
1.  Introduction
Paleomagnetic and paleointensity data can supply evidence about the past characteristics and fluctuations 
of the geomagnetic field. Such information provides constraints which contribute to an improved knowl-
edge of the processes taking place in the deep interior of the Earth (e.g., Biggin & Paterson, 2015). When a 
rock is magnetized in the Earth's magnetic field (EMF), its remanence vector is generally (nearly) parallel 
to the latter. Thus, information about directional EMF variations can be in principle directly determined 

Abstract  Sixteen rhyolitic and dacitic Cretaceous and Paleocene-Eocene lavas from the Lesser 
Caucasus have been subjected to paleomagnetic and multimethod paleointensity experiments to analyze 
the variations of the Earth's magnetic field. Paleointensity experiments were performed with two methods. 
Thellier-type experiments with the IZZI method on 65 specimens (nine flows) yielded 15 successful 
determinations and experiments with the multispecimen method on 14 samples (seven flows) yielded 
two successful determinations. The joint analysis of the results obtained with both methods produced 
a mean FuK = (19.9 ± 3.7) µT for upper Cretaceous and FPg = (20.7 ± 3.3) µT for Paleogene sites. Low 
virtual axial dipole moments for the Cretaceous (3.4 × 1022 Am2) and Paleogene (3.5 × 1022 Am2) 
samples support the idea of a lower average dipole moment during periods of stable polarity of the 
Earth magnetic field. Mean flow paleomagnetic directions did not match expected upper Cretaceous 
to Paleogene directions calculated from the European Apparent Polar Wander Path. While inclination 
results roughly agreed with expected values, a group of sites showed nearly North-South paleodeclinations 
(D = 1.1° ± 14.2°), and another group displayed eastward deviated paleodeclinations (D = 72.9° ± 26.6°). 
These results suggest the occurrence of nearly vertical-axis rotations, probably as a result of continental 
collision since Oligocene. In addition to paleomagnetic and palaeointensity analyses, new K-Ar absolute 
age determinations have been performed on three of the studied sites, yielding Late Cretaceous ages 
(78.7 ± 1.7, 79.7 ± 1.6, and 83.4 ± 1.8 Ma (2σ)).

Plain Language Summary  Paleomagnetic and paleointensity experiments allow the retrieval 
of the intensity and direction of the magnetic field of the Earth (EMF) in the geological past, so that this 
kind of data can inform us about how the EMF has changed with time. Furthermore, paleomagnetic 
directions can also inform us about what kind of tectonic movements the studied regions have 
experienced. If the experimental results obtained do not agree with known expected directions, this can be 
an indication of tectonic movements in the study area. In the present study, we have analyzed rocks with 
ages between ∼50 and 85 million years. Analysis of their paleointensity suggests that the strength of the 
EMF at that time could have been lower than half its present-day value. The study of the magnetization 
directions recorded in these rocks tells us that the study region has been deformed experiencing rotations 
of different magnitudes in adjacent areas, as a result of the collision of the Eurasian and Arabian plates. 
Furthermore, we have obtained three new absolute age data for the analyzed rocks.
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from the remanence vector obtained in paleomagnetic analyses. Nevertheless, the attainment of a more 
comprehensive image of the past EMF requires the knowledge of the full field vector. Absolute paleointen-
sity determinations, however, are rather complex, as this magnitude is not only related to the intensity of 
the magnetizing field but can also be strongly influenced by the magnetic properties of the field recording 
minerals.

Because of the experimental and intrinsic difficulties of paleointensity determinations, failure rates can be 
rather large. In fact, in Thellier-type experiments (Thellier & Thellier, 1959), which are regarded the most 
trustworthy because they rely on a robust physical basis, several requirements have to be fulfilled by the 
analyzed samples in order to deliver reliable paleointensity determinations: (i) remanent magnetization 
must be of thermal origin, i.e., a thermoremanent magnetization (TRM); (ii) samples must comply with the 
so-called Thellier laws (Thellier & Thellier, 1959), a requisite which is only rigorously met by noninteracting 
single-domain (SD) grains (e.g., Dunlop, 2011, and references therein); and (iii) magnetic phases should 
not experience physical, mineralogical, or chemical alterations during heating, as this can lead to spurious 
paleointensity estimates. In some cases, apparently reliable determinations may produce erroneous paleo-
intensity results (e.g., Calvo et al., 2002; Draeger et al., 2006; Gribov et al., 2019; Shcherbakov et al., 2019; 
Smirnov & Tarduno, 2005). As revealed by the paleointensity database PINT2015.05 (Biggin et al., 2009, 
2010), this has led to a relative scarcity of paleointensity data which in addition are both temporarily and 
geographically unevenly distributed. Available paleointensity data so far are strongly concentrated toward 
the youngest periods. However, a better understanding of the geodynamo entails a deeper knowledge of the 
behavior of the EMF with time, including not only the variations of its direction, but also of its intensity. 
The Cretaceous period is especially interesting due to the occurrence of a long period of normal polarity, 
lasting from ∼121 to 83 million years ago (Cande & Kent, 1995; He et al., 2008; Prévot et al., 1990). Subse-
quently, the reversal rate of the geomagnetic field started to rise. A weak correspondence between reversal 
frequency and intensity of the EMF has been proposed (Constable et al., 1998; Kulakov et al., 2019), but a 
still relatively limited amount of diverging paleointensity results has been obtained for the late Cretaceous 
period (PINT database, Biggin et al., 2010).

Some new paleointensity determination techniques have been put forward to avoid or reduce the impact of 
the presence of multidomain (MD) grains and the occurrence of chemical and/or mineralogical alterations 
in the studied samples (e.g., Dekkers & Böhnel, 2006; Walton et al., 1992). Based on a theoretical model 
proposed by Biggin and Poidras (2006), the multispecimen (MS) method was developed by Dekkers and 
Böhnel (2006). In this method, several specimens are taken from a sample or near lying points of a volcanic 
flow or an archeological object. Then, a partial TRM (pTRM) is imparted to each specimen parallel to its 
natural remanent magnetization (NRM), choosing different laboratory fields but keeping the same temper-
ature. When the sum of this pTRM and the specimen's remaining magnetization matches the value of the 
original NRM, the field generating the pTRM is assumed to have the intensity of the primary magnetizing 
field. As the field is imparted parallel to the specimens’ NRM and eliminates magnetic history effects, paleo-
intensity determination should not depend on domain structure. Moreover, the possibility of alteration 
would be also diminished, as specimens only experience a single heating with a heating temperature that is 
chosen such as to avoid significant alterations, while still de/remagnetizing a meaningful proportion of the 
full remanence of each specimen. This method was, however, questioned by Fabian and Leonhardt (2010), 
who argued that the presence of MD grains could deliver systematic paleointensity overestimates. In fact, 
paleointensity overestimates with the MS method have been described by Michalk et al. (2008, 2010) and 
Calvo-Rathert et al. (2016). Fabian and Leonhardt (2010) put forward a new theoretical model and proposed 
a new MS measurement protocol including extra correction steps to prevent these overestimates.

