Information Fusion 74 (2021) 39-49

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus Y

Full length article R

Check for

Rotation Forest for Big Data ol

Mario Juez-Gil *, Alvar Arnaiz-Gonzalez, Juan J. Rodriguez, Carlos Lépez-Nozal,
César Garcia-Osorio

Escuela Politécnica Superior, Universidad de Burgos, 09006 Burgos, Spain

ARTICLE INFO ABSTRACT

Keywords: The Rotation Forest classifier is a successful ensemble method for a wide variety of data mining applications.
Rotation Forest However, the way in which Rotation Forest transforms the feature space through PCA, although powerful,
Random Forest penalizes training and prediction times, making it unfeasible for Big Data. In this paper, a MapReduce Rotation

Ensemble learning
Machine learning
Big Data

Spark

Forest and its implementation under the Spark framework are presented. The proposed MapReduce Rotation
Forest behaves in the same way as the standard Rotation Forest, training the base classifiers on a rotated
space, but using a functional implementation of the rotation that enables its execution in Big Data frameworks.
Experimental results are obtained using different cloud-based cluster configurations. Bayesian tests are used
to validate the method against two ensembles for Big Data: Random Forest and PCARDE classifiers. Our
proposal incorporates the parallelization of both the PCA calculation and the tree training, providing a scalable
solution that retains the performance of the original Rotation Forest and achieves a competitive execution time
(in average, at training, more than 3 times faster than other PCA-based alternatives). In addition, extensive
experimentation shows that by setting some parameters of the classifier (i.e., bootstrap sample size, number
of trees, and number of rotations), the execution time is reduced with no significant loss of performance using
a small ensemble.

1. Introducti
nirocuction powerful architecture to address Big Data is cloud computing. Cloud

computing provides flexible and scalable resources on-demand that
have intensive processing capacities to conduct data analysis tasks [5].
The flexibility and versatility of cloud computing produce economic
solutions that rival other cluster architectures, which may even become
obsolete within a short period of time.

In the past few years, many frameworks, programming models, and
algorithms have emerged to deal with large data sets. In most cases, the
main focus of these solutions is the exploitation of the parallelization
opportunities provided by multi-core processors and cluster architec-
tures. Unfortunately, the use of these solutions makes it necessary to
redesign the algorithms to allow their execution in Big Data frame-
works. During the last decade two main Big Data frameworks have
gained notoriety: Hadoop and Spark; both base their performance in
the MapReduce programming model [6].

Likewise, ensemble methods have demonstrated their remarkable
performance over the past few decades [7]. Their simplicity and flexi-
bility make them useful in several domains. Moreover, their modularity
(i.e., they are based on individual base classifiers or regressors) makes

We are living in the era of Big Data where the growing sizes of some
data sets have never been seen before [1,2]. The way our world works is
drastically changed by the influence of Big Data. Science, engineering,
business, finances, sports, and healthcare are some fields where an
important role is now played by Big Data processing techniques. Hence,
the consolidation of Big Data as a research topic, that has been gaining
special attention in academia, and as an essential process both for
government and for industry.

From a theoretical point of view, we understand Big Data to mean
high volumes of information that are processed at high velocity and
in a wide variety of formats, most widely known as the three V’s of
Big Data [3]. Thus, designers of computer systems and data mining
algorithms have therefore had to respond to the challenge [4] through
innovative high-performance processing solutions, such as computer
clusters.

While proprietary cluster environments could be built, in order to
arrive at the large-scale and complex computing requirements that are
needed for processing these data sets, it is now claimed that the most

* Corresponding author.
E-mail addresses: mariojg@ubu.es (M. Juez-Gil), alvarag@ubu.es (A. Arnaiz-Gonzalez), jjrodriguez@ubu.es (J.J. Rodriguez), clopezno@ubu.es
(C. Lépez-Nozal), cgosorio@ubu.es (C. Garcia-Osorio).

https://doi.org/10.1016/j.inffus.2021.03.007
Received 10 June 2020; Received in revised form 28 January 2021; Accepted 21 March 2021

Available online 27 March 2021
1566-2535/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:mariojg@ubu.es
mailto:alvarag@ubu.es
mailto:jjrodriguez@ubu.es
mailto:clopezno@ubu.es
mailto:cgosorio@ubu.es
https://doi.org/10.1016/j.inffus.2021.03.007
https://doi.org/10.1016/j.inffus.2021.03.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2021.03.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Juez-Gil et al.

their parallelization feasible. Unfortunately, the number of ensemble
algorithms available on Big Data frameworks is still limited. The aim
of this paper is to present the MapReduce design and implementation
of the well-known Rotation Forest ensemble [8,9] and its evaluation.
To assess whether the Rotation Forest ensemble maintains its good
performance in Big Data, it was thoroughly compared against the few
ensemble algorithms available for Big Data within a Spark cluster
by using several large data sets with a number of instances ranging
between 400000 and 11 000000, and a number of attributes ranging
between 11 and 2 000.

Despite the remarkable performance of Rotation Forest, its main
drawback is that it is a time-consuming algorithm. A Rotation Forest
classifier needs to perform multiple PCA calculations as one of its steps,
and rotate both the training and the testing data, making it slower
than other ensemble methods. Nonetheless, an efficient design and
implementation in Big Data frameworks can make it suitable for the
new challenges posed by the need to process large data sets.

In the study presented in this paper, the original Rotation Forest
algorithm was adapted to Big Data using the parallelization approach
provided by Spark (i.e., using MapReduce). The parallelization was
performed at critical points of the code (i.e., those with the largest
execution times). Spark’s parallel implementation of PCA and Random
Forest were used, and the parallelization was also applied to the
reordering of rotation matrices and to matrix multiplications, among
other steps within the algorithm, making the proposal highly scalable.

The rest of the paper will be organized as follows. Works related to
Big Data will be summarized in Section 2. In Section 3, the background
to Random Forest and Rotation Forest ensembles, and MapReduce
will be presented. In Section 4, the MapReduce implementation of the
Rotation Forest algorithm will be explained. The experimentation will
be presented in Section 5, and the conclusions and future research lines,
in Section 6.

2. Related works

Since Google laid the foundations of MapReduce programming
model [6], several frameworks have emerged for Big Data, such as
Hadoop [10] and Spark [11]. As it is well known, Spark makes intensive
use of memory rather than disk, which means it is faster and more
convenient for data processing [12]; an advantage that has made it
increasingly popular for parallel computation. This section presents a
brief review of algorithms and libraries for both Hadoop and Spark.

Spark MLIib is the Spark’s Machine Learning library [13]. It offers
several algorithms for a broad variety of tasks, including classifica-
tion, regression, and clustering, among others [14]. Nevertheless, the
number of algorithms is still scarce in comparison with other Machine
Learning tools such as Weka [15] and Scikit-learn [16].

Lazy learners, such as k-NN (k-Nearest Neighbors) [17,18], are
successful methods that have demonstrated their value in several do-
mains. Unfortunately, their high memory requirements, consequence
of storing the entire data set, rather than calculating a model, makes
their MapReduce implementation difficult. Despite this, there are re-
cent Spark implementation proposals for both batch learning [19] and
online learning [20].

