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Abstract
This work focuses on the control of the pitch angle of wind turbines. This is not an easy task due to the nonlinearity, the

complex dynamics, and the coupling between the variables of these renewable energy systems. This control is even harder

for floating offshore wind turbines, as they are subjected to extreme weather conditions and the disturbances of the waves.

To solve it, we propose a hybrid system that combines fuzzy logic and deep learning. Deep learning techniques are used to

estimate the current wind and to forecast the future wind. Estimation and forecasting are combined to obtain the effective

wind which feeds the fuzzy controller. Simulation results show how including the effective wind improves the performance

of the intelligent controller for different disturbances. For low and medium wind speeds, an improvement of 21% is

obtained respect to the PID controller, and 7% respect to the standard fuzzy controller. In addition, an intensive analysis

has been carried out on the influence of the deep learning configuration parameters in the training of the hybrid control

system. It is shown how increasing the number of hidden units improves the training. However, increasing the number of

cells while keeping the total number of hidden units decelerates the training.

Keywords Hybrid system � Deep learning � Fuzzy control � Neural networks � Pitch control � Wind turbines

1 Introduction

The use of coal for energy production has proven to be one

of the main contributors to climate change. Thermal plants

are a source of carbon dioxide emissions. Even today, these

sources of energy are widespread. For example, in Spain

only in 2016 coal produced 60% of all carbon dioxide

emissions. This air pollution is estimated to cause more

than 500,000 asthma attacks each year around the world

[1]. Therefore, to slow climate change and achieve the

Paris Climate Goals [2], fossil-based energy sources must

be replaced by renewable energy such as wind, hydro and

solar.

The use of wind energy increases year after year. It is

currently the second most used energy source after

hydroelectric [3]. It seems that this growing trend will

continue in the future until it becomes the main source of

energy generation in 2050 [4]. To contribute to this posi-

tive and sustainable trend, research on wind energy and

wind turbines must continue and take a leap forward.

Among other energy efficiency goals, controlling wind

turbines (WT) remains a challenge for engineers. Its main

difficulty from the control point of view comes from the

fact that it must meet several objectives simultaneously.

First of all, the control is designed to reach and stabilize the

generated power at its nominal value. In turn, safety must

be guaranteed under all operating conditions [5]. Further-

more, the fatigue and the vibrations of the structure should

be minimized since it has been shown that the control

influences the stability of the turbine [6].

The control of the turbine is carried out by means of

different control actions, mainly the pitch angle, the

angular speed of the generator, and the yaw angle. The

pitch angle turns the surface of the blade that faces the

wind so that the greater the area swept, the more

mechanical power is generated. It is used to regulate the

output power around its rated value. On the other hand, the
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rotor angular speed is controlled in order to find the optimal

power curve. Finally, the yaw control turns the entire tur-

bine to follow the direction of the wind.

This work focuses on the control of the pitch angle of

the blades. Although different solutions have been pro-

posed, it remains an open challenge due to the nonlinearity

of the wind turbine, its complex dynamics and the coupling

between the internal variables. This control is especially

critical for floating offshore wind turbines (FOWT), sub-

jected to strong external loads due to harsh weather con-

ditions, both wind and waves.

These environmental disturbances make significant dif-

ferences between the wind measured by the anemometer

sensor and the wind that effectively attacks the surface of

the blades, the latter being eventually transformed to

mechanical power. This is called effective wind. As it is

well known, the power output and the response of the WT

depends directly on the real wind speed; thus, working with

the accurate wind information is key to develop efficient

WT controllers.

In this work, we develop a WT pitch control architecture

that combines fuzzy pitch control and deep learning neural

networks used to estimate the effective wind. The main

contributions can be summarized as follows:

• The development of an efficient hybrid control archi-

tecture that combines fuzzy logic pitch control and deep

learning neural networks to estimate the wind input of

the WT subjected to disturbances. This goal includes

the following.

• Forecasting the future effective wind in WTs by deep

learning techniques.

• Estimation of current effective wind WT speed by deep

techniques.

• Combination of forecasting and estimation of effective

wind as input of the fuzzy logic controller.

The operation of the hybrid control strategy has been

simulated and compared with an intelligent fuzzy con-

troller without the deep learning module, and with a con-

ventional PID controller. The simulation results show how

including the effective wind obtained with the deep

learning module improves the control performance. Indeed,

for low and medium wind speeds, an improvement of 21%

is obtained respect to the PID controller, and 7% respect to

the standard fuzzy controller. In addition, an intensive

study has been carried out on the influence of the deep

learning configuration parameters in the training perfor-

mance of the system.

To the best of our knowledge, there are not previous

works where fuzzy logic and deep learning techniques are

used together for pitch control of wind turbines subjected

to external disturbances. In addition, one of the main

novelties here proposed is the combination of forecasting

and estimation of effective wind to feed the inputs of the

pitch controller. These contributions have been proved

quite useful to get a better control of the wind turbine.

The paper is organized as follows. Section 2 presents a

brief state of the art. In Sect. 3, the mathematical model of

the wind turbine is described. The design of the hybrid

controller, the fuzzy controller and the deep learning

module, is described in Sect. 4. Simulation results are

discussed in Sect. 5. The paper ends with the conclusions

and future works.

2 Related works

Due to the characteristics and nature of the control of wind

turbines, that are strongly nonlinear and coupled systems,

intelligent techniques for pitch control have been applied.