Different experimental procedures of paleointensity determination are based on reaching different states of 
energy equilibrium, which depend on applied fields, temperature or the demagnetizing field at every heat-
ing step. Consequently, the reliability of paleointensity determinations can be enhanced by considering the 
agreement of results arising from methods based on a different physical basis (e.g., Böhnel et al., 2009; Cal-
vo-Rathert et al., 2016, 2019; De Groot et al., 2013, 2015; Enterpinar et al., 2016; Monster et al., 2015a, 2018).

Due to its location in the Arabia-Anatolia-Eurasia collision zone, the Caucasus region is characterized by 
a complex tectonic history (e.g., Adamia et al., 2011; Rolland, 2017). During the last 3 decades, a number 
of new paleointensity and paleomagnetic studies have been performed in the Caucasus area employing 
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modern methods and being accessible in international journals (Asanidze et al., 2009; Bazhenov & Burt-
man, 2002; Bazhenov et al., 1996; Caccavari et al., 2014; Calvo-Rathert et al., 2008, 2011, 2013, 2015; Camps 
et al., 1996; Goguitchaichvili & Parès, 2000; Goguitchaichvili et al., 1997, 2000, 2001, 2009, 2016; Meijers 
et  al.,  2015; Sánchez-Moreno et  al.,  2018a, 2020; Shcherbakova et  al.,  2007, 2009). Most of these inves-
tigations, however, have been carried out on Pliocene and Pleistocene rocks, mainly from the Javakheti 
Highland. Only five of the aforementioned studies have been performed on older rocks: Miocene to upper 
Cretaceous (Meijers et al., 2015), middle Eocene (Bazhenov & Burtman, 2002), upper Cretaceous (Asanidze 
et al., 2009; Shcherbakova et al., 2007), and lower and middle Jurassic (Bazhenov et al., 1996). Merely the 
study of Shcherbakova et al. (2007) includes paleointensity determinations.

The main goal of the present study is to obtain new paleomagnetic directional and paleointensity informa-
tion for the still limited Upper Cretaceous to Paleogene database in the Caucasus region together with new 
radiometric age data.

2.  Geological Context, Sampling, and K-Ar Ages
The Caucasus region belongs to the Alpine-Himalayan orogenic belt and its geological and tectonic histo-
ry is the result of the interplay of the still-converging African-Arabian and Eurasian plates (e.g., Adamia 
et al.,  2011). From the Late Paleozoic to the Early Cenozoic, the Caucasus region was part of the Teth-
ys Ocean and its Gondwanan (African-Arabian) and Eurasian margins. During the Late Paleozoic-Early 
Cenozoic precollisional stage, a system of island-arcs, intraarc rifts and back-arc basins was formed. In 
the Greater and Lesser Caucasus, back-arc basins were inverted to fold-thrust belts due to the continuing 
African-Arabian and Eurasian convergence during Oligocene-Middle Miocene (syn-collisional stage) and 
Late Miocene-Quaternary (postcollisional stage) (Adamia et al., 2011). The position of the Caucasus region 
between the two plates converging at a ∼20–30 mm/year (Adamia et al., 2011) rate determines its recent 
geodynamics and complex active tectonics. In Georgia, the nearly N-S compression due to the conver-
gence of the Eurasian and African-Arabian plates generates three main directions of active faults (Koçyiğit 
et al., 2001). One group includes faults with a WNW-ESE or W-E strike related to compressional structures. 
In the remaining two groups, faults show either a NW-SE or a NE-SW strike and are mainly related to exten-
sional structures with a substantial strike-slip component (Adamia et al., 2011).

The study area lies in the region around the Bolnisi district in Georgia, located ∼60 km SW of Tbilisi (Fig-
ure 1). The Bolnisi area belongs to the Artvin-Bolnisi unit, which is one of the tectonic units or terrains into 
which the Caucasus is divided. From Late Jurassic to Paleogene, the Artvin-Bolnisi unit formed part of a 
volcanic arc complex on the southern margin of the Eurasian plate together with the Adjara-Trialeti unit to 
the north and the Bayburth-Karabakh imbricated unit to the south. Between Aptian-Albian to Campanian, 
widespread volcanic activity took place in the Artvin-Bolnisi unit (e.g., Yilmaz et al., 2000). The volcanic 
units are formed by basalts, andesite, dacite, and rhyolite (lavas and pyroclastics), with a thickness reaching 
3,000–4,000 m (Adamia et al., 2011). In some localities of the Artvin–Bolnisi unit, Paleocene to Eocene lavas 
and pyroclastics of different composition with a thickness of 100–300 m can be found (Adamia et al., 2011; 
Aydinçakir & Sen, 2013) related to basaltic troughs formed in that period (Lordkipanidze et al., 1989). In 
the Artvin-Bolnisi unit, Cretaceous volcanic sequences are cut in many places by numerous hypabyssal and 
plutonic bodies of Late Cretaceous and Paleogene age with predominance of rocks of acid composition.

In order to perform a paleomagnetic and paleointensity study, 168 cores were taken from 16 ryolithic and 
dacitic volcanics (Table 1 and Figure 1) of Paleogene and Cretaceous age in the Bolnisi district in the Repub-
lic of Georgia. Samples were taken with a portable drill and cores were oriented with a Pomeroy orientation 
device and both a magnetic and a solar compass.

K-Ar age determinations were performed on samples of three of the studied sites in the Isotope laboratory 
of the Institute of Geology of Ore Deposits, Petrography and Geochemistry of the Russian Academy of 
Sciences in Moscow (Table S1). The preparation procedure for samples included crushing of the rocks in 
steel mortar, sieving (the fraction with grain size 0.25–0.50 mm was picked out), washing in distilled water, 
and drying at a temperature below 50 °C. The separated groundmass and biotite preparations were used for 
dating. The potassium contents were determined twice by the flame photometry method using an FPA-01 
spectrometer (Elam-Center). Radiogenic argon content analyses were carried out twice on an MI-1201 IG 
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mass-spectrometer (SELMI) by the isotope dilution method with 38Ar as spike (for more details, see Lebedev 
et al., 1999). The total blank of 40Ar does not exceed 0.003 ng. The correction for atmospheric argon was 
made using isotope ratio 40Ar/36Ar = 295.5. The values of constants recommended by IUGS were used for 
age calculations: λK = 0.581 × 10−10 years−1, λβ = 4.962 × 10−10 years−1, and 40K = 0.01167 at.% (Steiger & 
Jäger, 1977). The results obtained yield close lying Campanian to Santonian ages: 78.7 ± 1.7 Ma (site BO15), 
79.7 ± 1.6 Ma (site BO8), and 83.4 ± 1.8 Ma (site BO11) (uncertainties of reported K-Ar datings correspond 
to a 2σ level).