Ensemble methods rely on the fact that a bunch of base learners
(regressors or classifiers) are more likely to make proper predictions
than the base methods alone [7]. One of the benefits of ensembles
is that their construction can be easily parallelized. At the moment,
one active research line within the area of Big Data focuses on adapt-
ing ensemble algorithms to the MapReduce paradigm. Albeit scarce,
some implementations have already been proposed in recent years: In
2011, Tyree et al. proposed the pGBRT algorithm [21], a MapReduce
version of the Gradient Boosting Regression Trees ensemble. Later, in
2016 Chen et al. published a parallel Random Forest for the Apache
Spark framework [22]. In 2017 a set of ensemble implementations for
multi-label learning on Apache Spark was proposed by Gonzalez-Lopez

40

Information Fusion 74 (2021) 39-49

et al. [23]. PCARDE, presented by Garcia-Gil et al. [24], is another Big
Data adaptation of an ensemble algorithm for Apache Spark; it is based
on Principal Components Analysis and Random Discretization.

Another popular family of supervised classification models is
Bayesian Networks [25]. The most expensive task of these methods
is the computation of multidimensional contingency tables, which
requires the estimation of probability distributions [26]. A MapReduce
version, implemented in Spark, for discrete Bayesian network classifiers
was recently presented by Arias et al. [26].

It is not only classifiers and regressors that are used in data mining,
but also data preprocessing methods, which constitute a very important
stage in the knowledge discovery process [27,28]. This is what explains
why many preprocessing techniques have also recently been adapted
to Big Data frameworks [3]. There are several tasks related to data
preprocessing, such as discretizers [28], noise filtering [29], feature
selection [30], and instance selection [31-33], among others.

3. Background

This section presents the background of the paper, focusing on
Random and Rotation Forest ensemble algorithms and the MapReduce
runtime environment.

3.1. Random forest

Ensemble learning relies on the idea of generating several models
(called base classifiers, in classification problems) instead of only one,
looking for a combination of models that outperforms the individual
performance of the models that are combined. The key to the success of
this process is to achieve ensembles that, without damaging the average
performance of the models, make them diverse (in the sense that their
predictions are different from each other).

The Random Forest algorithm, proposed by Breiman [34] in 2001, is
still considered a state-of-the-art classifier [35]. Its simply, yet effective,
underlying idea is to produce a bootstrap sample (as bagging [36]
does) and it then randomly selects features at each node of the tree
being constructed in order to increase the diversity of the ensemble.
That is, instead of searching for the best feature (and threshold value
for dividing the data), it only considers a random subset of all the
features. Its simplicity and effectiveness have made it an extremely
popular ensemble method.

3.2. Rotation forest

The Rotation Forest ensemble algorithm was presented for classifi-
cation in [8]. It relies on the inherent instability of the tree construction
algorithms when the input space is rotated [7]. Data rotation, which
is in fact the cornerstone of Rotation Forest, is performed internally,
prior to training the base classifiers. Rather than an arbitrary rotation,
the rotation is operated using Principal Component Analysis (PCA).
Base classifiers (commonly trees) can therefore divide the decision
space both parallel to the feature axes and in other directions after
the rotation. This feature makes it much more powerful than other
traditional ensemble techniques, especially when all the attributes have
real values [37].

Since the standard Rotation Forest was presented, several variants
have been proposed: Rotation Forests for regression [38], and Boosting
of Rotation Forests [39], among others.

3.3. Mapreduce

The MapReduce runtime environment [6] has become the most
widely used paradigm in Big Data scenarios nowadays [40,41]. Since

M. Juez-Gil et al.

the release of Hadoop in 2006, the first open source implementation
of MapReduce, some drawbacks have been identified. The main short-
coming of Hadoop is its disk usage to ensure cluster fault tolerance,
making it slow, especially for iterative processes. Spark was therefore
developed in 2010 in an attempt to use memory intensively and to
minimize disk access.

Both, Hadoop and Spark use the MapReduce programming model.
To take advantage of MapReduce, an algorithm must be redesigned so
that it consists of two stages: Map and Reduce. The map phase divides
the data into several parts and applies a first processing step to each of
them, while the reduction phase is responsible for applying a second
processing step in which the data from the first phase is collected and
integrated to obtain the final result. A typical example is the task of
counting words in a document. The sequential version processes the
document word by word while storing the words and their number
of occurrences in a dictionary or hash table. On the contrary, in the
MapReduce version of the algorithm, after dividing the document into
several parts, the map step transforms every single word into a tuple of
(word, 1); then, the reduce step groups all the tuples with the same
key (i.e., the word) and adds the values (the “ones”); and, finally, the
process is repeated in a final reduction step that calculates the global
word count for the entire document. The result is a collection of tuples
with the word as the key and its number of occurrences as the value.

Therefore, the implementation of a sequential algorithm into a
parallel (MapReduce) environment requires the redesign of the algo-
rithm itself, dividing its internal processing into mapping and reducing
phases. This task is not always trivial and can in fact be a paramount
challenge in some cases [27].

4. Rotation forest for Big Data

This section presents the parallel implementation of the Rotation
Forest classifier [8] for Big Data. Our proposal maintains the main
structure of the standard Rotation Forest, but adds some changes to
face the problems that Big Data induces. The main difference is the
paradigm shift (from sequential to functional) and the use of Random
Forest as the base classifier instead of a single decision tree. This last
idea was presented in [42] to show that rotation of Random Forests
outperform most widely used ensembles. Here, we have found that this
is also a very promising approach to optimize training times when using
large data sets. An advantage of using Random Forest is the versatility
that it offers: it can be parameterized to behave as a single decision
tree, as a Bagging of decision trees, or as Bagging of random trees
(i.e., Random Forest) among others.

Training a Rotation Forest is a very time-consuming task, which
is its main drawback, at least in the context of Big Data. As noted,
this is mainly because the PCA calculation requires more computing
resources, which is greater as the number of instances and features
increase. In Rotation Forest, data are transformed through a sparse
rotation matrix computed by arranging K PCA rotation matrices (each
of them calculated for K random feature subsets). Additionally, since
Rotation Forest is an ensemble, as many sparse rotation matrices as the
size of the ensemble will be computed (i.e., for an ensemble of size L,
PCA is computed L x K times).

Nonetheless, this can be done in an efficient parallel way, as PCA
can be solved using matrix algebra (i.e., singular value decompo-
sition or covariance matrix calculations followed by an eigenvalue
decomposition). In the Spark framework, PCA is already implemented
using a parallel singular value decomposition (SVD) algorithm. Deci-
sion tree-based algorithms, such as Random Forest, can also be par-
allelized in many ways. Spark provides its own parallel Random For-
est implementation, whose optimizations are based on the PLANET
project [43].

Both PCA and Random Forest parallel implementations provided by
Spark are used, in order to take advantage of Rotation Forest for Big
Data processing.

41

Information Fusion 74 (2021) 39-49

The training stage of Rotation Forest is presented in Algorithm 1.
The algorithm rotates the input data X and then trains a Random Forest
of size T using the rotated data. The process is performed L times, in
order to build an ensemble that is composed of L rotation matrices and
L Random Forests. Hence, the total number of trees in the ensemble is
LXT.

Algorithm 1: Rotation Forest for Big Data (Training stage).

Input: A training set (X,Y) where X = {x;,...,x,} defined in a
feature set F, Y = {y,,...,y,} with labels
y; € 2 ={w,..., .} representing c¢ classes, number of
rotations L, number of trees T, number of feature
subsets K, bootstrap size B.
Output: Trained ensemble E (tuples: rotation matrix R?, base
classifier D).