In fact, intelligent control techniques such as fuzzy control

and neural networks have been successfully used for

complex systems in the energy field and in many other

areas [7–9]. Intelligent controllers that use neural networks

inside are usually called neuro-controllers [10].

Fuzzy logic has been previously used to control the pitch

angle of wind turbines. To mention some works, authors in

[11] design a hierarchical fuzzy logic pitch controller to

solve the nonlinear system effects produced by atypical

winds. It is compared to a conventional PID pitch regula-

tor. In the work by Moodi et al., [12], a robust H!
observer-based fuzzy controller is designed to control the

turbine using the estimated wind speed. A nonlinear Tak-

agi–Sugeno fuzzy model is introduced for a variable speed,

variable pitch wind turbine. Two artificial neural networks

are used to accurately model the aerodynamic curves. In

that paper, in addition to rotor dynamics, blade and tower

dynamics are taken into account. In [13], the pitch angle is

controlled by a PID whose parameters are tuned by a fuzzy

logic inference system. The effectiveness of the method is

tested by the simulation of a small wind turbine. In [14],

pitch and yaw control of a small wind turbine are addres-

sed. A fuzzy model was used to describe a wind turbine

whose output is controlled by changing the blades angle of

attack and rotating the nacelle to a position facing the wind.

A hybrid control that combines a fuzzy system and a

conventional model predictive controller is developed in

[15]. The aim of the fuzzy model predictive pitch controller

is to minimize the loading effect on the wind turbine as

well as to maximize the extracted power output. The fuzzy

logic controller works very efficiently by encountering the

system nonlinearity, while the model predictive controller

helps the system to become more stable. Sitharthan et al.

(2020) propose a hybrid MPPT control strategy that esti-

mates the effective wind speed and the optimal rotor speed

of a wind power generation system to track the maximum
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power. It uses the particle swarm optimization (PSO)

algorithm to enhance a radial basis function neural network

[16]. The paper by Sarkar et al. 2020 presents a robust PID

pitch angle control system for the rated wind turbine power

at a wide range of simulated wind speeds [17]. In addition,

ant colony optimization (ACO), particle swarm optimiza-

tion (PSO), and classical Ziegler–Nichols (Z–N) algo-

rithms have been used for tuning the PID controller

parameters to obtain a rated stable output power with

fluctuating wind speeds.

The papers on intelligent pitch control of large-scale

wind turbines are scarcer. An interesting approach is pre-

sented in Rubio et al. [18], where a fuzzy-logic-based pitch

control system for a 5 MW wind turbine installed in an

OC4 WT semi-submersible platform is presented. The

fuzzy controller has as input the instantaneous value of the

wind speed, filtered and normalized according to the

nominal speed, and gives the pitch reference. The paper by

Abdelbaky et al. [19] proposes constrained fuzzy-receding

horizon pitch control for a variable speed wind turbine. The

controller guarantees the nominal stability, and the model

is converted to a simple online quadratic optimization

problem that requires less computational time to be solved.

A 5 MW offshore wind turbine simulation model is used to

validate the results of the mathematical model. With a

different aim, fuzzy logic is also applied to develop a rule-

based turbine selection methodology in [20]. The proposal

analyzes several scenarios in conjunction with the turbine

selection model.

Fault detection in WTs is a topic of current interest

[21, 22]. It is one of the applications where deep learning is

being explored in the wind energy field, together with

forecasting and model identification. For example, Khan

et al. combine deep learning and principal component

analysis to forecast wind power for large-scale wind tur-

bines [23]. Deep learning is also used ford wind forecasting

in [24]. In this case, Wavelet Packet Transform (WPT)

preprocesses the signals. Fu uses deep learning to monitor

the condition of the gearbox bearing [25]. Li proposes the

use of Deep Small-World Neural Network on the basis of

unsupervised learning to detect the early failures of wind

turbines [26]. The paper by [27] analyzes the input and

output data of wind farm based on deep neural networks,

develops an intelligent model with an Extreme Learning

Machine, and predicts some parameter of the wind turbine.

From a wider perspective, a recent overview of deep

reinforcement learning for power system applications can

be found in Zhang et al. [28]. Interestingly, in Lin et al.,

2020, deep learning is applied to investigate the major

driven force on the mooring line tension of a FOWT model

[29].

As it has been shown in this brief state of art, there are

few works that exploit deep learning in the wind energy

field. But this strategy has been mainly used to forecast

wind and to detect failures in WTs. In addition, although

there are previous studies that apply fuzzy pitch control,

they work with the measured wind without considering it

may not be the one that reaches the rotor. In this work, we

propose a novel hybridization of these techniques, using

deep learning to predict the effective wind and using this

estimation as input of the fuzzy pitch controller. As shown,

hybrid intelligent controllers can be considered a promising

technique for dealing with the complex problem of con-

trolling wind turbines.

3 Mathematical model of the wind turbine

In this work, a small model of a 7 kW wind turbine is used.

The mathematical model is given by Eqs. (1–9). The

development of these expressions is further explained in

[30, 31].