Besides these three K-Ar age determinations, additional age data are available for the study area. Dudauri 
et al. (1990) performed K-Ar age determinations on rhyodacites near the town of Korchulo, yielding ages of 
74 ± 3 Ma, and 77 ± 3 Ma and on dacites from subvolcanic bodies near Bolnisi (57 ± 6 Ma), Kara-Torpak 
(56 ± 6 Ma), and Kvemo-Bolnisi (56 ± 8 Ma). Ages of sites without a specific radiometric date could be 
established by the type of volcanism and geographic position using a geological map from the Bolnisi area 
(Adamia et al., 1960) (Table 1 and Figure 1b).

3.  Rock-Magnetic Experiments and Results
Rock-magnetic information can be useful for revealing the carriers of remanence, to gain knowledge about 
their magnetic properties, to assess their thermal stability and to preselect specimens for paleointensity ex-
periments. Rock-magnetic investigations were conducted at the University of Burgos (Spain). Experiments 
with a variable field translation balance were carried out with the following measurement sequence: (i) 
isothermal remanent magnetization (IRM) acquisition curves up to 1 T, (ii) hysteresis curves, (iii) backfield 
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Figure 1.  Study area. (a) Map of the Caucasus and adjacent regions. Study area is marked by a red star. Adapted from Google Earth; (b) Geological map of the 
Bolnisi area. Modified from Adamia et al. (1960). 1—Quaternary sediments; 2—Neogene-Quaternary basalts and basaltic andesites of Mashavera and Khrami 
lava flows; 3—small intrusions of Eocene granodiorites; 4—dikes of Eocene granodiorites and diorites; 5—hypabyssal bodies of Paleocene-Eocene rhyolites, 
dacites, and trachytes; 6—Upper Cretaceous limestones and marles (Campanian-Maastrichtian); 7—Upper Cretaceous dikes of rhyolites and dacites; 8—
hypabyssal bodies of Upper Cretaceous rhyolites and dacites; 9—Upper Cretaceous volcanics (rhyolites, dacites, porphyrites) and pyroclastics (dacitic tuffs, 
agglomerates) with occasional interbeds of limestones and conglomerates (Turonian-Campanian); 10—small intrusions of Upper Cretaceous microdiorites; 
11—sampling points; 12—K-Ar datings ((a) present work and (b) Dudauri et al. (1990)).
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curves (iv), and strong-field (38  mT) magnetization vs. temperature (MS-T) curves measured in air. All 
these experiments were performed on powdered specimens selected from all studied flows. Furthermore, 
susceptibility vs. temperature (k-T) curves were measured with a Kappabridge KLY-4 device connected to a 
CS3 furnace in an applied field Happ = 300 A/m on some powdered specimens. This experiment was carried 
out in an argon atmosphere, heating, and cooling down samples between room temperature and 700 °C at 
a rate of 15 °C/min.

Before starting to record thermomagnetic MS-T curves, a 1-T field was applied to the samples, so that they 
acquired a (near) saturation magnetization. Subsequently, samples were heated up to 600 or 700 °C and 
cooled down to room temperature in air at a rate of 20 or 30 °C/min. In addition, a succession of heat-
ing-cooling cycles from room temperature to 350, 450, and 580 °C was performed on seven selected samples. 
Data analysis was carried out with the RockMagAnalyzer 1.0 software (Leonhardt, 2006). After correction 
for the diamagnetic and paramagnetic contribution, hysteresis parameters were obtained from hysteresis 
and backfield curves. Determination of Curie temperatures (TC) in MS-T curves was performed both with 
the two-tangent method (Grommé et al., 1969) and the second derivative technique included in the Rock-
MagAnalyzer 1.0 software, yielding qualitatively (and generally, quantitatively) similar results. k-T curves 
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Site Age Lat (°N) Lon (°E) N(n) L + P DEC INC α95 k R ΔR

BO1 uK 41.348 44.507 11 8 + 3 260.9 88.1 7.2 41.8 −89.7 171.6

BO2 uK, PG? 41.386 44.511 10 7 + 3 177.3 −62.8 6.2 64.1 6.7/2.7 11.1/10.9

BO3 PG 41.391 44.510 9(10) 9 + 0 349.9 62.6 6.0 74.3 −4.7 10.5

BO4 PG 41.398 44.516 11 11 + 0 19.3 54.2 6.0 59.2 −155.3 8.4

BO5 PG 41.401 44.515 10 10 + 0 339.2 48.2 5.1 89.8 −15.4 6.4

BO6 PG 41.403 44.525 12 10 + 2 345.6 56.8 7.1 39.0 −9.0 10.5

BO7 PG 41.413 44.523 10 2 + 8 19.2 29.4 6.5 64.1 180.0 6.3

BO8 79.7 ± 1.6 41.437 44.441 11 6 + 5 10.1 56.8 5.3 79.9 −160.5 8.1

BO9 PG 41.410 44.538 10 9 + 1 358.3 64.4 3.9 154.5 3.7 7.5

BO10 PG 41.453 44.525 11 11 + 0 38.3 56.3 3.4 176.8 −136.3 5.3

BO11 83.4 ± 1.8 41.455 44.564 10 10 + 0 128.2 32.1 6.2 60.8 −42.4 6.4

BO12 PG 41.457 44.535 9 9 + 0 39.3 56.9 2.2 541.1 −135.3 3.9

BO13 PG 41.456 44.534 13 9 + 0 41.3 56.8 5.1 103.8 −133.3 7.7

BO14(h) uK 41.451 44.558 9 9 + 0 15.0 48.1 4.6 126.7 −155.6 6.1

BO14(m) 10 9 + 1 68.8 62.5 4.1 139.1 −101.8 7.5

BO15 78.7 ± 1.7 41.429 41.629 10(11) 10 + 0 84.8 56.0 3.5 195.3 −85.8 5.6

BO16 uK 41.429 44.627 10 10 + 0 82.6 41.0 2.5 371.3 −88.0 3.8

Expected directions

80 Ma DEC = 350.6°; INC = 33.7°

55 Ma DEC = 354.6°; INC = 45.6°

Note: Site: Flow number. In flow BO14, two paleomagnetic components were observed, BO14m and BO14h (see 
text). Age: Age of the flows: K-Ar data from the present study (in Myr) or Bolnisi area geological map data (Adamia 
et al., 1960); uK: upper Cretaceous; PG: Paleogene. Lat (°N) and Lon (°E): latitude and longitude data of sampled 
sites. N(n): N is the number of samples used for flow mean calculation; in brackets, number of measured specimens; 
(L + P): number of directly determined directions (L) and planes (P) used for calculation of flow mean. DEC and INC: 
Declination and inclination of ChRM. α95: Radius of 95% confidence cone. k: Precision parameter. R ± ΔR: Rotation 
R = D0 − DX where D0 is the declination obtained in the present study and DX is the expected one (uncertainties ΔR 
calculated after Demarest (1983)). The 80 Ma (55 Ma) expected direction is taken for upper Cretaceous (Paleogene) 
sites. In site BO2 both possible rotation values are calculated. 80 and 55  Ma: Expected upper Cretaceous (80  Ma) 
and Paleogene (55  Ma) directions calculated from the Apparent Polar Wander Path (APWP) for Europe (Besse & 
Courtillot, 2002).