1 E<mapie{l,...,L}

2 Q « random partition of F into K subsets of features
3 M<~mapSeQ
4

W « submatrix of X with the columns corresponding to
the features in S

5 Y’ « random selection of classes in Q

6 W’ « submatrix of W with rows corresponding to
instances of classes in Y’

7 W'« bootstrap sample of size B% of the number of
instances in W’

8 C « rotation matrix from parallel-PCA(W")

9 emit (C)

10 | R« reduce (M) // block diagonal matrix

1 P < permutation matrix, matching the order of the features

inF

12 | R?«<PR // rearrangement of R (in parallel)

13 D < train-parallel-random-forest(XR*Y,T)

14 emit (R?, D)

15 return E

The construction of the rotation matrix R is performed in lines 3
to 12. Initially, the feature set, F, of the input data, X, is randomly split
into a partition, Q, of K subsets (K is a parameter of the algorithm).
For each feature subset, S, of Q, a submatrix, W, is extracted from X
that only contains the features in S (that is, W only contains a subset
of columns of X). The matrix, W, is now further reduced by removing
some of its rows, more specifically a random selection of classes is made
and all instances not belonging to the selected classes are removed. The
result is a new matrix, W’. An additional reduction step generates the
matrix, W”, by retaining a bootstrap sample of a percentage, B, of the
instances in W’. PCA is applied to this last matrix, W”, to obtain a
rotation matrix, C.

In the reduction phase, all the resulting PCA rotation matrices, K,
are arranged into a block diagonal matrix, R, although it cannot yet
be used to rotate the original input data, X, because the order of its
columns does not match the order of the corresponding features in the
original data. In consequence, the columns of R have to be rearranged
to match the original order of features using a permutation matrix, P,
and a MapReduce implementation of matrix multiplication.

Finally, a Random Forest classifier is trained using the data obtained
by rotating the input data, X, using the reorganized matrix, R? (XR?).

Fig. 1 illustrates the process of calculating the rotation matrix R?
using as an example a data set X with 12 instances, 6 features, and 3
classes {0, 1,2}; and algorithm parameters, K and B, equal to 3 and to
50%, respectively.

Algorithm 2 shows the steps for the Rotation Forest prediction stage.
A novelty with regard to the standard Rotation Forest, is that the
prediction is not performed for a single instance at a time but for
a set of instances in parallel, which is more convenient in Big Data.
An ensemble of size L has L rotation matrices and L trained base

M. Juez-Gil et al.

Information Fusion 74 (2021) 39-49

map reduce

subsample
by class

bootstrap
subsample

Rotation matrix
rearrangement
(P-R)

~
R Ra

B

Fig. 1. MapReduce implementation of the process to generate the rotation matrix (R%).

classifiers (i.e., L Random Forest). Firstly, each rotation matrix, R,
and its corresponding base classifier, D, are used in the map phase
(see Line 1), where the set of instances, X, is rotated through a parallel
matrix multiplication (X R“), and then used as input to a base classifier
D. Its output, P, will consist of the predicted probabilities of each
instance in the set for each class (i.e., the dimension of the matrix is
nXc, where c is the number of classes and » the number of instances for
which the prediction is being made). All predictions (i.e., base classifier
probabilities) are arranged in a three-dimensional matrix, S, of size
Lxnxc. Then, the probabilities of each base classifier for each class for
the instances are added up and averaged in the reduce phase, thus the
T matrix is of size nx c. Finally, the last map (see Line 6) computes the
final prediction of the whole Rotation Forest ensemble. The predicted
class for each instance (w;) will be the class with the highest probability
in u, and an array, y, containing the predicted classes of the instances,
will be the final output of the ensemble.

Algorithm 2: Rotation Forest for Big Data (Prediction stage).

Input: A set X = {x,,...,x,} defined in a feature set F, the
ensemble E (tuples: rotation matrix R? and base classifier

D).
Output: Predicted classes y = {y,,...,y,} with labels
¥, € 2={w,,...,w,} representing c¢ classes

1S« map (R D)e E
2 | X «XR? // parallel rotation of input set
3 P — DX') // parallel prediction
4 | emit (P)
5 T « reduce (S) // average the probabilities
6 y<— mapueT
7 J < argmaXe(y o4
8 | emit (;)
9 returny

5. Experimental results

The aim in this section is to assess whether the MapReduce version
of Rotation Forest, presented in this paper, is suitable for Big Data
processing. A thorough experimentation was performed taking into
account both accuracy and execution time, using several representative

42

Table 1

Experimental data sets.
Dataset Instances Attributes Classes Size (GB)
poker-hand 1025010 11 10 0.02
covtype 581012 54 7 0.07
susy 5000000 18 2 2.33
higgs 11000000 28 2 7.84
hepmass 10500000 28 2 7.58
epsilon 400000 2000 2 11.87

data sets. Since the proposed Rotation Forest® is a tree-based ensemble
classifier, it was compared to the official Spark implementation of
Random Forest [34]. It was also compared to the Principal Components
Analysis Random Discretization Ensemble (PCARDE) [24], because it
shares the idea of using PCA with Rotation Forest as part of its data
transformation step.

5.1. Experimental framework

Six popular classification data sets for Big Data were used for con-
ducting the experiments.? Table 1 summarizes the data sets. All features
of the data sets were normalized. As the features of Rotation Forest
need to be numeric, nominal features were binarized using one-hot
encoding.

The experimental setup of Rotation Forest was as follows. The
number of trees, T, was set to 1, so the ensemble size was the same
as the number of rotations, L.*> Following [8], we used three different
ensemble sizes, to represent small (10 trees), medium (50 trees), and
large ensembles (100 trees). The bootstrap value was set at 25% and 4
was selected as the number of feature subsets K. As stated before, the
Rotation Forest classifier proposed in this study uses Random Forest

! The Rotation Forest classifier implementation for Spark is publicly
available at https://github.com/mjuez/rotation-forest-spark.

2 The poker-hand, covtype, susy, higgs, and hepmass data sets are
available at the UCI Machine Learning repository [44] https://archive.ics.uci.
edu/ml/index.php. The epsilon data set is available at the LIBSVM data repos-
itory https://www.csie.ntu.edu.tw/~cjlin/libsvimtools/datasets/binary.html#
epsilon.

3 This is what the standard Rotation Forest does, in which there is a
different rotation for each tree, later we will experiment with other approach
where the same rotation is shared among several trees.

https://github.com/mjuez/rotation-forest-spark
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon

M. Juez-Gil et al.

ROPE
(0.0015)

ROPE
(0.0033)

L R L R
(0.0287) (0.9698) (0.0330)

(a) RanF 100 (b) RanF 200

(0.9637) (0.0375)

Information Fusion 74 (2021) 39-49

ROPE
(0.0025)

ROPE
(0.0000)

L R L R
(0.9600) (0.0255) (0.9745)

(¢) RanF 500 (d) PCARDE

Fig. 2. Hierarchical Bayesian test heatmap for Random Forest and PCARDE against Rotation Forest with 10 trees.

as its base classifier. The Spark Random Forest was parameterized in
such a way that it behaves as a decision tree (as the standard Rotation
Forest does). It was achieved by setting featureSubsetStrategy to “all”
(i.e., all features are used for training). For the rest of the parameters,
their default values were used.

