmark data sets available re-
duced (i.e., less than 10) in big data. Moreover, big data experiments take
a long time and are computationally expensive, making it difficult to per-
form experiments on a large number of data sets. As a result, statistical
comparisons may not be as informative as we would like and could even
lead to weak or erroneous conclusions. Therefore, and as pointed out in
(Stapor et al., 2021), special care must be taken over the selection of the
most suitable type of statistical tests and over the selection of the data sets,
which should be guided by the domain-specific requirements of the partic-
ular problem under evaluation (e.g., imbalanced learning).

35





5
F U T U R E L I N E S

The many and various knowledge areas of science are in continuous devel-
opment. Sometimes, two areas of a priori unrelated knowledge advance to
a point where their combination gives rise to revolutionary scientific ad-
vances. Known as multidisciplinary science, the present thesis is a good
example of convergent lines of research. Here, one part is focused on the
study and development of techniques related to datamining, machine learn-
ing, and big data, and the other part is focused on the application of these
techniques to the resolution of industrial problems such as predictive main-
tenance. Therefore, future research lines arising from the thesis could be
oriented in both directions.

“Moving
forward in
science is as
much
unwinding the
distorted
thinking of the
past as it is
putting a
clearer idea on
the table.”

– Craig Venter

5.1 ROTAT ION FORE ST

The research concerning Rotation Forest is one of the cornerstones of the
thesis, from which numerous lines of future work may emerge.

5.1.1 Semi-supervised learning

Semi-supervised learning (van Engelen and Hoos, 2020) is increasingly at-
tracting the interest of the scientific community nowadays. In this type of
learning, data sets have both labelled and unlabelled examples. These sorts
of data sets aremore frequently found in big data, as labelling instances is of-
ten a costly process. One of the simplest techniques used in semi-supervised
learning is called self-training (Yarowsky, 1995), which consists of incre-
mentally training predictive models as follows: initially a model is trained
using only the labelled data, then that model is used to predict the label
of unlabelled examples. The example (or examples) of labelling with the
highest confidence level is added to the set of labelled examples and the
model is re-trained with that set. This process is repeated until there are
no unlabelled examples left, or until a pre-set limit of iterations is reached.
Co-training (Blum and Mitchell, 1998), tri-training (Zhou and Li, 2005),
and democratic co-learning (Zhou and Goldman, 2004) are among other
well-known examples of semi-supervised techniques.
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Self-training can be used along with Rotation Forest as was done in
(Fazakis et al., 2017). However, its adaptation to big data is still pending.
Furthermore, the way that Rotation Forest uses PCA can be seen as a gen-
eration method of multiple views of the training data set that might enable
to develop novel co-training or tri-training-based solutions. Therefore, the
use of Rotation Forest in semi-supervised learning problems can be very
promising and challenging.

5.1.2 Imbalanced learning

There are several studies on Rotation Forest variants for imbalanced and
highly imbalanced classification. For example, Hellinger distance decision
treeswere used in (Su et al., 2015), a fuzzy clustering approachwas proposed
in (Hosseinzadeh and Eftekhari, 2015), and Rotation Forest was combined
with random under-sampling or SMOTE in (Fang et al., 2016). All of these
approaches are yet to be adapted and validated for big data, as well as new
ones that may arise, for example, from the combination of RandomBalance
(Díez-Pastor et al., 2015a) and Rotation Forest. To validate whether these
“complex” solutions are truly beneficial specifically for big data could also
be a compelling line of research. It could all help advance research on im-
balance in big data, which, as indicated in the experimental study of this
thesis, is still at a very early stage.

5.1.3 Changes and improvements

Although it has been shown that the adaptation of Rotation Forest for big
data proposed in this thesis has good scalability, the parallel implementa-
tion of PCA that it uses could penalise its performance depending on the
parameters chosen. Therefore, research in the computation of PCA and its
optimisation in new ways and in a distributed manner could lead to new,
faster, and more efficient Rotation Forest implementations. Recently in
(Gemp et al., 2021), PCA computationwas addressed as a competitive game
where scalability was one of its most outstanding strengths. An improved
Rotation Forest based on that PCA solution may be a very interesting line
of future research.

5.2 PRED ICT IV E MA INTENANCE

The development of predictive maintenance techniques based on the use of
artificial intelligence is attracting a lot of interest in the scientific commu-
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nity. Awide variety of strategies can be found in the literature, moving from
the classical spectral analysis (Orhan et al., 2006) to complex and expensive
techniques based on deep learning (Nguyen and Medjaher, 2019).

Although it at times may appear that everything has already been stud-
ied, one of the main concerns of the industry is to optimise costs. Thus,
the costs of these solutions based on deep learning, although very powerful,
mean they are not always affordable. Therefore, the development of solu-
tions based on simpler and cheaper machine learning techniques, such as
ensembles, will always be an interesting line of research. Especially when in
many cases their own performance compared to the performance of deep
learning algorithms can be statistically indistinguishable.

5.2.1 Rotation forest

Given that the amount of data recorded by sensors installed in industrial
machinery can be very large (i.e., tens of thousands of measurements per
second), the use of algorithms specially designed for big data could be very
useful for diagnosing abnormal behaviours. In (Santos et al., 2018) a Rota-
tion Forest ensemble classifier turned to be the best solution for diagnosing
faults in wind turbines. Therefore, an interesting future line of work could
be to apply the big-data adaptation of the Rotation Forest proposed in this
thesis to big-data industrial problems.

5.2.2 Imbalanced learning

In industry, data sets recorded in real environments (e.g., in production)
are usually highly imbalanced, i.e., most of the data corresponds to healthy
operating conditions while faulty conditions are dramatically under-
represented. Therefore, trainingmachine learningmodels on real data could
favour models that are biased towards healthy condition, and that ignore
the faults. There are some studies that use data-level approaches for tack-
ling imbalance in real applications (Zhang et al., 2018), but these sorts of
problems within big data are yet to be approached. In that regard, the in-
sights obtained from the experimental evaluation on imbalance performed
in this thesis may be applicable to industry, thus opening up an interesting
future line of research.
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AB STRACT

The detection of faulty machinery and its automated diagnosis is an indus-
trial priority because efficient fault diagnosis implies efficient management
of the maintenance times, reduction of energy consumption, reduction in
overall costs and, most importantly, the availability of the machinery is
ensured. Thus, this paper presents a new intelligent multi-fault diagnosis
method based on multiple sensor information for assessing the occurrence
of single, combined, and simultaneous faulty conditions in an induction
motor. The contribution and novelty of the proposed method include the
consideration of different physical magnitudes such as vibrations, stator
currents, voltages, and rotational speed as a meaningful source of infor-
mation of the machine condition. Moreover, for each available physical
magnitude, the reduction of the original number of attributes through the
Principal Component Analysis leads to retain a reduced number of signif-
icant features that allows achieving the final diagnosis outcome by a multi-
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label classification tree. The effectiveness of the method was validated by
using a complete set of experimental data acquired from a laboratory elec-
tromechanical system, where a healthy and seven faulty scenarios were as-
sessed. Also, the interpretation of the results do not require any prior expert
knowledge and the robustness of this proposal allows its application in in-
dustrial applications, since it may deal with different operating conditions
such as different loads and operating frequencies. Finally, the performance
was evaluated using multi-label measures, which to the best of our knowl-
edge, is an innovative development in the field condition monitoring and
fault identification.

1.1 I N TRODUCT ION

The operation of most industrial applications is provided by rotating ma-
chinery powered by electricity. In that context, the Induction Motor (IM)
represents themost used electricalmachine, due to its robustness, efficiency,
and safety. Despite its effectiveness and reliability, the occurrence of sud-
den and unexpected faults can affect the IM operation, provoking undesir-
able interruptions that may lead to crucial stoppages in industrial processes.
Thereby, the continuous monitoring for assessing the operating condition
to identify faults in rotating machines, that are powered by electricity, is
a key safeguard for ensuring the machine reliability and safety in indus-
trial production systems (Liu and Bazzi, 2017; Liu et al., 2018). In that
sense, most of the condition monitoring strategies comprise three main
tasks: fault detection, fault isolation, and fault identification (Bayar et al.,
2015). Specifically, fault detection provides information relating to the ex-
istence of a malfunction; fault isolation locates the faulty components; and,
fault identification labels the fault type that has been identified (Gao et al.,
2015).

Recently, the use of Artificial Intelligence (AI) and classification tech-
niques have been included as a part of the condition monitoring strategies.
These techniques usually consist of several steps: data collection (gather-
ing fault-related measurements); feature calculation, extraction and selec-
tion (determining fault-related features and measurements); and, training
an algorithm (building a classification/regression model with the selected
features) (Martin-Diaz et al., 2018; Lei et al., 2016; Saucedo-Dorantes et al.,
2017). In that regard, AI techniques such as Neural Networks (NN) and
Fuzzy-based inference systems have been developed as classification algo-
rithms. Consequently, automatic Fault Detection and Diagnosis (FDD),
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based on AI algorithms using a trained AI model that is capable of iden-
tifying the relationship between both input data (information provided by
sensors) and output data (machine-assessed condition), can replace the hu-
man intervention.

The training process of an AI algorithm usually involves the modeling
of several inputs that specifically are the set of features estimated from the
available physical magnitudes that characterize the working condition of
the machine under observation (Hui et al., 2017). Normally, the output
is a single value (a ‘label’) that can be numeric (for regression problems)
or discrete/categorical (for classification problems) but represents a specific
condition/operation of the assessed system. If there are only two classes,
e.g. fault or no fault, then the problem involves binary classification, and if
there are more labels (two or more fault types), it is a multi-class problem.
Nevertheless, more than one label can be assigned whenever multiple faults
occur simultaneously, which is also possible and a critical issue that must be
addressed. This task, known as multi-label classification, has recently been
gaining ground (Tsoumakas and Katakis, 2007; Zhang and Zhou, 2014).

Therefore, the main contribution of this paper lies in the proposal of a
new intelligent multi-fault diagnosis method based on multiple sensor in-
formation for assessing the occurrence of single, combined, and simultane-
ous faulty conditions in an IM. The condition assessment and fault identi-
fication is performed by analyzing the available physical magnitudes, vibra-
tions, stator currents, voltages, and rotational speed, through the Principal
Component Analysis a multi-label classification tree. Additionally, the con-
tribution and novelties of the proposed multi-fault detection and identifica-
tion approach include:

1. Multi-label classification: failure prediction of multiple faults that oc-
cur simultaneously.

2. Insensitivity to load and frequency: capable of achieving good per-
formance regardless of whether the motor is running under variable
load or no-load conditions. Likewise, training is possible without
taking into account the operating frequency.

3. High-performance results in both transient and in steady state regi-
men: system predictions are generated both in the transient state and
in the easier steady mode.

4. Themethod is able to identify faults without the need of expert knowl-
edge of each failure.
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5. Extremely-early detection: the classification performance of the
method is remarkable, predicting from signals within only 0.5 of a
second.

The rest of the paper is organized as follows: a brief description of re-
lated works is be provided in Section 1.2; in Section 1.3, a general introduc-
tion to the relevant Data Analysis procedure is given; then, an explanation
of the data set and the process of parameter setting is offered in Section 1.4;
the proposed diagnostic methodology is presented in Section 1.5; in Sec-
tion 1.6, the results of the experimental study for the performance assess-
ment of the method is discussed; and, finally, in Section 1.7, the main con-
clusions of the paper is summarized, and some lines of future research is
discussed.

1.2 RE L ATED WORKS

The development of strategies for condition monitoring and fault identifi-
cation in industrial processes is important to reduce unexpected stoppages
avoiding economic losses and also for ensuring the continuous machining
operations. As stated earlier, undesirable faulty conditions may occur re-
peatedly during the continuous working cycle of an IM. This issue has nor-
mally been addressed as a single-label problem in most condition monitor-
ing strategies that, one by one, identify each single fault mode.

Commonly, the application of condition monitoring strategies for fault
identification in IMs has been divided into two widely studied groups: me-
chanical and electrical problems (Kazzaz and Singh, 2003). In this regard,
most of mechanical failures presented in IM are usually associated with
problems to the bearing components, axis eccentricities, misalignments,
and couplings, among others; in contrast, electrical problems are associated
with faults in the stator and rotor windings, such as broken rotor bars, in-
sulation defects, and short circuits (Garcia-Perez et al., 2012; Naderi, 2017).
On the other hand, different physical magnitudes, such as voltage, stator
currents, temperatures, load torque, and mechanical vibrations are usually
monitored in most industrial processes in order to assess its current condi-
tion. Indeed, a big deal of the industrial processes usually prefer the applica-
tion of condition monitoring strategies that are based on the installation of
non-invasive sensors. Additionally, the analysis of a unique physical mea-
surement remains as the most preferred approach to condition assessment.
Hence, vibration-based and stator current-based analyses have been widely
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addressed by using signal processing for condition monitoring (Gangsar
and Tiwari, 2017). At present, the classical fault identification in electrical
rotatingmachines with industrial applications involves the analysis of vibra-
tion or stator current signals, separately. In fact, prior to the application of
conditionmonitoring strategies in industrial applications, the development
of new proposals can also be based on theoretical approaches that consider
equivalent mechanical, electrical or magnetic models that aim to simulate
different faulty conditions in a specific and real system (Naderi, 2017). Like-
wise, different data-driven condition monitoring strategies have been pro-
posed to detect faults and their sudden appearance in IMs and, although
significant and advantageous results have emerged, most of these propos-
als have been focused on the analysis of single fault-mode (Gao et al., 2015;
Choudhary et al., 2018). Thus, the critical issue of multiple faults and the
adaptation of condition monitoring strategies to detect them, in view of
their harmful consequences during the regular operation of an IM, there-
fore suggests that the measurement of different physical magnitudes repre-
sent a coherent approach for being considered during conditionmonitoring
applied to electrical machines.

The rest of the section follows the structure of the review by Liu & Bazzi
(Liu and Bazzi, 2017). According to those authors, Fault Detection and Di-
agnosis (FDD) methods can be grouped into four groups: time-domain
methods, frequency-domain methods, time-frequency-domain methods,
and artificial-intelligence-based methods. Traditionally, signal processing
techniques based on time domain, frequency domain, and time-frequency
domain approaches are themost commonandwell-knownprocessing strate-
gies (Rauber et al., 2014). As this paper is not a complete state-of-the-art
review, it is recommended that interested readers consult the following pa-
pers (Liu and Bazzi, 2017; Liu et al., 2018).

1.2.1 Time-domain FDD methods

These methods are used to identify defective machine functions. The use
of time-domain methods may be preferred due to one of its advantages is
the simplicity in computation burden and implementation, although their
low sensitivity, especially in noisy environments, might also be mentioned.
Some relevant methods in this category are (Marques Cardoso et al., 1999;
Duan and Živanović, 2015; Mahmoud et al., 2016).
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1.2.2 Frequency-domain FDD methods

The intrinsicmechanics of all IMmean that their characteristic fault-related
patterns are within the frequency domain. Whenever a fault is present, it
therefore provoke changes to the spectra, thus, the Fast Fourier Transform
(FFT) is among the simplest of mathematical methods of classifying sig-
nals from spectrummeasurements. Nevertheless, the overlapping of several
faults within the same frequency band and the difficulties associated with
low loads and frequencies are some of themain drawbacks of the frequency-
domainmethods. Thesemethods can directly process both raw and prepro-
cessed signals (Betta et al., 2002; Thomas et al., 2003). Other methods sub-
tract the fault-independent components from the faulty signal, to obtain a
residual that can be analyzed (Stack et al., 2004).

1.2.3 Time-frequency-domain FDD methods

As is known, non-stationary signals are difficult to process and time-
frequency domainmethods therefore yield results of greater accuracy. Time-
frequency methods use a moving time window on which spectral analysis
is performed, with the result that the non-stationary components can be
treated as constants. These analyses require more complex implementation
and computational complexities (log-linear or higher). Some examples of
these techniques are the wavelet transform (Yan et al., 2014) and the short-
time Fourier-transform (Bouchikhi et al., 2013).

1.2.4 Artificial Intelligence-based FDD methods

The consideration of AI techniques in condition monitoring strategies has
been towards automatic fault diagnosis. Over the years, different variants
of neural networks have been one of the most frequently used techniques:
the multilayer perceptron (Chow et al., 1991) and radial-basis functions
(Ghate and Dudul, 2011), among others. On the other hand, evolution-
ary methods (such as genetic algorithms and particle swarm optimization)
are widely used to compute the best algorithm parameters. Whereas, Sup-
port VectorMachines (SVMs), another popular family of algorithms in this
context, have likewise demonstrated good classification performance in hi-
erarchical structures (Keskes and Braham, 2015). Recently, deep learning
has been used for FDD (Lei et al., 2016), although its main drawback is the
huge amount of data that is needed for training FDD systems. The recent

48



Early and
extremely
early
multi-label
fault diagnosis
in induction
motors

work of Liu et al. (Liu et al., 2018) is strongly recommended for a detailed
review of AI-based methods.

1.2.5 Unresolved Issues

Even though the literature on FDD methods is very copious, there are still
some unresolved issues that must be addressed, the most critical issues that
have to be faced are:

• Simultaneous fault detection (Liu and Bazzi, 2017): most methods
analyze a single or, at best, a couple of faults, and are not designed for
the simultaneous identification of multiple faults.

• Non-stationary conditions (Liu and Bazzi, 2017): the authors make
significant progress examining fault detection under non-stationary
conditions.

• Integratedmethodology/system (Liu andBazzi, 2017; Liu et al., 2018):
this point can be analyzed from two perspectives. Firstly, there are
four main faults in induction motors (broken bar, misalignment, un-
balance, and bearing failure); different methods approach different
kind of faults, underlining the need for an integrated system that is
capable of identifying all four faults (Liu and Bazzi, 2017). Secondly,
FDD are usually built as a combination of different parts instead of a
whole diagnostic system. The incorporation of both feature extrac-
tion and “intelligent” (Machine Learning) FDD in a single system
would represent an integrated method (Liu et al., 2018) that would
be easier to use in industrial production.

1.2.6 Our proposal vs. related works

Although several works focused on the fault detection and identification in
IM have been proposed, the important advantages of the diagnosis method
presented in this paper are outlined below.

Most condition monitoring approaches that have been proposed are
classically based on the analysis of stator current and vibration signals and,
the fault diagnosis is usually performed through the estimation of character-
istic fault-related frequency patterns. However, although the occurrence of
different faulty modes is among the aims of such proposals, the fault iden-
tification has been widely addressed as a single-fault identification prob-
lem (Martínez-Morales et al., 2018); thus, the advantage of the method pro-
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posed in this paper is that it can be applied to assess the occurrence single,
combined, and simultaneous faulty conditions.

In fact, the implementation of complex conditionmonitoring structures
including stages relating to calculation, extraction and selection of feature
have also been proposed. Those stages are specifically implemented to im-
prove and highlight the characterization of a large set of features estimated
through time-domain techniques such asCWT (ContinuousWavelet Trans-
form), HHT (Hilbert Huang Transform) and EMD (Empirical Mode De-
composition) (Konar and Chattopadhyay, 2015; Saucedo-Dorantes et al.,
2017; Shen et al., 2013). Although such optimization processes are mostly
performed with genetic algorithms, the use of those techniques requires
additional knowledge for their proper implementation. Whereas, in the
proposed method, the need for expert knowledge on each type of failure is
not necessary, as the novel implementation of the PCA and decision trees
means that there is no need to configure the conditionmonitoring approach
with specific parameters, depending on the system to be assessed.

Additionally, the condition monitoring strategies that can detect the
occurrence of multiple and combined faults are available in only very few
studies. Indeed, such proposals are based on complex time-frequency do-
main techniques, such as the high-resolution spectral method of multiple
signal classification (MUSIC) (Romero-Troncoso et al., 2016), which com-
promises the computational burden. The strategies are also limited to the
identification of multiple faults under the start-up or steady-state regime
(Romero-Troncoso et al., 2016). Hence, in this work, the assessment of
multiple combined faults is performed during the start-up and steady-state
regime under variable load conditions and, in addition, the low computa-
tional burden of this tool means that it can be used for real-time condition
monitoring.

1.3 THEORET ICA L BACKGROUND

If sensor data and records of mechanical operations are not filtered, orga-
nized and analyzed, to extract information thatmay be of use to understand
a process and to solve a problem, they are of no inherent utility. The chal-
lenge is how to perform the early diagnosis of multiple malfunction condi-
tions in an IM. The techniques used to perform the process of extracting
information from raw data, range from the simplest, such as data summary
and visualization, to the most sophisticated, such as the application of mul-
tivariate statistical methods, Machine Learning and Data Mining. Thus,
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in this study, a statistical technique, Principal Component Analysis (Sub-
section 1.3.1), is combined with a Machine Learning technique (Subsec-
tion 1.3.2), Decision Trees, to solve a multiple prediction problem, com-
monly known as multi-label classification (Subsection 1.3.3).

1.3.1 Principal Component Analysis

ThePrincipal ComponentAnalysis (PCA) (Jolliffe, 1986) is commonly used
for data exploratory analysis (in data visualization) and it is still one of the
most well-known and popular methods for dimensionality reduction (Jol-
liffe and Cadima, 2016; Roman-Rangel and Marchand-Maillet, 2019). The
main objective of the PCA attempts to establish the directions, in the orig-
inal high-dimensional space, with the highest variance (directions that, as-
sumingGaussian noise distributions, usually correlate with amore informa-
tive content). As a result, the projection of the multivariate measurement
data onto the most significant orthogonal principal component directions
is the data and the noise reduction step in the process with the lowest loss
of overall data variance. The assumption is that the primary information
loss is the noise subspace, which is assumed not to be informative for the
multi-label classification problem.

More formally, ifX is an n×mmatrix with the data (m attributes for n
instances), the principal components are obtained by solving an eigenvalue
problem:

cov(X)ck = λkck, λ1 ≥ λ2 ≥ . . . ≥ λm,

cov(X) =
1

n

n∑
i=1

(xi − x)(xi − x)T ,

where, cov(X) is the covariance matrix of X , ck is a principal component
(and an eigenvector), xi is a row of X (data instances), and
x = (1/n)

∑n
i=1 xi is the average of the xi. In practice, an explicit calcu-

lation of the covariance matrix is not necessary, as other matrix decompo-
sitions, such as singular value decomposition (SVD), can be used to obtain
the same eigenvectors with greater efficiency, especially if only a few prin-
cipal components are needed.

In this paper, the value of n is the number of experiments performed
in the experimental test bench and the value ofm depends on the measure-
ment sampling frequency, e.g. 12 kHz or 3 kHz (see Section 1.4.1). In this
paper, 12 matrices were used, one for each of the measurements.
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When PCA is used as a dimensionality reduction method, the determi-
nation of the number of principal components to use is one of the most
important decisions. The wrong choice could reduce the impact of the re-
sults. Retaining too few components could lead to a loss of important in-
formation (Zwick and Velicer, 1986). Whereas, retaining too many com-
ponents could produce high dimensional data, which might still embody
much of the measurement noise that is detrimental to the performance of
subsequent AI models.

There are empirical prescriptions for determining the number of com-
ponents, some of which were compared in (Zwick and Velicer, 1986).
Kaiser’s eigenvalue greater than one rule (K1 rule) (Kaiser, 1960) is one of
the most popular methods used for the selection of the number of retained
principal components (Zwick and Velicer, 1986). The rule states that if the
eigenvalue of a component is greater than 1.0, then the component is signif-
icant. Catell’s scree test (Cattell, 1966) is a graphical method that consists of
plotting the eigenvalues in descending order (scree plot) and looking for an
“elbow” in the plot, which implies a steep slope from large to small eigen-
values (Ruscio and Roche, 2012).

1.3.2 Classification trees

A decision tree is an algorithm in which a set of tests, organized in a hierar-
chical way, is used to guide the process of class assignment or output value
calculation. The process begins at the root node, where the value of one of
the attributes of the instances to be classified is compared (or whose output
value is needed to be determined). Depending on the result of this compar-
ison the process is directed to one or several branches (typically, two in a
binary decision tree), where nodes apply new tests to conditionally branch
further in the tree. The process continues until a leaf node (a node without
further branches) is reached, at which point a class is assigned to the in-
stance, or there is a function to calculate the output value for that instance.

The process of building a decision tree also starts at the root node. In
each node, the training set is divided into subsets, for which it is necessary
to determine the best division attribute and the value for the division into
subsets. If only one threshold value is used, the division will be into two
subsets, but it would be possible to use several ranges of values permitting
a node to have more than two branches. The criterion for the selection of
attributes and values is the optimization of a merit function. Some of these
functions are: the Gini Index (Breiman, 1984), Information Gain, and Gain
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Ratio (Quinlan, 2014). Once the attribute and the values of the node have
been selected, they are used to determine through which branches each in-
stance proceeds, and the process is repeated for the corresponding arrival
nodes. The process terminates when the number of instances is less than a
certain value, or when other stop criteria are satisfied. The leaf nodes are
assigned the majority class of the instances that have reached that node (or
those instances are used to calculate a function that gives the output value
when the tree is used for prediction).

Decision trees are popular in Data Mining and Machine Learning for
several reasons: they are quick to build, they are interpretable, and they are
unstable (that is, small changes in the training set results in very different
trees). This last property has made them suitable for the construction of
ensembles,1 both of classifiers (Maudes et al., 2012; Díez-Pastor et al., 2014)
and of regressors (Pardo et al., 2013; Arnaiz-González et al., 2016).

In this research, decision trees were used on account of their speed of
construction and because decision trees adapted to multi-label problems
already exist. Further details on these types of problems are given in the
next section.

1.3.3 Multi-label and multi-output learning

Supervised Machine Learning is used primarily to solve two types of prob-
lems:

• The determination of the relationship between the attributes of an
instance and its class, in order to be able to label new instances, that
is, so that one class may be assigned to them from a finite number of
existing classes; usually single-label classification problems.

• The prediction of the value of a continuous attribute, from those at-
tributes that are already available; known as regression problems.

However, an instance can belong to several classes simultaneously, or,
several attributes must be predicted at the same time, which are known as
multi-label (classification) and multi-output (regression) problems, respec-
tively. Although the prediction of each of the attributes could be addressed
as a problem of single-label or single-output prediction, it has been shown

1An ensemble is an algorithm that makes predictions by combining several models,
but these models should be diverse, and the instability of the trees makes them ideal in this
context.
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that simultaneous prediction can be beneficial (Read, 2010), since learn-
ing algorithms can exploit the relationships between the attributes to be
predicted. So in recent years, research has increasingly focused on adapt-
ing existing techniques to these new paradigms, or presenting new tech-
niques to resolve these multi-label problems. Papers have been published
on classification (Tsoumakas and Katakis, 2007; Zhang and Zhou, 2014),
regression (Spyromitros-Xioufis et al., 2016; Waegeman et al., 2019), and
pre-processing techniques (Arnaiz-González et al., 2018b,a; Kordos et al.,
2019).

In this paper, a decision tree with multi-label learning was designed to
identify motor malfunctions, even for simultaneously occurring faults. The
model was also evaluated using multi-label performance measures, which
is discussed in Subsection 1.4.2.

1.4 EXPER IMENTAL STUDY

In this section, the method of data acquisition obtained from an experi-
mental test-bench based on a laboratory electromechanical system is de-
scribed (Subsection 1.4.1). The multi-label evaluation measures is then be
introduced (Subsection 1.4.2), and themethod for determining the optimal
number of principal components is also subsequently described (Subsec-
tion 1.4.3).

The proposed condition monitoring method was programmed in
Python using the Scikit-learn library (Pedregosa et al., 2011). And, the ex-
perimental data was analyzed by using multi-label measures and 10×10-
fold cross-validation (cross-validation instead of train-test splits were used,
as it has been demonstrated that the cross-validation test better exploits
the available data (Kohavi et al., 1995)). For the purpose of achieving load-
insensitivemodels, the training data contained examples of the IM function-
ing with three types of load conditions: no-load, half-load, and full-load.

All source code is publicly available onGithub: https://github.com/mjuez/
early-im-fault-diagnosis.

1.4.1 Data set description

The experimental test bench used to validate the proposed condition mon-
itoring approach consists of a pulley-belt electromechanical system driven
by a 971-W three-phase IM (model WEG 00136APE48T) and coupled to
an automotive alternator. The IM had 1 pair of poles, a power supply of

54

https://github.com/mjuez/early-im-fault-diagnosis
https://github.com/mjuez/early-im-fault-diagnosis


Early and
extremely
early
multi-label
fault diagnosis
in induction
motors

Figure 1.1: Experimental test bench used to validate the proposed condition
monitoring method.

220V AC, and its full load current was 3.4 amperes. A variable frequency
driver (VFD) (model WEG CFW08) was used to feed and drive the rota-
tional speed of the IM. The automotive alternator was therefore driven by
the IM through mechanical coupling based on a pulley-belt system. The al-
ternator was used as the mechanical load and functioned, during the exper-
iments, at three different load capacities: unloaded, half-load and full-load.
The experimental test bench is shown in Figure 1.1.

Different physical magnitudes were acquired during the experiments.
The effect of mechanical vibrations was recorded by a triaxial accelerome-
ter, model LIS3L02AS4, fixed on top of the IM. Additionally, the voltage
and the stator current consumption were continuously monitored and ac-
quired by means of a set of Hall-effect sensors, model L08P050D15, from
Tamura corporation. Thus, there were two groups of measurements: 7 re-
lated to currents and voltages; voltage A, voltage B, voltage C, current A,
current B, current C, current N; and 3 relating to the measurement or vi-
brations; accelerometer X, accelerometer Y, accelerometer Z. Additionally,
there was a last measure, the IM rotational speed that was acquired through
a digital encoder. To give an idea of the nature of the signals used for the
prediction of failures, Figure 1.2 shows the graphic representation of the
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Figure 1.2: First half second of sensor measurements used for predicting
faults. On the X-axis, the time in seconds. The Y -axis refers to the sensor
value (different scale for each one). The figure shows the measurements of
a healthy engine operating at direct supply.

signals (currents, voltages, speed, and accelerometers) during the first half
second of an engine in good condition operating at direct supply.