Table 1 
Paleomagnetic Results
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were measured on eight selected samples and inflexion points after the susceptibility drop following Hop-
kinson peaks were taken to determine Curie temperatures.

Only specimens from three flows (BO8, BO11, and BO14) displayed reversible MS-T curves (type H curves, 
Figure 2a), showing either one or two ferromagnetic (s.l.) phases. In all cases, a phase with TC between 
around 660 and 680 °C (both in the heating and cooling curves) was observed, which can be ascribed to he-
matite, especially if results from IRM acquisition curves and hysteresis loops (see below) are taken into ac-
count. In addition, in flows BO8, BO11 a second phase showing a TC around 560 °C related to low-Ti titano-
magnetite could be recognized. In site BO5, an apparently reversible MS-T curve was also obtained, which 
showed a single ferromagnetic (s.l.) phase with a TC around 585 °C both in the heating and cooling branch, 
which can be ascribed to magnetite. However, in this case, the thermomagnetic curve was not recorded 
continuously up to a peak temperature of 700 °C, but it consisted of a succession of three heating-cooling 
cycles from room temperature to 350, 450 and 580 °C. In a k-T curve recorded on the same sample between 
room temperature and 700 °C, besides magnetite another phase (TC = 330 °C) could be recognized on the 
heating, but not on the cooling branch (Figure 2c).

The remaining studied samples were characterized by a rather complex behavior and irreversible MS-T curves 
(type-M curves, Figure 2b). The heating branch of the curves showed between two and four ferromagnetic 
(s.l.) phases. In all type-M curves, a phase with high Curie temperatures between around 555 and 585 °C was 
observed, which can be related to low-Ti titanomagnetite (or slightly Mg-substituted or Al-substituted mag-
netite). Moreover, another phase with intermediate TC, in most cases ranging between around 300 and 450 °C 
could also be recognized. In most type-M samples, this is the strongest observed ferromagnetic (s.l.) phase, 
which can be probably related to titanomaghemite. Additionally, in a few samples, a low Curie-temperature 
phase (TC < 200 °C) was observed. Finally, two specimens also displayed an unstable high Curie-tempera-
ture phase (observed apparent TC around 640 °C), possibly maghemite. The cooling curve of type-M samples 
showed much lower magnetization values than the heating curve and only a main phase, with a near-magnet-
ite TC, although a very weak contribution of a phase with the Curie temperature of hematite could also be de-
tected. TC of the near-magnetite phase was in all cases slightly lower than in the heating curves, which may be 
ascribed to cation reordering during heating (Bowles et al., 2013). To find out at which temperatures alteration 
started in type-M samples, some specimens were subjected to thermomagnetic experiments with increasing 
maximum heating temperatures, and moderate alteration could be recognized after heating to 350 or 450 °C.

IRM acquisition curves show in most cases rapid saturation, and at an applied field of 200/300 mT more 
than 90% of the SIRM is already acquired (Figure S1a). In such cases, remanence can be related to low-co-
ercivity ferrimagnetic phases, although in other cases also a minor high-coercivity phase could be observed. 
In some cases, however, samples which cannot be saturated with applied fields of 1 T were observed (Fig-
ure S1b). This behavior is ascribed to the presence of hematite.

Hysteresis curves with spreading middles and slouching shoulders (so-called potbellies) were mainly 
found (Figure 3a) among the Bolnisi samples, as shown by mostly negative values of the shape parameter σ 
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Figure 2.  Thermomagnetic curves. Magnetization vs. temperature curves of (a) sample BO11-2 (type H) and (b) sample BO10-3-3. (c) Susceptibility vs. 
temperature curve of sample BO5-10-4. Heating curves in red, cooling curves in blue.
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(Fabian, 2003). Nevertheless, in two cases, hysteresis curves with constricted middles (so-called wasp-waist-
ed loops) were observed (Figure 3b) while in a few other cases shape parameters did not differ much from 0, 
the latter pointing to a simpler hysteresis behavior. Distorted hysteresis loops can be produced by mixtures 
of different magnetic phases and/or domain states (e.g., Pick & Tauxe, 1994; Tauxe et al., 1996). Thermo-
magnetic and IRM acquisition curves have already shown that the magnetic mineralogy of the Bolnisi 
samples is rather complex, with different phases with clearly different coercivities being observed. Figure 3c 
shows the relation of shape parameter σ with the S-parameter (Bloemendal et al., 1992), indicating that 
samples with hysteresis curves of more pronounced potbelly characteristics appear related to a lower pres-
ence of high-coercivity minerals. On a Day-diagram (Day et al., 1977; Figure S2), some samples plot near the 
superparamagnetic (SP) saturation envelope (Dunlop, 2002). However, no clear relation appears between 
higher negative shape parameter σ values (more potbelly like behavior) and SP grain content. It should be 
borne in mind that information provided by Day diagrams is often ambiguous, as hysteresis parameter ra-
tios may be influenced by various conditions (Roberts et al., 2018).

4.  Paleomagnetic Measurements and Results
All paleomagnetic measurements were carried out at the paleomagnetic laboratory of the University of 
Burgos (Spain). Remanence was measured with a superconducting 2G cryogenic magnetometer. From each 
site, three or four pilot specimens were chosen and subjected to either alternating field (AF) or thermal 
demagnetization, so that both methods were tested for all sites. Subsequently, the most suitable demagnet-
ization technique for each case was selected. Thermal demagnetization was performed with a TD48-DC 
(ASC) furnace and AF-demagnetization with a degausser included in the 2G magnetometer system. Analy-
sis of demagnetization data was carried out with the Remasoft software (Chadima & Hrouda, 2006) and to 
calculate directions of remanence components, principal component analysis (Kirschvink, 1980) was used.

Natural remanent magnetization (NRM) mean site directions which apparently display normal polarity are 
observed in all sites. However, in several cases, a large scatter as well as rather anomalous directions with 
declinations largely deviating from North can be recognized. The observed high α95 values suggest the pres-
ence of viscous or secondary components in several lavas. Analysis of NRM demagnetization shows that 
seven flows basically display a main paleomagnetic component and a minor viscous component (Figure 4a) 
while the remaining nine flows are characterized by the presence of two paleomagnetic components, which 
sometimes overlap (Figure 4b). However, in some cases, in these latter nine flows single-component speci-
mens are also observed.
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Figure 3.  Hysteresis curve results. (a) Potbelly shaped hysteresis curve of sample BO11-2; (b) wasp-waisted shaped hysteresis curve of sample BO1-2; (c) 
relation of shape parameter σ (Fabian, 2003) and S-parameter (Bloemendal et al., 1992).