Regarding the experimental setup of Random Forest and PCARDE,
the default values were used for all the parameters except for the
number of trees, which was set to 100 for small, to 200 for medium,
and to 500 for large ensembles. In the case of PCARDE, only a single
ensemble size with 10 trees was used because this was the setting
recommended by the authors [24] (they reported equivalent results for
small, medium, and large ensembles).

Given that the values of the parameters were not changed for each
individual data set, the results obtained were not entirely optimal. If
the parameters had been individually tuned for each data set, then the
results could have been improved. It would however have made the
experimentation unnecessarily time-consuming. Nevertheless, the same
restriction was used with all the methods, so the comparison was fair.

The experiments were carried out using 5-fold cross-validation.
Ensemble learning requires randomization to train different and diverse
base classifiers. For this reason, with the aim of enabling experimental
repeatability, a random seed value was fixed at 46.

Accuracy measure (defined in Eq. (1)) was used for evaluating
classification performance.

correctly classified instances

@

accuracy = :
total number of instances

Bayesian analysis [45] was used to compare the ensemble classifiers
(the library to perform the analysis was baycomp*). The number of sam-
ples for all Bayesian comparisons was set to 50 000. The value for the
region of practical equivalence (ROPE) was set to 0.01, which means
that two algorithms with a difference in accuracy of less than 1% will be
considered equivalent. Bayesian comparison results were represented
through ternary plots (e.g., Fig. 2) where the space is divided into three
areas of interest: L (opponent wins), ROPE (both tie), and R (Rotation
Forest wins).

The experimentation was performed in cloud-based clusters pro-
vided by the Google Cloud Platform. A cluster was composed of one
master node and seven computing/worker nodes. All nodes were of the
n1-standard-16 type, which had 16 virtual CPUs, and 60 GB of RAM.
Hence, the cluster size was 128 vCPUs and 480 GB of RAM. At that
point in time, the vCPUs of n1-standard nodes could be of one of the
following types: Intel Xeon (Skylake), Intel Xeon E5 (Sandy Bridge),
Intel Xeon E5 v2 (Ivy Bridge), Intel Xeon E5 v3 (Haswell), or Intel
Xeon E5 v4 (Broadwell E5). We used Google Dataproc software, version
1.4, running on Debian 9, with Apache Hadoop 2.9.2, and Apache
Spark 2.4.5. Google Cloud Storage was used as a distributed file system
for storing data sets and experimental results.

4 The baycomp library is at

readthedocs.io/en/latest/.

publicly available https://baycomp.

43

5.2. Accuracy performance

Table 2 gathers the accuracy results of the three ensemble methods:
Random Forest (RanF), PCARDE, and Rotation Forest (RotF). The best
results are highlighted in bold. As can be seen, for all data sets, the
best results were achieved by Rotation Forest. The table also shows that
the size of the ensemble for Random Forest has very little influence on
the results. On the other hand, this influence appears to be somewhat
greater in the case of the Rotation Forest. Although at first glance
medium-size Rotation Forests appear to be a better option than small-
size Rotation Forests, Section 5.4 will show that, from the point of view
of Bayesian statistical analysis, Rotation Forest performs equivalently
for all sizes.

Fig. 2 shows the hierarchical Bayesian test in heatmap repre-
sentations for Rotation Forest with 10 trees against Random Forest
(Fig. 2.a—c) and PCARDE (Fig. 2.d). The R area in the triangles corre-
sponds to Rotation Forest while the L area corresponds to the opponent
(i.e., PCARDE or Random Forest). The high density of points (each
point corresponds to one Bayesian simulation) concentrated in the right
corners means that Rotation Forest clearly outperformed the opponents
(i.e., R probability close to 1).

In the previous comparison, cross-validation accuracy results for all
data sets were used to get a general overview of Rotation Forest per-
formance compared to Random Forest and PCARDE. Cross-validation
accuracy results for a single data set could also be analyzed through the
Bayesian correlated ¢ test [46]. Fig. 3 shows the density plots comparing
Rotation Forest with 10 trees against PCARDE and Random Forest for
each data set. As in ternary plots, there are three areas of interest:
the region to the left of the leftmost line, which corresponds to the
statistical primacy of the opponent; the region between the two lines,
which corresponds to the ROPE (i.e., statistical equivalence between
two classifiers); and the region to the right of the rightmost line,
which corresponds to the statistical primacy of Rotation Forest. This
test shows that, for five out of six data sets, Rotation Forest performed
better than PCARDE. Only for epsilon was PCARDE better (blue density
curve). In the comparison with Random Forest (gray, red, and green
density curves), Rotation Forest performed better for four data sets,
while Rotation and Random Forest performed equivalently for susy
and higgs.

Table 3 gives another perspective on this information, showing the
detailed probabilities for the three areas of interest of the Bayesian
correlated ¢ test explained earlier. The region (Left, Right, or ROPE)
with the highest probability, is highlighted in bold. Most of the time,
the highest probability was over 98%, showing that the best classifier
far outperformed its contender. In most cases, this clear winner was
Rotation Forest.

5.3. Execution time analysis

The evaluation in the previous section was conducted in terms of
accuracy. Although the strengths of Rotation Forest were demonstrated

https://baycomp.readthedocs.io/en/latest/
https://baycomp.readthedocs.io/en/latest/

M. Juez-Gil et al.

0.048 0.102

Rotation forest
ROPE| wins

Opponent
wins

0.032 0.068

0.016 0.034

0.060 0.078

0.040

0.052

0.020 0.026

(d) higgs

PCARDE ==

RanF 100

(e) hepmass

Information Fusion 74 (2021) 39-49

0.126

0.084

0.042

0.048

0.032

0.016

(f) epsilon

RanF 200 RanF 500

Fig. 3. Bayesian correlated 7 test density plots. It compares Random Forest and PCARDE against Rotation Forest with 10 trees.

Table 2

Experimental results in terms of classification accuracy for Random Forest, PCARDE, and Rotation Forest. Best results are
highlighted in bold. The value at the right of each accuracy corresponds to the standard deviation.

Dataset Random forest PCARDE Rotation forest
100 200 500 10 10 50 100

poker-hand 51.42 +0.40 51.32 +0.30 51.18 +0.31 50.77 +1.36 62.46 +3.20 58.22 +1.12 57.26 +1.16
covtype 67.17 +0.26 67.22 +0.29 67.13 +0.22 67.01 +0.85 72.08 +0.38 72.33 +0.16 72.28 +0.14
susy 77.67 +0.05 77.67 +0.04 77.66 +0.01 72.64 +1.34 78.40 +0.09 78.59 +0.06 78.59 +0.06
higgs 67.52 +0.31 67.58 +0.28 67.67 +0.11 58.33 +1.66 68.16 +0.33 68.70 +0.10 68.80 +0.10
hepmass 82.21 +0.08 82.15 +0.12 82.19 +0.07 81.33 +0.33 84.06 +0.32 84.44 +0.12 84.42 +0.11
epsilon 72.56 +0.31 72.69 +0.33 73.02 +0.35 78.40 +0.13 77.19 +0.91 80.12 +0.44 80.33 +0.29

Table 3

Bayesian correlated ¢ test probabilities for Random Forest and PCARDE against Rotation
Forest with 10 trees. The right probability is the probability of Rotation Forest
performing better than the opponent. The region (Left, Right, or ROPE) with the highest
probability is highlighted in bold.