The installed sensors were individually mounted on a board with its cor-
responding signal conditioning and anti-alias filtering. The data acquisition
was performed by means of two 12-bit 4-channel serial-output sampling
analog-to-digital converters, model ADS7841, from Texas Instruments,
which were used as the Data Acquisition System (DAS); a proprietary low-
cost DAS design based on a field programmable gate array technology.

Four different operating conditions were considered for evaluation in
this study: healthy (HLT), broken rotor bar (BRB), unbalanced (UNB), mis-
alignment (MAL), as well as their combinations. The conditions under con-
siderationwere produced artificially, thus, the BRB conditionwas produced
by drilling a rough-hole of 2 mm diameter, at a depth of 14 mm, into a bar
of the rotor, without harming the rotor shaft, in such a way that the hole was
drilled through the complete section of the rotor bar. The UNB condition
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Figure 1.3: Set of experimental faults: a) broken rotor bar (BRB); b) unbal-
ance (UNB); and, c) misalignment (MAL).

was reproduced with a bolt in the rotor pulley that provoked a non-uniform
load distribution that imbalanced the center of mass of the IM shaft. The
MAL condition was caused by shifting the belt in the alternator pulley for-
ward, thereby misaligning the transverse axial rotation of the motor and
its load. Figures 1.3-a to Figure 1.3-c depict each of the conditions under
consideration.

Moreover, the IM was driven at different operating frequencies during
the experiments, so the data set contained the operating frequencies of 3Hz,
30 Hz, and direct supply.

Each experiment was carried out during 10 seconds, the first 5 seconds
corresponded to the IM start-up and were considered as a transient state.
Thenext 5 secondswere considered as steady state (these last 5 secondswere
not used in the experiments)2. The transient state was considered harder to
predict, due to its non-stationary and inherently changing nature (Kim and
Parlos, 2002). Nevertheless, as the experimental study addresses an early
diagnosis problem, hereinafter only the transient state is considered.

In summary, an almost completely balanced data set was recorded of
2 521 instances: 831 for 3 Hz, 833 for 30 Hz, and 857 for direct supply. As
there were eight measures sampled at 12 kHz and four measures sampled
at 3 kHz, a single instance consisted of 540 000 attributes (8× 12 000× 5+
4 × 3 000 × 5). As a preliminary pre-processing step, all the features were
normalized to have values between 0 and 1.

2As the IM is powered by an inverter, the IM start-up was controlled, so that it always
lasted 5 seconds, regardless of its frequency of use.
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1.4.2 Evaluation metrics for multi-label problems

In single-label classification, accuracy and confusion matrix-based metrics
are commonly used. Nevertheless, the performance ofmulti-label classifica-
tionmethods aremore complex, because of the presence of several labels for
each instance, and because the combined performance for each label can be
approached in different ways. Hence, different evaluationmetrics for multi-
label classification and taxonomies have even been proposed to group those
measures (Madjarov et al., 2012), although the simplest and most accepted
division corresponds to measures based on either predictions or rankings.
In the experimental evaluation, the measures in use in the first and the sec-
ond groups were, accuracy, F1 and Hamming loss and, in turn, one-error
and rank loss, respectively. The definition of all these measurements are
given in equations 1.1 to 1.6. The up/down arrow besides the measurement
label indicates whether the higher or the lower value is best.

↑ Accuracy =
1

n

n∑
i=1

|ωi ∩ ω̂i|
|ωi ∪ ω̂i|

(1.1)

↑ Macro F1 =
1

|Ω|
∑
l∈Ω

F1(TPl, FPl,TNl, FNl) (1.2)

↑ Micro F1 = F1

(∑
l∈Ω

TPl,
∑
l∈Ω

FPl,
∑
l∈Ω

TNl,
∑
l∈Ω

FNl

)
(1.3)

↓ H Loss =
1

n

n∑
i=1

|ωi △ ω̂i|
|Ω|

(1.4)

↓ One Error =
1

n

n∑
i=1

δ
(
argminl∈Ωri(l)

)
, δ(l) =

{
1 if l /∈ ωi

0 otherwise
(1.5)

↓ R Loss =
1

n

n∑
i=1

1

|ωi||ω̄i|

∣∣∣(lq, lr) : ri(lq) > ri(lr), (lq, lr) ∈ ωi × ω̄i

∣∣∣
(1.6)
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Thenotation for the equations is as follows: n is the number of instances;
Ω is the set of labels; ωi ⊆ Ω is the actual labelset of instance xi; ω̂i is the
predicted labelset of instance xi; and ω̄i is the complementary labelset of ωi.
Then, ri(lj) is the predicted rank of class label lj for instance xi and△ is the
symmetric difference between two labelsets. Finally, TP, TN, FP, and FN,
are the number of true positives, true negatives, false positives, and false
negatives, respectively. All of these, TP, FP, TN, and FN, are computed by
comparing the predicted and the actual labelsets.

1.4.3 Determining the number of principal components

As explained in Subsection 1.3.1, the number of the selected principal com-
ponents is essential, if accurate models are subsequently to be trained. Two
classical approaches were used to determine that number: the K1 rule and
the Scree test. Parallel analysis (Horn, 1965) was also used, as it is more
reliable (Zwick and Velicer, 1986), although the computational resources it
requires can be prohibitive, due to the high dimensionality of the data set.

The models trained with the number of principal components selected
with the K1 rule performed slightly better than those that used the scree
test results. Also, for all sensors except those monitoring voltages, the num-
ber of retained components was lower following the K1 rule, meaning that
a higher dimensionality reduction had occurred. Although Kaiser’s rule
states that only those components with an eigenvalue greater than 1 should
be retained, whenever there was no eigenvalue greater than 1, then at least
the first principal component was selected in this study, as it would be of
no interest to either discard a sensor or completely disregard any measure-
ment.

As described in the Section 1.5, the proposed predictive model is a com-
bination of the results of applying twelve PCA transformations (one for each
input sensor) and amulti-label classifier. It means that themodel has twelve
input parameters, which correspond to the number of principal compo-
nents that will be retained for each signal. Therefore, in this scenario, the
determination of the optimal value for those parameters, can be treated as
a hyperparameter optimization problem (Bergstra et al., 2011). When opti-
mizing hyperparameters, a set of parameter combinations is defined, then
the model performance is evaluated for each combination. Thus, in this
particular case, good model evaluations will indicate an optimal number of
principal components to be retained.
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Considering the K1 rule and the scree test results, 50 was selected as
the maximum number of principal components to retain, and 1 as the min-
imum. 12 parameters with values between 1 and 50 will produce a set of
2.44 × 1020 combinations of parameters. Any evaluation of so many mod-
els is extremely costly in terms of time and computation effort, so the Hy-
peropt (Bergstra et al., 2015) library was used for the hyperparameter tun-
ing task, which uses only two algorithms to optimize the parameter search
space. In this study, the probabilistic method called the Tree of Parzen Es-
timators (TPE) was used (Bergstra et al., 2011), rather than the only other
possible alternative, Random Search. Optimization of the hyperparameters
also implies the minimization of an objective function, which in this study,
was the inverse ofmodel accuracy (1−accuracy). Themaximumnumber of
evaluations was set to 500, which leads to 150 000 models evaluated in total
(500 parameter combinations × 3 frequencies × 10 repetitions of 10-fold
cross-validation).

Table 1.1 shows the number of principal components selected according
to the differentmethods (K1 rule, Scree test, andHyperopt) and frequencies.
In terms of model accuracy, the number of principal components selected
by Hyperopt produced significantly better results than those selected by the
Scree and the K1 methods. Furthermore, using the combination obtained
for 3 Hz with the other frequencies provided better results than the specific
combinations obtained for each frequency. So, according to these results,
and the fact that the 3Hz combination retained fewer principal components
(139), i.e., greater dimensionality reduction was achieved, the above combi-
nations were chosen as the optimal settings for all the subsequent predictive
models.

1.5 MULT I - FAULT EARLY D IAGNOS I S METHOD

Since typical problems of this nature are usually solved using time or
frequency-domain-based methods, one of their main disadvantages is that
expert knowledge on each failure type is required. However, this knowl-
edge is not necessary when artificial intelligence-based approaches are used.
These techniques, once trained, are capable of extracting the patterns that
are most strongly associated with each fault.

One of themain characteristics of sensor data is the dependent nature of
the observations that are highly correlated, because the data consist of a set
of adjacent points in time. A common approach for dealingwith data of this
nature is to use statistical methods such as time series analysis (Shumway

60



Early and
extremely
early
multi-label
fault diagnosis
in induction
motors

Freq. Method Voltages Currents Rotat. Accelerometers Sum.

A B C A B C N Speed Ref. X Y Z PCs

3 Hz
K1 rule 26 28 30 14 15 14 1 1 1 1 4 1 136
Scree test 17 18 18 18 18 17 5 2 11 43 189 105 461
Hyperopt 4 7 8 33 5 19 6 35 1 17 2 2 139

30 Hz
K1 rule 18 18 18 14 14 14 1 1 1 1 9 1 110
Scree test 15 18 18 16 17 17 3 1 9 83 171 151 519
Hyperopt 32 8 4 24 4 22 35 49 3 4 4 22 211

Direct
supply

K1 rule 17 19 18 12 15 15 1 1 1 1 31 1 132
Scree test 16 16 16 18 19 19 1 2 12 68 210 176 573
Hyperopt 6 25 46 2 10 8 2 10 16 38 33 17 213

Table 1.1: Number of principal components selected by the different meth-
ods and frequencies. The last column shows the sum of the number of prin-
cipal components that each method retained, i.e., the number of decision
tree inputs.

and Stoffer, 2017). Most statistical methods require the data to be station-
ary, which is not the case in this study, because data from the IM start-up
(transient data) were used.

As stated earlier, in our data set each instance consists of 540 000 at-
tributes. It is well-known that most Machine Learning algorithms suffer
from difficulties when analyzing data sets with a large number of attributes,
commonly known as the curse of dimensionality (Bellman, 2015). For this
reason, PCA was used in this proposal to reduce the number of attributes.
As previously explained, PCA is able to reduce the dimension of attributes,
by retaining the combination of the most important features in which the
maximum variance is retained as possible. Furthermore, when applying
PCA to correlated data, one of the properties of the transformed data is that
the correlation between attributes is removed (Wang et al., 2016). Although
the robustness of decision trees leaves them unaffected by the collinearity
of attributes, the elimination of the correlation can be beneficial for other
Machine Learning methods.

Briefly, in the early multi-fault diagnosis method proposed in this pa-
per, the information provided by the sensors was firstly reduced by means
of PCA. Since each sensor measured a different physical magnitude, PCA
was independently applied to each one. Then, all the retained principal
components were joined as input to the multi-label classification method
(a decision tree was used, although it could have been any other multi-label
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Figure 1.4: Graphical representation of the dimensionality reduction ap-
proach by using PCA. The numbers of input measures correspond to the
start-up of the IM (i.e., first 5 seconds of operation).

classifier). The output of the method is the predicted label set, where each
label is a possible fault.

The graphical illustration of the process, with the number of principal
components retained for each sensor measurement, is represented in Fig-
ure 1.4. A dramatic reduction in dimensionality can be observed, where
540 000 input attributes are converted into 139.

Although PCA has been used before for pre-processing single signals
(Cadzow et al., 1983; Lowe, 1998; James and Lowe, 2001; Woon and Lowe,
2004), the novelty of themethod presented here is theway inwhichmultiple
signals are combined after their dimensionality is reduced using PCA. The
attributes that are passed to the classifier, a decision tree in our case, are the
concatenation of the results obtained from PCA for each of the signals, that
include voltages, currents and vibrations (see Figure 1.4).

Theother novelty is that the decision tree is designed to solvemulti-label
problems, so it is capable of predicting potential faults, even when several
are happening at the same time. The evaluation of the model is therefore
done using well established measures in the field of multi-label classifica-
tion. All other previous studies have used conventional single-label predic-
tion methods, even when the fault-detection problem could occur simulta-
neously.

Despite the simplicity of the approach, the method obtained is robust
under varying frequencies and load conditions, is able to detect errors swiftly
in the first few seconds, even when there are simultaneous failures and the
motor is still in the transition state (when othermethods cannot be applied).
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Figure 1.5: Confusion matrices of the three predictive models (one for each
frequency). TheX-axis corresponds to the predicted fault condition, while
the Y -axis represents the actual fault condition.

1.6 RE SU LT S AND DI SCU S S ION

In this section a thorough experimental program will be reported for as-
sessing the performance of the proposed method. First, in Subsection 1.6.1,
the training of the multi-label classifier trees and their performance tests at
each isolated frequency (3 Hz, 30 Hz, and direct supply) will be detailed;
second, in Subsection 1.6.2, the test results of the time interval reductions
used for training the models will be described; third, in Subsection 1.6.3,
the test results of the model using all the frequencies (frequency insensitiv-
ity) at the same time will be presented; in Subsection 1.6.4, the test results
of another fault type -a Bearing Defect (BD)- will be discussed; and, finally,
in Subsection 1.6.5, an analysis of the multi-fault data set with Fast Fourier
Transform will be described.

1.6.1 Full transient state results

Having determined the optimal number of principal components for the
proposed method, multi-label decision trees were trained and tested across
each operational range.

In Figure 1.5 are shown the confusion matrices of each multi-label deci-
sion tree for each of the three frequencies. The predicted fault condition is
represented on the X-axis while the actual fault condition is on the Y -axis.

The model efficacy is indicated by the high numbers present on the ma-
trices’ diagonals. It should be noted that some combinations of failures
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Time Voltages & Rotational Accelerometers Total
int. (s) currents speed

0.01 840 120 120 1 080
0.02 1 680 240 240 2 160
0.05 4 200 600 600 5 400
0.10 8 400 1 200 1 200 10 800
0.20 16 800 2 400 2 400 21 600
0.50 42 000 6 000 6 000 54 000
0.75 63 000 9 000 9 000 81 000
1.00 84 000 12 000 12 000 108 000
2.00 168 000 24 000 24 000 216 000
5.00 420 000 60 000 60 000 540 000

Table 1.2: Total number of sensors measurements within each time interval.

(such asMAL& BRB) were under-represented and are therefore in a lighter
color. According to tables 1.3- 1.5, the frequency-specific percentage accu-
racies are: 93.6% for 3 Hz, 95.5% for 30 Hz, and 95.8% for direct supply.

Although accurate fault detection can be seen at all frequencies, the ac-
curacy at 3 Hz is particularly noteworthy due to the accepted difficulty of
detecting faults at this frequency. Good BRB detection rates are also note-
worthy, with a 95% percentage accuracy from Figure 1.5, a type of failure
that is difficult to detect (Hassan et al., 2018) using other techniques.

1.6.2 Reducing the time interval

The method still captured the faults within the first five seconds of the IM
start-up, despite the non-stationarity of the initial transient dynamics (Kim
and Parlos, 2002). Therefore we also investigated the response capability in
the first 0.5 seconds.

Experiments were executed with different time intervals (from 0.01 sec-
onds to 5). Table 1.2 depicts the number of sensor measurements at each
time interval. As might be expected, the increase in the number of features
was proportional to the size of the time interval.

A classifier was trained and tested with each time interval. Tables 1.3,
1.4, and 1.5 group these results for each of the frequencies under analysis.

As expected, the best results were obtained with the longest time inter-
val (5 seconds), i.e., with the data of the whole experiment. Average ranks
were computed and the Hochberg post-hoc procedure (Hochberg, 1988)
was applied, to determine the minimum time interval to use. Figure 1.6
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Time int. (s) Macro F1 ↑ Micro F1 ↑ Accuracy ↑ R Loss ↓ H Loss ↓ One Error ↓

0.01 0.875 0.874 0.749 0.137 0.121 0.251
0.02 0.895 0.892 0.781 0.123 0.103 0.219
0.05 0.917 0.917 0.835 0.109 0.078 0.165
0.10 0.931 0.931 0.869 0.096 0.065 0.131
0.20 0.949 0.948 0.895 0.075 0.049 0.105
0.50 0.954 0.954 0.912 0.066 0.043 0.089
0.75 0.955 0.955 0.917 0.065 0.043 0.083
1.00 0.954 0.954 0.918 0.063 0.044 0.082
2.00 0.970 0.970 0.946 0.043 0.029 0.054
5.00 0.975 0.974 0.936 0.038 0.025 0.064

Table 1.3: Model results for 3 Hz by the time interval in use.

Time int. (s) Macro F1 ↑ Micro F1 ↑ Accuracy ↑ R Loss ↓ H Loss ↓ One Error ↓

0.01 0.843 0.848 0.722 0.200 0.144 0.278
0.02 0.880 0.884 0.785 0.171 0.111 0.216
0.05 0.873 0.878 0.775 0.180 0.116 0.225
0.10 0.914 0.917 0.857 0.116 0.079 0.143
0.20 0.911 0.914 0.851 0.119 0.082 0.149
0.50 0.975 0.975 0.946 0.035 0.024 0.055
0.75 0.976 0.975 0.942 0.033 0.024 0.058
1.00 0.977 0.977 0.944 0.030 0.022 0.056
2.00 0.982 0.980 0.952 0.021 0.019 0.048
5.00 0.984 0.983 0.955 0.026 0.016 0.045

Table 1.4: Model results for 30 Hz by the time interval in use.

Time int. (s) Macro F1 ↑ Micro F1 ↑ Accuracy ↑ R Loss ↓ H Loss ↓ One Error ↓

0.01 0.853 0.855 0.698 0.174 0.137 0.302
0.02 0.888 0.890 0.762 0.158 0.103 0.238
0.05 0.909 0.911 0.823 0.111 0.083 0.177
0.10 0.923 0.924 0.836 0.103 0.071 0.164
0.20 0.932 0.932 0.856 0.088 0.063 0.145
0.50 0.955 0.954 0.902 0.062 0.043 0.098
0.75 0.960 0.960 0.920 0.054 0.037 0.080
1.00 0.963 0.964 0.927 0.042 0.034 0.073
2.00 0.964 0.965 0.929 0.046 0.033 0.071
5.00 0.982 0.982 0.958 0.027 0.017 0.042

Table 1.5: Model results for direct supply by the time interval in use.
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Figure 1.6: Multi-label evaluationmetrics of a classifier trained with signals
from the first 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.75, 1, 2, and 5 seconds. The
X-axis depicts the time interval in seconds, while the Y -axis refers to the
metric value in range [0− 1]. The plotted results show the direct supply of
the frequency. The results statistically equivalent to the use of the signals of
the first 5 seconds are highlighted within a square.

provides a graphical representation of the data in Table 1.5. The results
highlighted within the square are for the time intervals that were statisti-
cally equivalent (usingHochberg procedure) to the best one (i.e., 5 seconds).
According to all multi-label metrics, the results of using the signals corre-
sponding to the first 0.5, 0.75, 1, and 2 seconds, were statistically equivalent
to the results of using the signals for the first 5 seconds. Only the results for
time intervals shorter than 0.5 seconds were significantly worse.

In this regard, in order to quantify the performance reduction from the
information constriction of short time intervals, the multi-label approach
was investigated on the first 0.5 seconds. Figure 1.7 shows the confusion
matrices of themodels trained for the three frequencies. The predicted fault
condition is represented on theX-axis while the actual fault condition is on
the Y -axis.

Despite the constricted transient information within just the first 0.5
seconds, the multi-label decision tree still provides fault detection accura-
cies over 90%: 91.1% at 3 Hz, 94.5% at 30 Hz and 90.2% for direct supply.
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Figure 1.7: Confusion matrices of the three predictive models trained with
0.5 seconds (one for each frequency). The X-axis corresponds to the pre-
dicted fault condition, while the Y -axis represents the actual fault condi-
tion.

1.6.3 Insensitivity to IM operating frequency

A model that is insensitive to the operating frequency of an IM might seem
useless, because the frequency is commonly known. However, training a
separate model for each operating frequency might not be feasible in some
scenarios. Ourmethod can also be trained anddeal with data acquired from
IMs operating at different frequencies and the resulting model will still be
able to classify fault conditions accurately. This is because the transforma-
tion of sensormeasurements bymeans of PCA yields features that highlight
the fault conditions, so multi-label decision trees can learn to classify them,
regardless of the operating frequency.

Multiple operation frequency-insensitive models were trained with all
of the data-set examples. Table 1.6 shows the results obtained for each time
interval size. As expected, and consistent with Section 1.6.2, the best fault
detection accuracy of 91.6% occurs for the longest time interval. Notably,
the detection accuracy only dropped to 87.6% for time intervals of 0.5 sec-
onds. Operation frequency-insensitive models therefore also appear appro-
priate for transient start-up time fault detection.

1.6.4 Testing another type of fault: bearing defect

Bearing defects (BDs) are common IM faults widely studied in the literature
(Hui et al., 2017; Rauber et al., 2014; Li et al., 2016; Prieto et al., 2012; Cae-
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Figure 1.8: Confusion matrices of the general predictive models trained
with all examples of all operating frequencies. The matrix on the left corre-
sponds to first 0.5 seconds of IM operation, while the one on the right corre-
sponds to the first 5 seconds (full transient state). The X-axis corresponds
to the predicted fault condition, while the Y -axis represents the actual fault
condition.

Time int. (s) Macro F1 ↑ Micro F1 ↑ Accuracy ↑ R Loss ↓ H Loss ↓ One Error ↓

0.01 0.866 0.868 0.749 0.183 0.123 0.251
0.02 0.875 0.876 0.761 0.174 0.116 0.239
0.05 0.895 0.896 0.800 0.143 0.098 0.200
0.10 0.902 0.903 0.810 0.128 0.091 0.190
0.20 0.911 0.911 0.830 0.122 0.084 0.170
0.50 0.937 0.938 0.876 0.085 0.059 0.124
0.75 0.945 0.946 0.891 0.081 0.051 0.109
1.00 0.932 0.932 0.865 0.088 0.064 0.135
2.00 0.958 0.958 0.908 0.056 0.040 0.092
5.00 0.960 0.959 0.916 0.050 0.039 0.084

Table 1.6: Model results for all frequencies depending on the time interval
in use.
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Figure 1.9: Induced Bearing Defect (BD) fault for the experimentation.

Time int. (s) 3 Hz 30 Hz Direct supply All frequencies

0.5 95.9% 97.0% 98.7% 96.3%
5 95.1% 100.0% 97.0% 96.0%

Table 1.7: Classification results in terms of accuracy for BearingDefect (BD)
fault condition.

sarendra and Tjahjowidodo, 2017). As a defective bearing is worn down,
it will produce a complete mechanical breakdown. This makes almost im-
possible to experimentally reproduce this fault together with others on a
test bench. In other words, although this kind of fault (as any other) can
theoretically be predicted in combination with other faults, in practice it is
almost impossible to obtain a data set with BDs and other faults occurring
at the same time.

In this study, properly functioning examples and BD examples were em-
ployed, to prove that a model trained using our approach could also learn
to predict these types of faults to high levels of accuracy.

BD examples were artificially provoked by drilling a through-hole on
the outer race with a 1.191 mm tungsten drill bit, as shown in Figure 1.9.
A total of 724 examples were used for testing the classification of a fault
due to a BD. Of these, 363 corresponded to a healthy condition, and the
remaining 361 to the BD fault condition. Isolating each frequency, 242 (122
HLT, 120 BD) were obtained at 3 Hz, 241 (121 HLT, 120 BD) were obtained
at 30 Hz, and 241 (120 HLT, 121 BD) were obtained at direct supply. The
type and number of measurements are the same as previously described in
Subsection 1.4.1. The results, in terms of accuracy, are reported in Table 1.7.

A graphical representation of the classification results, using confusion
matrices, is shown in Figure 1.10, where the top row refers to the models
using 0.5 seconds of data, and the bottom row refers to the models using
the full transient state (5 seconds of data).
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Figure 1.10: Confusion matrices of the four predictive models trained (one
for each frequency and one operation frequency-insensitive). The X-axis
corresponds to the predicted fault condition, while the Y -axis represents
the actual fault condition. The matrices of the top row refers to the first
0.5 seconds of the IM operation, while the bottom row refers to the first 5
seconds (full transient state).

1.6.5 Weakness of FFT when simultaneous faults occur

On the other hand, as mentioned in Section 2, several works have been
successfully proposed for detecting the occurrence of faults in induction
motors. Indeed, in most of these proposals, the identification of faults is
performed through classical frequency domain analysis (i.e., Fourier Trans-
form applied to acquired vibration signals or stator current signatures). In
this regard, and although the occurrence of faulty conditions in electric ma-
chines may be detected by means of calculating specific fault-related fea-
tures (i.e., fault-related frequency features following classical motor current
signature analysis—MCSA), the identification of simultaneous or multiple
faulty conditions represent a major issue. Under this statement and con-
sidering the types of failures evaluated in this study, the unbalance (UNB)
andmisalignment (MAL) conditions are special scenarios thatmay produce
similar effects on classical physical magnitudes that are acquired during the
continuous monitoring of the rotatory electrical machine, such as vibra-
tions or stator current signals.

Thereby, by analyzing the theoretical effects produced by the UNB and
MAL conditions, both scenarios produce effects that are hard to distinguish.
In the case of UNB condition due to a centrifugal force that generates a high
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vibration amplitude equal to 1× RPM (1× rotational speed). On the other
hand, the MAL condition causes high radial and/or axial vibrations that
usually produces their dominant frequency components at 2 × RPM, but
also at 1 × RPM (Tsypkin, 2017). Consequently, both faulty conditions
tend to generate similar fault-related frequency components over an esti-
mated stator current spectrum. Indeed, those components have normally
been estimated with the characteristic frequency component for the UNB
condition as follows:

fecc = fs
[
1+−k

(
1− s
p

)]
= fs +−kfr (1.7)

where, fs is the electrical supply frequency, fr is the rotational frequency,
s is the per-unit slip, p is the number of pole pairs, and k = 1, 2, 3 . . .. If
the number of pole pairs is equal to one, these equations are reduced to its
simplified form, as presented.

Likewise, the characteristic fault-related frequencies associated with the
MAL condition are estimated as follows (CarlosVerucchi andAcosta, 2016):

fsb = fs +−kfr (1.8)

Therefore, when performing the theoretical analysis of the effects that
these faults may produce in relation to the corresponding stator current
signal, it is concluded that both faulty conditions may appear masked or
overlapping each other. This makes it difficult to identify and differentiate
failures during condition assessment and, in addition, reduces the reliability
of the condition monitoring strategy. In this regard, in order to experimen-
tally demonstrate that the occurrence (isolated or simultaneous) of these
faulty conditions, UNB and MAL, produces similar effects and that their
fault-related frequency components appear overlapped, the stator current
signals of the considered experimental test bench are analyzed.

Accordingly, Figure 1.11 shows the frequency spectra obtained bymeans
of applying the FFT technique to the acquired stator current signature when
the supply frequency, to feed the IM, was set at 30 Hz and direct supply
(60 Hz), respectively. For both supply frequencies, the stator current spec-
tra is shown around the closest to fs + fr, respectively.

Moreover, from these obtained spectra, it should be highlighted that the
fs+fr components of theUNB,MAL andUNB+MAL conditions appear at
the same place with slightly different amplitudes. On the other side, despite
the slightly differences between the amplitudes of each frequency compo-
nent, these are not big enough as to identify the machine condition because
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Figure 1.11: Conventional condition monitoring assessment based on the
stator current spectrum at the closest region to fs + fr when the supply
frequency is set to 30 Hz (left) and direct supply (right). TheX-axis depicts
the frequency in Hz, while the Y -axis refers to the amplitude in db.

the amplitude of these frequency components will change depending on the
severity of the individual faults. Hence, the number of false negatives will
be higher and the performance of the fault identification will be affected.
Summing up, through this experimental validation, it has been shown that
classical condition monitoring strategies based on frequency domain anal-
ysis by means of the FFT have critical disadvantages when dealing with the
identification of multiple fault sources that appear simultaneously, such as
the UNB and MAL conditions in rotating machines like IM.

1.7 CONCLU S ION S AND FUTURE L IN E S

The problem of motor fault diagnosis has normally been addressed by us-
ing signal processing based on time domain, frequency domain, and time-
frequency domain analyses. Nevertheless, the large data volumes collected
by sensors for monitoring the motor operations are a source of informa-
tion for the study of new multi-fault identification techniques, for faster
and more efficient fault identification.

In this work, a new technique based on multiple sensor information for
early diagnosis of single, combined, and simultaneous faulty conditions in
IMs has been proposed, implemented and validated. In this regard, there
exist several aspects that must be highlighted; first, the proposed model is
able to perform with high-performance during the analysis of the transient
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state because the PCA allows to retain a reduce number of significant fea-
tures for each available physical measurement, that are vibrations, stator
currents, voltages and rotational speed. Additionally, through the applica-
tion of the PCA, the most representative information related to each evalu-
ated condition is extracted without the need to use expert knowledge about
each specific type failure. Secondly, despite the simplicity of the proposed
approach, the consideration of PCA and multi label decision trees facili-
tates the identification and evaluation of multiple simultaneous failure con-
ditions because the decision trees are specially adapted to this type of prob-
lems. Finally, the obtained results shown the effectiveness, robustness and
capability for the extremely early detection with high-performance results
even within the first 0.5 seconds of operation, during transient and steady
state regimes. In this sense, it should be highlighted that the early fault di-
agnosis at low frequencies, such as 3 Hz, is a very challenging task and, the
proposed method has demonstrated that achieves good results at different
frequencies: 3 Hz, 30 Hz, and direct supply; and even, when variable load
conditions are considered.

Therefore, those results are of special interest, because classical signal
processing is not useful for light loads, and faults such as a broken rotor
bar are very difficult to detect under these conditions (Hassan et al., 2018).
Moreover, when the load at which the IM is working is known in advance,
even better results could be achieved by training several models, one for
each of the load conditions, and by selecting the right model as a function
of the motor operating load. Although the best classification ratios were
obtained from the models for each specific operating frequency, it has been
demonstrated that the proposedmethod can also be trained usingmeasures
from variable operation frequency conditions without too much accuracy
shrinkage. It may therefore be concluded that the proposed method is in-
sensitive to the operational frequency.