Journal of Geophysical Research: Solid Earth

As shown in Table 1, normal-polarity characteristic remanence (ChRM) directions were determined in all 
cases except in site BO2, which produced a reverse-polarity mean direction. In flow BO14, two different 
normal-polarity ChRM components were distinguished, one associated to the presence of hematite and 
another to magnetite. Nearly 90% of the directly determined directions were associated to MAD values 
≤5.0°, with an average MAD value of 2.8°. For the interpretation of demagnetization diagrams involving 
two overlapping components, analysis of remagnetization circles had to be employed and in some samples 
belonging to seven flows, paleodirections could not be directly determined and only remagnetization circles 
were obtained. Therefore, in these flows mean paleomagnetic directions had to be calculated combining 
remagnetization circles and directly determined directions (McFadden & McElhinny, 1988).

5.  Paleointensity Experiments
5.1.  Thellier-Type Paleointensity Determinations with the IZZI Protocol

Paleointensity determinations have been carried out at the paleomagnetic laboratory of the University of 
Burgos with the IZZI method (Yu et al., 2004), which can be helpful to detect the presence of so-called 
pTRM tails. Sample preselection for the IZZI method paleointensity experiments was mainly based on the 
results obtained on paleomagnetic experiments, and only specimens displaying a basically univectorial 
character without a strong viscous component were chosen for the experiments. Rock-magnetic results 
were only taken for a cruder distinction of magnetic characteristics. While only few flows met the condi-
tions to be considered suitable for paleointensity determinations, specific samples from some other flows 
apparently displayed adequate conditions for preselection, so that they also were included in the paleoin-
tensity experiments.

Small irregular fragments from 65 specimens belonging to nine different flows were broken from standard 
samples and fixed in boron-silicate vials of 10-mm diameter, which were marked to keep the orientation. 
IZZI experiments were performed in a TD-48 (ASC) oven in argon atmosphere to avoid or at least reduce 
oxidation. The experiment consisted of a sequence of 11 double steps at increasing temperatures between 
room temperature and 620 °C, using a laboratory field Blab = 40 µT, which was applied along the axis of 
the oven, so that the specimens’ magnetization was oriented at random with respect to the applied field. 
Before cooling, samples were left about 15 min at the peak temperature at each heating step. Subsequently, 
samples were left cooling by themselves for several hours. During the experiment, up to six pTRM checks 
were performed at different temperatures.
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Figure 4.  Orthogonal demagnetization vector plots. (a) AF-demagnetization of sample BO6-7-3; (b) thermal demagnetization of sample BO8-9-3; (c) thermal 
demagnetization of sample BO9-3-5; (d) thermal demagnetization of sample BO12-5-3. Horizontal projection: closed symbols; vertical projection: open symbols.
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Sánchez-Moreno et al. (2020) analyzed a basaltic lava flow sequence in Georgia with different Thellier-type 
experiments, leaving in one experiment samples cooling naturally and in the other experiment with a fan. 
Although the difference in cooling time between both cases is one order of magnitude, no differences were 
observed in the results. Volcanic units in the present study are somewhat thicker than those analyzed by 
Sánchez-Moreno et al. (2020), so that cooling time has been estimated to be moderately longer. Our experi-
mental approach leaving samples cool down naturally intends to reduce cooling rate effects.

No banded features have been observed in the studied volcanic units neither at a macroscopic nor micro-
scopic level and we have not considered necessary to perform an anisotropy of thermoremanence analysis 
to account for anisotropy effects on paleointensity determination.

Analysis of paleointensity results was performed with the Thellier-Tool (version 4.22) software (Leonhardt 
et al., 2004), using criteria included in this software to select successful determinations. Furthermore, to 
evaluate the existence of remanent magnetization carried by MD grains, the shape of Arai plots was assessed 
visually, excluding from further interpretation those clearly showing a concave shape. Two quality levels of 
different strictness (C1 and C2) were chosen as selection criteria thresholds and are listed in Table 2. The 
chosen thresholds are basically those proposed by Paterson et al. (2014) for the modified Thellier-Tool A and 
B criteria sets (Leonhardt et al., 2004), except for fraction factor f for C1 determinations, which is kept at 0.5 
as in the original criteria set. Application of these criteria to our results yielded only 17 successful determi-
nations (2 class C1 and 15 class C2) out of 65 (26.1%), mainly belonging to flows BO8 and BO9 (Figure 5). 
The remaining unsuccessful paleointensity determinations were rejected because of alteration detected by 
pTRM checks, concave-shaped Arai diagrams pointing toward remanence carried by MD grains (Figure 5b) 
and unsuitable samples due to two overlapping components.

In flows BO9 and BO15, in most cases, Arai diagrams showed steps at the lowermost temperatures (150 °C 
and a few subsequent steps) that deviate from the linear trend drawn by the steps above 350 °C (Figures 5b 
and Figures 5c). Although no strong disagreement is observed in these samples between directions at lower 
and higher demagnetization temperatures, several specimens display moderate directional discrepancies 
which might be ascribed to a viscous overprint. In all specimens from both sites in which paleointensity 
determinations fulfill reliability criteria, only steps above 350 °C (BO9) or 400 °C (BO15) have been taken 
into account (Table 2). In site BO9, six specimens fulfill reliability criteria and one of them belongs to class 
C1 determinations. All yield rather similar results, so that a reliable mean paleointensity is obtained. Only 
two paleointensity determinations fulfilling reliability criteria were obtained for site BO15, although one of 
them also belongs to class C1. Results are very similar to those from BO9.

At the site level, the threshold required for scatter was standard deviation σSITE ≤ 15% or σSITE ≤ 5 µT. As 
shown in Table 2, only mean results obtained in flows BO8 and BO9 are based on >3 determinations, but 
mean paleointensities of flows BO12 and BO15, which are based on only two successful paleointensity 
determinations, show low standard deviations at the site level (<5 µT). All four of these flows yield mean 
paleointensity values around 20 µT, less than half the current field strength of nearly 50 µT at the same site.