Dataset Method Ensemble size Left prob. ROPE Right prob.
poker-hand ~ RanF 100 0.18% 0.17% 99.65%
200 0.22% 0.20% 99.58%
500 0.17% 0.16% 99.67%
PCARDE 10 0.08% 0.08% 99.84%
covtype RanF 100 0.00% 0.01% 99.99%
200 0.00% 0.02% 99.98%
500 0.00% 0.01% 99.99%
PCARDE 10 0.07% 0.25% 99.68%
susy RanF 100 0.00% 98.94% 1.06%
200 0.00% 98.18% 1.82%
500 0.00% 99.26% 0.74%
PCARDE 10 0.07% 0.17% 99.76%
higgs RanF 100 0.59% 79.76% 19.65%
200 0.37% 87.13% 12.50%
500 0.21% 93.82% 5.97%
PCARDE 10 0.02% 0.02% 99.96%
hepmass RanF 100 0.00% 0.49% 99.51%
200 0.02% 1.21% 98.77%
500 0.00% 0.44% 99.56%
PCARDE 10 0.01% 0.14% 99.85%
epsilon RanF 100 0.08% 0.31% 99.61%
200 0.09% 0.38% 99.53%
500 0.10% 0.46% 99.44%
PCARDE 10 64.37% 34.95% 0.68%

44

in [8] for small and medium-sized data sets, this paper reinforces that
conclusion by working with large data sets and using modern Bayesian
statistical tests. Nevertheless, the main contribution of this research is
the adaptation of Rotation Forest to work in Big Data environments
where execution time is crucial. In this regard, an evaluation and
comparison is presented in terms of both execution time and speedup.

Fig. 4 shows a comparison of execution times for Rotation Forest
with 10 trees (blue bar), PCARDE (green bar), and Random Forest
(burgundy bars). The figures on the top row refer to training times (in
seconds), while those on the bottom row refer to prediction times (in
milliseconds).

Regarding training time, Random Forest with 100 trees was the
fastest on six data sets, as expected. If we compare the two methods that
use PCA as part of their data transformation step (Rotation Forest and
PCARDE, both with 10 trees), the fastest method was clearly Rotation
Forest.

Looking close at prediction times, it is somewhat surprising that
the Rotation Forest classifier with 10 trees was the fastest on four
out of six data sets. However, this is because the size of Rotation
Forest was ten times smaller than Random Forest, and PCA was not
computed at prediction (i.e., only a matrix multiplication for rotating
data was performed). Regarding the comparison of Rotation Forest
against PCARDE, as we might expect, prediction was also faster with
Rotation Forest.

For the epsilon data set, the difference between Random Forest
against the other two is dramatic. The explanation of this may be
found in the number of features. While for the other five data sets,
the numbers of features range between 11 and 54, epsilon data set
has 2000. PCA calculation and data rotation require much more time as
the number of features (i.e., data set dimensionality) grows, and thus,

M. Juez-Gil et al.

0

)

£

ey

&0

£

£

4]

S~

ey

w

E

)

g

-

5

: o © o o o o ©O o o <9 o o o o

i SSEEE SSE8EE TZER

5 OB Bemer BRoemas THE oy

9] S g4 g9 =] g g = S S g

4 KM 3 I 3 KM 3 & 3 ==~ |

o, < A MM < M Mo/~ < & oM~

|©] ©] O
s Ay A

(a) poker-hand (b) covtype (c) susy

Information Fusion 74 (2021) 39-49

1249.6

13.9 18.4 44.8
1503 1982
23.8 25.9 38.7
o o o o <2 o o o o o o o o o o
==888 STZE88E8 -ZSEREB
Pl e RBRerem RPREEE
9 g g9 g Q S g g Q g g g
=R I I K KE 3 3 = MR 3 3 =
< B KB~ < M KR~ < K KB &
O O O
[a ¥ [a ¥ ol
(d) higgs (e) hepmass (f) epsilon

Fig. 4. Training times (top row) and prediction times (bottom row) for each data set. Blue bar corresponds to Rotation Forest, green bar corresponds to PCARDE, and burgundy

bars correspond to Random Forest.

Rotation Forest and PCARDE execution times are highly penalized.
Nevertheless, we consider that the execution time for Rotation Forest
with the epsilon data set was acceptable for Big Data scenarios.

Having shown the competitiveness of Rotation Forest execution
times, it is of great importance to determine how well it scales (i.e., how
runtime decreases as the number of machines increases). In order to
evaluate this, a cluster with one master node and a number of worker
nodes ranging from 2 to 24 was used. Each node was of the n1-
highmem-2 type, which had 2 virtual cores of the same type as the
nodes described in Section 5.1. The following comparison of execution
time and speedup, was performed on the medium-size susy data set.

Fig. 5 shows the evolution of training time (left) and prediction time
(right). As was expected, the execution time decreased as the number
of workers increased. The improvement begins to be less remarkable
around the fourteenth or the sixteenth worker, moreover, with the
addition of the eighteenth worker, the time actually increases. This
behavior is expected because every algorithm has a certain execution
time that cannot be optimized, our experiments with the susy data
set are a good example of that. This is because the data set is not
extremely large, thus, when the number of workers increases above
20, the time required for data communication and transfer was greater
than the benefit of increasing the computational power (i.e., additional
workers).

Speedup (see Eq. (2)) is conventionally used as a metric for measur-
ing algorithm scalability in a cluster.

sequential execution time
speedup =

(2)

parallel execution time

For computing the sequential (not parallel) execution time, a ma-
chine with one n1-highmem-2 node, and one Spark partition was
used.

Fig. 6 shows the speedup evolution of training and prediction. As
seen in Fig. 5, the improvement of using more nodes both in training
and testing is clear up to 16 nodes. Thereafter, the improvement was
minimal, and using more than 20 workers decreased the speedup. It is
worth noting that the speedup is higher in prediction than in training,
because PCA computation for the K feature subgroups was not fully
parallel in training. However, in the prediction phase, the input data
rotation was a fully parallel MapReduce matrix multiplication.

5.4. Study of ensemble size

When Rotation Forest classifiers are trained, PCA is the most time-
consuming step. Therefore, the main optimization will be to reduce

45

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the number of PCAs that have to be calculated. For this purpose,
three parameters of the algorithm can be adjusted: L, the number
of rotations; T, the number of trees; and K, the number of feature
subsets. In this section, we will focus only on the first two, because
they determine the ensemble size.

Up until this point, all the experiments had been performed with
T = 1, which meant that the ensemble size was equal to L (i.e. Lx 1 as
in the standard Rotation Forest). Fig. 7 shows a hierarchical Bayesian
test for statistical comparison of the three ensemble sizes that have
so far been used. It can be roughly concluded that small (10 x 1),
medium (50 x 1), and large (100 x 1) ensembles achieved equivalent
levels of accuracy. Specifically, Fig. 7.a shows the similar performance
levels of small and medium ensembles in 90.5% of cases; in 7.b, small
and large ensembles are shown to perform similarly in 69.2% of cases;
and, no statistical difference between medium and large ensembles is
shown in 7.c. The use of additional trees in the ensemble offered no
significant advantage, and therefore, a small Rotation Forest with 10
trees was both sufficiently acceptable (taking into account accuracy)
and computationally cheaper.