_Ia ¼
1

La

Kg � K/ � w� Ra þ RLð ÞIa
� �

; ð1Þ

fblade sð Þ ¼ b � sþ
ffiffiffi
2

p

b2 � s2

ffiffiffiffiffiffi
2
a

� �q
þ

ffiffiffi
a

p� �
� b � sþ

ffiffiffi
2

p � c � sþ 1=s
sþ 1=s

;

ð2Þ
vef ¼ fblade vM þ distð Þ; ð3Þ
k ¼ w � Rð Þ=vef ; ð4Þ

ki ¼
1

kþ c8

� �
� c9

h3 þ 1

� �	 
�1

; ð5Þ

Cp ki; hð Þ ¼ c1

c2

ki
� c3h� c4h

c5 � c6

	 

e
�c7

ki ; ð6Þ

_w ¼ 1

2 � J � w Cp ki; hð Þ � qpR2 � v3
� �

� 1

J
Kg � K/ � Ia þ Kf � w
� �

; ð7Þ

€h ¼ 1

Th
Khðhref � hÞ � _h
h i

; ð8Þ

Pout ¼ RL � I2
a ; ð9Þ

where La is the armature inductance (H), Kg is a dimen-

sionless constant of the generator, K/ is the magnetic flow

coupling constant (V•s/rad), Ra is the armature resistance

(X), RL is the resistance of the load (X), considered in this

study as purely resistive, w is the angular rotor speed (rad/

s), Ia is the armature current (A), k is the tip-speed ratio

which is dimensionless, and a; b; c; s½ � is the set of values of

the filter that the blades implement.

The power coefficient Cp (6) depends on the charac-

teristics of the specific wind turbine; J is the rotational
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inertia (Kg.m2), R is the radius or blade length (m), q is the

air density (Kg/m3), Kf is the friction coefficient (N.m/rad/

s), Kh and Th are dimensionless parameters of the pitch

actuator, vef is the effective wind velocity in the blades (m/

s), vM is the wind velocity measured by the anemometer

sensor, and dist is the external disturbance. In this

approach, the pitch reference href is the manipulated vari-

able and the output power Pout is the controlled variable.

It is worth to remark that the effective wind, vef , is not

equal to the measured wind, vM. As formalized by (3–4),

the effective wind is the one really transformed into

mechanical power by the generator. The disturbances that

affect the WT, especially in FOWTs, such as waves and

currents, distort the measurements making larger the dif-

ferences between vef and vM. Another source of this mis-

matching is due to the effect of the blades in the wind.

Here, this effect is modeled by a filter (2).

Considering regular waves, the external disturbance has

been modeled as a sinusoidal signal with white Gaussian

noise (10).

dist ¼ Ad � sin
2p
Td

� t
� �

þ Ad � Kns � rand tð Þ þ Cd ð10Þ

where Ad is the amplitude of the disturbance in m/s, Td

(s) is the period of the wave, Cd is a constant, Kns is a

coefficient to adjust the signal noise ratio, and randðÞ
denotes the random function.

The wind produces ocean waves with periods between

0.1 and 300 s [32]. So, we have considered these values in

the experiments. Storms and earthquakes produce waves

with longer periods, but they have not been tested in this

work.

The parameters of the wind turbine used during the

simulation experiments are shown in Table 1, extracted

from [30].

4 Hybrid control strategy design

4.1 Architecture of the hybrid controller

The architecture of the hybrid control strategy is shown in

Fig. 1. It is composed of a fuzzy logic controller (FLC) and

a module that obtains the effective wind speed using a deep

learning system. The FLC receives the power reference,

Pref , and the current output power, Pout, to calculate the

error (11) and generate the pitch reference, href . Besides,

this intelligent controller also receives the effective wind

speed, VDL, calculated by the deep learning module. The

output of the FLC control, i.e., the pitch reference href , is

the signal that feeds the WT pitch actuator.

Perr tið Þ ¼ Pref ti�1ð Þ � Pout ti�1ð Þ ð11Þ

The wind turbine operation is determined by the wind

speed measured by the sensors VM, the external disturbance

dist, and the pith reference generated by the FLC, href , that

are the inputs to the WT model. The outputs are the output

power, Pout, that is sent to the FLC, and the generator

speed, w, its acceleration _w, the current Ia, and the pitch

angle h.

The deep learning module (DLM) receives as inputs the

four outputs of the WT model, namely, w; _w; Ia; h, and the

measured wind speed, VM. The DLM estimates the effec-

tive wind speed, VDL. As it will be shown in the discussion

of the results, the use of this effective wind instead of the

measured wind produces relevant improvements in the

control performance.

The effective wind calculated by the DLM is obtained as

a combination of the estimation of the current effective

wind, VACT, and the prediction of the future effective wind,

VFUT. Estimation refers to the calculation of the effective

current wind speed, and prediction refers to the future

effective wind speed. Estimation and prediction are lin-

early weighted to obtain the effective wind, VDL used as

input of the FLC (15).

The operation of this control architecture can be for-

malized by expressions (12–14).

ACT tið Þ ¼ fDL�ACT w ti�1ð Þ; _w ti�1ð Þ; Ia ti�1ð Þ; h ti�1ð Þ;ð
VM ti�1ð Þ;VACT ti�1ð ÞÞ;

ð12Þ

VFUT tið Þ ¼ fDL�FUT w ti�1ð Þ; _w ti�1ð Þ; Ia ti�1ð Þ; h ti�1ð Þ;ð
VM ti�1ð Þ;VFUT ti�1ð ÞÞ;

ð13Þ
VDL tið Þ ¼ KACT � VACT tið Þ þ KFUT � VFUT tið Þ; ð14Þ

where KACT and KFUT are constants used to adjust the

relationship between estimation and prediction. Both con-

stants are in the range [0–1] and must fulfill the relationship

KACT þ KFUT ¼ 1.