5.2.  Multispecimen Paleointensity Determinations

Additional paleointensity determinations were carried out with the multispecimen method (Dekkers & 
Böhnel, 2006) at the paleomagnetic laboratory of UNAM in Morelia (Mexico). These experiments includ-
ed the protocols for fraction (FC) and domain-state correction (DSC) put forward by Fabian and Leon-
hardt (2010). Fourteen standard paleomagnetic samples from seven sites were divided into eight subspe-
cimens and pressed into salt pellets with the size and shape of standard paleomagnetic specimens (112 in 
total). The multispecimen method was carried out at three different temperatures (350, 480, and 550 °C), 
based on the Curie temperatures estimated from MS-T curves for each flow. Experiments were performed 
with an ASC Scientific TD48-SC oven, applying fields between 10 and 60 µT with increments of 10 µT. For 
each heating step, the specimens were kept for 20 min at the selected temperature. Cooling was fan assisted 
(about 40 min to cool down from ∼500 °C to room temperature). The following experimental sequence 
was applied with remanence being measured with an AGICO JR6 spinner magnetometer: (i) measurement 
of NRM; (ii) orientation of subspecimens with their NRM directions parallel to the axis of the heating 
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IZZI paleointensity determinations

Selection criteria N F q σ/slope d(CK) MAD (°) α (°)

Thresholds C1 ≥5 ≥0.5 ≥5 ≤0.1 ≤7 ≤6 ≤15

Thresholds C2 ≥5 ≥0.35 ≥1 ≤0.15 ≤9 ≤15 ≤15

Threshold site level σSITE ≤ 15% or σSITE ≤ 5 µT

Sample Range N f Q σ/slope d(CK) MAD (°) α (°) F (µT) ΔF (µT) Class

BO8-1-3 20–560 10 0.642 6.0 0.0872 2.4 3.3 1.7 21.6 1.9 C1

BO8-2-4 20–580 11 0.90 8.6 0.086 2.1 5.7 6.0 16.0 1.4 C1

BO8-3-2 250–560 8 0.58 4.4 0.099 2.8 2.4 3.4 27.7 2.7 C2

BO8-4-2 400–560 6 0.39 1.9 0.148 2.1 2.3 4.3 21.2 3.1 C2

BO8 21.6 ± 4.8 µT

BO8 + MS 22.5 ± 4.6 µT

B09-2-2 350–580 8 0.53 2.5 0.148 6.1 5.9 10.8 16.8 2.5 C2

BO9-4-4 350–580 8 0.54 3.6 0.113 8.9 2.6 5.4 18.4 2.1 C2

BO9-5-4 350–620 9 0.75 5.8 0.108 5.7 8.9 9.1 21.7 2.4 C2

BO9-6-4 350–580 8 0.61 3.6 0.129 5.9 7.5 13.9 14.9 1.9 C2

BO9-7-4 350–620 9 0.67 6.0 0.087 3.4 4.2 3.4 21.2 1.8 C1

BO9-8-5 350–620 9 0.69 6.5 0.086 4.9 7.9 9.3 17.3 1.5 C2

BO9 18.4 ± 2.6 µT

BO12-5-4 250–620 10 0.54 4.0 0.112 8.8 4.8 9.9 23.8 2.6 C2

BO12-7-2 350–620 9 0.52 6.3 0.065 7.0 2.5 0.4 22.2 1.5 C2

BO12 23.0 ± 1.1 µT

BO15-5-3 400–580 7 0.357 1.5 0.107 4.5 2.4 4.6 14.2 1.5 C2

BO15-9-3 400–620 8 0.65 7.4 0.071 4.9 3.5 4.9 20.3 1.5 C1

BO15 17.3 ± 4.3 µT

BO10-7-3 350–580 8 0.510 3.0 0.096 8.7 3.8 4.4 7.8 0.7 C2

Multispecimen paleointensity determinations

Selection criteria R2 εalt Δb/Int

Thresholds ≥0.9 ≤15 |Δb| ≤ 0.15 and/or within error

DB FC DSC DB,corr FC,corr DSC,corr

BO8-2-4 N 5 4 4 5 4 4

F 25.9 26.2 22.1 25.8 26.1 22.2

FMin −FMax 21.5–31.0 22.9–33.6 26.4 31.1 33.2 26.6

εalt −5.0 −6.2 −6.2 −4.8 −6.0 −6.0

R2 0.884 0.952 0.980 0.877 0.952 0.987

Δb/Int — −0.46/Yes −0.53/No — −0.45/Yes −0.52/No

BO16-2-4 N 3 3 3 3 3 3

F 67.8 73.8 55.7 67.7 73.7 55.6

FMin −FMax 67.4–76.8 73.3–75.3 55.2–56.1 67.3–76.6 73.1–75.3 55.1–56.1

εalt −14.8 −14.8 −14.8 −14.6 −14.6 −14.6

R2 0.869 0.998 1.000 0.868 0.997 1.000

Δb/Int — −0.15/NO −0.24/NO — −0.15/NO −0.24/NO

Table 2 
Palaeointensity Results
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chamber and subsequent heating in an axial field; (iii) specimens as in the previous step but with an invert-
ed laboratory field direction; (iv) specimens reheated in zero field; and (v) repetition of step (ii).

All calculations (relative differences between pTRMs and NRMs) were performed with the VBA software 
developed by Monster et al. (2015b). Parameter α (Fabian & Leonhardt, 2010) was set to α = 0.5 for the 
calculations. The quality of the linear least-squares fit (R2), the relative alteration error value (εalt, Fabian & 
Leonhardt , 2010) and the check of whether the linear fit intersects the ordinate axis through (0.-1) within 
15% and/or within error, have been taken as selection criteria for reliable determinations. Threshold values 
are listed in Table 2. Monster et al. (2015a and 2015b) proposed for the relative alteration error value εalt a 
probably too strict threshold of εalt = 3%. Here, we use the threshold εalt < 15% proposed by Sánchez-More-
no et al. (2018b). Several samples did not provide meaningful results, mostly linked to the presence of two 
paleomagnetic components. Among the samples apparently displaying significant results, only two (BO8-
2-4 and BO16-2-4, Table 2 and Figure 5c) fulfilled the proposed criteria, and in both cases only the fraction 
corrected (without and with alignment correction) value. In several other cases, samples are affected by 
alteration or the linear fit fails to pass the ordinate axis through (0.-1) within the proposed threshold.

6.  Discussion
6.1.  Paleomagnetic Directions

In Figure  6, mean directions obtained in each flow (two in the case of BO14) are shown together with 
expected upper Cretaceous to Paleogene directions calculated from the European Apparent Polar Wander 
Path (APWP) for three different ages (55, 70, and 80 Ma) as determined by Besse and Courtillot  (2002) 
using 10 Myr windows. As can be easily recognized in Figure 6 and Table 1, results do not agree with the 
expected values. As the studied samples stem from volcanic units and no sedimentary strata of suitable age 
were available to obtain information about possible dips the sampled units might have experienced, paleo-
magnetic values are not bedding-corrected and include the sum of all possible movements experienced by 
the volcanic units since their eruption. Table 1 and Figure S3 show the rotation R = D0 − DX and flattening 
F =  IX −  I0 values, where D0 and I0 are, respectively, the declination and inclination values obtained in 
the present study and DX and IX the expected ones. As can be recognized, flattening F values are low, as 
measured inclination values are only moderately higher than expected ones. The only exception is site 
BO1, which yields an anomalous nearly vertical inclination. On the other hand, while declination values 
of several sites correspond to nearly North-South directions, several other sites show eastward deviated 
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Table 2 
Continued

Mean Bolnisi results

Paleointensity (µT) VADM (Am2)