Commonly, the calculation of a data rotation matrix requires much
more time than the training of a single tree. Thus, a strategy that could
be followed to accelerate the training of Rotation Forest of a certain
size is to decrease the number of rotations, but at the same time, in
order not to reduce the number of base classifiers in the ensemble, more
than one tree will be trained with the same rotation. This approach,
already proposed in [42], acquires special relevance in the context
of Big Data, since it would allow the reduction of the computing
workload. Of course, as long as this simplification of the process does
not significantly affect the final performance. This is precisely what
will be evaluated in this section. Specifically, a small Rotation Forest
ensemble of 10 trees could be built by rotating the data ten times and
training one tree with each rotation (L xT = 10x 1), or by rotating the
data five times and training two trees with each rotation (LXT = 5x2).
Training the 5 x 2 ensemble will take about half the time of training
the 10 x 1 ensemble. With this in mind, different experiments were
launched varying both the number of rotations and the ensemble size.

Table 4 shows the results of the hierarchical Bayesian tests compar-
ing different configurations of number of rotations (L) and number of
trees per rotation (7). In all cases, for a given ensemble size, the left
region corresponds to the method with the highest number of rotations
and the right region to the fastest alternative, with a reduced number
of rotations. The results of using the proposed strategy to accelerate

M. Juez-Gil et al.

419.2

122.6 121.6 122.3 130.0 132:9

2 4 6 8 10 12 14 16 18 20 22 24

(a) training time [s]

Information Fusion 74 (2021) 39-49

30.1

61 56 50 50 50 54 59

2 4 6 8 10 12 14 16 18 20 22 24

(b) prediction time [ms]

Fig. 5. Execution time evolution for susy data set. The left bar plot refers to the training time (in seconds) while the right plot shows prediction time (in milliseconds). The

x-axis indicates the number of worker nodes.

114 17+
ol 141
11
71
|1l
51 sl
31 21
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

(a) training

(b) prediction

Fig. 6. Speedup (y-axis) for susy data set. The left plot refers to training and the right plot to prediction. The x-axis indicates the number of worker nodes.

ROPE
(0.9050)

ROPE
(0.6922)

ROPE
(1.0000)

N N

(0. 0213 (0. 0737 (0. 0885

(a) small vs medium

(b) small vs large

(0. 2193 (0. 0000 (0. OOOO

(c) medium vs large

Fig. 7. Hierarchical Bayesian test heatmap for comparing the influence of ensemble size in Rotation Forest. Three sizes were compared: (a) 10 x 1 vs 50 x 1, (b) 10 x 1 vs

100 x 1, and (c) 50 x 1 vs 100 x 1.

the training phase of Rotation Forest are quite interesting. For small
Rotation Forest (size 10), in 94.43% of cases, 10 X 1 and 5 x 2, were
equivalent. For medium Rotation Forest (size 50), in 88.82% of cases,
50 x 1 and 10 x 5, performed in a similar way. In 54.5% of cases, 50 x 1
resulted better than 5 x 10 , which means that for this specific scenario,
reducing the number of rotations tenfold would be counterproductive
for accuracy (it appears that here the additional diversity provided by
the 50 rotations is relevant to obtain good results). Ending with the
last of the medium Rotation Forests comparisons (10 x 5 vs. 5 x 10),
in 89.18% of occasions they turned out to be equivalent. Regarding
the large Rotation Forest (size 100), in 98.35% of cases, 100 x 1 and
10 x 10, were equivalent, as well as 100 x 1 and 5 x 20, which showed
to be equivalent in 83.65% of cases. Finally, equivalent performance is

46

also shown between 10 x 10 and 5 x 20, which occurred in 94.15% of

cases.

We trained small, medium, and large Rotation Forest classifiers with

=5(5x%x2,5x 10, and 5 x 20, respectively), and with L = 10
(10 x 1,10 x 5, and 10 x 10, respectively), in what follows, the value
of L is fixed (to 5 or to 10) and the influence of the parameter T is
analyzed. Fig. 8 shows the hierarchical Bayesian test heatmap for L = 5
and L = 10 on the top and bottom row, respectively. For both values
of L, all the tests shown in Fig. 8.a—f depict statistical equivalence with

independence of the value of T.

M. Juez-Gil et al.

ROPE
(0.9992)

ROPE
(1.0000)

A A A

Information Fusion 74 (2021) 39-49

ROPE
(1.0000)

«1&603) 010005) «10000)

(a) T=2wvs T =10

(b) T =2 vs T = 20

010000) «10000) «lOOOO)

(¢) T=10 vs T = 20

ROPE ROPE ROPE
(1.0000) (0.9985) (1.0000)
o
i
I
~_
L
(0.0000) ayoooo) «10013) «10002) «10000) «10000)

(d)yT=1vsT =5

(e) T=1vs T =10

(f) T=5wvs T =10

Fig. 8. Hierarchical Bayesian test heatmap for comparing the influence of increasing the number of trees for each rotation: on the top row, 5 rotations with comparisons of 2,

10, and 20 trees. On the bottom row, 10 rotations with comparisons of 1, 5, and 10 trees.

5.5. Influence of bootstrap in Big Data

Bootstrapping is used in Rotation Forest as a part of the PCA calcula-
tion step, to avoid repeatedly obtaining the same principal components.
The reason for doing so is to attempt to maximize the diversity of the
ensemble. In [8], a bootstrap size of 75% was recommended. Never-
theless, this value could be lower, because the number of instances
in Big Data is very high. Hence, a bootstrap sample containing a low
percentage of instances should be sufficiently representative of the
entire classification problem. The representativeness of the bootstrap
sample is therefore not as important as the fact that it can generate
different principal components, which is why lower bootstrap values
could be beneficial or, at least, not harmful. Another thing to bear in
mind is that in our case, the smaller the bootstrap sample, the faster
the computation of the PCA. So, fixing a parameter that is as low as
possible will shorten the training time.

Small Rotation Forests with L = 10 and T = 1 were trained with
different bootstrap sizes — 10%, 25%, and 50% — to assess whether the
bootstrap size might have an effect on the accuracy rates. Fig. 9 shows
the hierarchical Bayesian test heatmaps, so that the results for the three
bootstrap size cases may be compared. The Bayesian test shows that
the bootstrap size did not have a significant impact on the accuracy of
Rotation Forest, because the ROPE values in Figs. 9.a, 9.b, and 9.c were
close to 100%. Hence, for Big Data environments, faster training times
could be achieved by using small bootstrap sample sizes, e.g., 10%.

6. Conclusions and future work

This paper has presented a MapReduce design of a variant of
Rotation Forest and its implementation in Spark (the implementation

47

Table 4

Hierarchical Bayesian test results comparing the influence of different variants of
ensemble size in Rotation Forest. The variants are obtained by setting a combination of
L and T parameters for constructing small, medium, and large ensembles. The region
(Left, Right, or ROPE) that gather the highest probability is highlighted in bold.