The output range of the FLC is [� p
4
; p

4
� (rad). However,

the input range of the wind turbine is [0; p
2
�(rad). Hence, a

bias of p
4

(rad) is included to adapt the output of the FLC to

the input of the WT (15).

href tið Þ ¼ p
4
� fFLC Perr tið Þ;VDL tið Þð Þ; ð15Þ

4.2 Fuzzy logic controller (FLC)

The fuzzy controller is implemented by a Takagi–Sugeno

structure with two inputs, Perr and VDL, and one output,

href . The input Perr is assigned 3 Gaussian fuzzy sets,

Negative, Zero and Positive, uniformly distributed in the

range [- 250, 250] W, and width 87.5. The speed VDL is

defined by 3 uniformly distributed Gaussian fuzzy sets in
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the interval [12.25, 13] m/s, the width is 0.175. Its labels

are Low, Medium and High. The output is a singleton that

can take 3 values: - p/4, 0, and p/4 (rad). The configura-

tion of the fuzzy system has been obtained by trial and

error. Figure 2 shows the fuzzy sets of the inputs.

The fuzzy rule base is as follows:

• If Perr ¼ Neg and VDL ¼ Low then out ¼ 0

• If Perr ¼ Neg and VDL ¼ Med then out ¼ �p=4

• If Perr ¼ Neg and VDL ¼ High then out ¼ �p=4

• If Perr ¼ Zero and VDL ¼ Low then out ¼ 0

• If Perr ¼ Zero and VDL ¼ Med then out ¼ 0

• If Perr ¼ Zero and VDL ¼ High then out ¼ 0

• If Perr ¼ Pos and VDL ¼ Low then out ¼ p=4

• If Perr ¼ Pos and VDL ¼ Med then out ¼ p=4

• If Perr ¼ Pos and VDL ¼ High then out ¼ 0

These fuzzy rules have been obtained by the experience

and knowledge about how the system works. If the power

error is positive, and so the output power is below the rated

value, it is necessary to decrease the pitch reference. On the

contrary, if the power error is negative, an increment of the

pitch reference is the best option.

These simple rules are modified by the action of the

wind. If the power is low but the wind speed is high, it is

not so necessary to decrement the pitch reference because

the wind itself tends to increase the power. On the other

hand, if the power is high but the wind speed is low, the

power itself tends to decrease making not so necessary to

increase the pitch reference.

The nonlinear control surface of the fuzzy control is

shown in Fig. 3. It is possible to observe how low wind

speeds and positive power errors produce a pitch reference

close to zero, in order to increase the output power and

thus, to reduce the error. On the other hand, high winds and

negative power errors originate a pitch reference close to

feather (90�), to reduce the power and the error.

4.3 Deep learning module (DLM)

The scheme of the DLM is shown in Fig. 4. A virtual

sensor provides an estimation of the effective wind; it is

obtained based on available signals of the wind turbine

w; _w; Ia; hð Þ and on the measured wind speed, VM. A

detailed description of the virtual sensor can be found in

Table 1 Parameters of the wind

turbine model
Parameter Description Value/Units

La Inductance of the armature 13.5 mH

Kg Constant of the generator 23.31

K/ Magnetic flow coupling constant 0.264 V/rad/s

Ra Resistance of the armature 0.275 X

RL Resistance of the load 8 X

J Inertia 6.53 kg m2

R Radius of the rotor 3.2 m

q Density of the air 1.223 kg/m3

Kf Friction coefficient 0.025 N m/rad/s

½c1,c2; c3� Cp constants 0:73; 151; 0:58½ �
½c4,c5; c6� Cp constants 0:002; 2:14; 13:2; 18:4½ �
[c7,c8; c9] Cp constants 18:4; � 0:02; � 0:003½ �
[Kh;Th] Pitch actuator parameters [0.15, 2]

a;b; c; s½ � Blade filter constants 0:55; 0:832; 1:17; 9½ �
Kns Noise-signal coefficient 0.5

KACT;KFUT½ � Actual-future coefficients [0.5, 0.5]

WTFLC

Deep 
Learning
DLM

, ̇ , ,

Fig. 1 Architecture of the hybrid controller
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[33]. The output of this virtual sensor is used as labeled

information to train the deep learning networks.

The DLM has two neural networks. One is used to

predict the effective wind in the next control period, VFUT.

It has a memory block to delay the input signals

w; _w; Ia; h;VMð Þ. Therefore, the signal values at time

(i - 1) are related to the outputs at time i. These signals go

through this block when the switch SW1 is in training

mode, that is, SW1 = down.

The other neural network is in charge of the estimation

of the effective wind at current control time, i.e., VACT. The

outputs of the WT block feed this neural network directly,

without applying any delay. Both values, prediction and

estimation of the wind speed, are combined to obtain the

effective wind, VDL, that is the input of the intelligent FLC.

The recurrent long short-term memory neural networks

(LSTM), commonly used in the deep learning field, are

formed by a set of recurrently connected units, which are

usually called memory blocks or hidden units [34]. Each

one is made up of a cell, an input gate, an output gate, and a

forget gate. The cell acts as the memory, and the gates

regulate the flow of learning and forgetting information

within the unit. The LSTM structure is able to learn long

time dependencies between step times of a sequence of

data, and it has been widely used for classification and

prediction.

The deep learning NNs of Fig. 4 are based on these

LSTM layers and have the architecture shown in Fig. 5.

They are composed of several long short-term memory

(LSTM) layers in cascade. During the simulation experi-

ments, the number of LSTM structures is varied to analyze

its influence in the training. Between each two LSTMs,

there is a DROP layer. Connected to the output of the last

DROP layer, there is a fully connected layer (FULL).