With the aim of demonstrating that the proposed method is suitable
for motors with other types of malfunctions, and additional test to diag-
nose a bearing-related fault has been conducted. Thus, it has demonstrated
the capability of the proposed method to learn to diagnose BD fault with
high accuracy rates. It may also be concluded that the method is capable of
efficiently solving binary classification problems, although when our PCA
and decision trees strategy was used with both multi-label and binary prob-
lems, the accuracy of the resultant models was greater for the multi-label
problems. Therefore, it is the first time that a model applied to multi-fault
diagnosis in induction motors has been proposed and evaluated using the
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specific performance metrics for multi-label problems: accuracy, F1, Ham-
ming loss, one-error, and rank loss.

As a future line of research, one promising option could be the use of
supervised projections methods as alternatives to PCA, such as Linear Dis-
criminant Analysis (LDA), which makes use of the labels to calculate the
directions of data projection, and for which Wang et al. (Wang et al., 2010)
have already presented an adaptation to the multi-label case.

Straightforward fault identification normally works by taking into ac-
count whether the fault is present or not. However, it is usually more useful
to know when the fault is starting to occur. As a future line of research, our
interest will be directed at the detection of fault severity or different magni-
tudes of malfunctioning.
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AB STRACT

The Rotation Forest classifier is a successful ensemble method for a wide
variety of data mining applications. However, the way in which Rotation
Forest transforms the feature space through PCA, although powerful, pe-
nalizes training and prediction times, making it unfeasible for Big Data. In
this paper, a MapReduce Rotation Forest and its implementation under the
Spark framework are presented. The proposed MapReduce Rotation For-
est behaves in the same way as the standard Rotation Forest, training the
base classifiers on a rotated space, but using a functional implementation of
the rotation that enables its execution in Big Data frameworks. Experimen-
tal results are obtained using different cloud-based cluster configurations.
Bayesian tests are used to validate the method against two ensembles for
Big Data: Random Forest and PCARDE classifiers. Our proposal to com-
pute PCA and to train the trees in parallel provides a scalable solution that
achieves a competitive runtime, while retaining a remarkable performance
level. In addition, extensive experimentation shows that by setting some pa-
rameters of the classifier (i.e., bootstrap sample size, number of trees, and
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number of rotations), the execution time is reduced with no significant loss
of performance using a small ensemble.

2.1 I N TRODUCT ION

We are living in the era of Big Data where the growing sizes of some data
sets have never been seen before (Bello-Orgaz et al., 2016; Chen et al., 2014).
Theway our world works is drastically changed by the influence of Big Data.
Science, engineering, business, finances, sports, and healthcare are some
fields where an important role is now played by Big Data processing tech-
niques. Hence, the consolidation of Big Data as a research topic, that has
been gaining special attention in academia, and as an essential process both
for government and for industry.

From a theoretical point of view, we understand Big Data to mean high
volumes of information that are processed at high velocity and in a wide
variety of formats, most widely known as the three V’s of Big Data (Luengo
et al., 2020). Thus, designers of computer systems and data mining algo-
rithms have therefore had to respond to the challenge (Moretti et al., 2008)
through innovative high-performance processing solutions, such as com-
puter clusters.

While proprietary cluster environments could be built, in order to arrive
at the large-scale and complex computing requirements that are needed for
processing these data sets, it is now claimed that the most powerful archi-
tecture to address Big Data is cloud computing. Cloud computing provides
flexible and scalable resources on-demand that have intensive processing
capacities to conduct data analysis tasks (Hashem et al., 2015). The flexi-
bility and versatility of cloud computing produce economic solutions that
rival other cluster architectures, which may even become obsolete within a
short period of time.

In the past few years, many frameworks, programming models, and al-
gorithms have emerged to deal with large data sets. In most cases, the main
focus of these solutions is the exploitation of the parallelization opportuni-
ties provided by multi-core processors and cluster architectures. Unfortu-
nately, the use of these solutions makes it necessary to redesign the algo-
rithms to allow their execution in Big Data frameworks. During the last
decade two main Big Data frameworks have gained notoriety: Hadoop and
Spark; both base their performance in theMapReduce programmingmodel
(Dean and Ghemawat, 2008).

76



Rotation
Forest for Big
Data

Likewise, ensemble methods have demonstrated their remarkable per-
formance over the past few decades (Kuncheva, 2014). Their simplicity and
flexibility make them useful in several domains. Moreover, their modular-
ity (i.e., they are based on individual base classifiers or regressors) makes
their parallelization feasible. Unfortunately, the number of ensemble algo-
rithms available on Big Data frameworks is still limited. The aim of this
paper is to present the MapReduce design and implementation of the well-
known Rotation Forest ensemble (Rodriguez et al., 2006; Kuncheva and
Rodríguez, 2007) and its evaluation. To assess whether the Rotation For-
est ensemblemaintains its good performance in Big Data, it was thoroughly
compared against the few ensemble algorithms available for BigDatawithin
a Spark cluster by using several large data sets with a number of instances
ranging between 400 000 and 11 000 000, and a number of attributes rang-
ing between 11 and 2 000.

Despite the remarkable performance of Rotation Forest, its main draw-
back is that it is a time-consuming algorithm. A Rotation Forest classifier
needs to perform multiple PCA calculations as one of its steps, and rotate
both the training and the testing data, making it slower than other ensemble
methods. Nonetheless, an efficient design and implementation in Big Data
frameworks can make it suitable for the new challenges posed by the need
to process large data sets.

In the study presented in this paper, the original Rotation Forest algo-
rithm was adapted to Big Data using the parallelization approach provided
by Spark (i.e., usingMapReduce). The parallelization was performed at crit-
ical points of the code (i.e., those with the largest execution times). Spark’s
parallel implementation of PCA and Random Forest were used, and the
parallelization was also applied to the reordering of rotation matrices and
to matrix multiplications, among other steps within the algorithm, making
the proposal highly scalable.

The rest of the paper will be organized as follows. Works related to Big
Data will be summarized in Section 2.2. In Section 2.3, the background
to Random Forest and Rotation Forest ensembles, and MapReduce will be
presented. In Section 2.4, the MapReduce implementation of the Rotation
Forest algorithm will be explained. The experimentation will be presented
in Section 2.5, and the conclusions and future research lines, in Section 2.6.
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2.2 RE L ATED WORKS

Since Google laid the foundations of MapReduce programming model
(Dean and Ghemawat, 2008), several frameworks have emerged for Big
Data, such as Hadoop (Ghemawat et al., 2003) and Spark (Zaharia et al.,
2012). As it is well known, Spark makes intensive use of memory rather
than disk, which means it is faster and more convenient for data processing
(Zaharia et al., 2010); an advantage that has made it increasingly popular
for parallel computation. This section presents a brief review of algorithms
and libraries for both Hadoop and Spark.

Spark MLlib is the Spark’s Machine Learning library (Meng et al., 2016).
It offers several algorithms for a broad variety of tasks, including classifica-
tion, regression, and clustering, among others (Assefi et al., 2017). Never-
theless, the number of algorithms is still scarce in comparison with other
Machine Learning tools such as Weka (Witten et al., 2011) and Scikit-learn
(Buitinck et al., 2013).

Lazy learners, such as k-NN (k-Nearest Neighbors) (Cover and Hart,
1967; Fix and Hodges Jr, 1951), are successful methods that have demon-
strated their value in several domains. Unfortunately, their high memory
requirements, consequence of storing the entire data set, rather than calcu-
lating a model, makes their MapReduce implementation difficult. Despite
this, there are recent Spark implementation proposals for both batch learn-
ing (Maillo et al., 2017) and online learning (Ramírez-Gallego et al., 2017).

Ensemble methods rely on the fact that a bunch of base learners (re-
gressors or classifiers) are more likely to make proper predictions than the
base methods alone (Kuncheva, 2014). One of the benefits of ensembles
is that their construction can be easily parallelized. At the moment, one
active research line within the area of Big Data focuses on adapting en-
semble algorithms to the MapReduce paradigm. Albeit scarce, some im-
plementations have already been proposed in recent years: In 2011, Tyree
et al. proposed the pGBRT algorithm (Tyree et al., 2011), a MapReduce
version of the Gradient Boosting Regression Trees ensemble. Later, in 2016
Chen et al. published a parallel Random Forest for the Apache Spark frame-
work (Chen et al., 2017). In 2017 a set of ensemble implementations for
multi-label learning on Apache Spark was proposed by Gonzalez-Lopez et
al. (Gonzalez-Lopez et al., 2017). PCARDE, presented by García-Gil et al.
(García-Gil et al., 2018), is another Big Data adaptation of an ensemble al-
gorithm for Apache Spark; it is based on Principal Components Analysis
and Random Discretization.
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Another popular family of supervised classification models is Bayesian
Networks (Friedman et al., 1997). The most expensive task of these meth-
ods is the computation of multidimensional contingency tables, which re-
quires the estimation of probability distributions (Arias et al., 2017). A
MapReduce version, implemented in Spark, for discrete Bayesian network
classifiers was recently presented by Arias et al. (Arias et al., 2017).

It is not only classifiers and regressors that are used in data mining, but
also data preprocessingmethods, which constitute a very important stage in
the knowledge discovery process (García et al., 2016; Ramírez-Gallego et al.,
2018b). This is what explains why many preprocessing techniques have
also recently been adapted to Big Data frameworks (Luengo et al., 2020).
There are several tasks related to data preprocessing, such as discretizers
(Ramírez-Gallego et al., 2018b), noise filtering (García-Gil et al., 2019), fea-
ture selection (Ramírez-Gallego et al., 2018), and instance selection (Arnaiz-
González et al., 2016; Arnaiz-González et al., 2017; García-Osorio et al.,
2010), among others.

2.3 BACKGROUND

This section presents the background of the paper, focusing on Random
and Rotation Forest ensemble algorithms and the MapReduce runtime en-
vironment.

2.3.1 Random Forest

Ensemble learning relies on the idea of generating several models (called
base classifiers, in classification problems) instead of only one, looking for
a combination of models that outperforms the individual performance of
the models that are combined. The key to the success of this process is to
achieve ensembles that, without damaging the average performance of the
models, make them diverse (in the sense that their predictions are different
from each other).

The Random Forest algorithm, proposed by Breiman (Breiman, 2001)
in 2001, is still considered a state-of-the-art classifier (Fernández-Delgado
et al., 2014). Its simply, yet effective, underlying idea is to produce a boot-
strap sample (as bagging (Breiman, 1996) does) and it then randomly se-
lects features at each node of the tree being constructed in order to increase
the diversity of the ensemble. That is, instead of searching for the best fea-
ture (and threshold value for dividing the data), it only considers a random
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subset of all the features. Its simplicity and effectiveness have made it an
extremely popular ensemble method.

2.3.2 Rotation Forest

The Rotation Forest ensemble algorithm was presented for classification
in (Rodriguez et al., 2006). It relies on the inherent instability of the tree
construction algorithms when the input space is rotated (Kuncheva, 2014).
Data rotation, which is in fact the cornerstone of Rotation Forest, is per-
formed internally, prior to training the base classifiers. Rather than an arbi-
trary rotation, the rotation is operated using Principal Component Analysis
(PCA). Base classifiers (commonly trees) can therefore divide the decision
space both parallel to the feature axes and in other directions after the rota-
tion. This feature makes it much more powerful than other traditional en-
semble techniques, especially when all the attributes have real values (Bag-
nall et al., 2018).

Since the standard Rotation Forest was presented, several variants have
been proposed: Rotation Forests for regression (Pardo et al., 2013), and
Boosting of Rotation Forests (Zhang and Zhang, 2008), among others.

2.3.3 MapReduce

The MapReduce runtime environment (Dean and Ghemawat, 2008) has
become the most widely used paradigm in Big Data scenarios nowadays
(Fernández et al., 2017; Ramírez-Gallego et al., 2018a). Since the release
of Hadoop in 2006, the first open source implementation of MapReduce,
some drawbacks have been identified. The main shortcoming of Hadoop is
its disk usage to ensure cluster fault tolerance, making it slow, especially for
iterative processes. Spark was therefore developed in 2010 in an attempt to
use memory intensively and to minimize disk access.

Both, Hadoop and Spark use the MapReduce programming model. To
take advantage of MapReduce, an algorithm must be redesigned so that it
consists of two stages: Map and Reduce. The map phase divides the data
into several parts and applies a first processing step to each of them, while
the reduction phase is responsible for applying a second processing step in
which the data from the first phase is collected and integrated to obtain the
final result. A typical example is the task of counting words in a document.
The sequential version processes the document word by word while storing
the words and their number of occurrences in a dictionary or hash table.
On the contrary, in the MapReduce version of the algorithm, after dividing
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the document into several parts, the map step transforms every single word
into a tuple of (word, 1); then, the reduce step groups all the tuples with
the same key (i.e., the word) and adds the values (the “ones”); and, finally,
the process is repeated in a final reduction step that calculates the global
word count for the entire document. The result is a collection of tuples with
the word as the key and its number of occurrences as the value.

Therefore, the implementation of a sequential algorithm into a parallel
(MapReduce) environment requires the redesign of the algorithm itself, di-
viding its internal processing into mapping and reducing phases. This task
is not always trivial and can in fact be a paramount challenge in some cases
(García et al., 2016).

2.4 ROTAT ION FORE ST FOR B IG DATA

This section presents the parallel implementation of the Rotation Forest
classifier (Rodriguez et al., 2006) for Big Data. Our proposal maintains
the main structure of the standard Rotation Forest, but adds some changes
to face the problems that Big Data induces. The main difference is the
paradigm shift (from sequential to functional) and the use of Random For-
est as the base classifier instead of a single decision tree. This last idea was
presented in (Stiglic et al., 2011) to show that rotation of Random Forests
outperform most widely used ensembles. Here, we have found that this
is also a very promising approach to optimize training times when using
large data sets. An advantage of using Random Forest is the versatility that
it offers: it can be parameterized to behave as a single decision tree, as a Bag-
ging of decision trees, or as Bagging of random trees (i.e., Random Forest)
among others.

Training a Rotation Forest is a very time-consuming task, which is its
main drawback, at least in the context of Big Data. As noted, this is mainly
because the PCA calculation requires more computing resources, which is
greater as the number of instances and features increase. In Rotation Forest,
data are transformed through a sparse rotation matrix computed by arrang-
ing K PCA rotation matrices (each of them calculated for K random fea-
ture subsets). Additionally, since Rotation Forest is an ensemble, as many
sparse rotation matrices as the size of the ensemble will be computed (i.e.,
for an ensemble of size L, PCA is computed L×K times).

Nonetheless, this can be done in an efficient parallel way, as PCA can
be solved using matrix algebra (i.e., singular value decomposition or co-
variance matrix calculations followed by an eigenvalue decomposition). In
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the Spark framework, PCA is already implemented using a parallel singu-
lar value decomposition (SVD) algorithm. Decision tree-based algorithms,
such as Random Forest, can also be parallelized in many ways. Spark pro-
vides its own parallel RandomForest implementation, whose optimizations
are based on the PLANET project (Panda et al., 2009).

Both PCA and Random Forest parallel implementations provided by
Spark are used, in order to take advantage of Rotation Forest for Big Data
processing.

The training stage of Rotation Forest is presented in Algorithm 1. The
algorithm rotates the input data X and then trains a Random Forest of size
T using the rotated data. The process is performed L times, in order to
build an ensemble that is composed of L rotation matrices and L Random
Forests. Hence, the total number of trees in the ensemble is L× T .

The construction of the rotation matrix Ra is performed in lines 3 to 12.
Initially, the feature set, F, of the input data, X, is randomly split into a par-
tition,Q, ofK subsets (K is a parameter of the algorithm). For each feature
subset, S, of Q, a submatrix, W, is extracted from X that only contains the
features in S (that is,W only contains a subset of columns ofX). Thematrix,
W, is now further reduced by removing some of its rows, more specifically
a random selection of classes is made and all instances not belonging to the
selected classes are removed. The result is a new matrix, W′. An additional
reduction step generates the matrix,W′′, by retaining a bootstrap sample of
a percentage, B, of the instances in W′. PCA is applied to this last matrix,
W′′, to obtain a rotation matrix, C.

In the reduction phase, all the resulting PCA rotation matrices, K , are
arranged into a block diagonal matrix, R, although it cannot yet be used
to rotate the original input data, X, because the order of its columns does
not match the order of the corresponding features in the original data. In
consequence, the columns of R have to be rearranged to match the original
order of features using a permutation matrix, P, and a MapReduce imple-
mentation of matrix multiplication.

Finally, a Random Forest classifier is trained using the data obtained by
rotating the input data, X, using the reorganized matrix, Ra (XRa).

Figure 2.1 illustrates the process of calculating the rotation matrix Ra

using as an example a data set X with 12 instances, 6 features, and 3 classes
{0, 1, 2}; and algorithm parameters, K and B, equal to 3 and to 50%, re-
spectively.

Algorithm 2 shows the steps for the Rotation Forest prediction stage. A
novelty with regard to the standard Rotation Forest, is that the prediction
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Algorithm 1: Rotation Forest for Big Data (Training stage).
Input: A training set (X,Y) where X = {x1, . . . , xn} defined in a

feature set F, Y = {y1, . . . , yn} with labels
yi ∈ Ω = {ω1, . . . , ωc} representing c classes, number of
rotations L, number of trees T , number of feature
subsets K , bootstrap size B.

Output: Trained ensemble E (tuples: rotation matrix Ra, base
classifier D).

1 E ←map i ∈ {1, . . . , L}
2 Q← random partition of F into K subsets of features
3 M←map S ∈ Q
4 W← submatrix of X with the columns corresponding to

the features in S
5 Y′ ← random selection of classes in Ω
6 W′ ← submatrix of W with rows corresponding to

instances of classes in Y′

7 W′′ ← bootstrap sample of size B% of the number of
instances in W′

8 C← rotation matrix from parallel-PCA(W′′)
9 emit ⟨C⟩

10 R← reduce (M) // block diagonal matrix
11 P← permutation matrix, matching the order of the features in

F
12 Ra ← PR // rearrangement of R (in parallel)
13 D ← train-parallel-random-forest(XRa,Y, T )
14 emit ⟨Ra, D⟩
15 return E
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Figure 2.1: MapReduce implementation of the process to generate the rota-
tion matrix (Ra).

is not performed for a single instance at a time but for a set of instances
in parallel, which is more convenient in Big Data. An ensemble of size L
has L rotation matrices and L trained base classifiers (i.e., L Random For-
est). Firstly, each rotation matrix, Ra, and its corresponding base classifier,
D, are used in the map phase (see Line 1), where the set of instances, X,
is rotated through a parallel matrix multiplication (XRa), and then used
as input to a base classifier D. Its output, P, will consist of the predicted
probabilities of each instance in the set for each class (i.e., the dimension
of the matrix is n × c, where c is the number of classes and n the number
of instances for which the prediction is being made). All predictions (i.e.,
base classifier probabilities) are arranged in a three-dimensional matrix, S,
of sizeL×n×c. Then, the probabilities of each base classifier for each class
for the instances are added up and averaged in the reduce phase, thus the T
matrix is of size n× c. Finally, the last map (see Line 6) computes the final
prediction of the whole Rotation Forest ensemble. The predicted class for
each instance (ωj) will be the class with the highest probability in u, and an
array, y, containing the predicted classes of the instances, will be the final
output of the ensemble.
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Algorithm 2: Rotation Forest for Big Data (Prediction stage).
Input: A set X = {x1, . . . , xn} defined in a feature set F, the

ensemble E (tuples: rotation matrix Ra and base classifier
D).

Output: Predicted classes y = {y1, . . . , yn} with labels
yi ∈ Ω = {ω1, . . . , ωc} representing c classes

1 S← map (Ra, D) ∈ E
2 X′ ← XRa // parallel rotation of input set
3 P← D(X′) // parallel prediction
4 emit ⟨P⟩
5 T← reduce (S) // average the probabilities
6 y← map u ∈ T
7 j ← argmaxi∈{1,...,c} ui

8 emit ⟨ωj⟩
9 return y

2.5 EXPER IMENTAL RE SU LT S

The aim in this section is to assess whether the MapReduce version of Ro-
tation Forest, presented in this paper, is suitable for Big Data processing. A
thorough experimentation was performed taking into account both accu-
racy and execution time, using several representative data sets. Since the
proposed Rotation Forest1 is a tree-based ensemble classifier, it was com-
pared to the official Spark implementation of Random Forest (Breiman,
2001). It was also compared to the Principal Components Analysis Ran-
dom Discretization Ensemble (PCARDE) (García-Gil et al., 2018), because
it shares the idea of using PCA with Rotation Forest as part of its data trans-
formation step.

2.5.1 Experimental framework

Six popular classification data sets for Big Data were used for conducting
the experiments2. Table 2.1 summarizes the data sets. All features of the

1The Rotation Forest classifier implementation for Spark is publicly available at https:
//github.com/mjuez/rotation-forest-spark.

2The poker-hand, covtype, susy, higgs, and hepmass data sets are available at the UCI
Machine Learning repository (Dua and Graff, 2017) https://archive.ics.uci.edu/ml/index.php.
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Dataset Instances Attributes Classes Size (GB)

poker-hand 1 025 010 11 10 0.02
covtype 581 012 54 7 0.07
susy 5 000 000 18 2 2.33
higgs 11 000 000 28 2 7.84
hepmass 10 500 000 28 2 7.58
epsilon 400 000 2000 2 11.87

Table 2.1: Experimental data sets.

data sets were normalized. As the features of Rotation Forest need to be
numeric, nominal features were binarized using one-hot encoding.

The experimental setup of Rotation Forest was as follows. The number
of trees, T , was set to 1, so the ensemble size was the same as the number
of rotations, L.3 Following (Rodriguez et al., 2006), we used three different
ensemble sizes, to represent small (10 trees), medium (50 trees), and large
ensembles (100 trees). Thebootstrap valuewas set at 25% and 4was selected
as the number of feature subsets K . As stated before, the Rotation Forest
classifier proposed in this study uses Random Forest as its base classifier.
The Spark Random Forest was parameterized in such a way that it behaves
as a decision tree (as the standard Rotation Forest does). It was achieved by
setting featureSubsetStrategy to “all” (i.e., all features are used for training).
For the rest of the parameters, their default values were used.

Regarding the experimental setup of Random Forest and PCARDE, the
default values were used for all the parameters except for the number of
trees, which was set to 100 for small, to 200 for medium, and to 500 for
large ensembles. In the case of PCARDE, only a single ensemble size with
10 trees was used because this was the setting recommended by the authors
(García-Gil et al., 2018) (they reported equivalent results for small, medium,
and large ensembles).

Given that the values of the parameters were not changed for each indi-
vidual data set, the results obtained were not entirely optimal. If the param-
eters had been individually tuned for each data set, then the results could

The epsilon data set is available at the LIBSVM data repository https://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/binary.html#epsilon

3This is what the standard Rotation Forest does, in which there is a different rotation
for each tree, later we will experiment with other approach where the same rotation is
shared among several trees.

86

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/data sets/binary.html#epsilon
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/data sets/binary.html#epsilon


Rotation
Forest for Big
Data

have been improved. It would however have made the experimentation un-
necessarily time-consuming. Nevertheless, the same restriction was used
with all the methods, so the comparison was fair.

The experiments were carried out using 5-fold cross-validation. Ensem-
ble learning requires randomization to train different and diverse base clas-
sifiers. For this reason, with the aim of enabling experimental repeatability,
a random seed value was fixed at 46.

Accuracy measure (defined in Equation 2.1) was used for evaluating
classification performance.

accuracy = correctly classified instances
total number of instances

(2.1)

Bayesian analysis (Benavoli et al., 2017) was used to compare the ensem-
ble classifiers (the library to perform the analysis was baycomp4). The num-
ber of samples for all Bayesian comparisons was set to 50 000. The value for
the region of practical equivalence (ROPE) was set to 0.01, which means
that two algorithmswith a difference in accuracy of less than 1%will be con-
sidered equivalent. Bayesian comparison results were represented through
ternary plots (e.g., Figure 2.2) where the space is divided into three areas of
interest: L (opponent wins), ROPE (both tie), and R (Rotation Forest wins).

The experimentation was performed in cloud-based clusters provided
by the Google Cloud Platform. A cluster was composed of onemaster node
and seven computing/worker nodes. All nodes were of the n1-standard-16
type, which had 16 virtual CPUs, and 60 GB of RAM. Hence, the cluster
size was 128 vCPUs and 480 GB of RAM. At that point in time, the vCPUs
of n1-standard nodes could be of one of the following types: Intel Xeon
(Skylake), Intel Xeon E5 (Sandy Bridge), Intel Xeon E5 v2 (Ivy Bridge), In-
tel Xeon E5 v3 (Haswell), or Intel Xeon E5 v4 (Broadwell E5). We used
Google Dataproc software, version 1.4, running on Debian 9, with Apache
Hadoop 2.9.2, and Apache Spark 2.4.5. Google Cloud Storage was used as
a distributed file system for storing data sets and experimental results.

2.5.2 Accuracy performance

Table 2.2 gathers the accuracy results of the three ensemble methods: Ran-
dom Forest (RanF), PCARDE, and Rotation Forest (RotF). The best results
are highlighted in bold. As can be seen, for all data sets, the best results

4The baycomp library is publicly available at https://baycomp.readthedocs.io/en/latest/.
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Dataset Random Forest PCARDE Rotation Forest

100 200 500 10 10 50 100

poker-hand 51.42 ±0.40 51.32 ±0.30 51.18 ±0.31 50.77 ±1.36 62.46 ±3.20 58.22 ±1.12 57.26 ±1.16

covtype 67.17 ±0.26 67.22 ±0.29 67.13 ±0.22 67.01 ±0.85 72.08 ±0.38 72.33 ±0.16 72.28 ±0.14

susy 77.67 ±0.05 77.67 ±0.04 77.66 ±0.01 72.64 ±1.34 78.40 ±0.09 78.59 ±0.06 78.59 ±0.06

higgs 67.52 ±0.31 67.58 ±0.28 67.67 ±0.11 58.33 ±1.66 68.16 ±0.33 68.70 ±0.10 68.80 ±0.10

hepmass 82.21 ±0.08 82.15 ±0.12 82.19 ±0.07 81.33 ±0.33 84.06 ±0.32 84.44 ±0.12 84.42 ±0.11

epsilon 72.56 ±0.31 72.69 ±0.33 73.02 ±0.35 78.40 ±0.13 77.19 ±0.91 80.12 ±0.44 80.33 ±0.29

Table 2.2: Experimental results in terms of classification accuracy for Ran-
dom Forest, PCARDE, and Rotation Forest. Best results are highlighted in
bold. The value at the right of each accuracy corresponds to the standard
deviation.
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Figure 2.2: Hierarchical Bayesian test heatmap for Random Forest and
PCARDE against Rotation Forest with 10 trees.

were achieved by Rotation Forest. The table also shows that the size of the
ensemble for Random Forest has very little influence on the results. On the
other hand, this influence appears to be somewhat greater in the case of the
Rotation Forest. Although at first glance medium-size Rotation Forests ap-
pear to be a better option than small-size Rotation Forests, Section 2.5.4 will
show that, from the point of view of Bayesian statistical analysis, Rotation
Forest performs equivalently for all sizes.

Figure 2.2 shows the hierarchical Bayesian test in heatmap representa-
tions for Rotation Forest with 10 trees against Random Forest (Figure 2.2.a–
c) and PCARDE (Figure 2.2.d). The R area in the triangles corresponds to
RotationForestwhile the L area corresponds to the opponent (i.e., PCARDE
or Random Forest). The high density of points (each point corresponds to
one Bayesian simulation) concentrated in the right corners means that Ro-
tation Forest clearly outperformed the opponents (i.e., R probability close
to 1).
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Figure 2.3: Bayesian correlated t test density plots. It compares Random
Forest and PCARDE against Rotation Forest with 10 trees.

In the previous comparison, cross-validation accuracy results for all
data setswere used to get a general overviewof Rotation Forest performance
compared to Random Forest and PCARDE. Cross-validation accuracy re-
sults for a single data set could also be analyzed through the Bayesian cor-
related t test (Corani and Benavoli, 2015). Figure 2.3 shows the density
plots comparing Rotation Forest with 10 trees against PCARDE and Ran-
dom Forest for each data set. As in ternary plots, there are three areas of
interest: the region to the left of the leftmost line, which corresponds to the
statistical primacy of the opponent; the region between the two lines, which
corresponds to the ROPE (i.e., statistical equivalence between two classi-
fiers); and the region to the right of the rightmost line, which corresponds
to the statistical primacy of Rotation Forest. This test shows that, for five
out of six data sets, Rotation Forest performed better than PCARDE. Only
for epsilon was PCARDE better (blue density curve). In the comparison
with Random Forest (gray, red, and green density curves), Rotation For-
est performed better for four data sets, while Rotation and Random Forest
performed equivalently for susy and higgs.

Table 2.3 gives another perspective on this information, showing the
detailed probabilities for the three areas of interest of the Bayesian corre-
lated t test explained earlier. The region (Left, Right, or ROPE) with the
highest probability, is highlighted in bold. Most of the time, the highest
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Dataset Method Ensemble size Left prob. ROPE Right prob.

poker-hand RanF 100 0.18 % 0.17 % 99.65%
200 0.22 % 0.20 % 99.58%
500 0.17 % 0.16 % 99.67%

PCARDE 10 0.08 % 0.08 % 99.84%

covtype RanF 100 0.00 % 0.01 % 99.99%
200 0.00 % 0.02 % 99.98%
500 0.00 % 0.01 % 99.99%

PCARDE 10 0.07 % 0.25 % 99.68%

susy RanF 100 0.00 % 98.94% 1.06 %
200 0.00 % 98.18% 1.82 %
500 0.00 % 99.26% 0.74 %

PCARDE 10 0.07 % 0.17 % 99.76%

higgs RanF 100 0.59 % 79.76% 19.65 %
200 0.37 % 87.13% 12.50 %
500 0.21 % 93.82% 5.97 %

PCARDE 10 0.02 % 0.02 % 99.96%

hepmass RanF 100 0.00 % 0.49 % 99.51%
200 0.02 % 1.21 % 98.77%
500 0.00 % 0.44 % 99.56%

PCARDE 10 0.01 % 0.14 % 99.85%

epsilon RanF 100 0.08 % 0.31 % 99.61%
200 0.09 % 0.38 % 99.53%
500 0.10 % 0.46 % 99.44%

PCARDE 10 64.37% 34.95 % 0.68 %

Table 2.3: Bayesian correlated t test probabilities for Random Forest and
PCARDE against Rotation Forest with 10 trees. The right probability is the
probability of Rotation Forest performing better than the opponent. The
region (Left, Right, or ROPE) with the highest probability is highlighted in
bold.

probability was over 98%, showing that the best classifier far outperformed
its contender. In most cases, this clear winner was Rotation Forest.