Upper Cretaceous sites BO8 and BO15 19.9 ± 3.7 µT 3.4 × 1022

Paleogene sites BO9 and BO12

Note: ZZI determinations: Selection criteria and threshold values for class C1 and C2. N: Number of NRM-pTRM points used for paleointensity determination. 
f: Fraction of extrapolated NRM used; f is referred to the so-called “true NRM,” which is the intersection between linear fit and y axis (Leonhardt et al., 2004). 
σ/slope: Ratio of the standard error of the slope and the slope of the NRM-TRM diagram. q: Quality factor (Coe et al., 1978). d(CK): Difference between the 
pTRM check and original TRM value at a given temperature normalized to the TRM (Leonhardt et al., 2000). MAD: Mean angular deviation of NRM end-point 
directions at each step obtained from palaeointensity experiments. α: Angle between the vector average of the data selected for palaeointensity determination 
and the principal component of the data. σSITE: Standard deviation of the site mean. IZZI results: Sample: Sample name; range: Temperature interval in °C used 
for paleointensity determination. F ± ΔF: Paleointensity estimate for a single specimen and its standard error; standard error of the paleointensity estimate is 
calculated by the product of the standard error of the best-fit line in the Arai plot and the laboratory field. Class: Quality level of paleointensity determination. 
Mean flow paleointensity values and their standard deviation are shown for those flows with at least two successful paleointensity determinations. BO8 + MS: 
Mean paleointensity obtained from five IZZI and one multispecimen determination in site BO8 (see text). Multispecimen determinations: εAlt: Average alteration 
parameter. R2: Quality of the linear least-squares fit. Δb/Int: Check of whether the linear fit intersects the ordinate axis through (0.-1) within 15% (Δb ≤ 0.15) 
and/or within error (Yes or No). Multispecimen results: DB, FC, and DSC: standard, fraction, corrected and domain-state corrected determination. DB,corr, 
FC,corr, and DSC,corr: Alignment-corrected standard, fraction-corrected determination, and domain-state corrected determination. n: Number of specimens 
used for paleointensity determination. F: Paleointensity result. FMin − FMax: Paleointensity determination uncertainty bounds. Mean Bolnisi results: Mean 
paleointensity results and VADM of the Bolnisi sites (see text), weighted and unweighted (in brackets). Mean results obtained from upper Cretaceous sites BO8 
and BO15 and Paleogene sites BO9 and BO12 are shown.
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paleodeclinations, especially in BO11, BO15, and BO16. Only site BO1 shows a clearly different declination 
which is, however, affected by a particularly high uncertainty due to its very steep inclination.

In view of the observed features of paleomagnetic directions, the studied units seem to have been mainly 
affected by (nearly) vertical-axis rotations but to a different extent in different sites. The fact that only decli-
nations but not inclinations show larger discrepancies with the expected values seems to discard anomalous 
EMF features as the origin of the observed paleomagnetic results, except perhaps for site BO1. As can be 
recognized in Figure 7, paleodeclinations display a different behavior in different zones of the relatively 
small study area. The sites in its southern part (BO2, BO3, BO4, BO5, BO6, BO7, BO8, and BO9), which has 
been tagged zone A in the map, display an unrotated northerly declination (D = 1.1° ± 14.2°), while the sites 
in the northern sector (zone B, sites BO10, BO11, BO12, BO13, BO14, BO15, and BO16) display a strongly 
clockwise rotated paleodeclination (D = 72.9° ± 26.6°).

It can be recognized in Figure 7 that all sites included in zone A, which seem to have not experienced signif-
icant vertical-axis rotations, lie in the two nearly NNE-SSW oriented Poladauri and Mashavera river valleys 
(Figure 1), possibly related to the NW-SE fault system mentioned above. Its strike has a similar direction 
than the nearly N-S compression due to the convergence of the Eurasian and African-Arabian plates since 
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Figure 5.  Paleointensity determinations. IZZI paleointensity determinations: (a) flow BO8 (samples BO8-1-3; BO8-2-4; BO8-3-2); (b) flow BO9 (samples BO9-6-
4; BO9-7-4; BO9-8-5); (c) flow BO15 (sample BO15-9-3); (d) Failed IZZI paleointensity determination on sample 16-7-3; (e) Multispecimen paleointensity (MS) 
determination (fraction and alignment corrected) on sample BO8-2-4. Closed (open) dots represent used (rejected) MS data.



Journal of Geophysical Research: Solid Earth

the start of continental collision and than present-day velocities of the study region relative to Eurasia ob-
tained from GPS data (Reilinger et al., 2006). On the other hand, zone B sites lie near the nearly E-W orient-
ed Mashavera river valley. Thus, paleomagnetic results suggest that as a result of the stress produced by the 
continental collision since Oligocene in the Bolnisi area, deformation has been accommodated in different 
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Figure 6.  Paleomagnetic results. Stereographic projection of mean paleomagnetic directions obtained in each site (two 
directions are shown for site BO14, see text) with α95 confidence cones. Solid (open) circles are for normal (reversed) 
polarities. Expected upper Cretaceous and Paleogene directions for 80, 70, and 55 Ma, calculated from the Apparent 
Polar Wander Path (APWP) for Europe (Besse & Courtillot, 2002) are also shown.

Figure 7.  Paleomagnetic rotations. Paleomagnetic declinations with confidence limits (Demarest, 1983) obtained in 
the Bolnisi area. Adapted from Google Earth.
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ways on a relatively small scale depending on the orientation of faults enclosing the studied sites, with some 
sites experiencing strong clockwise vertical-axis block-rotations and others no rotations at all.

6.2.  Paleointensity Results

Paleointensity determinations with the IZZI method yielded 15 (4 class 1 and 11 class 2) successful determi-
nations out of 65. Most successful determinations stem from site BO9 (6) and BO8 (4). Results from flows 
BO15 and BO12 are based on only two successful determinations while another flow (BO10) only produced 
one successful determination. All flow mean paleointensities based on at least two determinations yield 
very similar results around 20 µT. Only two successful paleointensity determinations fulfilling all proposed 
criteria and thresholds could be obtained with the multispecimen method. Sample BO8-2-4 yielded a (frac-
tion and alignment corrected) paleointensity FFC,corr  =  26.1  µT, similar to the results obtained with the 
IZZI method, while sample BO16-2-4 yielded a high (fraction and alignment corrected) paleointensity FF-

C,corr = 73.7 µT. No successful determinations were obtained in that flow with the IZZI method.

The agreement of results obtained with both different kinds of paleointensity determination methods will 
be taken as a strong reliability criterium for successful determinations, as the coincidence of the result of two 
wrong determinations would be highly unlikely. We will consider that two paleointensity determinations 
yield the same result if the difference between them is <8 µT, because the use of relative differences could 
imply too small uncertainties for experimental results in the case of weak paleointensities. The 8 µT value 
has been chosen taking 15% of the current field in Georgia, as suggested by Sánchez-Moreno et al. (2018b).

The joint analysis of Thellier-type and multispecimen results led us to distinguish the following possibilities 
and determination quality classes:

Class 1. Successful IZZI paleointensity mean site results (three or more successful determinations) agree 
with a successful multispecimen determination in the same site

Class 2.