Finally, the last layer of the network is a regression.

The DROP layer randomly sets input elements to zero

with certain probability. In the experiments, this probabil-

ity has been also varied to analyze its influence. This layer

contributes to avoid the network overfitting [35].

In the fully connected layer, all the inputs are multiplied

by a set of weights, and a bias is added. Finally, the

regression layer computes the mean squared error of the

loss function and it is used for the training.

The list of parameters of the DLM that is used in the

simulations is shown in Table 2. The third column repre-

sents the range of values of the parameter. These param-

eters have been initially obtained by trial and error. Then,

they have been varied in the experiments presented in the

next sections to study how they affect the training perfor-

mance of the deep learning module.
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Fig. 2 Fuzzy sets of the inputs of the FLC: power error (left) and effective wind speed (right)

Fig. 3 Control surface of the fuzzy logic controller
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5 Results and discussion

This hybrid control strategy has been applied to the model

of a small wind turbine. Simulation results have been

obtained using Matlab/Simulink software. The duration of

each simulation is 350 s. The deep learning module is

trained during the first 100 s. The sample time,Ts, is vari-

able in order to reduce the discretization error, and its

maximum value is set to 10 ms. The parameters of the

disturbance: amplitude, constant value, and period

Ad;Cd; Tdð Þ, are constant and set to (0.3,0.3,30),

respectively.

In order to evaluate the performance of the hybrid

controller, it has been compared with a PID (16) and a

fuzzy logic controller (FLC) without the deep learning

strategy (17). In this case, the FLC receives the wind speed

measured by the anemometer, VM , instead of the combi-

nation of estimated and future wind speed. The power Perr

is calculated by (11).

hPID tið Þ ¼ p
4
� Kp Perr tið Þ þ Kd �

d

dt
Perr tið Þ þ Ki � rPerr

	 


ð16Þ

hFLC�MW tið Þ ¼ p
4
� fFLC Perr tið Þ;VM ti�1ð Þð Þ; ð17Þ

where [Kp;Kd;Ki] are the tuning parameters of the PID,

that have been obtained by trial and error. Their values are

[p=4000; 0:2; 0:1�, respectively.

5.1 Performance of the controller

The performance of the controller is tested with different

wind profiles, that are: random with three different ranges:

[11.75–12.25], [12.25–12.6], and [12.6–13.25] m/s; a

sinusoidal signal with amplitude 0.17 m/s, period of 30 s,

and an average value of 12.4 m/s; a square wave signal,

and a sawtooth signal, both with the same amplitude of

0.17 m/s and average of 12.4 m/s, but a period of 50 s.

In these experiments, the disturbance has an amplitude

of 0.3 m/s, a period of 30 s, and a constant value of 0.3 m/

Fig. 4 Deep learning module

LSTM DROP FULL REGR
…

LSTM DROP

Fig. 5 Architecture of the deep learning neural networks (variant number of layer in the experiments)

Table 2 Parameters of the deep learning module

Parameter Description Range

nH Number of hidden units 25–350

nL Number of LTSM cells 1–10

d Dropout coefficient 0.1–0.9

bs Batch size 10–100
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s. The deep neural networks are composed by 2 LSTM of

200 hidden units. The drop coefficient is set to 0.2, the

batch size is 35, and the ‘‘adam’’ solver algorithm is used.

Figure 6 shows the output power obtained with different

pitch control strategies, when the wind profile is random

within the range [12.25–12.6] m/s. In Fig. 6, left, the out-

put without any disturbance is shown, and on the right,

with disturbance. The blue line represents the output power

when the pitch reference is set to 0�; the red one when the

reference is permanently set to 90�. The purple line shows

the results of the hybrid controller, FUZ-DW. The green

line represents the output when the FLC without DLM is

applied, so the wind speed is directly measured by the

anemometer (FUZ-MW). The yellow line is the PID reg-

ulator output. Finally, the black-dashed line represents the

rated power.

It is possible to observe how the blue (pitch refer-

ence = 0�) and red (pitch reference = 90�) lines limit the

signals, because they correspond to the maximum and

minimum values of the output power, respectively. The

error obtained by the strategies FUZ-DW and FUZ-MW is

smaller than the PID error. Without disturbance, the per-

formance of FUZ-DW and FUZ-MW is similar (Fig. 6,

left). However, a clear difference between them appears

when the disturbance is considered (Fig. 6, right). As

expected, this improvement of the performance is produced

after the DLM module is trained, that is, from t = 100 s

onwards.

Figure 7 shows the output power when different control

strategies are used, and the wind profile is sinusoidal. The

color code is the same as in Fig. 6. As expected, the

sinusoidal shape of the wind is noticeable in the signals.

Again, the performance of FUZ-DW and FUZ-MW is

better than the performance of the PID. But in this case,

this difference is even larger than for the random wind

(Fig. 7, left). On the other hand, with disturbance, FUZ-

DW clearly improves the output of the FUZ-MW (Fig. 7,

right), since the disturbance is considered when the pith

reference is calculated.

Figure 8 presents the same comparison when the wind

has a ramp shape. Without disturbance, the fuzzy controller

works better than the PID, providing smaller overshoot and

shorter settling time. This improvement is less noticeable

when the disturbance affects the WT, but still the error is

smaller. With disturbance, the performance of FUZ-DW is

slightly better than with FUZ-MW. This small improve-

ment may be due to the fact that the ramp is saturated at

around t = 160 s and, in this experiment, the neural net-

works have not been trained for this type of saturation.