2.5.3 Execution time analysis

The evaluation in the previous section was conducted in terms of accuracy.
Although the strengths of Rotation Forest were demonstrated in (Rodriguez
et al., 2006) for small and medium-sized data sets, this paper reinforces
that conclusion by working with large data sets and using modern Bayesian
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Figure 2.4: Training times (top row) and prediction times (bottom row) for
each data set. Blue bar corresponds to Rotation Forest, green bar corre-
sponds to PCARDE, and burgundy bars correspond to Random Forest.

statistical tests. Nevertheless, the main contribution of this research is the
adaptation of Rotation Forest to work in Big Data environments where ex-
ecution time is crucial. In this regard, an evaluation and comparison is
presented in terms of both execution time and speedup.

Figure 2.4 shows a comparison of execution times for Rotation Forest
with 10 trees (blue bar), PCARDE (green bar), and Random Forest (bur-
gundy bars). The figures on the top row refer to training times (in seconds),
while those on the bottom row refer to prediction times (in milliseconds).

Regarding training time, Random Forest with 100 trees was the fastest
on six data sets, as expected. If we compare the twomethods that use PCAas
part of their data transformation step (Rotation Forest and PCARDE, both
with 10 trees), the fastest method was clearly Rotation Forest.

Looking close at prediction times, it is somewhat surprising that the
Rotation Forest classifier with 10 trees was the fastest on four out of six
data sets. However, this is because the size of Rotation Forest was ten times
smaller than Random Forest, and PCAwas not computed at prediction (i.e.,
only a matrix multiplication for rotating data was performed). Regarding
the comparison of Rotation Forest against PCARDE, as we might expect,
prediction was also faster with Rotation Forest.

For the epsilon data set, the difference between Random Forest against
the other two is dramatic. The explanation of this may be found in the num-
ber of features. While for the other five data sets, the numbers of features
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range between 11 and 54, epsilon data set has 2 000. PCA calculation and
data rotation require much more time as the number of features (i.e., data
set dimensionality) grows, and thus, Rotation Forest and PCARDE execu-
tion times are highly penalized. Nevertheless, we consider that the execu-
tion time for Rotation Forest with the epsilon data set was acceptable for Big
Data scenarios.

Having shown the competitiveness of Rotation Forest execution times,
it is of great importance to determine how well it scales (i.e., how runtime
decreases as the number of machines increases). In order to evaluate this, a
cluster with one master node and a number of worker nodes ranging from
2 to 24 was used. Each node was of the n1-highmem-2 type, which had 2
virtual cores of the same type as the nodes described in Section 2.5.1. The
following comparison of execution time and speedup, was performed on
the medium-size susy data set.

Figure 2.5 shows the evolution of training time (left) and prediction
time (right). As was expected, the execution time decreased as the num-
ber of workers increased. The improvement begins to be less remarkable
around the fourteenth or the sixteenth worker, moreover, with the addition
of the eighteenth worker, the time actually increases. This behavior is ex-
pected because every algorithm has a certain execution time that cannot be
optimized, our experimentswith the susydata set are a good example of that.
This is because the data set is not extremely large, thus, when the number of
workers increases above 20, the time required for data communication and
transfer was greater than the benefit of increasing the computational power
(i.e., additional workers).

Speedup (see Equation 2.2) is conventionally used as a metric for mea-
suring algorithm scalability in a cluster.

speedup =
sequential execution time
parallel execution time

(2.2)

For computing the sequential (not parallel) execution time, a machine
with one n1-highmem-2 node, and one Spark partition was used.

Figure 2.6 shows the speedup evolution of training and prediction. As
seen in Figure 2.5, the improvement of using more nodes both in training
and testing is clear up to 16 nodes. Thereafter, the improvement was mini-
mal, and usingmore than 20workers decreased the speedup. It is worth not-
ing that the speedup is higher in prediction than in training, because PCA
computation for the K feature subgroups was not fully parallel in training.
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However, in the prediction phase, the input data rotation was a fully parallel
MapReduce matrix multiplication.

2.5.4 Study of ensemble size

When Rotation Forest classifiers are trained, PCA is the most time-
consuming step. Therefore, the main optimization will be to reduce the
number of PCAs that have to be calculated. For this purpose, three param-
eters of the algorithm can be adjusted: L, the number of rotations; T , the
number of trees; and K , the number of feature subsets. In this section, we
will focus only on the first two, because they determine the ensemble size.
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Figure 2.7: Hierarchical Bayesian test heatmap for comparing the influence
of ensemble size in Rotation Forest. Three sizes were compared: (a) 10× 1
vs 50× 1, (b) 10× 1 vs 100× 1, and (c) 50× 1 vs 100× 1.

Up until this point, all the experiments had been performedwith T = 1,
which meant that the ensemble size was equal to L (i.e. L × 1 as in the
standard Rotation Forest). Figure 2.7 shows a hierarchical Bayesian test for
statistical comparison of the three ensemble sizes that have so far been used.
It can be roughly concluded that small (10×1), medium (50×1), and large
(100 × 1) ensembles achieved equivalent levels of accuracy. Specifically,
Figure 2.7.a shows the similar performance levels of small and medium en-
sembles in 90.5% of cases; in 2.7.b, small and large ensembles are shown to
perform similarly in 69.2% of cases; and, no statistical difference between
medium and large ensembles is shown in 2.7.c. The use of additional trees
in the ensemble offered no significant advantage, and therefore, a small Ro-
tation Forest with 10 trees was both sufficiently acceptable (taking into ac-
count accuracy) and computationally cheaper.

Commonly, the calculation of a data rotationmatrix requiresmuchmore
time than the training of a single tree. Thus, a strategy that could be fol-
lowed to accelerate the training of Rotation Forest of a certain size is to de-
crease the number of rotations, but at the same time, in order not to reduce
the number of base classifiers in the ensemble, more than one tree will be
trained with the same rotation. This approach, already proposed in (Stiglic
et al., 2011), acquires special relevance in the context of Big Data, since it
would allow the reduction of the computing workload. Of course, as long
as this simplification of the process does not significantly affect the final
performance. This is precisely what will be evaluated in this section. Specif-
ically, a small Rotation Forest ensemble of 10 trees could be built by rotating
the data ten times and training one tree with each rotation (L×T = 10×1),
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or by rotating the data five times and training two trees with each rotation
(L× T = 5× 2). Training the 5× 2 ensemble will take about half the time
of training the 10 × 1 ensemble. With this in mind, different experiments
were launched varying both the number of rotations and the ensemble size.

Table 2.4 shows the results of the hierarchical Bayesian tests comparing
different configurations of number of rotations (L) and number of trees
per rotation (T ). In all cases, for a given ensemble size, the left region cor-
responds to the method with the highest number of rotations and the right
region to the fastest alternative, with a reduced number of rotations. The
results of using the proposed strategy to accelerate the training phase of Ro-
tation Forest are quite interesting. For small Rotation Forest (size 10), in
94.43% of cases, 10 × 1 and 5 × 2, were equivalent. For medium Rotation
Forest (size 50), in 88.82% of cases, 50×1 and 10×5, performed in a similar
way. In 54.5% of cases, 50×1 resulted better than 5×10, which means that
for this specific scenario, reducing the number of rotations tenfoldwould be
counterproductive for accuracy (it appears that here the additional diversity
provided by the 50 rotations is relevant to obtain good results). Ending with
the last of the medium Rotation Forests comparisons (10×5 vs. 5×10), in
89.18% of occasions they turned out to be equivalent. Regarding the large
Rotation Forest (size 100), in 98.35% of cases, 100 × 1 and 10 × 10, were
equivalent, as well as 100 × 1 and 5 × 20, which showed to be equivalent
in 83.65% of cases. Finally, equivalent performance is also shown between
10× 10 and 5× 20, which occurred in 94.15% of cases.

We trained small, medium, and large Rotation Forest classifiers with
L = 5 (5 × 2, 5 × 10, and 5 × 20, respectively), and with L = 10 (10 × 1,
10 × 5, and 10 × 10, respectively), in what follows, the value of L is fixed
(to 5 or to 10) and the influence of the parameter T is analyzed. Figure 2.8
shows the hierarchical Bayesian test heatmap for L = 5 and L = 10 on the
top and bottom row, respectively. For both values ofL, all the tests shown in
Figure 2.8.a–f depict statistical equivalence with independence of the value
of T .

2.5.5 Influence of bootstrap in Big Data

Bootstrapping is used in Rotation Forest as a part of the PCA calculation
step, to avoid repeatedly obtaining the same principal components. The
reason for doing so is to attempt to maximize the diversity of the ensem-
ble. In (Rodriguez et al., 2006), a bootstrap size of 75% was recommended.
Nevertheless, this value could be lower, because the number of instances in
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Ensemble size Left Right ROPE Heatmap

L T Prob. L T Prob.

small (10) 10 1 0.0505 5 2 0.0052 0.9443

50 1 0.0873 10 5 0.0245 0.8882

medium (50) 50 1 0.5450 5 10 0.1695 0.2855

10 5 0.0757 5 10 0.0325 0.8918

100 1 0.0100 10 10 0.0065 0.9835

large (100) 100 1 0.1340 5 20 0.0295 0.8365
L

(0.1340)
R

(0.0295)

10 10 0.0490 5 20 0.0095 0.9415
L

(0.0490)

ROPE

R
(0.0095)

Table 2.4: Hierarchical Bayesian test results comparing the influence of dif-
ferent variants of ensemble size in Rotation Forest. The variants are ob-
tained by setting a combination of L and T parameters for constructing
small, medium, and large ensembles. The region (Left, Right, or ROPE)
that gather the highest probability is highlighted in bold.

Big Data is very high. Hence, a bootstrap sample containing a low percent-
age of instances should be sufficiently representative of the entire classifica-
tion problem. The representativeness of the bootstrap sample is therefore
not as important as the fact that it can generate different principal compo-
nents, which is why lower bootstrap values could be beneficial or, at least,
not harmful. Another thing to bear in mind is that in our case, the smaller
the bootstrap sample, the faster the computation of the PCA. So, fixing a
parameter that is as low as possible will shorten the training time.

Small Rotation Forest with L = 10 and T = 1 were trained with differ-
ent bootstrap sizes – 10%, 25%, and 50% – to assess whether the bootstrap
size might have an effect on the accuracy rates. Figure 2.9 shows the hierar-
chical Bayesian test heatmaps, so that the results for the three bootstrap size
cases may be compared. The Bayesian test shows that the bootstrap size did
not have a significant impact on the accuracy of Rotation Forest, because
the ROPE values in Figures 2.9.a, 2.9.b, and 2.9.c were close to 100%. Hence,
for Big Data environments, faster training times could be achieved by using
small bootstrap sample sizes, e.g., 10%.
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Figure 2.8: Hierarchical Bayesian test heatmap for comparing the influence
of increasing the number of trees for each rotation: on the top row, 5 ro-
tations with comparisons of 2, 10, and 20 trees. On the bottom row, 10
rotations with comparisons of 1, 5, and 10 trees.
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Figure 2.9: Hierarchical Bayesian test heatmap for comparing the influence
of bootstrap size in Rotation Forest. Three sizes were compared: 10%, 25%,
and 50%.
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2.6 CONCLU S ION S AND FUTURE WORK

This paper has presented a MapReduce design of a variant of Rotation For-
est and its implementation in Spark (the implementation is publicly avail-
able5). A thorough experimental campaign with Big Data sets has been
performed, to assess the viability of the Rotation Forest algorithm for Big
Data processing. The proposal presented in this paper has demonstrated
its high performance and fast execution time, as well as its good scalability
performance in cloud-based clusters. All of it with six large data sets hav-
ing a number of instances ranging between 400 000 and 11 000 000, and a
number of attributes ranging between 11 and 2 000.

Modern Bayesian tests (hierarchical and correlated t test) were used for
evaluating the statistical differences between the different algorithms that
were tested. Our experiments have consolidated the results of (Rodriguez
et al., 2006), in which the Rotation Forest algorithm was reported to be a
better option than Random Forest, and the same conclusion has now been
corroborated with massive data sets. Furthermore, the superiority of Rota-
tion Forest in relation to PCARDE, a very recent ensemble algorithm for
Big Data, has been demonstrated.

An experimental exploration of some algorithm parameters and their
optimal values has been performed. Through that study, the approach for
training Rotation Forest with Random Forest rather than of a single deci-
sion tree as the base classifier has proved that accurate models with fewer
data rotations, and thereforemodels that train and predict faster, are indeed
feasible. The analysis also reported that small ensembles, consisting of 10
trees, are accurate enough for the Big Data sets used in the study.

Additionally an evaluation of the influence of the bootstrap sample size
with large data sets has been conducted. The conclusion of that evaluation
was that sampling 10% of the data provided classification models with an
equivalent performance to those that sampled 25% or 50% of the data. The
use of low percentages therefore means simpler PCA calculations and faster
training of the Rotation Forest.

Rotation Forest code has been carefully developed following the Spark
ML API guidelines, aiming towards its incorporation in the API within the
near future. The number of ensemble algorithms available for Big Data is
still scarce, specially for tasks such as online learning and unbalanced data
sets, among others. Ensembles have also been used for data stream analy-

5The implementation for Spark is publicly available at https://github.com/mjuez/
rotation-forest-spark.
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sis (Krawczyk et al., 2017), the adaptation of Rotation Forest for streaming
Big Data frameworks is therefore a challenging task that might mean that it
could be applied to several real world problems.

In this paper, the presentation of Rotation Forest only covered classifi-
cation problems and its adaptation to Big Data regression problems is still a
future research line. Likewise, the adaptation of Rotation Forest for unbal-
anced learning (Díez-Pastor et al., 2015b) in Big Data scenarios, represents
an area of potential interest for the scientific community.
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AB STRACT

Datasets are growing in size and complexity at a pace never seen before,
forming ever larger datasets known as Big Data. A common problem for
classification, especially in Big Data, is that the numerous examples of the
different classesmight not be balanced. Some decades ago, imbalanced clas-
sification was therefore introduced, to correct the tendency of classifiers
that show bias in favor of the majority class and that ignore the minority
one. To date, although the number of imbalanced classification methods
have increased, they continue to focus on normal-sized datasets and not
on the new reality of Big Data. In this paper, in-depth experimentation
with ensemble classifiers is conducted in the context of imbalanced BigData
classification, using two popular ensemble families (Bagging and Boosting)
and different resampling methods. All the experimentation was launched
in Spark clusters, comparing ensemble performance and execution times
with statistical test results, including the newest ones based on the Bayesian
approach. One very interesting conclusion from the study was that simpler
methods applied to unbalanced datasets in the context of Big Data provided
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better results than complex methods. The additional complexity of some of
the sophisticated methods, which appear necessary to process and to re-
duce imbalance in normal-sized datasets were not effective for imbalanced
Big Data.

3.1 I N TRODUCT ION

In computing science, a new term has emerged to describe the sheer size
of datasets, which are rapidly expanding throughout the world: Big Data.
The main characteristics of Big Data were initially established by Laney
(Laney, 2001) around the 3 Vs: Volume, Velocity and Variety. Additional
Vs have since been added such as Value (Gantz and Reinsel, 2011) and Ve-
racity (Jain, 2016)1. Big Data can essentially be defined at the intersection
between these concepts: Volume (large datasets), Velocity (data-processing
speeds must respond to data-generation speeds), Variety (different forms
of data), Veracity (must be resilient under uncertain or imprecise data) and
Value (usefulness) (Hariri et al., 2019). Real-world classification problems
are not usually balanced; i.e., the number of instances that belong to each
class is unevenly distributed (Chawla et al., 2004). These classification prob-
lems, known as imbalanced or unbalanced learning, have received a lot of
attention over recent years (He and Garcia, 2009; Díez-Pastor et al., 2015b;
Fernández et al., 2017). The applications of imbalanced learning are broad
and diverse, because balanced datasets in real-life are unfortunately rare to
find. Moreover, the class in which we are usually interested is the under-
represented one (Krawczyk, 2016). Some applications of imbalanced learn-
ing include activity recognition (Gao et al., 2016), behavior analysis (Azaria
et al., 2014), industrial systems monitoring (Diez-Pastor et al., 2021; Ra-
mentol et al., 2016), video mining (Gao et al., 2014) and cancer malignancy
grading (Krawczyk et al., 2016), among others. A general classifier applied
with no strategy to process imbalanced datasets will tend to ignore the mi-
nority class and will therefore almost inevitably misclassify it. Imbalanced
classification is frequent in standard classification, but it is crucial within
Big Data environments (Leevy et al., 2018; Fernández et al., 2017; Luengo
et al., 2020). Several alternative approaches for processing imbalanced data

1Despite the fact that some authors have identified other Vs within the Big Data equa-
tion, the five Vs presented in this paper are by far the most representative.
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have been proposed and can be grouped into four categories (Galar et al.,
2012)2:

• Algorithm-level: the algorithms are internally modified to process
the imbalance, i.e., the algorithms are biased towards focusing on mi-
nority class instances.

• Data-level: instead of changing the algorithms, the idea is to resample
or to rebalance the class distribution within the input dataset.

• Cost-sensitive: the algorithms incorporate different misclassification
costs for the different classes within the dataset.

• Classifier ensembles: the capability of ensembles to improve on the
results of difficult classification tasks has been demonstrated. A com-
mon ensemble construction method for imbalanced learning is at
the data-level, by training each base classifier with a pre-processed
dataset. Another approach is the use of heterogeneous ensembles
(Ghaderi Zefrehi and Altınçay, 2020).

The decision to use one or another approach is highly problem depen-
dent, nevertheless algorithm-level approaches and cost-sensitive approaches
are, according to (Galar et al., 2012), more data dependent, while the other
two methods are more versatile. Data-level is currently the most popular
approach to process imbalanced data (Haixiang et al., 2017). The present
paper is broadly focused on data-level and classifier ensemble approaches
and specifically on how the resampling techniques help ensemble learning
to address imbalanced classification in Big Data problems.

The topic of imbalanced classification in Big Data is still at an early stage
(Fernández et al., 2017, 2018a). Two gaps have been identified: the few
ensemble methods designed for Big Data problems (González et al., 2020)
and perhaps even fewer for processing imbalance within Big Data (Luengo
et al., 2020). The aim of this work is therefore to conduct an experimental
evaluation of some of the most popular ensembles in the context of imbal-
anced Big Data classification: Bagging and Boosting using various resam-
pling techniques. The Apache Spark framework, a widely used Big Data
platform, will be used for the experimentation. Since proposing new imple-
mentations for Big Data is beyond the scope of this study, the experiments

2As pointed out in (Díez-Pastor et al., 2015b), these categories are not mutually exclu-
sive.
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will only be run on currently available (or easily implementable) ensemble
and resampling methods in Apache Spark.

The rest of the paper will be structured as follows. In section 3.2, re-
search into ensembles applied to the imbalance problem will be explained.
In section 3.3, the state-of-the-art of data pre-processing techniques for Big
Data will be described. In section 3.4, details of the experimentation will
be reported, followed by an explanation of the results that will be given in
section 3.5. Finally, the main conclusions and future research lines will be
discussed in section 3.6.

3.2 EN SEMBL E L EARN ING FOR IMBAL ANCED PROB -
L EMS

As is well-known, ensemble learning is based on the construction and the
subsequent combination of several classifiers to obtain a new classifier that
can outperform the base classifiers (Galar et al., 2012). Desirable properties
of the classifiers that make up ensembles are accuracy, instability and diver-
sity, among others. Instability is a useful property of the base classifiers of an
ensemble (i.e., small variations within an input dataset can generate signif-
icant changes within the classifier). Diversity is essential, because if all the
base classifierswere to predict the same class, then theremight be little point
in building an ensemble. There are multiple methods to force diversity,
many of which are based on either Bagging (Breiman, 1996) (which resam-
ples the dataset) or Boosting (Schapire, 1990) (which assigns a weight to the
instances depending on the difficulty of their classification). However, there
are some other methods that involve alternative techniques (Kuncheva and
Rodriguez, 2007; Maudes et al., 2009a,b, 2012; Pardo et al., 2011).

Pre-processing techniques that balance the class proportions can be ap-
plied in a straightforward manner within an ensemble and will usually ei-
ther reduce the size of the majority class, increase the size of the minority
class, or even achieve both at the same time (Díez-Pastor et al., 2015b). Al-
though there are several techniques, we will only summarize those that are
generally used to deal with imbalance in ensemble learning:

• Random UnderSampling (RUS): consists of randomly removing ex-
amples of the majority class. The number of examples removed re-
duces the imbalance ratio, and it can balance the dataset, or even un-
balance it in the opposite direction.
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• Random OverSampling (ROS): consists of randomly replicating ex-
amples of the minority class. As with the previous case, the number
of examples generated reduces the imbalance ratio.

• Synthetic Minority Oversampling TEchnique (SMOTE): generates
synthetic instances of the minority class by interpolation of two orig-
inal minority instances (Chawla et al., 2002). It applies k-nearest
neighbors to ensure that the instances selected for the interpolation
are close to each other.

• RandomOverSampling Examples (ROSE): generates a new synthetic
dataset of a certain size and a certain imbalance ratio (Menardi and
Torelli, 2014). A typical strategy is to create a balanced dataset of the
same size as the input dataset. ROSE generates new artificial exam-
ples according to a smoothed bootstrap approach.

• Random Balance (RB) (Díez-Pastor et al., 2015a): as the balancing
technique, either the generation or the elimination of instances (more
suitable for a dataset), and the optimal imbalance ratio will a priori
be unknown, a generative method (SMOTE) and a reduction of in-
stances method (RUS) are randomly combined in each classifier by
the RB ensemble method. The imbalance ratio of the datasets that
are generated is also random, all of which yields additional diversity
from which the ensemble may also benefit.

These pre-processing techniques can either be performed once at the be-
ginning (before training the ensemble classifier), or before training each sin-
gle base classifier of the ensemble. For example, the use of undersampling
in each base classifier of a bagging ensemble, is known as under-bagging,
in the same way that over-bagging consists in using oversampling within
bagging (Galar et al., 2012).

During the last two decades, different combinations of ensembles and
pre-processing techniques have beenproposed to improve classification per-
formance (Galar et al., 2012), both for Bagging and Boosting (Tanha et al.,
2020) families, as well as hybrid solutions (Liu et al., 2009).

3.3 IMBAL ANCED DATA PRE - PROCE S S I NG FOR B IG
DATA

Despite the intense research over past decades in imbalanced learning for
normal-sized datasets, the imbalance problem in relation to computational
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scalability has yet to be thoroughly explored (Jeon and Lim, 2020). The
first comparison of several resampling methods in both Hadoop and Spark
was presented in (Fernández et al., 2017). For a complete review of these
methods, we would recommend the following papers (Leevy et al., 2018;
Luengo et al., 2020).

Simple sampling techniques, such as RandomOverSampling (ROS) and
Random UnderSampling (RUS) were among the first attempts to deal with
imbalance in Big Data classification (del Río et al., 2014). The effect of RUS
on Big Data with simulated class imbalance datasets was likewise studied in
(Hasanin and Khoshgoftaar, 2018).

SMOTE is another popular algorithm to deal with imbalanced datasets,
the straightforward implementation and sound performance of which has
increased its popularity and led to a proliferation of SMOTE variants, that
number over 85 (Fernández et al., 2018b) today. The Big Data version of
SMOTE (SMOTE-BD) was recently presented in (Basgall et al., 2018). A
Big Data implementation of a SMOTE algorithm based on the Neighbor-
hood Rough Set Model (Hu and Li, 2013) (NRSBoundary-SMOTE) was
presented in (Hu et al., 2014a).

The ROSEFW-RF (Triguero et al., 2015) algorithm (Random OverSam-
pling and Evolutionary Feature Weighting for Random Forest) was the win-
ning algorithm in the ECBDL’14 Big Data competition. This algorithm
balances the classes using ROS and identifies the most relevant features
through an evolutionary feature-selection process, before building a Ran-
dom Forest classifier. The algorithm demonstrated its strengths winning
the competition.

Despite the fact that most studies are based on ensemble and simple
sampling techniques, more sophisticated methods have been presented,
such as evolutionary undersampling (Triguero et al., 2015), among others.

The lack of methods applicable to imbalanced learning in Big Data
frameworks poses difficulties when extracting knowledge from large
datasetswith unevenly distributed classes. The scarcity ofmethods becomes
even more noticeable when it is compared with the large number of meth-
ods for normal-sized datasets (Luengo et al., 2020). Furthermore, some of
these methods were implemented only for Hadoop before Spark became
more popular, and thus, their comparison is even more challenging. To
the best of our knowledge, no comprehensive experimentation has been
conducted to date, to compare resampling-based ensemble methods with
Big Data imbalance classification, and we consider that there is a need for
that kind of experimental evaluation. Knowing whether resampling tech-

106



Experimental
evaluation of
ensemble
classifiers for
imbalance en
Big Data

niques can and to what extent they can benefit imbalanced Big Data classifi-
cation is essential to accomplish meaningful and successful future research.

3.4 EXPER IMENTAL SET-UP

The experimental set-up was organized into two groups, in order to deter-
mine the effects of the balancing/resampling strategies on the performance
of the ensembles:

• Dataset resampling and then training: the dataset was balanced once
at the beginning (following one of the strategies) and an ensemble
classifier was trained using the resampled dataset.

• Resampling within the ensemble: the ensemble performs a resam-
pling strategy before the training of each base classifier (i.e., there are
as many resamples as there are base classifiers).

3.4.1 Methods

Five popular sampling techniques were tested in the experimentation: RUS,
ROS, SMOTE,ROSE, andRB.All the algorithmswere implemented in Scala
and executed within the Apache Spark framework. The implementation
of RUS and ROS was straightforward using the Spark API. As mentioned
above, SMOTE-BD (Basgall et al., 2018) is an implementation of the SMOTE
algorithm for Spark, however, we used our own implementation of SMOTE3

based on Fang’s approximated KNN,4 that uses a hybrid spill-tree approach
(Liu et al., 2004), to achieve high accuracy and search efficiency. A parallel
version of ROSE was implemented under the Spark framework following
the existing R implementation (Lunardon et al., 2014). Finally, the RB im-
plementation is a variant of the original algorithm specifically adapted to
Big Data5. Table 3.1 lists the sampling methods that were tested.

The performance of the sampling techniques was compared using three
different ensemble classifiers available for Spark: Bagging (BAG), Random
Forest (RANF), and Gradient Boosting Trees (GBT), thus covering the Bag-
ging and Boosting families of ensembles.

3approx-smote on GitHub: https://github.com/mjuez/approx-smote
4saurfang spark-knn on GitHub: https://github.com/saurfang/spark-knn.
5To speed up its execution with Big Data, instead of the SMOTE and RUS methods in

the original algorithm, the new one used a combination of ROS and RUS.
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Abbr. Method Details and parameters

RUS Random Undersampling Undersampling without replacement until 50% of the data belongs to
minority class.

ROS Random Oversampling Oversampling until 50% of the data belongs to minority class.
SMOTE SMOTE (approximated) K = 5, Oversampling until 50% of the data belongs to minority class.
ROSE ROSE shrinkFactor = 1, Generate n synthetic examples with 50% probability

of belonging to any class. (n is the size of the original dataset)
RB Random Balance A random imbalance ratio is applied for each base classifier.

Table 3.1: Sampling techniques used in the experimental study and their
configuration.

Abbr. Method Details and parameters

BAG Bagging numTrees = 100, maxDepth = 5,
subsamplingRate = 1.0, featureSubsetStrategy = all

RANF Random Forest numTrees = 100, maxDepth = 5,
subsamplingRate = 1.0, featureSubsetStrategy = auto

GBT Gradient Boosting Trees maxIter = 100, maxDepth = 5

Table 3.2: Ensemble classifiers used in the experimental study and their con-
figuration.

In the first group of experiments (resampling before training), the en-
sembles were trained using the balanced datasets obtained after applying
the sampling techniques: RUS, ROS, SMOTE, and ROSE. In the second
group of experiments (resamplingwithin the ensemble), specific implemen-
tations of Bagging andGradient Boosting Trees were developed for process-
ing the imbalance problem. In these implementations, a new sampling was
performed for each base classifier in the ensemble, for which the following
methods were used: RUS, ROS and RB.

So that the comparison of the ensemble algorithms was on equal terms,
all the ensembles were composed of 100 trees, each with a depth of 5. The
details of the algorithms and their parameters are listed in Table 3.2.

The methods without resampling and therefore with no established
method of processing imbalance were also included in the experiments, as a
baseline performance reference, these methods are referred to in this paper
as theGini variant. Traditionally, classification and regression trees (CART)
have used theGini index as a split criterion. Nevertheless, when datasets are
imbalanced, the Gini index is biased in favor of the majority class (Liu et al.,
2018). For this reason, the weightedGini (WGini) index could be beneficial
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for the application of trees to imbalanced learning, thus it was also included
in this experimental evaluation6.

To sum up, different ensemble classifiers were evaluated: BAG, RANF,
and GBT. For each ensemble, two impurity indexes were used as a base-
line (Gini andWGini) and somepopular resampling techniqueswere tested:
ROS, RUS, SMOTE, ROSE, and RB. The use of weighted Gini with the re-
sampling techniques was not explored because, as we resampled until both
classes were totally balanced, the result would be equivalent to the use of
the default Gini index.