�(a)	� IZZI paleointensity mean site results based on less than three successful determinations agree with a 
successful multispecimen determination in the same site or

�(b)	� Successful IZZI paleointensity mean site results (three or more successful determinations) are available 
but do not agree with a successful multispecimen determination in the same site or no multispecimen 
result is available

Class 3.

�(a) � An IZZI paleointensity mean site result is based on two agreeing successful determinations but does 
not match a successful multispecimen determination in the same site or no multispecimen result is 
available

Class 4.

�(a)	� A single successful IZZI result is available, which does not agree with a successful multispecimen deter-
mination in the same site or no multispecimen result is available

�(b)	� A successful multispecimen result is available but no IZZI results

Successful IZZI determinations are available from flows from six sites and successful multispecimen deter-
minations in two flows. Only site BO8 yields a class 1 result, as the mean result obtained from four success-
ful IZZI determinations agrees with the multispecimen result. The final mean value has been calculated 
giving the multispecimen result the weight of a single sample, as it has been obtained from an experiment 
based on a single sample. Thus, the result from BO8 is based on five determinations and is especially sup-
ported by the matching results from two different methods. Site BO9 yields a class 2 result, based on six 
successful Thellier-type determinations. Results from sites BO12 and BO15 are based on two successful 
IZZI determinations, but no multispecimen results are available, and they are ascribed to class 3. Finally, 
the results obtained in site BO10 belongs to class 4.
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The result from class 4 was not taken into account for any further consid-
eration, as it is only based on a single piece of information not confirmed 
by a second result. Among the flows yielding valid results, site-specific 
K-Ar ages are only available for flows BO8 and BO15, which are of upper 
Cretaceous age. Sites BO9 and BO12, on the other hand, are of Paleogene 
age (Table 1). A mean paleointensity value FuK = (19.9 ± 3.7) µT is thus 
obtained for the upper Cretaceous sites and a mean paleointensity value 
FPg = (20.7 ± 3.3) µT for the Paleogene flows. Mean paleointensity results 
and virtual axial dipole moments (VADM) calculated using the geograph-
ic colatitude of the sites is listed in Table 2.

Figure 8 shows Paleogene and Late Cretaceous (50–90 Ma age interval) 
virtual (axial) dipole moments obtained from Thellier-type experiments 
with pTRM checks (including microwave experiments), obtained from 
samples of normal or reversed polarity. Data were selected from the PINT 
and MagIC databases (Biggin et  al.,  2010; Tauxe et  al.,  2013) and the 
World Paleointensity Database from the Borok Geophysical Observatory 
(http://wwwbrk.adm.yar.ru/palmag/database_e.html). Although 10 out 
of the 55 Late Cretaceous records display dipole moments with values 
higher than the current dipole moment of ∼8 × 1022 Am2, most V(A)DMs 
are rather low, generally below 5 × 1022 Am2, like the Late Cretaceous 
VADM = 3.4 × 1022 Am2 obtained in the present study. Also, in the 50–
65-Ma interval, V(A)DMs from the PINT database show dipole moments 
predominantly lower than the present-day one (64 of 81 entries), and 
approximately half of them lie below 5 × 1022 Am2. The highest dipole 
moments were obtained on single plagioclase crystals from lavas from 
the Emperor seamounts (Tarduno & Cottrell, 2005) and from basalts from 
West Greenland (Riisager & Abrahamsen,  2000; Riisager et  al.,  1999). 
Our Paleogene low VADM from the Bolnisi data (3.5 × 1022 Am2) agrees 
with the general trend of lower dipole moments.

Paleointensity results from several studies from the last 2 decades suggest 
that the average dipole moment during stable polarity periods of the EMF 

is clearly lower than its present value (e.g., Juárez et al., 1998; Selkin & Tauxe, 2000; Tauxe, 2006). The Late 
Cretaceous and Paleogene VADMs obtained in the present study support this conclusion.

7.  Conclusions
A paleomagnetic and paleointensity study including new K-Ar determinations has been carried out on a 
suite of 16 rhyolitic and dacitic lavas of Cretaceous and Paleogene age.

K-Ar determinations performed on three sites yield close lying Campanian to Santonian ages: 78.7 ± 1.7, 
79.7 ± 1.6, and 83.4 ± 1.8 Ma.

Paleointensity determinations were performed with the IZZI method on 65 specimens from nine different 
flows, yielding only 15 successful determinations on samples belonging to five flows (success rate 23.1%). 
In addition, 14 samples from seven sites were subjected to the multispecimen paleointensity determina-
tion method, but only two samples fulfilled all selection criteria. The joint analysis of Thellier-type and 
multispecimen results yielded a paleointensity result FuK = (19.9 ± 3.7) µT for the upper Cretaceous sites. 
Furthermore, a mean paleointensity FPg = (20.7 ± 3.3) µT was obtained for the Paleogene flows. VADMs 
obtained for the Late Cretaceous (3.4 × 1022 Am2) and Paleogene (3.5 × 1022 Am2) agree with the main trend 
observed in other studies and support the idea of a lower average dipole moment during stable polarity pe-
riods as suggested by different sources (e.g., Juárez et al., 1998; Selkin & Tauxe, 2000; Tauxe 2006).
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Figure 8.  Late Cretaceous and Paleogene V(A)DMs. Paleogene and 
Late Cretaceous virtual (axial) dipole moments from the PINT and 
MagIC databases (Biggin et al., 2010; Tauxe et al., 2013) and the World 
Paleointensity Database from the Borok Geophysical Observatory (http://
wwwbrk.adm.yar.ru/palmag/database_e.html) obtained from Thellier-type 
experiments with pTRM checks including microwave experiments in the 
50–90 Ma age interval. Upper Cretaceous and Paleogene results obtained 
in the present study at a flow level are shown with red crosses and mean 
Cretaceous and Paleogene values with blue stars. All used references are 
listed in Table S2 (Supporting Information).

http://wwwbrk.adm.yar.ru/palmag/database_e.html
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Mean flow directions obtained in paleomagnetic experiments do not agree with expected upper Cretaceous 
to Paleogene directions calculated from the European APWP. Inclination results roughly agree with ex-
pected values, but while declination values of several sites correspond to nearly North-South directions 
(D = 1.1° ± 14.2°), several other ones show clearly eastward deviated paleodeclinations (D = 72.9° ± 26.6°). 
These paleomagnetic results suggest that nearly vertical-axis rotations have taken place in the study area, 
possibly due to the stress generated by the continental collision since Oligocene. Deformation has been 
accommodated in different ways on a relatively small scale depending on the orientation of faults enclosing 
the studied sites, with some sites experiencing strong clockwise vertical-axis block-rotations and others no 
rotations at all.

Data Availability Statement
Data sets for this research are available under the following reference: Calvo-Rathert et al. (2020), http://
doi.org/10.5281/zenodo.3997235
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