In addition to these figures, numerical results have been

also obtained. Tables 3, 4, 5 show the root mean squared

error (RMSE), the mean value (Mean), and the standard

deviation (STD) of the output power. The columns repre-

sent the results with the PID, the FUZ-DW (FLC ? DLM),

and FUZ-MW (FLC without DLM). The best results have

been boldfaced. The last two rows of these tables represent

the average and the standard deviation of the metrics for all

wind profiles.

According to Table 3, for almost all wind profiles the

RMSE is smaller when the FUZ-DW control strategy is

applied. The only exception is with random wind in the

range 12.6–13.25 m/s, where the PID regulator works

slightly better. This specific wind range of 12.6–13.25 m/s

is already high, and if we add the disturbances, it is even

higher. That is, it makes the power get values over the rated

power almost all the time. The best strategy in this situation

is to keep the pitch at the feather position, i.e., 90�. With

this wind speed, the power error is mostly negative, and the

Fig. 6 Comparison of the output power with different control strategies for random wind without disturbance (left) and with disturbance (right)
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PID controller keeps the blades in feather position due to

the integral term. The short time the power error is positive

is not enough to compensate the accumulated negative

error and so, the pitch does not change. This explains why,

in this case, the PID controller gives a lower RMSE than

the other techniques, as shown in Table 3. Another inter-

esting result is that the fuzzy logic controller provides

better results than the PID. With the FLC, the largest error

appears for random wind in the range 12.6–13.25 m/s. It

may be explained because of the positive average value of

the disturbance; since Cd ¼ 0:3, it makes the WT work

closer to the limits of the operation for high wind. As the

smallest RMSE is obtained with the FUZ-DW strategy for

almost all wind profiles, the average value is also the

smallest one. If the results of the different experiments are

compared, it can be seen how the PID gives the largest but

the most homogeneous values. Thus, the standard deviation

obtained with the PID controller is the smallest one.

However, in almost all cases the mean value with the

PID is the best (Table 4), and thus its corresponding

average value (Table 4) is also the best. This strategy also

provides the most regular results. A possible explanation is

that the PID tends to provide a more symmetric power

error, and thus, the positive values compensate the negative

ones, and the mean value is closer to the reference. The

power error, defined by (11), can be positive or negative.

That is why the mean value of the output power is affected

by the sign of the values.

In addition to have a small RMSE and a mean value

close to the nominal power, it is also desirable that the

Fig. 7 Comparison of power output with different control strategies for sinusoidal wind profile without disturbance (left) and with disturbance

(right)

Fig. 8 Comparison of power output with different control strategies for a ramp-shape wind without disturbance (left) and with disturbance (right)
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output power does not have large oscillations. The STD

measures this deviation. In almost all cases, the hybrid

FUZ-DW control gives the smallest STD; on the contrary,

the PID gives the largest one. This explains why the

smallest average value in Table 5 is obtained with the FUZ-

DW strategy. As in previous cases, the most regular results

are given by the PID controller that has the smallest stan-

dard deviation.

5.2 Analysis of the influence of the disturbance
parameters

In the previous experiments, the parameters of the distur-

bance, i.e., amplitude, gain, and period, Ad, Cd, Td, were

constant and set to (0.3,0.3,30), respectively. Now, in order

to evaluate the robustness of the proposal, these parameters

have been varied to see their influence on the response. The

wind profile is sinusoidal as in the experiment of Fig. 7.

The MSE for the different control strategies is shown in

Fig. 9. The blue line represents the MSE with the PID, the

red one with the FUZ-DW, and the yellow line is the

response of the fuzzy controller with measured wind but

without learning.

As it is possible to see in Fig. 9, the FLC gives smaller

MSE than the PID for all the disturbance amplitudes.

Moreover, the performance of the FUZ-DW is better than

the FUZ-MW in all cases. This improvement is larger for

medium amplitudes. If the amplitude is small, the distur-

bance has a small impact too, and thus the improvement of

the FUZ-DW scheme is smaller. When the amplitude is

very large, the WT operates closer to the limits, and the

results of the FUZ-DW and FUZ-MW control strategies are

similar, and thus the improvement is also smaller.

On the other hand, when Cd is very large, the perfor-

mance of the PID is better than the fuzzy controller. This

happens around Cd ¼ 0:66 for the FUZ-DW, and around

Cd ¼ 0:44 for the FUZ-MW control. Thus, it could be said

that FUZ-DW is more robust. Moreover, the MSE when the

hybrid FUZ-DW control is applied is smaller than with any

other control strategy, no matter the value of the Cd.

It is also remarkable how the FLC is less sensible than

the PID to the variations of the period of the disturbance.