3.4.2 Experimental framework

Six popular classification datasets for Big Data were used in the expe-
riments7. Two standard techniques were used to generate the imbalanced
datasets (Basgall et al., 2018). Several imbalanced datasets were generated
from the multi-class datasets (i.e., covtype and kddcup), by selecting the
majority class and one of the minority classes. Since the binary datasets
(i.e., susy, higgs, and hepmass) are actually almost evenly balanced, the im-
balance was forced by subsampling the class with fewer instances using two
different imbalance ratios: 4 and 16. The ECBDL’14 is already unbalanced,
so it was used as is without any transformation. Only two subsamples (ap-
proximately 1million and 10million instances) with the original imbalance
ratio were processed, because of the huge size of this dataset and budgetary
limitations on the computing time that may be requested on Google Cloud
clusters. Table 3.3 summarizes the resulting 16 datasets. All the datasets
were stored in libsvm (Chang and Lin, 2011) format. As the implementa-
tion of some algorithms, such as SMOTE or ROSE, cannot process nominal
features, all nominal features were binarized using one-hot encoding.

The experiments were performed using 5 repetitions of a 2-fold cross-
validation. A random seed value was set at 46 to enable experimental re-
peatability.

For evaluating and comparing statistical differences in performance, av-
erage ranks and statistical tests were used. Average ranks were computed by

6Due to the fact that the weighted Gini index is not available on the Spark trees, the
instances were weighted according to the imbalance ratio of their class, as proposed by
Chen et al. (Chen et al., 2004).

7The covtype, susy, higgs, hepmass, and kddcup datasets are available from the UCI
Machine Learning repository (Dua and Graff, 2017) https://archive.ics.uci.edu/ml/index.php.
The ECBDL14 dataset is available from the Evolutionary Computation for Big Data and
Big Learning Workshop competition website http://cruncher.ico2s.org/bdcomp/.
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Dataset # instances # attributes # maj # min IR Size (GB)

COVTYPE 1 vs 4 229 207 54 211 840 17 367 12.20 0.02
COVTYPE 1 vs 3 232 350 54 211 840 20 510 10.33 0.02
COVTYPE 1 vs 2 247 594 54 211 840 35 754 5.92 0.02
COVTYPE 0 vs 4 300 668 54 283 301 17 367 16.31 0.03
COVTYPE 0 vs 3 303 811 54 283 301 20 510 13.81 0.03
COVTYPE 0 vs 2 319 055 54 283 301 35 754 7.92 0.03
ECBDL’14 1M 999 716 893 978 128 21 588 45.31 15.70
SUSY IR16 2 881 796 18 2 712 173 169 623 15.99 1.04
SUSY IR4 3 389 320 18 2 712 173 677 147 4.00 1.23
KDDCUP dos vs r2l 3 884 496 119 3 883 370 1126 3448.82 0.50
KDDCUP dos vs normal 4 856 151 119 3 883 370 972 781 3.99 0.62
HEPMASS IR16 5 578 586 28 5 250 124 328 462 15.98 3.20
HIGGS IR16 6 194 093 28 5 829 123 364 970 15.97 3.26
HEPMASS IR4 6 561 364 28 5 250 124 1 311 240 4.00 3.77
HIGGS IR4 7 284 166 28 5 829 123 1 455 043 4.00 3.94
ECBDL’14 10M 9 998 491 893 9 783 328 215 163 45.47 45.80

Table 3.3: Main characteristics of the datasets used in the experiments:
number of instances, number of features, number of classes of the minor-
ity and majority classes, imbalance ratio, and dataset size in libsvm (Chang
and Lin, 2011) format.

assigning, for each dataset, one to the best classifier, two to the second, and
so on. When there was a tie between several classifiers, their average rank-
ings were assigned to each one. The final value assigned to eachmethodwas
the mean of its rankings across all datasets. The Friedman test, followed by
the Hochberg 1×N (one vs. all) and the NemenyiN×N (all vs. all) post hoc
procedures (Demšar, 2006) were used to evaluate any statistical difference
in the results.

Bayesian analysis (Benavoli et al., 2017) (baycomp8 library was used)
was conducted using Bayesian hierarchical sign tests, which separately ac-
count for the results of all folds and repetitions, for comparative purposes.
The number of samples for all Bayesian comparisons was set at 50 000. A
common graphical representation of this type of analysis is a ternary plot
(Juez-Gil, 2020) where the region of practical equivalence (ROPE) appears
on the top corner, and on the right and left corners are the regions of the
methods under comparison. The ROPE was set to 0.05, which means that
two algorithms with a difference in performance of less than 0.05 will be
considered equivalent.

8The baycomp library is publicly available at https://baycomp.readthedocs.io/en/latest/.
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The experiments were executed in cloud-based clusters provided by the
GoogleCloudPlatform. Thecloud clusterwas composed of a total of twenty-
eight nodes (one master node and twenty-seven worker nodes). All nodes
were of the n1-highmem-8 type, which had 8 virtual CPUs, and 52 GB of
RAM. Hence, the cluster size was 224 vCPUs and occupied 1 456 GB of
RAM. At that point in time, the vCPUs of n1-highmem nodes could be
of the four following types: Intel Xeon (Skylake), Intel Xeon E5 (Sandy
Bridge), Intel Xeon E5 v2 (Ivy Bridge), Intel Xeon E5 v3 (Haswell), or In-
tel Xeon E5 v4 (Broadwell E5). The Apache Spark environment was pro-
vided by Google Dataproc software, version 1.4, running on Debian 9, with
Apache Hadoop 2.9.2, and Apache Spark 2.4.59. Google Cloud Storage, as
a distributed file system, was used for storing the datasets and the experi-
mental results.

3.4.3 Performance metrics

Standard accuracy metrics tend to focus on all target classes equally, which
is a problem for the minority ones (Brzezinski et al., 2020). For this reason,
the use of a single metric in imbalance classification is not recommended,
as it is commonly preferred to use several dedicated metrics to contrast in-
terpretations.

In this study, the four distinct metrics under consideration were: F1
Score (F1-score), Matthews Correlation Coefficient (MCC), Geometric
Mean (G-mean), and Area Under the Curve (AUC). All these metrics were
defined using different values given in the confusion matrix. If we consider
a problem with two classes: a class of interest, the “positive” class (+), and
another usually much larger class, the “negative” (−) one; then themistakes
(False Positives and False Negatives) and successes (True Positives and True
Negatives) of a classifier can be sorted within a confusionmatrix, as follows:

Predicted labels

Actual labels

+ − total
+ TP FN P
− FP TN N

total P̂ N̂

9The experiments of the Weighted Gini (WGini) was launched within a Apache
Spark 3.0.1 cluster, since the instance weighting on the trees training were not supported
in previous versions.
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The F1-score is the harmonic mean of precision
( TP
TP+FP

)
and recall

( TP
TP+FN

)
:

F1-score =
2

recall−1 + precision−1

= 2× recall× precision
recall + precision

=
TP

TP+ 1
2
(FP+ FN)

(3.1)

The MCC is a metric strongly advised for imbalance classification (Bekkar
et al., 2013):

MCC =
TP× TN− FP× FN√

P̂ × P × N̂ ×N
(3.2)

The G-mean is the geometric mean of sensitivity and specificity:

G-mean =
√

sensitivity× specificity =

√
TP

TP+ FN
× TN

TN+ FP
(3.3)

The domains of all the metrics, exceptMCC, were between 0 and 1, where 1
was the best value. Furthermore, MCC is a metric that expresses the corre-
lation between the actual and the predicted class, with values ranging be-
tween−1 (total disagreement) and +1 (perfect agreement).

The definition of the AUC is slightly less straightforward. When the re-
sult of a binary classifier is the probability that the instance belongs to the
class of interest, the final assignment of the class will ultimately depend on
a threshold value from which we consider that the probability is sufficient
to assign the class of interest. For each threshold value, we would have dif-
ferent results of the classifier, and therefore different TP and FP rate values
(TPR and FPR). If we consider the entire range of values for the threshold,
from zero to one, we can represent the results obtained for each threshold
as points with the coordinates (TPR, FPR). The curve obtained by consider-
ing all these points is called the Receiver Operating Characteristic curve, or
ROC curve. If we now consider the area under the curve (AUC), its value
serves as an indicator of classifier performance for all possible thresholds. A
good classifier will have a value close to 1 and a random (non-informative)
classifier will have a value close to 0.5.

For the sake of simplicity, only the MCC and the AUC metrics are re-
ported in the following sections. The reason is because, for this experimen-
tal evaluation, we have found that the four metrics can be paired in such a
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way that both metrics of each pair lead to almost the same interpretations.
The two groups of metrics are F1-score and MCC, and G-mean and AUC.
Nonetheless the results of the four metrics may be found in the 3.6.

3.5 RE SU LT S AND DI SCU S S ION

As previously stated, the experimentation was divided into two groups: re-
sampling before training (see subsection 3.5.1) and resampling within the
ensemble (see subsection 3.5.2). A comparison of both approaches may
be found in subsection 3.5.3; a comparison of their execution times is pre-
sented in subsection 3.5.4; and, finally, all the results are discussed in sub-
section 3.5.5.

3.5.1 Resampling before training ensemble

This subsection shows the performance results of the ensemble methods
trained after obtaining a dataset by resampling the original dataset. These
experiments correspond with the data-level approach.

Table 3.4.a details the results of the experiments for MCC, and
Table 3.4.b for AUC. The best results of the datasets from each ensemble
classifier group (i.e., BAG, RANF, and GBT) are shown within gray boxes,
and the best overall results are highlighted within black boxes. The blueness
intensity of each cell is used for highlighting the results, the higher the met-
ric, the darker the blue. A clear superiority of GBT over BAG and RANF
ensemble classifiers was shown. The impact of the RUS, ROS, and SMOTE
pre-processing methods gave quite similar performances at a glance. More-
over the classifier trained with the original dataset using the weighted Gini
index, could also be included in that similar-performing group of methods
(i.e., row-wise blueness intensity is almost the same for the four variants:
WGini, RUS, ROS, and SMOTE). ROSE by contrast, generally achieved
worse performance. Focusing on each metric separately, the results for
MCC tended to reveal that it is better not to pre-process at all and to train
the classifier using the Gini index; on the other hand, AUC highlighted a
better performance when pre-processing techniques were used or, at least,
when the weighted Gini index was used. Nevertheless, it is worth noting
that the results of the classifiers trained without taking the imbalance into
account (i.e., Gini variants) were, for some datasets, totally unacceptable,
such as for example ECBDL or HIGGS, while the other alternatives offered
good overall results.
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(a) MCC
Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9522 0.9438 0.9422 0.9314 0.9392 0.8976 0.9206 0.9227 0.9229 0.9235 0.9244 0.5602 0.9906 0.9776 0.9686 0.9801 0.9791 0.8963

COVTYPE 1vs3 0.6753 0.5789 0.5696 0.5655 0.5592 0.0043 0.2925 0.5263 0.5186 0.5173 0.5210 0.0000 0.8548 0.7897 0.7675 0.7917 0.7947 0.0043

COVTYPE 1vs2 0.9801 0.9756 0.9734 0.9745 0.9738 0.9447 0.9759 0.9663 0.9680 0.9689 0.9665 0.6207 0.9975 0.9938 0.9930 0.9959 0.9958 0.9445

COVTYPE 0vs4 0.7408 0.6848 0.6741 0.6739 0.6803 0.2409 0.6734 0.6577 0.6580 0.6572 0.6640 0.2405 0.9051 0.8036 0.7822 0.8095 0.8108 0.2409

COVTYPE 0vs3 0.8993 0.7829 0.7870 0.7762 0.7763 0.5864 0.8184 0.7471 0.7514 0.7504 0.7413 0.0835 0.9751 0.9463 0.9218 0.9493 0.9487 0.5868

COVTYPE 0vs2 0.8852 0.8033 0.7995 0.8008 0.8008 0.3267 0.7828 0.7987 0.7921 0.7905 0.7961 0.3325 0.9317 0.8858 0.8816 0.8878 0.8921 0.3267

ECBDL’14 1M 0.0000 0.1275 0.1269 0.1226 0.1203 0.0883 0.0000 0.1353 0.1340 0.1344 0.1282 0.1180 0.0602 0.1555 0.1405 0.1560 0.1169 0.1166

SUSY IR16 0.4385 0.3061 0.3068 0.3002 0.2917 0.3334 0.4284 0.3091 0.3123 0.3117 0.3017 0.3381 0.4970 0.3537 0.3519 0.3541 0.3445 0.4524

SUSY IR4 0.5345 0.4685 0.4695 0.4665 0.4604 0.4830 0.5174 0.4752 0.4793 0.4775 0.4705 0.4884 0.5796 0.5295 0.5281 0.5287 0.5221 0.5569

KDDCUP dos vs r2l 0.9757 0.9596 0.4275 0.8650 0.7890 0.3895 0.9508 0.8245 0.5325 0.8818 0.8316 0.5442 0.9955 0.9885 0.4128 0.9938 0.9956 0.3936

KDDCUP dos vs nor. 0.9987 0.9991 0.9989 0.9993 0.9993 0.9952 0.9980 0.9979 0.9978 0.9978 0.9977 0.9946 0.9999 0.9999 0.9998 0.9999 0.9999 0.9954

HEPMASS IR16 0.6565 0.4319 0.4190 0.4353 0.4562 0.3364 0.4255 0.3428 0.3431 0.3433 0.3529 0.3244 0.6706 0.4742 0.4714 0.4737 0.5406 0.3121

HIGGS IR16 0.1158 0.1597 0.1591 0.1569 0.1497 0.1168 0.0000 0.1750 0.1761 0.1751 0.1746 0.1203 0.1944 0.2306 0.2289 0.2301 0.2070 0.1691

HEPMASS IR4 0.6920 0.6153 0.6141 0.6158 0.5988 0.5253 0.6353 0.5360 0.5369 0.5363 0.5426 0.5159 0.7188 0.6636 0.6628 0.6630 0.6892 0.4917

HIGGS IR4 0.2004 0.2663 0.2654 0.2644 0.2541 0.1923 0.0843 0.2883 0.2900 0.2895 0.2956 0.1976 0.3440 0.3743 0.3723 0.3735 0.3496 0.2606

ECBDL’14 10M 0.0000 0.1252 0.1246 0.1250 0.1256 0.0922 0.0000 0.1348 0.1346 0.1351 0.1275 0.1213 0.0717 0.1620 0.1583 0.1617 0.1374 0.1210

(b) AUC
Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9694 0.9933 0.9931 0.9924 0.9929 0.9848 0.9313 0.9892 0.9901 0.9900 0.9901 0.9286 0.9941 0.9973 0.9971 0.9980 0.9977 0.9847

COVTYPE 1vs3 0.7939 0.8902 0.8898 0.8865 0.8876 0.5001 0.5474 0.8830 0.8816 0.8807 0.8821 0.5000 0.9055 0.9629 0.9605 0.9630 0.9628 0.5001

COVTYPE 1vs2 0.9930 0.9958 0.9955 0.9954 0.9953 0.9877 0.9822 0.9916 0.9919 0.9926 0.9924 0.9064 0.9988 0.9989 0.9989 0.9992 0.9992 0.9877

COVTYPE 0vs4 0.8366 0.9595 0.9588 0.9577 0.9577 0.7580 0.7802 0.9473 0.9484 0.9472 0.9475 0.7576 0.9396 0.9806 0.9786 0.9810 0.9803 0.7580

COVTYPE 0vs3 0.9221 0.9750 0.9749 0.9747 0.9744 0.9386 0.8545 0.9627 0.9621 0.9640 0.9639 0.5471 0.9828 0.9939 0.9924 0.9941 0.9941 0.9386

COVTYPE 0vs2 0.9339 0.9630 0.9628 0.9630 0.9628 0.7580 0.8479 0.9580 0.9582 0.9569 0.9580 0.7630 0.9614 0.9825 0.9822 0.9830 0.9833 0.7580

ECBDL’14 1M 0.5000 0.7043 0.7053 0.6986 0.6641 0.6515 0.5000 0.7103 0.7085 0.7091 0.6751 0.6870 0.5030 0.7270 0.7210 0.7285 0.5638 0.6952

SUSY IR16 0.6264 0.7701 0.7702 0.7680 0.7649 0.7466 0.6125 0.7716 0.7722 0.7718 0.7719 0.7553 0.6641 0.7934 0.7928 0.7934 0.7892 0.7278

SUSY IR4 0.7200 0.7689 0.7693 0.7685 0.7661 0.7495 0.6909 0.7712 0.7720 0.7717 0.7718 0.7572 0.7433 0.7941 0.7937 0.7939 0.7918 0.7357

KDDCUP dos vs r2l 0.9761 0.9984 0.9993 0.9984 0.9989 0.9986 0.9524 0.9997 0.9996 0.9997 0.9999 0.9996 0.9953 0.9973 0.9992 0.9979 0.9975 0.9992

KDDCUP dos vs nor. 0.9997 0.9998 0.9998 0.9998 0.9998 0.9987 0.9996 0.9996 0.9996 0.9996 0.9995 0.9974 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987

HEPMASS IR16 0.7550 0.8343 0.8348 0.8343 0.8336 0.8183 0.5976 0.8214 0.8220 0.8221 0.8223 0.8144 0.7645 0.8626 0.8619 0.8623 0.8506 0.8126

HIGGS IR16 0.5102 0.6669 0.6659 0.6644 0.6526 0.5961 0.5000 0.6774 0.6783 0.6776 0.6714 0.5986 0.5313 0.7265 0.7254 0.7261 0.6989 0.6061

HEPMASS IR4 0.8006 0.8342 0.8331 0.8337 0.8327 0.8171 0.7444 0.8212 0.8218 0.8216 0.8222 0.8139 0.8237 0.8620 0.8620 0.8619 0.8564 0.8053

HIGGS IR4 0.5381 0.6663 0.6659 0.6651 0.6565 0.5987 0.5047 0.6771 0.6779 0.6776 0.6795 0.6017 0.6119 0.7265 0.7256 0.7261 0.7099 0.6202

ECBDL’14 10M 0.5000 0.7000 0.7002 0.6985 0.6709 0.6587 0.5000 0.7108 0.7108 0.7106 0.6834 0.6891 0.5040 0.7462 0.7432 0.7458 0.5896 0.6994

Table 3.4: Experimental results performing resampling before the ensemble
training forMCC (a) andAUC (b). Thebest results for each classifier appear
within gray boxes, while the best results overall are within black boxes. GBT
showed the best performance for both metrics. For MCC, Gini variants,
specially the GBT one, showed the best performance for the majority of the
datasets. WGini, RUS, ROS, and SMOTE were all preferable options for
AUC, depending on the ensemble in use.
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Algorithm Avg. rank

ROS+GBT 3.0000
GBT (WGini) 3.4375
GBT (Gini) 3.4375
SMOTE+GBT 4.0000
RUS+GBT 5.5625
BAG (Gini) 7.9375
BAG (WGini) 9.1875
ROS+BAG 10.5000
RUS+BAG 10.7500
SMOTE+BAG 11.0625
ROS+RANF 11.0625
RUS+RANF 11.2500
SMOTE+RANF 11.5625
RANF (WGini) 11.5625
RANF (Gini) 11.7500
ROSE+GBT 14.0312
ROSE+RANF 15.3125
ROSE+BAG 15.5938

Algorithm Avg. rank

ROS+GBT 2.3750
GBT (WGini) 2.8125
RUS+GBT 3.7500
SMOTE+GBT 5.1875
BAG (WGini) 7.4375
RUS+BAG 7.5625
RUS+RANF 8.6875
ROS+BAG 8.7500
ROS+RANF 9.1250
SMOTE+RANF 9.3750
RANF (WGini) 9.4375
SMOTE+BAG 9.6875
GBT (Gini) 11.0625
ROSE+GBT 14.1562
ROSE+BAG 14.6562
ROSE+RANF 14.6875
BAG (Gini) 15.5000
RANF (Gini) 16.7500

(a) MCC (b) AUC

Table 3.5: Average ranks of the ensemble classifiers performing resampling
before training, according to both the MCC (a) and the AUC (b) metrics.
The methods below the dashed line showed significant differences with the
best one according to the Hochberg procedure at a confidence level of 95%.
ROS+GBT was the best method, followed by GBT (WGini).

Table 3.5 shows the average ranks computed for eachmetric, the dashed
line represents the limit below which the methods differ statistically from
the best one at a significance level of 95%. The best method was ROS+GBT
for both metrics, followed by GBT (WGini). The AUC metric revealed that
some resampling, or at least the use of weighted Gini, contributed to over-
coming the imbalance, because regular ensembles (i.e., Gini variants) were
ranked extremely low. The methods that showed the worst results were, in
general, RANF (Gini) and all the variants involving ROSE.

The results of the Friedman–Nemenyi test can be seen in Figure 3.1. It
shows all groups of methods that performed equivalently, providing there-
fore, additional information to the average rankings discussed above. Also,
the number of groups (i.e., from five to seven) could be considered high.
Figure 3.1.a shows that SMOTE+GBT, ROS+GBT, and GBT (WGini) per-
formed better than over half of the evaluated methods, which include all
RANF variants and three variants of BAG. Regarding the bad performance
of the ROSE variants, the test showed that those variants were only worse
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Figure 3.1: A Friedman–Nemenyi test comparison of the different ensem-
ble classifiers performing resampling before training, according toMCC (a)
and AUC (b) metrics. The methods connected with a thick horizontal line
show no significant differences between each other at a level of α = 0.05.
For many methods there is a close statistical equivalence.

than the GBT-based methods. Figure 3.1.b shows that only ROS+GBT and
GBT (WGini) performed better than more than half of the tested methods.
In contrast to theMCC results, the RANF variants were not so badly ranked
by the AUC. Finally, it could be seen that the Gini variants performedworse
than their respective WGini variants.

Table 3.6 shows the one-to-one comparisons using the Bayesian hier-
archical sign test for each metric and ensemble classifier variant. For the
sake of simplicity, instead of showing the ternary heatmap plots, for each
comparison the three values (Left, Right, and ROPE) were reported. Left
corresponds to the first element under comparison, and Right to the second
(e.g., for Gini vsWGini comparison, Left corresponds to Gini, and Right to
WGini). The best results for each comparison (i.e., a metric and a classifier)
appear within black boxes.

For the first set of comparisons, Gini vs others, it is remarkable how
much it depended on the chosen metric whether the ensemble (using Gini
without any resampling) was considered better or not. For example, in BAG
and GBT the use of Gini was preferred for MCC (by a narrow margin),
whereas the opposite was true for AUC (by a much larger margin). RANF
performed in amore consistent way, for all metrics usually the use of resam-
pling or WGini showed itself to be better than the Gini variant. For the sec-
ond set of comparisons, WGini vs ROS, RUS, and SMOTE, Right and Left
values were very close, thus no clear winner could be named. Likewise, the
comparisons between ROS and RUS were not conclusive and were highly
dependent on the ensemble method used and the metric under consider-
ation. The bad performance of ROSE as a resampling method was clearly
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Comparison Metric BAG RANF GBT

Left ROPE Right Left ROPE Right Left ROPE Right

Gini vs WGini MCC 0.6105 0.0000 0.3895 0.4058 0.0000 0.5942 0.6665 0.0000 0.3335

AUC 0.1180 0.0000 0.8820 0.0165 0.0000 0.9835 0.0648 0.0002 0.9350

Gini vs RUS MCC 0.7355 0.0000 0.2645 0.4263 0.0000 0.5737 0.7737 0.0000 0.2263

AUC 0.0695 0.0000 0.9305 0.0030 0.0000 0.9970 0.0845 0.0002 0.9153

Gini vs ROS MCC 0.6868 0.0000 0.3132 0.3832 0.0000 0.6168 0.6155 0.0000 0.3845

AUC 0.0628 0.0002 0.9370 0.0105 0.0000 0.9895 0.0695 0.0000 0.9305

Gini vs SMOTE MCC 0.7072 0.0000 0.2928 0.4433 0.0000 0.5567 0.6073 0.0000 0.3927

AUC 0.0985 0.0000 0.9015 0.0255 0.0000 0.9745 0.2112 0.0003 0.7885

Gini vs ROSE MCC 0.9145 0.0000 0.0855 0.9455 0.0000 0.0545 0.9768 0.0000 0.0232

AUC 0.4535 0.0000 0.5465 0.2827 0.0000 0.7173 0.6402 0.0000 0.3598

WGini vs RUS MCC 0.6723 0.0005 0.3272 0.5642 0.0000 0.4358 0.6230 0.0000 0.3770

AUC 0.5273 0.0235 0.4492 0.5252 0.0003 0.4745 0.4925 0.0037 0.5038

WGini vs ROS MCC 0.5465 0.0000 0.4535 0.5072 0.0000 0.4928 0.4635 0.0000 0.5365

AUC 0.5122 0.0000 0.4878 0.4990 0.0005 0.5005 0.4783 0.0195 0.5022

WGini vs SMOTE MCC 0.5302 0.0000 0.4698 0.5002 0.0000 0.4998 0.5042 0.0000 0.4958

AUC 0.5325 0.0008 0.4667 0.5360 0.0013 0.4627 0.6653 0.0000 0.3347

WGini vs ROSE MCC 0.9657 0.0000 0.0343 0.9585 0.0000 0.0415 0.9550 0.0000 0.0450

AUC 0.9417 0.0003 0.0580 0.9490 0.0000 0.0510 0.9480 0.0000 0.0520

RUS vs ROS MCC 0.3820 0.0012 0.6168 0.4263 0.0002 0.5735 0.3465 0.0000 0.6535

AUC 0.5155 0.0092 0.4753 0.5172 0.0248 0.4580 0.4810 0.0210 0.4980

RUS vs SMOTE MCC 0.4173 0.0000 0.5827 0.3957 0.0035 0.6008 0.3200 0.0003 0.6797

AUC 0.5317 0.0003 0.4680 0.5410 0.0043 0.4547 0.7295 0.0113 0.2592

RUS vs ROSE MCC 0.8760 0.0000 0.1240 0.9698 0.0000 0.0302 0.9515 0.0000 0.0485

AUC 0.8872 0.0000 0.1128 0.9660 0.0000 0.0340 0.9680 0.0000 0.0320

ROS vs SMOTE MCC 0.4567 0.0000 0.5433 0.6167 0.1293 0.2540 0.4675 0.0000 0.5325

AUC 0.4940 0.0307 0.4753 0.0813 0.8862 0.0325 0.6912 0.0828 0.2260

ROS vs ROSE MCC 0.9278 0.0000 0.0722 0.9865 0.0000 0.0135 0.9862 0.0000 0.0138

AUC 0.9172 0.0000 0.0828 0.9828 0.0005 0.0167 0.9888 0.0000 0.0112

SMOTE vs ROSE MCC 0.8992 0.0000 0.1008 0.9597 0.0000 0.0403 0.9908 0.0000 0.0092

AUC 0.8665 0.0000 0.1335 0.9475 0.0008 0.0517 0.9413 0.0022 0.0565

Table 3.6: One to-one comparison using the Bayesian hierarchical sign test
for each metric and classifier variant. The best results for each compari-
son (metric and classifier) appear within black boxes. Generally, it was un-
clear whether one variant was better than other. It depended on the spe-
cific dataset, metric, and ensemble method. ROSE was the only variant that
showed itself to be clearly worse than the rest.
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worse than other resampling techniques (RUS, SMOTE, and ROS) and all
non-resampling techniques (Gini and WGini). It must be noted that the
ROPE region was almost zero for most of the comparisons, which means
that themethods hardly performed equally well, but that onemethodwould
be better than the other depending on the specific dataset.

3.5.2 Resampling within the ensemble

This subsection collects the results of the ensemble methods that perform
the resampling within the ensemble; each base classifier in the ensemble
will be trained on a dataset obtained after performing a specific resampling
for that classifier. Table 3.7.a details the results of the experiments forMCC,
and Table 3.7.b for AUC. As in the previous section, the boxes and the blue-
ness intensity of the cells, are used to highlight the results and provide an en-
riched representation. Asmight be expected, for this strategy, GBTwas also
shown to be better than BAG. Focusing on the results involving resampling
(i.e., excluding Gini and WGini variants), for GBT, ROS could be more ben-
eficial, while RUS apparently performed better for BAG. Nevertheless, look-
ing closely at the tables, row-wise blueness intensity is almost the same for
RUS, ROS, and RB, which suggests that all the resampling methods per-
formed in a similar way. As stated before, depending on the chosen metric,
pre-processing techniques could be discouraged because the Gini variants
of the ensembles, apparently performed better. This happens specifically
when looking at the MCC metric, but its unacceptable performance with
some datasets such as ECBDL and HIGGS should not be forgotten.

In Table 3.8, the average ranks computed for each of the performance
metrics are shown. GBT+ROS showed the best results for both metrics, be-
ing statistically better than any BAG variant. Looking at AUC, the worst
methods were the Gini variants of GBT and BAG. The best methods were
GBT variants when resampling was used (ROS, RB and RUS), with no dif-
ferences between all three. On the other hand, for MCC the worst method
was BAG+RB and BAG using the weighted Gini index, leaving it appar-
ently quite clear that resampling techniques performed better than the non-
resampling (using Gini or weighted Gini) alternatives.