Ensemble size Left Right ROPE Heatmap
L T Prob. L T Prob.

small (10) 10 1 0.0505 5 2 0.0052 0.9443 A&

50 1 0.0873 10 5 0.0245 0.8882 A&

medium (50) 50 1 0.5450 5 10 0.1695 0.2855 A&

10 5 0.0757 5 10 0.0325 0.8918 A&

100 1 0.0100 10 10 0.0065 0.9835 é&

large (100) 100 1 0.1340 5 20 0.0295 0.8365 /@\

10 10 0.0490 5 20 0.0095 0.9415 /Q\

is publicly available.”). A thorough experimental campaign with Big

5 The implementation for Spark is publicly available at https://github.com/
mjuez/rotation-forest-spark.

https://github.com/mjuez/rotation-forest-spark
https://github.com/mjuez/rotation-forest-spark

M. Juez-Gil et al.

ROPE
(0.9942)

ROPE
(0.9948)

Information Fusion 74 (2021) 39-49

ROPE
(1.0000)

L R L
(0.0000) (0.0058) (0.0005)

(a) 10% vs 25%

(b) 10% vs 50%

R

L R
(0.0047) (0.0000) (0.0000)

(c) 25% vs 50%

Fig. 9. Hierarchical Bayesian test heatmap for comparing the influence of bootstrap size in Rotation Forest. Three sizes were compared: 10%, 25%, and 50%.

Data sets has been performed, to assess the viability of the Rotation
Forest algorithm for Big Data processing. The proposal presented in this
paper has demonstrated its high performance and fast execution time,
as well as its good scalability performance in cloud-based clusters. All of
it with six large data sets having a number of instances ranging between
400000 and 11 000000, and a number of attributes ranging between
11 and 2000.

Modern Bayesian tests (hierarchical and correlated ¢ test) were
used for evaluating the statistical differences between the different
algorithms that were tested. Our experiments have consolidated the
results of [8], in which the Rotation Forest algorithm was reported
to be a better option than Random Forest, and the same conclusion
has now been corroborated with massive data sets. Furthermore, the
superiority of Rotation Forest in relation to PCARDE, a very recent
ensemble algorithm for Big Data, has been demonstrated.

An experimental exploration of some algorithm parameters and
their optimal values has been performed. Through that study, the
approach for training Rotation Forest with Random Forest rather than
of a single decision tree as the base classifier has proved that accurate
models with fewer data rotations, and therefore models that train and
predict faster, are indeed feasible. The analysis also reported that small
ensembles, consisting of 10 trees, are accurate enough for the Big Data
sets used in the study.

Additionally an evaluation of the influence of the bootstrap sample
size with large data sets has been conducted. The conclusion of that
evaluation was that sampling 10% of the data provided classification
models with an equivalent performance to those that sampled 25% or
50% of the data. The use of low percentages therefore means simpler
PCA calculations and faster training of the Rotation Forest.

Rotation Forest code has been carefully developed following the
Spark ML API guidelines, aiming towards its incorporation in the API
within the near future. The number of ensemble algorithms available
for Big Data is still scarce, specially for tasks such as online learning
and unbalanced data sets, among others. Ensembles have also been
used for data stream analysis [47], the adaptation of Rotation Forest
for streaming Big Data frameworks is therefore a challenging task that
might mean that it could be applied to several real world problems.

In this paper, the presentation of Rotation Forest only covered clas-
sification problems and its adaptation to Big Data regression problems
is still a future research line. Likewise, the adaptation of Rotation Forest
for unbalanced learning [48] in Big Data scenarios, represents an area
of potential interest for the scientific community.

CRediT authorship contribution statement

Mario Juez-Gil: Methodology, Software, Validation, Formal anal-
ysis, Investigation, Data curation, Writing - original draft, Writing -
review & editing, Visualization, Funding acquisition. Alvar Arnaiz-
Gonzalez: Conceptualization, Software, Validation, Resources, Writing

- original draft, Writing - review & editing, Supervision, Project ad-
ministration. Juan J. Rodriguez: Conceptualization, Writing - review
& editing, Supervision, Project administration, Funding acquisition.
Carlos Lopez-Nozal: Conceptualization, Writing - review & editing,
Supervision. César Garcia-Osorio: Conceptualization, Writing - review
& editing, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported through project TIN2015-67534-P
(MINECO/FEDER, UE) of the Ministerio de Economia y Competitivi-
dad of the Spanish Government, projects BUO85P17 and BU0O55P20
(JCyL/FEDER, UE) of the Junta de Castilla y Leén, Spain (both projects
co-financed through European Union FEDER funds), and by the Con-
sejeria de Educacién of the Junta de Castilla y Leén, Spain and the
European Social Fund through a pre-doctoral grant (EDU/1100/2017).
The project leading to these results has received also funding from “la
Caixa” Foundation, Spain, under agreement LCF/PR/PR18/51130007.
This material is based upon work supported by Google Cloud.

References

[1] G. Bello-Orgaz, J.J. Jung, D. Camacho, Social big data: Recent achievements and
new challenges, Inf. Fusion 28 (2016) 45-59.

[2] M. Chen, S. Mao, Y. Liu, Big data: A survey, Mobile Netw. Appl. 19 (2) (2014)
171-2009.

[3] J. Luengo, D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera, Big Data
Preprocessing: Enabling Smart Data, Springer International Publishing, Cham,
2020.

[4] C. Moretti, K. Steinhaeuser, D. Thain, N.V. Chawla, Scaling up classifiers to cloud
computers, in: 2008 Eighth IEEE International Conference on Data Mining, 2008,
pp. 472-481.

[5]1 L.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S. Ullah Khan, The
rise of big data on cloud computing: Review and open research issues, Inf. Syst.
47 (2015) 98-115.

[6] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107-113.

[71 L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, John
Wiley & Sons, 2014.

[8] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation forest: A new classifier
ensemble method, IEEE Trans. Pattern Anal. Mach. Intell. 28 (10) (2006)
1619-1630.

[9] L.I. Kuncheva, J.J. Rodriguez, An experimental study on rotation forest ensem-
bles, in: M. Haindl, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 459-468.

[10] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP 03,
Association for Computing Machinery, New York, NY, USA, 2003, pp. 29-43.

http://refhub.elsevier.com/S1566-2535(21)00063-4/sb1
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb1
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb1
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb2
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb2
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb2
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb3
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb3
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb3
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb3
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb3
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb5
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb5
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb5
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb5
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb5
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb6
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb6
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb6
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb7
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb7
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb7
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb8
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb8
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb8
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb8
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb8
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb9
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb9
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb9
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb9
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb9
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb10
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb10
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb10
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb10
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb10

M. Juez-Gil et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J. Franklin,
S. Shenker, I. Stoica, Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing, in: Presented As Part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12),
USENIX, San Jose, CA, 2012, pp. 15-28.

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, et al., Spark:
Cluster computing with working sets, HotCloud 10 (10-10) (2010) 95.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, et al., MLlib: Machine learning in Apache Spark, J.
Mach. Learn. Res. 17 (1) (2016) 1235-1241.

M. Assefi, E. Behravesh, G. Liu, A.P. Tafti, Big data machine learning using
Apache Spark MLIib, in: 2017 IEEE International Conference on Big Data (Big
Data), 2017, pp. 3492-3498.

I.H. Witten, E. Frank, M.A. Hall (Eds.), Data Mining: Practical Machine Learning
Tools and Techniques, third ed., in: The Morgan Kaufmann Series in Data
Management Systems, Morgan Kaufmann, Boston, 2011.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V.
Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, G. Varoquaux, API design for machine learning software:
experiences from the scikit-learn project, in: ECML PKDD Workshop: Languages
for Data Mining and Machine Learning, 2013, pp. 108-122.