Moreover, it provides smaller MSE than the PID controller

for all the tested periods. For disturbances with small

periods, the performance of the PID, FUZ-DW and FUZ-

MW controllers is similar. This may be explained due to

the fact that the blades act as a low-pass filter that reduces

the effect of these frequencies. On the other hand, the

improvement of the hybrid FUZ-DW control in comparison

with the FUZ-MW controller tends to increase with the

Table 3 Comparison of the RMSE of the output power [W] for dif-

ferent control strategies and wind profiles

Wind profile PID FUZ-DW FUZ-MW

Constant 12.25 302,1556 234,3243 265,2781

Constant 12.75 320,5676 292,5434 292,6662

Random 11.75–12.25 307,9626 257,1144 269,0553

Random 12.25–12.6 305,1875 237,9616 260,9566

Random 12.6–13.25 334,3611 351,9683 351,8860

Sinusoidal 328,9357 247,0831 265,4648

Ramp 358,9158 312,9285 315,1404

Square wave 332,0909 261,4136 273,5319

Sawtooth 309,8832 244,1759 262,7312

Average value 322,2289 271,0570 284,0789

Standard deviation 17,2801 37,69,889 29,1807

Bold values indicate the best results

Table 4 Comparison of the Mean output power [kW] for different

control strategies and wind profiles

Wind profile PID FUZ-DW FUZ-MW

Constant 12.25 6,9964 7,0362 7,0904

Constant 12.75 7,0313 7,1856 7,1869

Random 11.75–12.25 6,9652 6,9145 6,9310

Random 12.25–12.6 7,0069 7,0822 7,1144

Random 12.6–13.25 7,1651 7,2690 7,2692

Sinusoidal 7,0032 7,0813 7,1112

Ramp 6,9273 6,9407 6,9608

Square wave 7,0112 7,0812 7,1063

Sawtooth 7,0053 7,0828 7,1132

Average value 7,0124 7,0748 7,0981

Standard deviation 0,0611 0,1029 0,0970

Bold values indicate the best results

Table 5 Comparison of the STD of the output power [W] for different

control strategies and wind profiles

Wind profile PID FUZ-DW FUZ-MW

Constant 12.25 302,1388 213,463 224,2909

Constant 12.75 318,9964 225,9429 225,036

Random 11.75–12.25 304,0997 242,5667 260,1064

Random 12.25–12.6 305,1047 223,2451 234,4127

Random 12.6–13.25 290,6526 226,7607 226,3661

Sinusoidal 328,9183 233,2074 240,9406

Ramp 351,5165 307,3091 312,7199

Square wave 331,8928 248,3857 251,9187

Sawtooth 309,8344 229,6215 236,9886

Average value 315,9060 238,9447 245,8644

Standard deviation 17,7098 26,0535 26,2948

Bold values indicate the best results
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period of the disturbance, though there are local minimums

at 100 s, 200 s and 300 s.

5.3 Influence of the configuration of the deep
learning neural networks

In this section, in order to evaluate the influence of the

configuration of the deep neural networks in the training

process, different experiments varying some parameters of

the configuration have been carried out. Specifically, the

influence of the number hidden units, the drop coefficient,

the batch size, the number of LSTM networks, and the

solver algorithm have been considered. In all these

experiments, the wind profile is sinusoidal as in Fig. 7, and

the disturbance has an amplitude of 0.3 m/s, a gain of

0.3 m/s, and a period of 30 s.

5.3.1 Variation of the number of hidden units

In this experiment, the neural networks have two LTSM

structures, the drop coefficient is 0.2, the batch size is 35,

and the solver algorithm is ‘‘adam.’’ Figure 10 shows the

training process for different number of hidden units. The

y-axis represents the RMSE of the training. The color code

of the legend indicates the number of hidden units.

In general, increasing the number of hidden units

improves the training. In fact, it is possible to observe in

Fig. 10 how the learning accelerates with the number of

Fig. 9 Evolution of MSE with the amplitude of the disturbance Ad (top-left), with the disturbance level Cd (top-right), and with the period of the

disturbance Td (bottom)
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hidden units and the RMSE is reduced. However, values

bigger than 175 do not provide relevant improvements.

5.3.2 Variation of the dropout coefficient

In the next experiment, the neural networks have two

LTSM structures with 200 hidden units, the batch size is

35, and the solver algorithm is ‘‘adam.’’ Figure 11 shows

the training process for different drop coefficients. The

y-axis represents the RMSE of the training. The color code

of the legend indicates the drop coefficient.

The dropout layer randomly sets some input elements to

zero, with a probability given by the dropout coefficient.

This helps prevent the network from overfitting [35].

However, in our case we have set the number of training

iterations to 100 and the overfit is not relevant. In fact, it is

possible to see how larger drop coefficients produce bigger

oscillations in the training and larger RMSE. The perfor-

mance of the dropout coefficients with0.1 and 0.2 value is

comparable; thus, we have set the dropout coefficient to 0.2

in the rest of experiments.

5.3.3 Variation of the mini-batch size

The neural networks have two LTSM structures with 200

hidden units, the drop coefficient is 0.2, and the solver

algorithm is ‘‘adam’’. Figure 12 shows the training process

for different batch sizes. The y-axis represents the RMSE

of the training. The color code of the legend indicates the

batch size.

The mini-batch is a subset of the training set that is used

to evaluate the gradient of the loss function and to update

the weights of the network. As it can be seen in Fig. 12, in

our case the effect of the mini-batch size is not remarkable.

5.3.4 Variation of the number of LSTM structures

In this experiment, the number of LSTMs structures varies,

but the total number of hidden units is kept equal to 400. In

order to calculate the number of hidden units of each

structure, the total number of hidden units is divided by the

Fig. 10 Training process for

different number of hidden

units, nH

Fig. 11 Training process for different dropout coefficients, d
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number of LSTMs. The integer coefficient of the division is

used as number of hidden units in all the LSTM structures.

If the division is not an integer, the rest is assigned to the

first LSTM structure. For example, for 7 LSTMs the dis-

tribution of number of hidden units between the LSTM

structures is [58, 57, 57, 57, 57, 57, 57]. Therefore, all the

structures have the same number of units except the first

one that may have extra hidden units. On the other hand,

the drop coefficient is 0.2, and the solver algorithm is

‘‘adam’’. Figure 13 shows the training process for different

batch sizes. The y-axis represents the RMSE of the train-

ing. The color code of the legend indicates the number of

LSTM structures.