The results of the Friedman–Nemenyi test are shown in Figure 3.2. As
regards the MCC, GBT+ROS and GBT (Gini) performed better than any
BAGvariant, on the contrary, BAG+RBandBAG (WGini) performedworse
than any GBT variant. Thus, it is not clear whether resampling was bene-
ficial or not. Another interesting insight for this metric, is that all GBT
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(a) MCC
Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9522 0.9438 0.9457 0.9467 0.9445 0.9906 0.9776 0.9690 0.9789 0.9703

COVTYPE 1vs3 0.6753 0.5789 0.5783 0.5786 0.5791 0.8548 0.7897 0.7860 0.8016 0.7801

COVTYPE 1vs2 0.9801 0.9756 0.9753 0.9785 0.9769 0.9975 0.9938 0.9932 0.9952 0.9933

COVTYPE 0vs4 0.7408 0.6848 0.6853 0.6863 0.6839 0.9051 0.8036 0.7934 0.8157 0.7941

COVTYPE 0vs3 0.8993 0.7829 0.8042 0.7845 0.7958 0.9751 0.9463 0.9385 0.9571 0.9391

COVTYPE 0vs2 0.8852 0.8033 0.8039 0.8059 0.8179 0.9317 0.8858 0.8852 0.8956 0.8892

ECBDL’14 1M 0.0000 0.1275 0.1279 0.1276 0.1249 0.0602 0.1555 0.1466 0.1613 0.1469

SUSY IR16 0.4385 0.3061 0.3070 0.3073 0.3100 0.4970 0.3537 0.3513 0.3538 0.3514

SUSY IR4 0.5345 0.4685 0.4698 0.4686 0.4504 0.5796 0.5295 0.5312 0.5314 0.5314

KDDCUP dos vs r2l 0.9757 0.9596 0.4164 0.8699 0.9141 0.9955 0.9885 0.4266 0.9982 0.4388

KDDCUP dos vs nor. 0.9987 0.9991 0.9988 0.9993 0.9992 0.9999 0.9999 0.9998 0.9998 0.9998

HEPMASS IR16 0.6565 0.4319 0.4282 0.4311 0.3847 0.6706 0.4742 0.4751 0.4762 0.4743

HIGGS IR16 0.1158 0.1597 0.1608 0.1604 0.1545 0.1944 0.2306 0.2344 0.2352 0.2344

HEPMASS IR4 0.6920 0.6153 0.6149 0.6160 0.5771 0.7188 0.6636 0.6685 0.6684 0.6686

HIGGS IR4 0.2004 0.2663 0.2683 0.2676 0.2543 0.3440 0.3743 0.3785 0.3793 0.3785

ECBDL’14 10M 0.0000 0.1252 0.1253 0.1253 0.1219 0.0717 0.1620 0.1619 0.1650 0.1619

(b) AUC
Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9694 0.9933 0.9935 0.9937 0.9944 0.9941 0.9973 0.9971 0.9979 0.9972

COVTYPE 1vs3 0.7939 0.8902 0.8924 0.8900 0.8973 0.9055 0.9629 0.9652 0.9666 0.9637

COVTYPE 1vs2 0.9930 0.9958 0.9957 0.9963 0.9962 0.9988 0.9989 0.9989 0.9992 0.9989

COVTYPE 0vs4 0.8366 0.9595 0.9606 0.9599 0.9611 0.9396 0.9806 0.9806 0.9825 0.9807

COVTYPE 0vs3 0.9221 0.9750 0.9772 0.9765 0.9754 0.9828 0.9939 0.9941 0.9953 0.9942

COVTYPE 0vs2 0.9339 0.9630 0.9633 0.9630 0.9646 0.9614 0.9825 0.9827 0.9839 0.9831

ECBDL’14 1M 0.5000 0.7043 0.7066 0.7049 0.7030 0.5030 0.7270 0.7288 0.7338 0.7293

SUSY IR16 0.6264 0.7701 0.7710 0.7702 0.7695 0.6641 0.7934 0.7949 0.7953 0.7949

SUSY IR4 0.7200 0.7689 0.7697 0.7695 0.7653 0.7433 0.7941 0.7951 0.7952 0.7951

KDDCUP dos vs r2l 0.9761 0.9984 0.9993 0.9976 0.9979 0.9953 0.9973 0.9989 0.9994 0.9990

KDDCUP dos vs nor. 0.9997 0.9998 0.9997 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

HEPMASS IR16 0.7550 0.8343 0.8357 0.8355 0.8316 0.7645 0.8626 0.8643 0.8645 0.8642

HIGGS IR16 0.5102 0.6669 0.6683 0.6675 0.6577 0.5313 0.7265 0.7299 0.7304 0.7300

HEPMASS IR4 0.8006 0.8342 0.8344 0.8344 0.8318 0.8237 0.8620 0.8639 0.8640 0.8641

HIGGS IR4 0.5381 0.6663 0.6677 0.6672 0.6474 0.6119 0.7265 0.7286 0.7290 0.7287

ECBDL’14 10M 0.5000 0.7000 0.7006 0.7004 0.6990 0.5040 0.7462 0.7476 0.7499 0.7476

Table 3.7: Experimental results performing resampling for each ensemble
base classifier for MCC (a) and AUC (b). The best results for each classifier
and the best overall results appear within gray and black boxes, respectively.
GBT showed the best performance for both metrics. For MCC, Gini vari-
ants showed the best performance for the majority of the datasets. With
regard to the AUC, RUS and ROS were preferable for BAG and GBT, re-
spectively.
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Algorithm Avg. rank

GBT+ROS 2.1875
GBT (Gini) 2.5625
GBT (WGini) 3.6250
GBT+RB 3.9375
GBT+RUS 4.6875
BAG (Gini) 6.1250
BAG+ROS 7.3125
BAG+RUS 7.9375
BAG (WGini) 8.3125
BAG+RB 8.3125

Algorithm Avg. rank

GBT+ROS 1.1875
GBT+RB 2.3750
GBT+RUS 3.0625
GBT (WGini) 4.0000
BAG+RUS 5.8125
BAG+ROS 6.6250
BAG+RB 7.0000
BAG (WGini) 7.3750
GBT (Gini) 7.5625
BAG (Gini) 10.0000

(a) MCC (b) AUC

Table 3.8: Average ranks of the ensemble classifiers performing resampling
for each base classifier, according to the MCC (a) and the AUC (b) met-
rics. The methods below the dashed line were statistically different from
the best one according to the Hochberg procedure at a confidence level of
95%. GBT+ROS was the best method, being statistically better than any
BAG variant.

variants were considered equivalent and the same could be said for all BAG
variants. Regarding the AUC metric, the use of resampling improved the
performance. GBT+ROS and GBT+RB were better than any BAG variant
and the Gini variant of GBT. Moreover, GBT (Gini) and BAG (Gini) per-
formed worse than any other GBT variant. For both metrics, five groups of
equivalent-performing classifiers were shown, also, the size of the groups
ranged from three to five methods so, the statistical differences between
most of the methods were pretty small.

Finally, regarding the one-to-one comparisons, Table 3.9 shows the
Bayesian hierarchical sign test for each pair of methods belonging to this
part of the study. It should be noted that the Gini vs WGini comparison
was not reported here, because already appears in Table 3.6. In view of the
comparisons between Gini vs resampling (RUS, ROS, and RB), a clear dis-
crepancy is shown between the MCC and the AUC metrics for both ensem-
ble families (BAG and GBT). In view of MCC, the Gini variants performed
better than the resampling-based variants by a narrow margin. On the con-
trary, the resampling-based variants clearly performed better for the AUC
metric (i.e., Right region values were close to 1). Using weighted Gini, for
BAG ensembles could be sufficient as it has shown itself to be marginally
better than applying any kind of resampling. Nevertheless, it was unclear
whether resampling might be beneficial for GBT ensembles, as the differ-
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Figure 3.2: A Friedman–Nemenyi test comparison of the different ensemble
classifiers performing resampling for each base classifier, according toMCC
(a) and AUC (b) metrics. The methods connected with a thick horizontal
line showed no significant differences between each other (at a level of α =
0.05). It was not clear whether resampling was beneficial or not for the
MCC. The use of resampling improved AUC performance.

ences were minimal and opted for one option or the other depending on
the metric in use. Finally, regarding the comparisons between resampling
methods (RUS, ROS, andRB), no clearwinnerwas found either for the BAG
or for the GBT ensembles. The differences that could led to the choice of
onemethod or the other were very small, and thus, the decisionwill depend
on the specific dataset and metric.

3.5.3 Comparing the two strategies

Having separately tested the performance of the two strategies, a compari-
son of all the previous methods will be reported in this subsection.

In Table 3.10, the average ranks of all the algorithms of the study are
shown. GBT+ROS was the best method, followed by most of the other
alternatives of GBT which were considered statistically equivalent accord-
ing to the Hochberg procedure at a confidence interval of 95% (for MCC,
RUS+GBT was statistically worse; while for AUC, SMOTE+GBT was statis-
tically worse). The worst results were for ROSE (for all the ensembles) and
RANF (without resampling) that were ranked lowest in the tables.

Figure 3.3 shows the performance of themethods by using average ranks
with one-to-one comparisons: one metric on each axis. The marker aspect
represents: the resampling strategy (shape), the ensemble method (color),
and the two resampling strategies (unfilled means resampling before train-
ing, and filled means resampling within the ensemble). Two clusters could
be found, one containedmost of the GBT variants on the best positions (left
lower corner), while the other contained RANF and BAG variants, which
were located farther to the right. Differences between RANF and BAGwere
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Comparison Metric BAG GBT

Left ROPE Right Left ROPE Right

Gini vs RUS MCC 0.6950 0.0000 0.3050 0.7278 0.0000 0.2722

AUC 0.1430 0.0000 0.8570 0.0575 0.0000 0.9425

Gini vs ROS MCC 0.6218 0.0000 0.3782 0.5615 0.0000 0.4385

AUC 0.0725 0.0002 0.9273 0.0755 0.0000 0.9245

Gini vs RB MCC 0.6160 0.0000 0.3840 0.7155 0.0000 0.2845

AUC 0.0833 0.0000 0.9167 0.1235 0.0005 0.8760

WGini vs RUS MCC 0.6557 0.0000 0.3443 0.5727 0.0000 0.4273

AUC 0.5027 0.0015 0.4958 0.4460 0.0027 0.5513

WGini vs ROS MCC 0.4765 0.0000 0.5235 0.4840 0.0000 0.5160

AUC 0.4998 0.0232 0.4770 0.4830 0.0350 0.4820

WGini vs RB MCC 0.5242 0.0000 0.4758 0.5865 0.0000 0.4135

AUC 0.5458 0.0025 0.4517 0.4835 0.0095 0.5070

RUS vs ROS MCC 0.3788 0.0000 0.6212 0.3357 0.0000 0.6643

AUC 0.5135 0.0002 0.4863 0.4677 0.0225 0.5098

RUS vs RB MCC 0.4283 0.0000 0.5717 0.5125 0.0000 0.4875

AUC 0.5222 0.0000 0.4778 0.5092 0.0005 0.4903

ROS vs RB MCC 0.5057 0.0000 0.4943 0.6233 0.0000 0.3767

AUC 0.5157 0.0000 0.4843 0.4907 0.0005 0.5088

Table 3.9: Bayesian hierarchical sign tests comparing different resampling
methods (RUS, ROS, and RB) applied within the ensemble (BAG andGBT),
according to the MCC and AUC metrics. Resampling methods were also
compared to base ensembles using Gini and Weighted Gini impurities. De-
pending on the specific metric, resampling-based ensembles would be rec-
ommended or not. Which resampling method is better, is unclear.
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Algorithm Avg. rank

GBT+ROS 2.9375
ROS+GBT 4.5625
GBT (Gini) 4.6250
GBT (WGini) 5.0625
SMOTE+GBT 5.6250
GBT+RB 5.8750
GBT+RUS 6.7500
RUS+GBT 8.6250
BAG (Gini) 11.0000
BAG+ROS 12.8125
BAG (WGini) 13.9375
BAG+RUS 14.0000
BAG+RB 14.6250
ROS+BAG 15.5625
ROS+RANF 15.6875
RUS+RANF 15.9375
RUS+BAG 16.0000
SMOTE+BAG 16.2500
RANF (WGini) 16.3125
RANF (Gini) 16.3750
SMOTE+RANF 16.4375
ROSE+GBT 19.0312
ROSE+RANF 20.7500
ROSE+BAG 21.2188

Algorithm Avg. rank

GBT+ROS 1.8125
GBT+RB 3.3750
GBT+RUS 4.1875
ROS+GBT 4.7500
GBT (WGini) 5.6875
RUS+GBT 6.6875
SMOTE+GBT 8.1250
BAG+RUS 10.3750
BAG+ROS 11.5625
BAG (WGini) 12.5625
RUS+BAG 12.6875
BAG+RB 12.8750
RUS+RANF 13.1875
ROS+RANF 13.6250
RANF (WGini) 13.9375
ROS+BAG 14.1875
SMOTE+RANF 14.2500
SMOTE+BAG 15.1875
GBT (Gini) 16.0000
ROSE+GBT 19.8438
ROSE+RANF 20.3125
ROSE+BAG 20.5312
BAG (Gini) 21.5000
RANF (Gini) 22.7500

(a) MCC (b) AUC

Table 3.10: Average ranks of all ensemble classifiers evaluated in this study,
according to theMCC andAUCmetrics. The statistical differences between
the methods below the dashed line and the best method were significant,
according to the Hochberg procedure at a confidence level of 95%. GBT-
based ensembles showed themselves to be statistically better than BAG and
RANF ensembles.

not so clear, but in general the BAG variants tended to perform better than
the RANF ones. The differences between the metrics were remarkable for
some methods, especially for the Gini variants (represented with circular
markers), which were positioned far away from the diagonal line. This find-
ing offers an interesting insight, insofar as the use of resampling may be not
beneficial for the performance of some classifiers according to some met-
rics. For this reason, the use of several metrics is advisable and may even
be crucial when drawing proper conclusions on imbalance within Big Data
environments.

The rankings suggested to us that resampling before training had a fairly
similar performance to resampling for each base classifier within the ensem-
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Figure 3.3: Average ranks for all ensemble methods according to MCC and
AUC metrics. The shape of the marker represents the resampling strategy,
the color of the marker represents the ensemble method, and the fill of the
marker represents the two resampling strategies: before training (unfilled),
and within the ensemble (filled). In general, GBT variants showed better
performance than RANF and BAG variants.

ble. This intuitive evaluation may be contrasted in Figure 3.4, which repre-
sents several Bayesian hierarchical sign tests compared to the performance
of resampling before training the ensemble (L) with the performance of re-
sampling within the ensemble (R). The application of RUS (Figure 3.4.a)
before training, for BAG ensembles, showed a slightly better performance.
On the contrary, for GBT ensembles, applying RUS at each iteration of the
ensemble marginally outperformed its application once before training. Fi-
nally, ROS (Figure 3.4.b) showed that it was moderately better when used
for each classifier within the ensemble than when used to obtain a balanced
dataset with which to train all the classifiers in the ensemble. Irrespective
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Figure 3.4: Bayesian hierarchical sign test heatmaps showing the influence
of RUS and ROS resampling before training BAG (top row) and GBT (bot-
tom row) ensembles (L), compared with the influence of RUS and ROS re-
sampling on each iteration of the ensemble (R). Each column represents
one metric. There was no clear winner, as the each approach performed
better than the others as a function of the specific dataset.

of the detailed analysis presented above, the overall idea, as the clouds of
points were almost centered and situated outside the ROPE region, was that
no clear winner could be named. Neither could a similar performance be-
tween strategies be noted. Therefore, depending on the specific dataset one
approach will be better than the other and vice-versa.

3.5.4 Execution time analysis

In this study, two popular families of ensembles were evaluated: Bagging
and Boosting. Their intrinsic differences make their execution times signif-
icantly different. As is well known, execution times are crucial in Big Data
environments. With this in mind, the training and prediction times of
the different ensemble algorithms and resampling techniques for the
ECBDL14’10M dataset (see Table 3.3) are presented in this section. Fig-
ure 3.5 shows a bar plot with the training and prediction times for all en-
semble methods that were tested. On the left hand-side of the plot, orange
bars depict prediction times in microseconds (µs). On the right-hand side,
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Figure 3.5: Comparison of execution times for ECBDL14’10M dataset. Or-
ange bars (on the left) depict the prediction time inmicroseconds (µs). Pur-
ple bars (on the right) depict the training time in seconds (s). RANF showed
itself to be the fastest ensemble method, and RUS, the fastest resampling
strategy. GBT ensembles and SMOTE resampling strategies, were the two
slowest choices. Also, resampling before training the ensemble was faster
than resampling within the ensemble.

purple bars depict training times in seconds (s). BAG, RANF, and GBT
ensembles (from top to bottom) were grouped with black horizontal lines.

In training, the fastestmethodwasRandomForest trainedwith a dataset
subsampled by RUS, followed by Random Forest without resampling (Gini
and WGini variants). This result was predictable, because RUS decreases
the number of instances in the dataset (speeding up the training process),
and Random Forest builds decision trees using feature subsets. The ap-
proaches that apply resampling within the ensemble (BAG+RUS,
BAG+ROS, BAG+RB; and GBT+RUS, GBT+ROS, GBT+RB) were compu-
tationally more expensive than those that apply it before training, which
was therefore reflected by their execution times. The slowest method was

126



Experimental
evaluation of
ensemble
classifiers for
imbalance en
Big Data

SMOTE+GBT. It is well known that SMOTE is a time-consuming method,
because of the kNN computation, and its combinationwith boostingmakes
it a less recommendable alternative for Big Data in terms of training time.

In prediction, the differences between the tested methods were much
smaller. This result is because, once all the trees of an ensemble are built,
voting and prediction is almost the same, regardless of the ensemble family.
The resampling before training methods were the fastest, followed by the
methods that involved training each base classifier with a different resample.

3.5.5 Discussion

Theexperimental results revealed thatGBToutperformedBagging andRan-
dom Forest for imbalanced Big Data classification, which is in line with
what happens with normal-sized datasets, where Boosting has traditionally
outperformed Bagging. More specifically, the combination of ROS within
the GBT training (i.e., GBT+ROS) was the best method for all themeasures.
The main drawback of GBT is the much lengthier time taken for training
than Bagging approaches (e.g., RUS+GBT was around 13 times slower than
RUS+BAG). Also, GBT scalability in Big Data was limited, because Boost-
ing performs an iterative process, that cannot be fully parallelized.

Overall, resampling for each base classifier in the ensemble had a better
performance than resampling only once before training. Nevertheless, the
differences were not as clear as might be expected, in view of the Hochberg
procedure that showed their statistical equivalence, and the Bayesian tests
that showed quite balanced distributions for both alternatives, revealing
that one strategy could outperform the other on around 50% of occasions.

SMOTE is a powerful but computationally expensive method, which
appears not to be as good in BigData as it is in normal-sized datasets. Some-
thing similar happens with ROSE that, although it has proven its valid-
ity with normal-sized datasets, clearly showed a worse performance with
datasets of greater size. In other words, methods that generate synthetic ex-
amples were unable to outperform ROS, which is simpler and less computa-
tionally intensive. Our intuitive understanding of this unexpected behavior
is that, although the proportion of instances inminority classes remains un-
favorable in Big Data, it seems that the increase in these instances in large
datasets is enough to make introducing new synthetic instances no benefi-
cial.

It is worth noting that algorithm performance differs greatly depending
on the metric that is used. Special attention should be paid to studies and
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experimentation, because the use of one metric or another might lead to
completely different conclusions. For this reason, the use of several imbal-
ance metrics is highly recommended within Big Data environments, just as
it is for normal-sized datasets.

With regard to theMCC, ensemblemethodswithout balancing the data-
sets (i.e., using theGini index)were quite competitive, specially BAG,which
was ranked better than its combinationwith any resampling technique. Nev-
ertheless, it has to be noted that for some datasets, such as ECBDL14 and
HIGGS, an ensemble trainedwithout any balancing technique is the alterna-
tive that clearly performed worst of all. Bearing this in mind, and knowing
that Gini variants achieved very poor results for AUC metric, we can af-
firm that balancing techniques can actually contribute functional methods
tomitigate the problem of imbalance within Big Data. Whenever no resam-
pling techniques are used, we highly encourage the use of impurity indexes,
at the least, that take into account the imbalance, such as the weighted Gini
index. The use of weighted Gini has demonstrated itself in this study to be
a reasonably good solution for imbalanced Big Data: it is fast and straight-
forward to apply by instance weighting.

3.6 CONCLU S ION S AND FUTURE WORK

Although there are numerous studies on the classification of imbalanced
data, these studies are practically non-existent in the context of imbalanced
Big Data classification. This paper has shed light on the impact of using
data-level approaches within Big Data ensemble classification. Those ap-
proaches mainly involve the use of pre-processing techniques such as RUS,
ROS, SMOTE, or ROSE for transforming an imbalanced dataset into a bal-
anced one. Whether rebalancing is better performed once only before train-
ing the ensemble, or as many times as there are base classifiers contained
in the ensemble, was also evaluated. All the experiments were performed
on Bagging-based and Boosting-based ensembles, highlighting how resam-
pling techniques specifically affect both ensemble families, in terms of per-
formance. The conclusions of the study, although some might appear am-
biguous, can be very useful to help guide future research work into imbal-
ance in Big Data classification.

Within the experimental framework, Boosting ensembles, although re-
quiring more computational power, clearly outperformed Bagging-based
alternatives. The use on the trees construction of an impurity index that
takes into account the imbalance, such as weighted Gini, offered roughly
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equivalent results to the use of resampling techniques. Surprisingly, the
training of the ensembles on the original datasets without any change (us-
ing the standard Gini index), offered quite good results overall (for MCC
and F1-score metrics). However, this procedure is not advisable, because
the results were dreadful for some datasets (clearly visible when AUC or G-
mean were used), but still an accurate indicator of a lack of robust solutions
for improving the performance for all the metrics. Regarding the resam-
pling methods, ROS generally achieved better results, but with only a min-
imal advantage, closely followed by RUS and SMOTE with no statistically
significant differences. In contrast, ROSE was clearly the worst alternative.
Our conclusion is therefore that complex methods that involve the gener-
ation of synthetic instances are not as effective for Big Data as they are for
normal-sized datasets. Although they could, depending on the dataset, be
the best option, in general we discourage their use in favor of simpler and
faster methods such as ROS.

Ensembles specifically designed to overcome the imbalance problem
(i.e., resampling before training each base classifier), achieved better per-
formance than resampling a dataset once and then training a conventional
ensemble with it. Nevertheless, the differences between the two strategies
were very small, suggesting that whether one strategy is actually better than
the other will strongly depend on the dataset to which it is applied. There-
fore, whenever execution times are considered critical, as it is often the case
with BigData, the general recommendationwould be to use the faster strate-
gies based on a single initial resampling or the use of impurity indexes that
take into account imbalance (e.g., weighted Gini).

An interesting insight is the importance of using different evaluation
metrics when dealing with imbalance problems. This is preferable, because
each metric uses the values within the confusion matrix in a specific way
and therefore has its own strengths and weaknesses. Hence, using more
than one metric yields a more informed view of the results and a better
evaluation of the performance of a single classifier. The conclusions that can
be drawn by using MCC and F1-score are very different than using AUC or
G-mean, thus at least one metric of each group should be used for future
Big Data imbalance studies (in addition, it is enough to use one from each
group, since the conclusions that can be obtained are similar for the two
metrics within each group).

Despite the advances relating to the classification of Big Data in recent
years, research into imbalanced Big Data is still scarce and more studies
and surveys are needed to unify the publications that periodically emerge.
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More precisely, the presence of the pathologies that are traditionally associ-
ated with imbalanced datasets, such as overlapping, noisy examples, small
disjuncts, and borderline instances (Díez-Pastor et al., 2015a), have yet to
be studied in Big Data.

The resampling in this study perfectly balanced the datasets with 50% of
the examples belonging to each class (with the exception of RB, for which
the imbalanced ratios were random for each base classifier). Another in-
teresting future line of research would be the evaluation of how different
resampling ratios affect different classifiers.

In view of the results given by the data-level approaches for imbalanced
Big Data learning, we place the focus on the exploration of algorithm-level
approaches, which should assist more fruitful advances for these kinds of
problems. An interesting research line could be the evaluation of novel
forest-based approaches that have recently emerged, such as Random For-
est quantile classifier (O’Brien and Ishwaran, 2019) and the adaptation of
ObliqueRandomForest (Katuwal et al., 2020), for imbalanced learning, spe-
cially for large datasets. The design and implementation of new classifiers
for Big Data frameworks, such as Apache Spark, is a promising research line
nowadays, as is the adaptation and revalidation of any popular proposal for
normal-sized datasets.
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APPEND IX A . FU L L R E SU LT S

This appendix gathers the results of the experimentation performed in the
paper for all the measures that were taken.

Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9557 0.9470 0.9455 0.9350 0.9426 0.9025 0.9238 0.9268 0.9269 0.9276 0.9284 0.5359 0.9913 0.9791 0.9706 0.9815 0.9806 0.9012

COVTYPE 1vs3 0.6913 0.5899 0.5787 0.5757 0.5673 0.1623 0.1732 0.5282 0.5191 0.5180 0.5218 0.1622 0.8654 0.7974 0.7740 0.7994 0.8029 0.1623

COVTYPE 1vs2 0.9830 0.9790 0.9771 0.9780 0.9774 0.9522 0.9792 0.9710 0.9725 0.9733 0.9711 0.6432 0.9979 0.9947 0.9940 0.9964 0.9964 0.9520

COVTYPE 0vs4 0.7503 0.6715 0.6589 0.6592 0.6670 0.2021 0.6756 0.6449 0.6447 0.6443 0.6524 0.2018 0.9100 0.8012 0.7777 0.8075 0.8093 0.2021

COVTYPE 0vs3 0.9034 0.7815 0.7862 0.7741 0.7744 0.5623 0.8187 0.7458 0.7510 0.7491 0.7386 0.1378 0.9767 0.9490 0.9249 0.9519 0.9513 0.5628

COVTYPE 0vs2 0.8975 0.8160 0.8121 0.8135 0.8135 0.3428 0.7964 0.8129 0.8059 0.8048 0.8102 0.3474 0.9392 0.8948 0.8908 0.8967 0.9010 0.3428

ECBDL’14 1M 0.0000 0.0912 0.0898 0.0880 0.1028 0.0645 0.0000 0.0980 0.0973 0.0974 0.1069 0.0887 0.0120 0.1142 0.0988 0.1140 0.1372 0.0814

SUSY IR16 0.3893 0.3064 0.3073 0.2999 0.2906 0.3563 0.3596 0.3093 0.3133 0.3126 0.2990 0.3573 0.4696 0.3533 0.3513 0.3539 0.3440 0.4848

SUSY IR4 0.5877 0.5833 0.5841 0.5817 0.5770 0.5902 0.5422 0.5885 0.5916 0.5903 0.5844 0.5963 0.6297 0.6298 0.6287 0.6292 0.6240 0.6133

KDDCUP dos vs r2l 0.9753 0.9596 0.3093 0.8565 0.7676 0.2643 0.9500 0.8095 0.4421 0.8746 0.8178 0.4570 0.9951 0.9889 0.2914 0.9938 0.9956 0.2686

KDDCUP dos vs nor. 0.9990 0.9993 0.9991 0.9994 0.9994 0.9962 0.9984 0.9983 0.9982 0.9982 0.9982 0.9957 1.0000 0.9999 0.9999 0.9999 0.9999 0.9964

HEPMASS IR16 0.6480 0.4279 0.4108 0.4323 0.4592 0.3095 0.3258 0.3161 0.3161 0.3164 0.3301 0.2949 0.6640 0.4644 0.4611 0.4639 0.5522 0.2765

HIGGS IR16 0.0406 0.1816 0.1820 0.1795 0.1820 0.1770 0.0000 0.1967 0.1976 0.1968 0.2022 0.1797 0.1180 0.2352 0.2336 0.2348 0.2252 0.2245

HEPMASS IR4 0.7300 0.6957 0.6948 0.6962 0.6822 0.6154 0.6497 0.6249 0.6255 0.6250 0.6319 0.6064 0.7599 0.7326 0.7319 0.7321 0.7532 0.5795

HIGGS IR4 0.1514 0.4388 0.4373 0.4377 0.4326 0.3591 0.0189 0.4547 0.4558 0.4555 0.4598 0.3639 0.3691 0.5128 0.5113 0.5122 0.4967 0.3914

ECBDL’14 10M 0.0000 0.0907 0.0898 0.0913 0.1058 0.0662 0.0000 0.0970 0.0968 0.0976 0.1019 0.0916 0.0160 0.1123 0.1093 0.1122 0.1558 0.0853

Table 3.11: Experimental results (F1-score) performing resampling before
ensemble training. The best results for each classifier appear within gray
boxes, while the best overall results appearwithin black boxes. Gini variants,
specially the GBT one, showed the best performance for the majority of the
datasets.

Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9522 0.9438 0.9422 0.9314 0.9392 0.8976 0.9206 0.9227 0.9229 0.9235 0.9244 0.5602 0.9906 0.9776 0.9686 0.9801 0.9791 0.8963

COVTYPE 1vs3 0.6753 0.5789 0.5696 0.5655 0.5592 0.0043 0.2925 0.5263 0.5186 0.5173 0.5210 0.0000 0.8548 0.7897 0.7675 0.7917 0.7947 0.0043

COVTYPE 1vs2 0.9801 0.9756 0.9734 0.9745 0.9738 0.9447 0.9759 0.9663 0.9680 0.9689 0.9665 0.6207 0.9975 0.9938 0.9930 0.9959 0.9958 0.9445

COVTYPE 0vs4 0.7408 0.6848 0.6741 0.6739 0.6803 0.2409 0.6734 0.6577 0.6580 0.6572 0.6640 0.2405 0.9051 0.8036 0.7822 0.8095 0.8108 0.2409

COVTYPE 0vs3 0.8993 0.7829 0.7870 0.7762 0.7763 0.5864 0.8184 0.7471 0.7514 0.7504 0.7413 0.0835 0.9751 0.9463 0.9218 0.9493 0.9487 0.5868

COVTYPE 0vs2 0.8852 0.8033 0.7995 0.8008 0.8008 0.3267 0.7828 0.7987 0.7921 0.7905 0.7961 0.3325 0.9317 0.8858 0.8816 0.8878 0.8921 0.3267

ECBDL’14 1M 0.0000 0.1275 0.1269 0.1226 0.1203 0.0883 0.0000 0.1353 0.1340 0.1344 0.1282 0.1180 0.0602 0.1555 0.1405 0.1560 0.1169 0.1166

SUSY IR16 0.4385 0.3061 0.3068 0.3002 0.2917 0.3334 0.4284 0.3091 0.3123 0.3117 0.3017 0.3381 0.4970 0.3537 0.3519 0.3541 0.3445 0.4524

SUSY IR4 0.5345 0.4685 0.4695 0.4665 0.4604 0.4830 0.5174 0.4752 0.4793 0.4775 0.4705 0.4884 0.5796 0.5295 0.5281 0.5287 0.5221 0.5569

KDDCUP dos vs r2l 0.9757 0.9596 0.4275 0.8650 0.7890 0.3895 0.9508 0.8245 0.5325 0.8818 0.8316 0.5442 0.9955 0.9885 0.4128 0.9938 0.9956 0.3936

KDDCUP dos vs nor. 0.9987 0.9991 0.9989 0.9993 0.9993 0.9952 0.9980 0.9979 0.9978 0.9978 0.9977 0.9946 0.9999 0.9999 0.9998 0.9999 0.9999 0.9954

HEPMASS IR16 0.6565 0.4319 0.4190 0.4353 0.4562 0.3364 0.4255 0.3428 0.3431 0.3433 0.3529 0.3244 0.6706 0.4742 0.4714 0.4737 0.5406 0.3121

HIGGS IR16 0.1158 0.1597 0.1591 0.1569 0.1497 0.1168 0.0000 0.1750 0.1761 0.1751 0.1746 0.1203 0.1944 0.2306 0.2289 0.2301 0.2070 0.1691

HEPMASS IR4 0.6920 0.6153 0.6141 0.6158 0.5988 0.5253 0.6353 0.5360 0.5369 0.5363 0.5426 0.5159 0.7188 0.6636 0.6628 0.6630 0.6892 0.4917

HIGGS IR4 0.2004 0.2663 0.2654 0.2644 0.2541 0.1923 0.0843 0.2883 0.2900 0.2895 0.2956 0.1976 0.3440 0.3743 0.3723 0.3735 0.3496 0.2606

ECBDL’14 10M 0.0000 0.1252 0.1246 0.1250 0.1256 0.0922 0.0000 0.1348 0.1346 0.1351 0.1275 0.1213 0.0717 0.1620 0.1583 0.1617 0.1374 0.1210

Table 3.12: Experimental results (MCC) performing resampling before the
ensemble training. The best results for each classifier appear within gray
boxes, while the best overall results appearwithin black boxes. Gini variants,
specially the GBT one, showed the best performance for the majority of the
datasets.
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Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9690 0.9933 0.9931 0.9924 0.9929 0.9848 0.9288 0.9892 0.9901 0.9900 0.9901 0.9260 0.9941 0.9973 0.9971 0.9980 0.9977 0.9847

COVTYPE 1vs3 0.7702 0.8902 0.8898 0.8865 0.8875 0.0142 0.3081 0.8824 0.8807 0.8798 0.8813 0.0000 0.9013 0.9629 0.9604 0.9630 0.9628 0.0142

COVTYPE 1vs2 0.9930 0.9958 0.9955 0.9954 0.9953 0.9877 0.9821 0.9916 0.9919 0.9926 0.9924 0.9015 0.9988 0.9989 0.9989 0.9992 0.9992 0.9877

COVTYPE 0vs4 0.8221 0.9594 0.9586 0.9575 0.9575 0.7184 0.7505 0.9472 0.9483 0.9471 0.9475 0.7178 0.9379 0.9805 0.9785 0.9810 0.9802 0.7184

COVTYPE 0vs3 0.9190 0.9749 0.9748 0.9746 0.9743 0.9374 0.8423 0.9627 0.9621 0.9639 0.9638 0.3068 0.9826 0.9939 0.9924 0.9941 0.9941 0.9374

COVTYPE 0vs2 0.9322 0.9629 0.9626 0.9628 0.9627 0.7184 0.8356 0.9580 0.9581 0.9568 0.9579 0.7252 0.9608 0.9825 0.9821 0.9829 0.9833 0.7184

ECBDL’14 1M 0.0000 0.7042 0.7048 0.6983 0.6476 0.6257 0.0000 0.7101 0.7083 0.7090 0.6612 0.6868 0.0778 0.7254 0.7209 0.7272 0.3837 0.6914

SUSY IR16 0.5056 0.7690 0.7691 0.7672 0.7644 0.7331 0.4761 0.7705 0.7708 0.7705 0.7715 0.7446 0.5760 0.7915 0.7911 0.7915 0.7876 0.6873

SUSY IR4 0.6773 0.7681 0.7684 0.7678 0.7654 0.7378 0.6275 0.7701 0.7706 0.7705 0.7713 0.7483 0.7086 0.7923 0.7920 0.7922 0.7903 0.7000

KDDCUP dos vs r2l 0.9758 0.9984 0.9993 0.9984 0.9989 0.9986 0.9512 0.9997 0.9996 0.9997 0.9999 0.9996 0.9953 0.9973 0.9992 0.9979 0.9975 0.9992

KDDCUP dos vs nor. 0.9997 0.9998 0.9998 0.9998 0.9998 0.9987 0.9996 0.9996 0.9996 0.9996 0.9995 0.9974 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987

HEPMASS IR16 0.7157 0.8329 0.8341 0.8327 0.8308 0.8165 0.4422 0.8200 0.8205 0.8206 0.8218 0.8111 0.7288 0.8621 0.8615 0.8618 0.8462 0.8052

HIGGS IR16 0.1444 0.6642 0.6638 0.6613 0.6526 0.5493 0.0000 0.6774 0.6783 0.6776 0.6702 0.5525 0.2543 0.7264 0.7253 0.7260 0.6979 0.5210

HEPMASS IR4 0.7804 0.8328 0.8316 0.8322 0.8321 0.8149 0.7020 0.8197 0.8202 0.8200 0.8213 0.8106 0.8094 0.8616 0.8616 0.8615 0.8538 0.7955

HIGGS IR4 0.2898 0.6622 0.6591 0.6610 0.6565 0.5541 0.0977 0.6770 0.6779 0.6775 0.6794 0.5587 0.4948 0.7265 0.7255 0.7260 0.7097 0.5606

ECBDL’14 10M 0.0000 0.7000 0.7001 0.6985 0.6554 0.6373 0.0000 0.7107 0.7108 0.7105 0.6761 0.6883 0.0899 0.7462 0.7431 0.7458 0.4532 0.6980

Table 3.13: Experimental results (G-mean) performing resampling before
ensemble training. The best results for each classifier appear within gray
boxes, while the best overall results appear within black boxes. WGini, RUS,
ROS or SMOTE were preferable depending on the ensemble in use.

Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9694 0.9933 0.9931 0.9924 0.9929 0.9848 0.9313 0.9892 0.9901 0.9900 0.9901 0.9286 0.9941 0.9973 0.9971 0.9980 0.9977 0.9847

COVTYPE 1vs3 0.7939 0.8902 0.8898 0.8865 0.8876 0.5001 0.5474 0.8830 0.8816 0.8807 0.8821 0.5000 0.9055 0.9629 0.9605 0.9630 0.9628 0.5001

COVTYPE 1vs2 0.9930 0.9958 0.9955 0.9954 0.9953 0.9877 0.9822 0.9916 0.9919 0.9926 0.9924 0.9064 0.9988 0.9989 0.9989 0.9992 0.9992 0.9877

COVTYPE 0vs4 0.8366 0.9595 0.9588 0.9577 0.9577 0.7580 0.7802 0.9473 0.9484 0.9472 0.9475 0.7576 0.9396 0.9806 0.9786 0.9810 0.9803 0.7580

COVTYPE 0vs3 0.9221 0.9750 0.9749 0.9747 0.9744 0.9386 0.8545 0.9627 0.9621 0.9640 0.9639 0.5471 0.9828 0.9939 0.9924 0.9941 0.9941 0.9386

COVTYPE 0vs2 0.9339 0.9630 0.9628 0.9630 0.9628 0.7580 0.8479 0.9580 0.9582 0.9569 0.9580 0.7630 0.9614 0.9825 0.9822 0.9830 0.9833 0.7580

ECBDL’14 1M 0.5000 0.7043 0.7053 0.6986 0.6641 0.6515 0.5000 0.7103 0.7085 0.7091 0.6751 0.6870 0.5030 0.7270 0.7210 0.7285 0.5638 0.6952

SUSY IR16 0.6264 0.7701 0.7702 0.7680 0.7649 0.7466 0.6125 0.7716 0.7722 0.7718 0.7719 0.7553 0.6641 0.7934 0.7928 0.7934 0.7892 0.7278

SUSY IR4 0.7200 0.7689 0.7693 0.7685 0.7661 0.7495 0.6909 0.7712 0.7720 0.7717 0.7718 0.7572 0.7433 0.7941 0.7937 0.7939 0.7918 0.7357

KDDCUP dos vs r2l 0.9761 0.9984 0.9993 0.9984 0.9989 0.9986 0.9524 0.9997 0.9996 0.9997 0.9999 0.9996 0.9953 0.9973 0.9992 0.9979 0.9975 0.9992

KDDCUP dos vs nor. 0.9997 0.9998 0.9998 0.9998 0.9998 0.9987 0.9996 0.9996 0.9996 0.9996 0.9995 0.9974 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987

HEPMASS IR16 0.7550 0.8343 0.8348 0.8343 0.8336 0.8183 0.5976 0.8214 0.8220 0.8221 0.8223 0.8144 0.7645 0.8626 0.8619 0.8623 0.8506 0.8126

HIGGS IR16 0.5102 0.6669 0.6659 0.6644 0.6526 0.5961 0.5000 0.6774 0.6783 0.6776 0.6714 0.5986 0.5313 0.7265 0.7254 0.7261 0.6989 0.6061

HEPMASS IR4 0.8006 0.8342 0.8331 0.8337 0.8327 0.8171 0.7444 0.8212 0.8218 0.8216 0.8222 0.8139 0.8237 0.8620 0.8620 0.8619 0.8564 0.8053

HIGGS IR4 0.5381 0.6663 0.6659 0.6651 0.6565 0.5987 0.5047 0.6771 0.6779 0.6776 0.6795 0.6017 0.6119 0.7265 0.7256 0.7261 0.7099 0.6202

ECBDL’14 10M 0.5000 0.7000 0.7002 0.6985 0.6709 0.6587 0.5000 0.7108 0.7108 0.7106 0.6834 0.6891 0.5040 0.7462 0.7432 0.7458 0.5896 0.6994

Table 3.14: Experimental results (AUC) performing resampling before en-
semble training. Thebest results for each classifier appearwithin gray boxes,
while the best overall results appear within black boxes. WGini, RUS, ROS
or SMOTE were preferable depending on the ensemble in use.
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Algorithm Avg. rank

SMOTE+GBT 3.0000
ROS+GBT 3.1875
GBT (WGini) 3.4375
GBT (Gini) 4.8125
RUS+GBT 5.7500
BAG (Gini) 8.7500
BAG (WGini) 9.3750
SMOTE+BAG 10.0000
ROS+BAG 10.5000
RUS+BAG 10.8125
SMOTE+RANF 10.9375
ROS+RANF 11.1875
RUS+RANF 11.5000
RANF (WGini) 11.5625
RANF (Gini) 12.5000
ROSE+GBT 13.9062
ROSE+RANF 14.5625
ROSE+BAG 15.2188

Algorithm Avg. rank

ROS+GBT 3.0000
GBT (WGini) 3.4375
GBT (Gini) 3.4375
SMOTE+GBT 4.0000
RUS+GBT 5.5625
BAG (Gini) 7.9375
BAG (WGini) 9.1875
ROS+BAG 10.5000
RUS+BAG 10.7500
SMOTE+BAG 11.0625
ROS+RANF 11.0625
RUS+RANF 11.2500
SMOTE+RANF 11.5625
RANF (WGini) 11.5625
RANF (Gini) 11.7500
ROSE+GBT 14.0312
ROSE+RANF 15.3125
ROSE+BAG 15.5938

Algorithm Avg. rank

ROS+GBT 2.4375
GBT (WGini) 2.7500
RUS+GBT 3.7500
SMOTE+GBT 5.1875
BAG (WGini) 7.3750
RUS+BAG 7.6875
RUS+RANF 8.7500
ROS+BAG 8.7500
ROS+RANF 9.0625
SMOTE+RANF 9.1875
RANF (WGini) 9.3750
SMOTE+BAG 9.5625
GBT (Gini) 11.5625
ROSE+GBT 14.3438
ROSE+BAG 14.4688
ROSE+RANF 14.5000
BAG (Gini) 15.5000
RANF (Gini) 16.7500

Algorithm Avg. rank

ROS+GBT 2.3750
GBT (WGini) 2.8125
RUS+GBT 3.7500
SMOTE+GBT 5.1875
BAG (WGini) 7.4375
RUS+BAG 7.5625
RUS+RANF 8.6875
ROS+BAG 8.7500
ROS+RANF 9.1250
SMOTE+RANF 9.3750
RANF (WGini) 9.4375
SMOTE+BAG 9.6875
GBT (Gini) 11.0625
ROSE+GBT 14.1562
ROSE+BAG 14.6562
ROSE+RANF 14.6875
BAG (Gini) 15.5000
RANF (Gini) 16.7500

(a) F1-score (b) MCC (c) G-mean (d) AUC

Table 3.15: Average ranks of the ensemble classifiers performing resampling
before training, according to the F1-score (a), theMCC (b), the G-mean (c),
and the AUC (d) metrics. The methods below the dashed line showed sig-
nificant differences alongside the best one according to theHochberg proce-
dure at a confidence level of 95%. Except for F1-score where SMOTE+GBT
was top ranked, ROS+GBT was the best method followed by GBT (WGini)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SMOTE +GBT

ROS +GBT

GBT (WGini)

GBT (Gini)

RUS +GBT

BAG (Gini)

BAG (WGini)

SMOTE +BAG

ROS +BAG RUS +BAG

SMOTE +RANF

ROS +RANF

RUS +RANF

RANF (WGini)

RANF (Gini)

ROSE +GBT

ROSE +RANF

ROSE +BAG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ROS +GBT

GBT (WGini)

GBT (Gini)

SMOTE +GBT

RUS +GBT

BAG (Gini)

BAG (WGini)

ROS +BAG

RUS +BAG SMOTE +BAG

ROS +RANF

RUS +RANF

SMOTE +RANF

RANF (WGini)

RANF (Gini)

ROSE +GBT

ROSE +RANF

ROSE +BAG

(a) F1-score (b) MCC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ROS +GBT

GBT (WGini)

RUS +GBT

SMOTE +GBT

BAG (WGini)

RUS +BAG

RUS +RANF

ROS +BAG

ROS +RANF SMOTE +RANF

RANF (WGini)

SMOTE +BAG

GBT (Gini)

ROSE +GBT

ROSE +BAG

ROSE +RANF

BAG (Gini)

RANF (Gini)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ROS +GBT

GBT (WGini)

RUS +GBT

SMOTE +GBT

BAG (WGini)

RUS +BAG

RUS +RANF

ROS +BAG

ROS +RANF SMOTE +RANF

RANF (WGini)

SMOTE +BAG

GBT (Gini)

ROSE +GBT

ROSE +BAG

ROSE +RANF

BAG (Gini)

RANF (Gini)

(c) G-Mean (d) AUC

Figure 3.6: A Friedman-Nemenyi test comparison of the different ensemble
classifiers performing resampling before training, according to the F1-score
(a), the MCC (b), the G-mean (c), and the AUC (d) metrics. Those meth-
ods connected with a thick horizontal line have no significant differences
between them (at a level ofα = 0.05). Close statistical equivalence between
many methods may be noted.

134



Experimental
evaluation of
ensemble
classifiers for
imbalance en
Big Data

Comparison Metric BAG RANF GBT

Left ROPE Right Left ROPE Right Left ROPE Right

Gini vs WGini F1-score 0.5720 0.0000 0.4280 0.2967 0.0000 0.7033 0.5797 0.0000 0.4203

MCC 0.6105 0.0000 0.3895 0.4058 0.0000 0.5942 0.6665 0.0000 0.3335

G-mean 0.0395 0.0000 0.9605 0.0060 0.0000 0.9940 0.0343 0.0000 0.9657

AUC 0.1180 0.0000 0.8820 0.0165 0.0000 0.9835 0.0648 0.0002 0.9350

Gini vs RUS F1-score 0.6693 0.0000 0.3307 0.3230 0.0000 0.6770 0.7370 0.0000 0.2630

MCC 0.7355 0.0000 0.2645 0.4263 0.0000 0.5737 0.7737 0.0000 0.2263

G-mean 0.0212 0.0000 0.9788 0.0008 0.0000 0.9992 0.0483 0.0000 0.9517

AUC 0.0695 0.0000 0.9305 0.0030 0.0000 0.9970 0.0845 0.0002 0.9153

Gini vs ROS F1-score 0.6243 0.0000 0.3757 0.2565 0.0000 0.7435 0.5440 0.0000 0.4560

MCC 0.6868 0.0000 0.3132 0.3832 0.0000 0.6168 0.6155 0.0000 0.3845

G-mean 0.0312 0.0000 0.9688 0.0025 0.0000 0.9975 0.0350 0.0000 0.9650

AUC 0.0628 0.0002 0.9370 0.0105 0.0000 0.9895 0.0695 0.0000 0.9305

Gini vs SMOTE F1-score 0.6280 0.0000 0.3720 0.3330 0.0000 0.6670 0.5127 0.0000 0.4873

MCC 0.7072 0.0000 0.2928 0.4433 0.0000 0.5567 0.6073 0.0000 0.3927

G-mean 0.0425 0.0000 0.9575 0.0052 0.0000 0.9948 0.1005 0.0000 0.8995

AUC 0.0985 0.0000 0.9015 0.0255 0.0000 0.9745 0.2112 0.0003 0.7885

Gini vs ROSE F1-score 0.8823 0.0000 0.1177 0.8965 0.0000 0.1035 0.9695 0.0000 0.0305

MCC 0.9145 0.0000 0.0855 0.9455 0.0000 0.0545 0.9768 0.0000 0.0232

G-mean 0.2498 0.0000 0.7502 0.1178 0.0000 0.8822 0.4673 0.0000 0.5327

AUC 0.4535 0.0000 0.5465 0.2827 0.0000 0.7173 0.6402 0.0000 0.3598

WGini vs RUS F1-score 0.6877 0.0015 0.3108 0.5877 0.0000 0.4123 0.6365 0.0000 0.3635

MCC 0.6723 0.0005 0.3272 0.5642 0.0000 0.4358 0.6230 0.0000 0.3770

G-mean 0.5315 0.0220 0.4465 0.5108 0.0002 0.4890 0.4940 0.0022 0.5038

AUC 0.5273 0.0235 0.4492 0.5252 0.0003 0.4745 0.4925 0.0037 0.5038

WGini vs ROS F1-score 0.5473 0.0000 0.4527 0.5025 0.0000 0.4975 0.4663 0.0000 0.5337

MCC 0.5465 0.0000 0.4535 0.5072 0.0000 0.4928 0.4635 0.0000 0.5365

G-mean 0.5127 0.0000 0.4873 0.5137 0.0000 0.4863 0.4775 0.0213 0.5012

AUC 0.5122 0.0000 0.4878 0.4990 0.0005 0.5005 0.4783 0.0195 0.5022

WGini vs SMOTE F1-score 0.5137 0.0000 0.4863 0.4908 0.0000 0.5092 0.4740 0.0000 0.5260

MCC 0.5302 0.0000 0.4698 0.5002 0.0000 0.4998 0.5042 0.0000 0.4958

G-mean 0.5457 0.0003 0.4540 0.5288 0.0012 0.4700 0.7298 0.0000 0.2702

AUC 0.5325 0.0008 0.4667 0.5360 0.0013 0.4627 0.6653 0.0000 0.3347

WGini vs ROSE F1-score 0.9575 0.0000 0.0425 0.9497 0.0000 0.0503 0.9490 0.0000 0.0510

MCC 0.9657 0.0000 0.0343 0.9585 0.0000 0.0415 0.9550 0.0000 0.0450

G-mean 0.9527 0.0000 0.0473 0.9527 0.0003 0.0470 0.9595 0.0000 0.0405

AUC 0.9417 0.0003 0.0580 0.9490 0.0000 0.0510 0.9480 0.0000 0.0520

RUS vs ROS F1-score 0.3382 0.0008 0.6610 0.3708 0.0002 0.6290 0.2965 0.0000 0.7035

MCC 0.3820 0.0012 0.6168 0.4263 0.0002 0.5735 0.3465 0.0000 0.6535

G-mean 0.5222 0.0055 0.4723 0.5208 0.0187 0.4605 0.4885 0.0145 0.4970

AUC 0.5155 0.0092 0.4753 0.5172 0.0248 0.4580 0.4810 0.0210 0.4980

RUS vs SMOTE F1-score 0.3850 0.0000 0.6150 0.3468 0.0002 0.6530 0.2550 0.0000 0.7450

MCC 0.4173 0.0000 0.5827 0.3957 0.0035 0.6008 0.3200 0.0003 0.6797

G-mean 0.5510 0.0000 0.4490 0.5735 0.0037 0.4228 0.8080 0.0020 0.1900

AUC 0.5317 0.0003 0.4680 0.5410 0.0043 0.4547 0.7295 0.0113 0.2592

RUS vs ROSE F1-score 0.8625 0.0000 0.1375 0.9848 0.0000 0.0152 0.9535 0.0000 0.0465

MCC 0.8760 0.0000 0.1240 0.9698 0.0000 0.0302 0.9515 0.0000 0.0485

G-mean 0.9120 0.0000 0.0880 0.9712 0.0005 0.0283 0.9692 0.0000 0.0308

AUC 0.8872 0.0000 0.1128 0.9660 0.0000 0.0340 0.9680 0.0000 0.0320

ROS vs SMOTE F1-score 0.4360 0.0000 0.5640 0.5358 0.0005 0.4637 0.3458 0.0067 0.6475

MCC 0.4567 0.0000 0.5433 0.6167 0.1293 0.2540 0.4675 0.0000 0.5325

G-mean 0.5250 0.0268 0.4482 0.1048 0.8502 0.0450 0.8200 0.0092 0.1708

AUC 0.4940 0.0307 0.4753 0.0813 0.8862 0.0325 0.6912 0.0828 0.2260

ROS vs ROSE F1-score 0.9320 0.0000 0.0680 0.9825 0.0000 0.0175 0.9818 0.0000 0.0182

MCC 0.9278 0.0000 0.0722 0.9865 0.0000 0.0135 0.9862 0.0000 0.0138

G-mean 0.9490 0.0000 0.0510 0.9732 0.0003 0.0265 0.9812 0.0000 0.0188

AUC 0.9172 0.0000 0.0828 0.9828 0.0005 0.0167 0.9888 0.0000 0.0112

SMOTE vs ROSE F1-score 0.8945 0.0000 0.1055 0.9718 0.0000 0.0282 0.9912 0.0000 0.0088

MCC 0.8992 0.0000 0.1008 0.9597 0.0000 0.0403 0.9908 0.0000 0.0092

G-mean 0.8990 0.0000 0.1010 0.9313 0.0012 0.0675 0.9035 0.0002 0.0963

AUC 0.8665 0.0000 0.1335 0.9475 0.0008 0.0517 0.9413 0.0022 0.0565

Table 3.16: One-to-one comparison using Bayesian hierarchical sign test
for each metric and classifier variant. The best results for each compar-
ison (metric and classifier) appear within black boxes. Generally, it was
unclear whether one variant was better than other. It depended on the spe-
cific dataset, metric, and ensemble method. ROSE was the only variant that
showed itself to be clearly worse than the rest.
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Full results

Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9557 0.9470 0.9489 0.9499 0.9477 0.9913 0.9791 0.9710 0.9804 0.9722

COVTYPE 1vs3 0.6913 0.5899 0.5878 0.5897 0.5857 0.8654 0.7974 0.7925 0.8090 0.7866

COVTYPE 1vs2 0.9830 0.9790 0.9787 0.9815 0.9801 0.9979 0.9947 0.9942 0.9959 0.9942

COVTYPE 0vs4 0.7503 0.6715 0.6715 0.6731 0.6696 0.9100 0.8012 0.7897 0.8140 0.7905

COVTYPE 0vs3 0.9034 0.7815 0.8047 0.7828 0.7959 0.9767 0.9490 0.9413 0.9594 0.9419

COVTYPE 0vs2 0.8975 0.8160 0.8166 0.8188 0.8308 0.9392 0.8948 0.8943 0.9043 0.8980

ECBDL’14 1M 0.0000 0.0912 0.0905 0.0911 0.0885 0.0120 0.1142 0.1023 0.1178 0.1024

SUSY IR16 0.3893 0.3064 0.3069 0.3079 0.3120 0.4696 0.3533 0.3491 0.3521 0.3492

SUSY IR4 0.5877 0.5833 0.5842 0.5832 0.5684 0.6297 0.6298 0.6311 0.6312 0.6312

KDDCUP dos vs r2l 0.9753 0.9596 0.2959 0.8623 0.9102 0.9951 0.9889 0.3085 0.9983 0.3234

KDDCUP dos vs nor. 0.9990 0.9993 0.9990 0.9994 0.9994 1.0000 0.9999 0.9999 0.9999 0.9999

HEPMASS IR16 0.6480 0.4279 0.4223 0.4262 0.3672 0.6640 0.4644 0.4644 0.4658 0.4635

HIGGS IR16 0.0406 0.1816 0.1817 0.1821 0.1844 0.1180 0.2352 0.2376 0.2384 0.2377

HEPMASS IR4 0.7300 0.6957 0.6954 0.6963 0.6625 0.7599 0.7326 0.7364 0.7364 0.7365

HIGGS IR4 0.1514 0.4388 0.4394 0.4391 0.4277 0.3691 0.5128 0.5159 0.5165 0.5159

ECBDL’14 10M 0.0000 0.0907 0.0905 0.0906 0.0868 0.0160 0.1123 0.1115 0.1141 0.1115

Table 3.17: Experimental results (F1-score) performing resampling for each
ensemble base classifier. The best results for each classifier appear within
gray boxes, while the best overall results appear within black boxes. Gini
variants showed the best performance for the majority of the datasets.
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Figure 3.7: A Friedman-Nemenyi test comparison of the different ensem-
ble classifiers performing resampling for each base classifier, according to
the F1-score (a), the MCC (b), the G-mean (c), and the AUC (d) metrics.
The methods connected with a thick horizontal line showed no significant
differences between each other (at a level of α = 0.05). In view of (a) and
(b), it is not clear whether resampling was beneficial or not. For (c) and (d),
the use of resampling improved the performance.
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Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9522 0.9438 0.9457 0.9467 0.9445 0.9906 0.9776 0.9690 0.9789 0.9703

COVTYPE 1vs3 0.6753 0.5789 0.5783 0.5786 0.5791 0.8548 0.7897 0.7860 0.8016 0.7801

COVTYPE 1vs2 0.9801 0.9756 0.9753 0.9785 0.9769 0.9975 0.9938 0.9932 0.9952 0.9933

COVTYPE 0vs4 0.7408 0.6848 0.6853 0.6863 0.6839 0.9051 0.8036 0.7934 0.8157 0.7941

COVTYPE 0vs3 0.8993 0.7829 0.8042 0.7845 0.7958 0.9751 0.9463 0.9385 0.9571 0.9391

COVTYPE 0vs2 0.8852 0.8033 0.8039 0.8059 0.8179 0.9317 0.8858 0.8852 0.8956 0.8892

ECBDL’14 1M 0.0000 0.1275 0.1279 0.1276 0.1249 0.0602 0.1555 0.1466 0.1613 0.1469

SUSY IR16 0.4385 0.3061 0.3070 0.3073 0.3100 0.4970 0.3537 0.3513 0.3538 0.3514

SUSY IR4 0.5345 0.4685 0.4698 0.4686 0.4504 0.5796 0.5295 0.5312 0.5314 0.5314

KDDCUP dos vs r2l 0.9757 0.9596 0.4164 0.8699 0.9141 0.9955 0.9885 0.4266 0.9982 0.4388

KDDCUP dos vs nor. 0.9987 0.9991 0.9988 0.9993 0.9992 0.9999 0.9999 0.9998 0.9998 0.9998

HEPMASS IR16 0.6565 0.4319 0.4282 0.4311 0.3847 0.6706 0.4742 0.4751 0.4762 0.4743

HIGGS IR16 0.1158 0.1597 0.1608 0.1604 0.1545 0.1944 0.2306 0.2344 0.2352 0.2344

HEPMASS IR4 0.6920 0.6153 0.6149 0.6160 0.5771 0.7188 0.6636 0.6685 0.6684 0.6686

HIGGS IR4 0.2004 0.2663 0.2683 0.2676 0.2543 0.3440 0.3743 0.3785 0.3793 0.3785

ECBDL’14 10M 0.0000 0.1252 0.1253 0.1253 0.1219 0.0717 0.1620 0.1619 0.1650 0.1619

Table 3.18: Experimental results (MCC) performing resampling for each
ensemble base classifier. The best results for each classifier appear within
gray boxes, while the best overall results appear within black boxes. Gini
variants showed the best performance for the majority of the datasets.
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Figure 3.8: Bayesian hierarchical sign test heatmaps showing the influence
ofRUSbefore trainingBAG(top row) andGBT (bottom row) ensembles (L),
compared with the influence of RUS on each iteration of the ensemble (R).
Each column represents one metric (F1-score, MCC, G-mean, and AUC).
There was no clear winner, depending on the specific dataset and metric,
one approach was better than the other and vice-versa.
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Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9690 0.9933 0.9935 0.9937 0.9944 0.9941 0.9973 0.9971 0.9979 0.9972

COVTYPE 1vs3 0.7702 0.8902 0.8924 0.8900 0.8972 0.9013 0.9629 0.9651 0.9666 0.9636

COVTYPE 1vs2 0.9930 0.9958 0.9957 0.9963 0.9962 0.9988 0.9989 0.9989 0.9992 0.9989

COVTYPE 0vs4 0.8221 0.9594 0.9605 0.9598 0.9609 0.9379 0.9805 0.9805 0.9824 0.9807

COVTYPE 0vs3 0.9190 0.9749 0.9771 0.9764 0.9753 0.9826 0.9939 0.9941 0.9953 0.9941

COVTYPE 0vs2 0.9322 0.9629 0.9632 0.9629 0.9645 0.9608 0.9825 0.9827 0.9838 0.9830

ECBDL’14 1M 0.0000 0.7042 0.7061 0.7047 0.7023 0.0778 0.7254 0.7287 0.7323 0.7293

SUSY IR16 0.5056 0.7690 0.7700 0.7691 0.7680 0.5760 0.7915 0.7935 0.7938 0.7936

SUSY IR4 0.6773 0.7681 0.7689 0.7688 0.7652 0.7086 0.7923 0.7934 0.7935 0.7934

KDDCUP dos vs r2l 0.9758 0.9984 0.9993 0.9976 0.9979 0.9953 0.9973 0.9989 0.9994 0.9990

KDDCUP dos vs nor. 0.9997 0.9998 0.9997 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

HEPMASS IR16 0.7157 0.8329 0.8346 0.8343 0.8316 0.7288 0.8621 0.8639 0.8641 0.8638

HIGGS IR16 0.1444 0.6642 0.6651 0.6649 0.6577 0.2543 0.7264 0.7298 0.7303 0.7299

HEPMASS IR4 0.7804 0.8328 0.8332 0.8330 0.8318 0.8094 0.8616 0.8635 0.8636 0.8637

HIGGS IR4 0.2898 0.6622 0.6619 0.6617 0.6397 0.4948 0.7265 0.7286 0.7289 0.7286

ECBDL’14 10M 0.0000 0.7000 0.7005 0.7004 0.6983 0.0899 0.7462 0.7475 0.7499 0.7475

Table 3.19: Experimental results (G-mean) performing resampling for each
ensemble base classifier. The best results for each classifier appear within
gray boxes, while the best overall results appear within black boxes. RUS
and ROS were preferable for BAG and GBT respectively.
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Figure 3.9: Bayesian hierarchical sign test heatmaps showing the influence
of ROS before training, BAG (top row) and GBT (bottom row) ensembles
(L) compared with the influence of ROS on each iteration of the ensem-
ble (R). Each column represent one metric: (F1-score, MCC, G-mean, and
AUC). There was no clear winner, one approach was better than the other
and vice-versa dependent on the specific dataset and metric.
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Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9694 0.9933 0.9935 0.9937 0.9944 0.9941 0.9973 0.9971 0.9979 0.9972

COVTYPE 1vs3 0.7939 0.8902 0.8924 0.8900 0.8973 0.9055 0.9629 0.9652 0.9666 0.9637

COVTYPE 1vs2 0.9930 0.9958 0.9957 0.9963 0.9962 0.9988 0.9989 0.9989 0.9992 0.9989

COVTYPE 0vs4 0.8366 0.9595 0.9606 0.9599 0.9611 0.9396 0.9806 0.9806 0.9825 0.9807

COVTYPE 0vs3 0.9221 0.9750 0.9772 0.9765 0.9754 0.9828 0.9939 0.9941 0.9953 0.9942

COVTYPE 0vs2 0.9339 0.9630 0.9633 0.9630 0.9646 0.9614 0.9825 0.9827 0.9839 0.9831

ECBDL’14 1M 0.5000 0.7043 0.7066 0.7049 0.7030 0.5030 0.7270 0.7288 0.7338 0.7293

SUSY IR16 0.6264 0.7701 0.7710 0.7702 0.7695 0.6641 0.7934 0.7949 0.7953 0.7949

SUSY IR4 0.7200 0.7689 0.7697 0.7695 0.7653 0.7433 0.7941 0.7951 0.7952 0.7951

KDDCUP dos vs r2l 0.9761 0.9984 0.9993 0.9976 0.9979 0.9953 0.9973 0.9989 0.9994 0.9990

KDDCUP dos vs nor. 0.9997 0.9998 0.9997 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

HEPMASS IR16 0.7550 0.8343 0.8357 0.8355 0.8316 0.7645 0.8626 0.8643 0.8645 0.8642

HIGGS IR16 0.5102 0.6669 0.6683 0.6675 0.6577 0.5313 0.7265 0.7299 0.7304 0.7300

HEPMASS IR4 0.8006 0.8342 0.8344 0.8344 0.8318 0.8237 0.8620 0.8639 0.8640 0.8641

HIGGS IR4 0.5381 0.6663 0.6677 0.6672 0.6474 0.6119 0.7265 0.7286 0.7290 0.7287

ECBDL’14 10M 0.5000 0.7000 0.7006 0.7004 0.6990 0.5040 0.7462 0.7476 0.7499 0.7476

Table 3.20: Experimental results (AUC) performing resampling for each
ensemble base classifier. The best results for each classifier appear within
gray boxes, while the best overall results appear within black boxes. RUS
and ROS were preferable for BAG and GBT respectively.