T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.
Theory 13 (1) (1967) 21-27.

E. Fix, J.L. Hodges Jr, Discriminatory analysis-nonparametric discrimination:
consistency properties, Technical Report, California Univ Berkeley., 1951.

J. Maillo, S. Ramirez, I. Triguero, F. Herrera, kKNN-IS: An iterative spark-based
design of the k-nearest neighbors classifier for big data, in: Variety and Velocity
in Data Science, Knowl.-Based Syst. 117 (2017) 3-15.

S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak, J.M. Benitez, F. Herrera,
Nearest neighbor classification for high-speed big data streams using spark, IEEE
Trans. Syst. Man Cybern. Syst. 47 (10) (2017) 2727-2739.

S. Tyree, K.Q. Weinberger, K. Agrawal, J. Paykin, Parallel boosted regression
trees for web search ranking, in: Proceedings of the 20th International Conference
on World Wide Web, Association for Computing Machinery, New York, NY, USA,
2011, pp. 387-396.

J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, K. Li, A parallel random forest
algorithm for big data in a spark cloud computing environment, IEEE Trans.
Parallel Distrib. Syst. 28 (4) (2017) 919-933.

J. Gonzalez-Lopez, A. Cano, S. Ventura, Large-scale multi-label ensemble learning
on Spark, in: 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 893-900.

D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera, Principal components
analysis random discretization ensemble for big data, Knowl.-Based Syst. 150
(2018) 166-174.

N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach.
Learn. 29 (2-3) (1997) 131-163.

J. Arias, J.A. Gamez, J.M. Puerta, Learning distributed discrete bayesian network
classifiers under MapReduce with Apache Spark, in: Variety and Velocity in Data
Science, Knowl.-Based Syst. 117 (2017) 16-26.

S. Garcfa, S. Ramirez-Gallego, J. Luengo, J.M. Benitez, F. Herrera, Big data
preprocessing: methods and prospects, Big Data Anal. 1 (1) (2016) 9.

49

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Information Fusion 74 (2021) 39-49

S. Ramirez-Gallego, S. Garcia, J. Benitez, F. Herrera, A distributed evolutionary
multivariate discretizer for big data processing on Apache Spark, Swarm Evol.
Comput. 38 (2018b) 240-250.

D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera, Enabling smart data: Noise
filtering in big data classification, Inform. Sci. 479 (2019) 135-152.

S. Ramirez-Gallego, S. Garcia, N. Xiong, F. Herrera, BELIEF: A Distance-Based
Redundancy-Proof Feature Selection Method for Big Data, 2018.

A. Arnaiz-Gonzélez, J.-F. Diez-Pastor, J.J. Rodriguez, C. Garcia-Osorio, Instance
selection of linear complexity for big data, Knowl.-Based Syst. 107 (2016) 83-95.
A. Arnaiz-Gonzélez, A. Gonzélez-Rogel, J.-F. Diez-Pastor, C. Lépez-Nozal, MR-
DIS: democratic instance selection for big data by MapReduce, Progress in
Artificial Intelligence 6 (3) (2017) 211-219.

C. Garcia-Osorio, A.de. Haro-Garcfa, N. Garcia-Pedrajas, Democratic instance
selection: A linear complexity instance selection algorithm based on classifier
ensemble concepts, Artificial Intelligence 174 (5-6) (2010) 410-441.

L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32.

M. Fernandez-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds
of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15
(1) (2014) 3133-3181.

L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123-140.

A. Bagnall, M. Flynn, J. Large, J. Line, A. Bostrom, G. Cawley, Is rotation forest
the best classifier for problems with continuous features? 2018.

C. Pardo, J.F. Diez-Pastor, C. Garcia-Osorio, J.J. Rodriguez, Rotation forests for
regression, Appl. Math. Comput. 219 (19) (2013) 9914-9924.

C.-X. Zhang, J.-S. Zhang, RotBoost: A technique for combining Rotation Forest
and AdaBoost, Pattern Recognit. Lett. 29 (10) (2008) 1524-1536.

A. Fernédndez, S. del Rio, N.V. Chawla, F. Herrera, An insight into imbalanced big
data classification: outcomes and challenges, Complex Intell. Syst. 3 (2) (2017)
105-120.

S. Ramirez-Gallego, A. Fernandez, S. Garcia, M. Chen, F. Herrera, Big data: Tu-
torial and guidelines on information and process fusion for analytics algorithms
with mapreduce, Inf. Fusion 42 (2018a) 51-61.

G. Stiglic, J.J. Rodriguez, P. Kokol, Rotation of Random Forests for Genomic and
Proteomic Classification Problems, Springer New York, New York, NY, 2011, pp.
211-221.

B. Panda, J.S. Herbach, S. Basu, R.J. Bayardo, PLANET: Massively parallel learn-
ing of tree ensembles with MapReduce, in: Proceedings of the 35th International
Conference on Very Large Data Bases (VLDB-2009), 2009.

D. Dua, C. Graff, UCI Machine learning repository, 2017.

A. Benavoli, G. Corani, J. Demsar, M. Zaffalon, Time for a change: a tutorial for
comparing multiple classifiers through bayesian analysis, J. Mach. Learn. Res.
18 (1) (2017) 2653-2688.

G. Corani, A. Benavoli, A Bayesian approach for comparing cross-validated
algorithms on multiple data sets, Mach. Learn. 100 (2-3) (2015) 285-304.

B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, M. Wozniak, Ensemble
learning for data stream analysis: A survey, Inf. Fusion 37 (2017) 132-156.
J.F. Diez-Pastor, J.J. Rodriguez, C.I. Garcia-Osorio, L.I. Kuncheva, Diversity
techniques improve the performance of the best imbalance learning ensembles,
Inform. Sci. 325 (2015) 98-117.

http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb11
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb12
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb12
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb12
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb13
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb13
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb13
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb13
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb13
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb15
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb15
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb15
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb15
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb15
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb17
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb17
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb17
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb18
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb18
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb18
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb19
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb19
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb19
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb19
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb19
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb20
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb20
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb20
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb20
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb20
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb21
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb22
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb22
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb22
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb22
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb22
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb24
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb24
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb24
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb24
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb24
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb25
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb25
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb25
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb26
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb26
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb26
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb26
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb26
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb27
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb27
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb27
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb28
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb28
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb28
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb28
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb28
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb29
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb29
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb29
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb30
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb30
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb30
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb31
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb31
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb31
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb32
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb32
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb32
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb32
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb32
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb33
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb33
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb33
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb33
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb33
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb34
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb35
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb35
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb35
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb35
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb35
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb36
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb37
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb37
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb37
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb38
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb38
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb38
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb39
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb39
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb39
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb40
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb40
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb40
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb40
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb40
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb41
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb41
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb41
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb41
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb41
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb42
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb42
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb42
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb42
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb42
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb44
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb45
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb45
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb45
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb45
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb45
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb46
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb46
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb46
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb47
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb47
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb47
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb48
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb48
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb48
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb48
http://refhub.elsevier.com/S1566-2535(21)00063-4/sb48

	Rotation Forest for Big Data
	Introduction
	Related works
	Background
	Random forest
	Rotation forest
	Mapreduce

	Rotation forest for Big Data
	Experimental results
	Experimental framework
	Accuracy performance
	Execution time analysis
	Study of ensemble size
	Influence of bootstrap in Big Data

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