In general, increasing the number of LSTMs decelerates

the training and increases the RMSE for large numbers. It

may be explained as a dropout layer with the same

coefficient is inserted between each two LSTM structures.

This increases the effect of the dropout. As a slight

improvement is observed with 2 LSTMs vs. 1 LSTM from

iteration 60, the number of LSTM networks is set to 2.

5.3.5 Variation of the solver algorithm

Finally, the influence of the solver algorithm is evaluated.

The configuration of the hybrid controller is 2 LSTMs

structures of 200 hidden units, the dropout coefficient is

0.2, and the mini-batch size is 35. Three different solvers

have been tested: stochastic gradient descent with

momentum (SGDM); root mean square propagation

(RMSprop); and adaptive moment estimation (ADAM).

Figure 14 shows the training process for different solvers.

The y-axis represents the RMSE of the training. The color

code of the legend indicates the solver algorithm.

In this case, the ‘‘adam’’ solver produces the most reg-

ular training process and the smallest RMSE at iteration

100. On the other hand, ‘‘rmsprop’’ provides a faster

training during the first iterations, but ‘‘adam’’ overpasses it

around iteration 20. For these reasons, we have used the

‘‘adam’’ solver in the other experiments.

6 Conclusions and future works

Nowadays it may be necessary in many cases to combine

intelligent and classical techniques that complement each

other in order to address complex control problems; this

combination is also commonly called hybridization. This is

the case of the pitch control of a wind turbine here

proposed.

Fig. 12 Training process for different mini-batch sizes, bs

Fig. 13 Training process for different number of LSTM structures, nL Fig. 14 Training process for different solver algorithms
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In this work, a hybrid control consisting of a fuzzy logic

controller and a deep learning module with two neural

networks has been proposed. This intelligent control

strategy is applied to control the blade angle of a wind

turbine subjected to disturbances. These disturbances cause

the wind measured by the anemometers to be different

from the wind that reaches the blades and which is effec-

tively transformed into mechanical energy.

As the response of the WT depends on the wind speed, it

is a must to consider the wind information in the control

strategy. However, as explained, this information can be

inaccurate or uncertain due to the disturbances. Therefore,

the use of intelligent techniques seems to be a good

approach to face the imprecision of the wind measures.

Thus, deep learning neural networks are used for

effective wind estimation and prediction. This effective

wind is used as one of the fuzzy logic controller inputs.

LSTM structures are used in the design of neural networks.

The simulation results show an improvement in the control

performance when using deep learning neural networks.

In addition, the influence of the deep learning configu-

ration parameters on the training has been evaluated. The

conclusions of this analysis can be summarized as follows.

The batch size practically does not affect the training

performance. Besides, in this application, it is more effi-

cient to work with small dropout coefficients. The adam

solver algorithm provides the best performance. It has been

also shown how increasing the number of hidden units

improves the training. However, increasing the number of

LSTMs while keeping the total number of hidden units

decelerates the training.

Among other possible future works, we may highlight

the extension of the DLM to predict the vibrations in a

floating wind turbine. It would be also desirable to

implement the controller in a real turbine and to generalize

it to the control of large-scale turbines.
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rillo-Serrano RV, Ronquillo-Lomeli G, Rı́os-Moreno JG (2020)

Hierarchical pitch control for small wind turbines based on fuzzy

logic and anticipated wind speed measurement. Appl Sci

10(13):4592

12. Moodi H, Bustan D (2019) Wind turbine control using TS sys-

tems with nonlinear consequent parts. Energy 172:922–931

13. Ngo QV, Chai Y, Nguyen TT (2020) The fuzzy-PID based-pitch

angle controller for small-scale wind turbine. Int J Power Elec-

tron Drive Syst 11(1):135

14. Neugebauer M, Sołowiej P, Wesołowski M, Nalepa K, Hałacz J

(2020). Fuzzy model of wind turbine control. In renewable

energy sources: engineering, technology, innovation (pp.

541–550). Springer, Cham

15. Iqbal A, Ying D, Saleem A, Hayat MA, Mehmood K (2020)

Efficacious pitch angle control of variable-speed wind turbine

using fuzzy based predictive controller. Energy Rep 6:423–427

16. Sitharthan R, Karthikeyan M, Sundar DS, Rajasekaran S (2020)

Adaptive hybrid intelligent MPPT controller to approximate

effectual wind speed and optimal rotor speed of variable speed

wind turbine. ISA Trans 96:479–489

17. Sarkar MR, Julai S, Tong CW, Uddin M, Romlie MF, Shafiullah

GM (2020) Hybrid pitch angle controller approaches for

10516 Neural Computing and Applications (2022) 34:10503–10517

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://es.greenpeace.org/es/trabajamos-en/cambio-climatico/carbon/
https://es.greenpeace.org/es/trabajamos-en/cambio-climatico/carbon/
https://ec.europa.eu/clima/policies/international/negotiations/paris_en
https://ec.europa.eu/clima/policies/international/negotiations/paris_en
https://ourworldindata.org/renewable-energy
https://ourworldindata.org/renewable-energy
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf
https://doi.org/10.1155/2019/4358958
https://doi.org/10.1155/2019/4358958


stable wind turbine power under variable wind speed. Energies

13(14):3622
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