Algorithm Avg. rank

GBT+ROS 2.0625
GBT (Gini) 3.3125
GBT (WGini) 3.3125
GBT+RB 3.8125
GBT+RUS 4.6250
BAG (Gini) 6.5000
BAG+ROS 7.1875
BAG (WGini) 7.8750
BAG+RUS 8.1250
BAG+RB 8.1875

Algorithm Avg. rank

GBT+ROS 2.1875
GBT (Gini) 2.5625
GBT (WGini) 3.6250
GBT+RB 3.9375
GBT+RUS 4.6875
BAG (Gini) 6.1250
BAG+ROS 7.3125
BAG+RUS 7.9375
BAG (WGini) 8.3125
BAG+RB 8.3125

Algorithm Avg. rank

GBT+ROS 1.1875
GBT+RB 2.4375
GBT+RUS 3.0625
GBT (WGini) 3.9375
BAG+RUS 5.8750
BAG+ROS 6.6250
BAG+RB 7.0000
BAG (WGini) 7.3125
GBT (Gini) 7.5625
BAG (Gini) 10.0000

Algorithm Avg. rank

GBT+ROS 1.1875
GBT+RB 2.3750
GBT+RUS 3.0625
GBT (WGini) 4.0000
BAG+RUS 5.8125
BAG+ROS 6.6250
BAG+RB 7.0000
BAG (WGini) 7.3750
GBT (Gini) 7.5625
BAG (Gini) 10.0000

(a) F1-score (b) MCC (c) G-mean (d) AUC

Table 3.21: Average ranks of the ensemble classifiers performing resampling
for each base classifier, according to the F1-score (a), the MCC (b), the G-
mean (c), and the AUC (d) metrics. The methods below the dashed line
are statistically different than the best one according to the Hochberg pro-
cedure at a confidence level of 95%. GBT+ROS was the best method and
was statistically better than any BAG variant.
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Comparison Metric BAG GBT

Left ROPE Right Left ROPE Right

Gini vs RUS F1-score 0.6402 0.0000 0.3598 0.6935 0.0000 0.3065

MCC 0.6950 0.0000 0.3050 0.7278 0.0000 0.2722

G-mean 0.0610 0.0000 0.9390 0.0337 0.0000 0.9663

AUC 0.1430 0.0000 0.8570 0.0575 0.0000 0.9425

Gini vs ROS F1-score 0.5565 0.0000 0.4435 0.5010 0.0000 0.4990

MCC 0.6218 0.0000 0.3782 0.5615 0.0000 0.4385

G-mean 0.0333 0.0000 0.9667 0.0440 0.0000 0.9560

AUC 0.0725 0.0002 0.9273 0.0755 0.0000 0.9245

Gini vs RB F1-score 0.5533 0.0000 0.4467 0.6753 0.0000 0.3247

MCC 0.6160 0.0000 0.3840 0.7155 0.0000 0.2845

G-mean 0.0350 0.0000 0.9650 0.0693 0.0007 0.9300

AUC 0.0833 0.0000 0.9167 0.1235 0.0005 0.8760

WGini vs RUS F1-score 0.6628 0.0000 0.3372 0.6148 0.0000 0.3852

MCC 0.6557 0.0000 0.3443 0.5727 0.0000 0.4273

G-mean 0.5100 0.0005 0.4895 0.4475 0.0018 0.5507

AUC 0.5027 0.0015 0.4958 0.4460 0.0027 0.5513

WGini vs ROS F1-score 0.4597 0.0000 0.5403 0.4882 0.0000 0.5118

MCC 0.4765 0.0000 0.5235 0.4840 0.0000 0.5160

G-mean 0.4965 0.0185 0.4850 0.4848 0.0332 0.4820

AUC 0.4998 0.0232 0.4770 0.4830 0.0350 0.4820

WGini vs RB F1-score 0.5295 0.0000 0.4705 0.6148 0.0000 0.3852

MCC 0.5242 0.0000 0.4758 0.5865 0.0000 0.4135

G-mean 0.5390 0.0020 0.4590 0.4843 0.0102 0.5055

AUC 0.5458 0.0025 0.4517 0.4835 0.0095 0.5070

RUS vs ROS F1-score 0.3535 0.0000 0.6465 0.3183 0.0000 0.6817

MCC 0.3788 0.0000 0.6212 0.3357 0.0000 0.6643

G-mean 0.5050 0.0007 0.4943 0.4660 0.0185 0.5155

AUC 0.5135 0.0002 0.4863 0.4677 0.0225 0.5098

RUS vs RB F1-score 0.3905 0.0000 0.6095 0.5270 0.0000 0.4730

MCC 0.4283 0.0000 0.5717 0.5125 0.0000 0.4875

G-mean 0.5232 0.0000 0.4768 0.5160 0.0005 0.4835

AUC 0.5222 0.0000 0.4778 0.5092 0.0005 0.4903

ROS vs RB F1-score 0.4868 0.0000 0.5132 0.6457 0.0000 0.3543

MCC 0.5057 0.0000 0.4943 0.6233 0.0000 0.3767

G-mean 0.5290 0.0002 0.4708 0.4990 0.0002 0.5008

AUC 0.5157 0.0000 0.4843 0.4907 0.0005 0.5088

Table 3.22: Bayesian hierarchical sign tests comparing different resampling
methods (RUS, ROS, and RB) applied within the ensemble (BAG andGBT),
according to the following measures: F1-score, MCC, G-mean and AUC.
Resamplingmethods were also compared to base ensembles using Gini and
weighted Gini impurities. Depending on the specific metric, resampling-
based ensembles may or may not be recommended. Which resampling
method is better, is unclear.
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Algorithm Avg. rank

GBT+ROS 3.0000
SMOTE+GBT 4.0625
ROS+GBT 4.5625
GBT (WGini) 4.8750
GBT+RB 6.1875
GBT (Gini) 6.5625
GBT+RUS 7.0625
RUS+GBT 8.8125
BAG (Gini) 12.1250
BAG+ROS 12.8750
BAG (WGini) 13.8125
BAG+RB 14.5000
BAG+RUS 14.5625
SMOTE+BAG 14.7500
ROS+BAG 15.5000
SMOTE+RANF 15.6875
ROS+RANF 15.8125
RUS+BAG 16.0000
RUS+RANF 16.1875
RANF (WGini) 16.3125
RANF (Gini) 17.3750
ROSE+GBT 19.1562
ROSE+RANF 19.5625
ROSE+BAG 20.6562

Algorithm Avg. rank

GBT+ROS 2.9375
ROS+GBT 4.5625
GBT (Gini) 4.6250
GBT (WGini) 5.0625
SMOTE+GBT 5.6250
GBT+RB 5.8750
GBT+RUS 6.7500
RUS+GBT 8.6250
BAG (Gini) 11.0000
BAG+ROS 12.8125
BAG (WGini) 13.9375
BAG+RUS 14.0000
BAG+RB 14.6250
ROS+BAG 15.5625
ROS+RANF 15.6875
RUS+RANF 15.9375
RUS+BAG 16.0000
SMOTE+BAG 16.2500
RANF (WGini) 16.3125
RANF (Gini) 16.3750
SMOTE+RANF 16.4375
ROSE+GBT 19.0312
ROSE+RANF 20.7500
ROSE+BAG 21.2188

Algorithm Avg. rank

GBT+ROS 1.8125
GBT+RB 3.4375
GBT+RUS 4.1875
ROS+GBT 4.8125
GBT (WGini) 5.5625
RUS+GBT 6.6875
SMOTE+GBT 8.1250
BAG+RUS 10.4375
BAG+ROS 11.6250
BAG (WGini) 12.4375
BAG+RB 12.7500
RUS+BAG 12.8125
RUS+RANF 13.2500
ROS+RANF 13.5625
RANF (WGini) 13.8750
SMOTE+RANF 14.0625
ROS+BAG 14.1250
SMOTE+BAG 15.1250
GBT (Gini) 16.5000
ROSE+GBT 20.0938
ROSE+RANF 20.1250
ROSE+BAG 20.3438
BAG (Gini) 21.5000
RANF (Gini) 22.7500

Algorithm Avg. rank

GBT+ROS 1.8125
GBT+RB 3.3750
GBT+RUS 4.1875
ROS+GBT 4.7500
GBT (WGini) 5.6875
RUS+GBT 6.6875
SMOTE+GBT 8.1250
BAG+RUS 10.3750
BAG+ROS 11.5625
BAG (WGini) 12.5625
RUS+BAG 12.6875
BAG+RB 12.8750
RUS+RANF 13.1875
ROS+RANF 13.6250
RANF (WGini) 13.9375
ROS+BAG 14.1875
SMOTE+RANF 14.2500
SMOTE+BAG 15.1875
GBT (Gini) 16.0000
ROSE+GBT 19.8438
ROSE+RANF 20.3125
ROSE+BAG 20.5312
BAG (Gini) 21.5000
RANF (Gini) 22.7500

(a) F1-score (b) MCC (c) G-mean (d) AUC

Table 3.23: Average ranks of all ensemble classifiers evaluated in this study,
according to the followingmetrics: F1-score, MCC, G-mean, andAUC.The
statistical differences between the methods below the dashed line and the
best method were significant according to the Hochberg procedure at a con-
fidence level of 95%. GBT-based ensembles showed statistically better per-
formances than BAG and RANF ensembles.
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Figure 3.10: Average ranks for all ensemble methods according to every
pair of metrics (G-mean and AUC, F1-score and AUC, MCC and AUC, F1-
score and G-mean, MCC and G-mean, and MCC and F1-score).The shape
of the marker represents the resampling strategy, the color of the marker
represents the ensemble method, and the fill of the marker represents the
two resampling strategies: before training (unfilled), and within the ensem-
ble (filled). GBT variants showed better performance than RANF and BAG
variants in general. Great similarities between G-mean and AUC metrics,
and also between MCC and F1-score could be seen in top-left corner and
bottom-right corner plots (i.e., most of the markers were situated on the di-
agonal).
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AB STRACT

Big Data is the term used to describe those datasets made up of large vol-
umes of data that are usually generated very rapidly, and probably in a wide
variety of forms. These characteristics make Big Data a very challenging
topic because traditional data mining methods are unable to process it, at
the very least, in acceptable times. Class imbalance is a common problem
present in Big Data classification. This means that one class is underrepre-
sented compared to the others, which increases the risks of obtaining biased
classifiers. To help avoid this problem, Approx-SMOTE has been designed.
Approx-SMOTE is a parallel implementation of the SMOTE algorithm for
Apache Spark framework, which uses an approximated k-Nearest Neighbor
approach specifically intended for Big Data.

4.1 I N TRODUCT ION

In the era of Big Data, frameworks like Apache Spark (Zaharia et al., 2016)
are growing and gaining more attention. One of the strengths of this kind
of open source projects is that they allow contributions from third party
developers. Through Spark MLlib (Meng et al., 2016), this framework pro-
vides a machine learning library that contains a wide variety of algorithms
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Background

for different tasks. Classification, regression, clustering, data extraction,
data transformation, or data selection are some of them. Although pow-
erful, its functionality is still limited compared to other machine learning
frameworks like Scikit-Learn (Pedregosa et al., 2011), and thus, many algo-
rithms should be adapted and included into the Spark ecosystem. This is
the case of the well known Synthetic Minority Over-sampling TEchnique
(i.e., SMOTE) (Chawla et al., 2002), which is based on k-Nearest Neighbor
(i.e., k-NN) algorithm. This paper presents the Approx-SMOTE algorithm
for Apache Spark, which provides a SMOTE implementation based on an
approximated k-NN approach that uses hybrid spill trees (Liu et al., 2004)
for achieving accurate and efficient distributed nearest neighbor search.

4.2 PROBL EMS AND BACKGROUND

In datasets for classification, it is very common for the number of instances
in the different classes to be very different from one another. This means
that, for a binary classification problem, themajority of the examples belong
to one class and only a minority to the other one. Furthermore, despite
the fact that the minority class is usually the class of interest, having so few
instances makes the classifiers to be biased in favor of the majority class,
causing the instances of theminority class to bemisclassified. This is known
as imbalanced learning problem, and although it has been widely studied
in the past with normal-sized datasets (Chawla et al., 2004; He and Garcia,
2009; Díez-Pastor et al., 2015b), it is still in an early research stage within
Big Data scenarios (Sleeman IV and Krawczyk, 2021).

One simple yet effective strategy to deal with imbalance, is to resam-
ple the datasets to obtain others in which the number of instances of each
class are equal, or at least more similar. This eliminates the bias toward the
majority class of the classifiers that are constructed, and favors the correct
classification of the instances on the minority class.

One of the most popular resampling methods is SMOTE (Chawla et al.,
2002), which generates new synthetic examples from on a small number
of close examples. To find those close examples, k-NN is used. The main
downside of k-NN is that it is computationally intense, with a complexity
quadratic in the number of instances,O(n2). Thus, when the number of in-
stances of the dataset is huge, k-NN computation becomes infeasible (Neeb
and Kurrus, 2016). Fortunately, there are a few approaches to efficiently ap-
proximate the nearest neighbor search by taking advantage of parallel and
distributed computing (Liu et al., 2004; Liu et al., 2007). This approaches
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are used by spark-knn package1 implemented by Forest Fang (saurfang on
GitHub2).

There exists an adaptation of SMOTE for BigData, SMOTE-BD (Basgall
et al., 2018) implemented and published in the SparkPackages repository3.
Unfortunately, it uses an iterative implementation of exact k-NN (Maillo
et al., 2017), which limits its applicability to solve real Big Data classifica-
tion problems, as it requires a lot of computing power. The solution we are
presenting, Approx-SMOTE, greatly reduces the required computing power
by using an approximate nearest neighbor search approach. It should be
noted that using an approximation to the nearest neighbors does not seem
to negatively affect the final results.

4.3 SOFTWARE FRAMEWORK

The Approx-SMOTE package and its documentation are publicly available
at GitHub4. It is also published on SparkPackages repository5, so can be
easily installed as a dependency using Maven or sbt.

4.3.1 Software Architecture

Approx-SMOTE is built as an Apache Spark MLlib package. It has no de-
pendencies since Saurfang’s approximated k-NN6 is bundled. Following the
naming conventions used in other data mining frameworks, such as Weka,
this implementation is provided inside a new package called instance in
a class named ASMOTE, which inherits the Spark ML Transformer7 class.
The package knn contains Saurfang’s implementation of the approximated
k-NN used for synthesizing new instances.

4.3.2 Software Functionalities

The Approx-SMOTE functionality consists in synthesizing new examples
belonging to the minority class from an imbalanced binary classification

1https://spark-packages.org/package/saurfang/spark-knn
2https://github.com/saurfang
3https://spark-packages.org/package/majobasgall/smote-bd
4https://github.com/mjuez/approx-smote
5https://spark-packages.org/package/mjuez/approx-smote
6https://github.com/saurfang/spark-knn
7https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/Transformer.html
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dataset. New examples, along with the original examples, result in an over-
sampled dataset which, a priori, should contribute to the training of less
biased classifiers towards the majority class. Approx-SMOTE, as an over-
sampling method, has a parameter (percOver) for defining the number
of synthetic examples belonging to the minority class to be created. That
number is a percentage of the number of minority class instances, and its
default value is 100 (i.e., the number ofminority items is doubled). As k-NN
is used for synthesizing new examples, all the parameters of Saurfang’s ap-
proximated k-NN can be adjusted (k, maxDistance, balanceThreshold,
topTreeSize, topTreeLeafSize, subTreeLeafSize, bufferSize-
SampleSizes, and bufferSize). The parameters meaning and function-
ing is explained in detail in (Liu et al., 2007). The information about all
the parameters default values is available at Saurfang’s spark-knn GitHub
repository.

4.4 IMPL EMENTAT ION AND EMP I R ICA L RE SU LT S

Approx-SMOTE is implemented in Scala 2.12 for Apache Spark 3.0.1 fol-
lowing the Apache Spark MLlib guidelines. A thorough validation of the al-
gorithm was performed using cloud-based clusters. The objective of the ex-
periments was to prove that Approx-SMOTE oversamples data equivalently
as it does SMOTE-BD, but in a faster and more scalable way. We consider
two oversampled datasets to be equivalent, if they both affect the classifi-
cation performance of a classifier equally. In our experiments, a Spark ML
Random Forest classifier with 100 trees and default parameters, was used.
The characteristics of the six datasets used for all classification performance
comparisons are described in Table 4.1.

4.4.1 Experimental framework

The experiments were launched on Google Cloud clusters composed of one
master node (8 vCPU and 52 GB memory) and five different worker nodes
configurations: 2, 4, 6, 8, and 10. Eachworker node had 2 vCPU and 7.5 GB
memory. Thus, the biggest cluster (1 master and 10 workers) consisted in
28 vCPUs and 127 GB memory. For comparing execution times all cluster
configurations have been used. The classification performance comparison
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Dataset # instances # attributes # maj # min IR Size (GB)

SUSY IR4 3 389 320 18 2 712 173 677 147 4.00 1.23
SUSY IR16 2 881 796 18 2 712 173 169 623 15.99 1.04
HIGGS IR4 7 284 166 28 5 829 123 1 455 043 4.00 3.94
HIGGS IR16 6 194 093 28 5 829 123 364 970 15.97 3.26
HEPMASS IR4 6 561 364 28 5 250 124 1 311 240 4.00 3.77
HEPMASS IR16 5 578 586 28 5 250 124 328 462 15.98 3.20

Table 4.1: Main characteristics of the datasets used in the experiments:
number of instances, number of features, number of classes of the minor-
ity and majority classes, imbalance ratio, and dataset size in libsvm (Chang
and Lin, 2011) format.

was executed on the biggest cluster, using 2-fold stratified cross-validation
repeated 5 times8.

For ensuring experiments to be repeatable, a random seed was fixed to
46. The experiments consisted in reducing the imbalance ratio to 1 (i.e., bal-
ancing the dataset), thus, for each dataset, a specific percOver parameter
was calculated. The number of neighbors (i.e., k) was fixed to 5. In the case
of SMOTE-BD, the number of partitions was set to 8, as they recommended
in (Basgall et al., 2018). All other parameters were kept as default.

For evaluating and comparing statistical differences in performance, a
Bayesian analysis was conducted using Bayesian hierarchical sign tests (Be-
navoli et al., 2017) (baycomp9 library was used). The number of samples for
all Bayesian comparisons was set as 50 000. The graphical representation
for this type of analysis, is a ternary plot (Juez-Gil, 2020) where the region
of practical equivalence (i.e., ROPE) appears on the top corner, and on the
right and left corners are the regions of themethods under comparison. The
ROPE was set to 0.01, which means that two algorithms with a difference
in performance of less than 0.01 will be considered equivalent.

The performance metrics chosen were AUC and F1-score, which are
widely used in imbalanced learning (Sun et al., 2009).

8This cross-validation strategy is commonly used for imbalanced learning scenar-
ios (Díez-Pastor et al., 2015a)

9The baycomp library is publicly available at https://baycomp.readthedocs.io/en/latest/.
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Dataset AUC F1-score

No resampling SMOTE-BD Appr-SMOTE No resampling SMOTE-BD Appr-SMOTE

SUSY IR4 0.691 ± 0.002 0.771 ± 0.001 0.772 ± 0.001 0.542 ± 0.003 0.583 ± 0.003 0.589 ± 0.003

SUSY IR16 0.622 ± 0.009 0.771 ± 0.001 0.772 ± 0.001 0.380 ± 0.019 0.293 ± 0.003 0.300 ± 0.004

HIGGS IR4 0.507 ± 0.002 0.671 ± 0.002 0.678 ± 0.002 0.028 ± 0.008 0.452 ± 0.002 0.459 ± 0.002

HIGGS IR16 0.500 ± 0.000 0.660 ± 0.001 0.672 ± 0.002 0.000 ± 0.000 0.197 ± 0.001 0.202 ± 0.001

HEPMASS IR4 0.748 ± 0.004 0.821 ± 0.001 0.821 ± 0.001 0.655 ± 0.007 0.633 ± 0.003 0.630 ± 0.002

HEPMASS IR16 0.591 ± 0.014 0.822 ± 0.001 0.822 ± 0.001 0.306 ± 0.040 0.338 ± 0.004 0.329 ± 0.005

Table 4.2: Classification performance onRandomForestwith 100 trees. The
best results appearwithin black boxes. Thehigher the blueness intensity, the
better the performance. The value at the right of the ± sign, refers to the
standard deviation between cross-validation folds.

4.4.2 Results and discussion

The comparative results about classification performance is shown in Ta-
ble 4.2. The “No resampling” column shows how the Random Forest clas-
sifier performs trained with the original imbalanced dataset without any
change (i.e., without applying any kind of resampling). The blueness inten-
sity of the cells depicts the results as a heatmap, the darker the blue, the
better the result. The best result for each dataset and metric, is highlighted
within a black box. According to the results, Approx-SMOTE achieves the
best classification performance overall. However, as was to be expected,
SMOTE-BD results were almost the same. The use of SMOTE, particularly
for HIGGS IR4 and HIGGS IR16 datasets, benefited the classification per-
formance. Bayesian statistical tests are shown in Figure 4.1. The equiva-
lence between SMOTE-BD and Approx-SMOTE is demonstrated because
both approaches obtained almost the same supremacy compared to no re-
sampling, and the direct comparison between them, resulted in an extremely
high ROPE probability.

Finally, regarding execution times for SUSY IR16 dataset, Approx-
SMOTE demonstrated to be between 7.52 (on the smallest cluster) and
28.15 (on the biggest cluster) times faster than SMOTE-BD. Table 4.3 shows
the execution times in seconds of both approaches on clusters with 2, 4, 6,
8, and 10 workers. Speedup, which was calculated using the smallest clus-
ter configuration as baseline, revealed good scalability for Approx-SMOTE,
and scalability issues for SMOTE-BD. Figure 4.2 shows a graphical represen-
tation of the execution times and speedup comparisons where SMOTE-BD
approach is depicted in purple, and Approx-SMOTE, in orange.
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(a) AUC

No resampling
(0.0015)

ROPE

(0.0000)

SMOTE−BD
(0.9985)

No resampling
(0.0030)

ROPE

(0.0000)

Approx−SMOTE
(0.9970)

SMOTE−BD
(0.0082)

ROPE

(0.9573)

Approx−SMOTE
(0.0345)

(b) F1-score

No resampling
(0.1710)

ROPE

(0.0000)

SMOTE−BD
(0.8290)

No resampling
(0.1605)

ROPE

(0.0000)

Approx−SMOTE
(0.8395)

SMOTE−BD
(0.0095)

ROPE

(0.9447)

Approx−SMOTE
(0.0458)

Figure 4.1: Bayesian hierarchical sign tests comparing No resampling vs.
SMOTE-BD (left column), No resampling vs. Approx-SMOTE (central col-
umn), and SMOTE-BD vs. Approx-SMOTE (right column). According to
AUC (a) and F1-score (b) metrics.

Approach 2w 4w 6w 8w 10w

SMOTE-BD 1321.39 2218.60 2103.68 1587.29 2172.05
Approx-SMOTE 175.70 123.70 113.89 91.30 77.15

Table 4.3: Execution times (in seconds) of SMOTE-BD and Approx-
SMOTE on balancing SUSY IR16 task. Different cluster configurations (2,
4, 6, 8, and 10 workers) were tested.

149



Illustrative
Examples

2 4 6 8 10
number of workers

0

460

920

1380

1840

2300

ex
ec

u
ti
on

ti
m

e
[s

ec
on

d
s]

SMOTE−BD Approx−SMOTE

2 4 6 8 10
number of workers

0.0

1.0

1.5

2.0

2.5

sp
ee

d
u
p

Figure 4.2: Execution time (left) and speedup (right) of SMOTE-BD (pur-
ple) vs. Approx-SMOTE (orange) on balancing SUSY IR16 dataset task.
Different cluster configurations (2, 4, 6, 8, and 10 workers) were tested.

4.5 I L LU STRAT IV E EXAMPLE S

As Approx-SMOTE follows Spark-ML design guidelines, its use is similar
to any other Transformer in the Spark API. Code 4.1 shows a basic example
where a dataset is loaded and then oversampled doubling theminority class.
The number of nearest neighbors for synthesizing new examples is fixed to
5.

1 import org.apache.spark.ml.instance.ASMOTE
2

3 // reading dataset
4 val ds = session.read
5 .format("libsvm")
6 .option("inferSchema", "true")
7 .load("binary.libsvm")
8

9 // using Approx-SMOTE
10 val asmote = new ASMOTE().setK(5)
11 .setPercOver(100)
12 .setSeed(46)
13 val resampledDF = asmote.transform(ds)

Listing 4.1: A basic example, written in Scala, showing how to use Approx-
SMOTE for oversampling a dataset.
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4.6 CONCLU S ION S

In this paper, Approx-SMOTE, a novel approximated SMOTE adaptation
for Big Data, is presented. It is implemented as an algorithm for Apache
Spark framework, and as the original SMOTE does, it synthesizes new
minority-class belonging examples for contributing to alleviate problems
related to imbalanced learning in Big Data scenarios. Although there is
currently available an implementation of SMOTE for Big Data (SMOTE-
BD), it suffers from important deficiencies in terms of efficiency and scala-
bility, as a consequence of the use of an exact search for nearest neighbors.
In Approx-SMOTE, an approximated nearest neighbor search approach is
used instead, resulting in an algorithm several times faster than SMOTE-
BD. Moreover, the new proposal scales very well, going from an improve-
ment of 7× in a small cluster of 2 worker nodes, to almost 30× when the
number of workers is increased to 10. Regarding to classifiers performance
trained with resampled datasets using SMOTE, it has been demonstrated
that using approximated nearest neighbors within Big Data environments,
is equivalent to use exact nearest neighbors.

As there exist other algorithms for fast approximate nearest neighbor
search, by means of using hashing for example (Gionis et al., 1999; Tchaye-
Kondi et al., 2021), an interesting future research line could be to use that
approach within SMOTE and prove whether it also is equivalent to the clas-
sical non-approximated version of SMOTE.
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