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Abstract
The prediction of multiple numeric outputs at the same time is called multi-target regression (MTR), and it has gained 
attention during the last decades. This task is a challenging research topic in supervised learning because it poses additional 
difficulties to traditional single-target regression (STR), and many real-world problems involve the prediction of multiple 
targets at once. One of the most successful approaches to deal with MTR, although not the only one, consists in transform-
ing the problem in several STR problems, whose outputs will be combined building up the MTR output. In this paper, the 
Rotation Forest ensemble method, previously proposed for single-label classification and single-target regression, is adapted 
to MTR tasks and tested with several regressors and data sets. Our proposal rotates the input space in an efficient and novel 
fashion, avoiding extra rotations forced by MTR problem decomposition. Four approaches for MTR are used: single-target 
(ST), stacked-single target (SST), Ensembles of Regressor Chains (ERC), and Multi-target Regression via Quantization 
(MRQ). For assessing the benefits of the proposal, a thorough experimentation with 28 MTR data sets and statistical tests 
are used, concluding that Rotation Forest, adapted by means of these approaches, outperforms other popular ensembles, 
such as Bagging and Random Forest.
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1  Introduction

In supervised learning, the task is to operate on the values 
of the input variables, in order to predict the output-variable 
values. Conventional classification and regression tasks only 
have one output, although some applications will generate 
several outputs. If the outputs are binary, the task is referred 
to as multi-label classification [31], and if nominal, it is a 
multi-dimensional classification task. When the outputs 
are real values, the task is known as multi-target regres-
sion [13] or multi-output, multi-variate, and multi-response 
regression.

Multi-target regression (MTR) applications include time-
series predictions of drug efficacy [46], predicting poultry 
meat characteristics [60], predicting shape deformation after 

breast conserving surgery [84], yield curve forecasting [50], 
and water quality monitoring [49], among others.

The capabilities of ensemble methods to improve the 
prediction of single models are widely acknowledged. A 
popular ensemble is Rotation Forest, which was initially pro-
posed for classification [58] and later adapted to regression 
[52] but, until now it has not been adapted and validated for 
MTR. The keystone of Rotation Forest relies on transform-
ing the input space by means of Principal Component Analy-
sis (PCA), what makes it more powerful than other ensemble 
approaches such as Bagging or Random Forest. Rotation 
Forest for STR can be used for MTR using problem trans-
formation methods. These methods convert original MTR 
problems into several STR problems. The drawback of using 
MTR transformation methods with Rotation Forest for STR 
is that as many rotations of the data sets are required as the 
number of STR tasks multiplied by the ensemble size. Let 
us consider that a single-target task for each target is used 
and that the number of targets is 16 and the ensemble size 
is 100; then, the number of rotations that will be performed 
on the data set will be 1600 (see Fig. 1). Nevertheless, the 
rotated data sets for one target are also valid for the other 
targets, implying some wasted effort.
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The alternative approach considered in this paper is to 
use Rotation Forest as an ensemble method where each base 
model is a MTR model. In this way, the number of rota-
tions of the data set will be limited to the size of the ensem-
ble (e.g., 100), regardless of the number of targets and the 
approach used to deal with MTR (see Fig. 2).

The rest of the paper will be organized as follows. Some 
of the approaches for MTR will be presented in Sect. 2. In 
Sect. 3 the Rotation Forest method and the proposed for 
MTR will be introduced. The experimentation, the results 
and their discussion will be presented in Sect. 4 and, finally, 
the conclusions will be advanced in Sect. 5.

2 � Multi‑target regression

Multi-target regression methods can be categorized in two 
approaches [13]: algorithm adaptation and problem trans-
formation. Each one is thoroughly explained below.

2.1 � Algorithm adaptation

In these methods, which are extensions of STR algorithms to 
MTR, a single model (trained with the original multi-output 
data set) generates predictions for all outputs.

The first approaches for MTR were statistical [13], taking 
advantage of correlations between the targets [1, 16, 34, 70].

Neural networks can easily be extended to MTR, by for 
instance using one neuron for each target in the output layer. 
These MTR methods include [19, 20, 27].

Support vector regression (SVR) has also been extended 
to MTR [59, 71, 76, 83]; as well as other kernel methods and 
Gaussian processes [5].

Several MTR approaches are based on regularization 
methods [62] where the regularization term depends on all 
the targets and their relationships. Some of these approaches 
are [8, 35, 51, 81].

In MTR trees, all the targets are predicted with a single 
tree where each leaf generates predictions for each target. 
An extension of CART was proposed in [21], redefining the 
impurity measure of a node, so that all the targets were taken 
into account. In [65], the trees were constructed according to 
size and accuracy constraints. A stepwise approach for build-
ing model trees was proposed in [6], where the leaves of 
the tree were linear regression models. Another method for 
building model trees based on regularization was proposed 
in [36]. Moreover, MTR trees were also used in ensembles 
such as bagging and random forest [41]. A random forest 
method based on multi-objective optimization and alterna-
tive splitting strategies was proposed in [2].

Regression rules were also adapted to MTR, and ensem-
bles composed of regression rules were also proposed in 
[3, 4].

2.2 � Problem transformation

In problem transformation methods, the multi-target task is 
reduced to several single-target tasks [18, 43]. This reduction 
consists of a transformation of the original multi-output data 
set into several single-target data sets. Once the data set has 
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Fig. 1   An example of using Rotation Forest for MTR by means of ST. As many rotations (each one depicted with a different color) as the num-
ber of single-target tasks multiplied by the ensemble size ( m × L ), are performed
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been transformed, any single-label or single-target algorithm 
can be used without any change.

The most straightforward method is to have a single-tar-
get task for each of the m targets. This approach is known as 
single-target (ST) [62] and is equivalent to the binary rel-
evance method for multi-label classification. The reason for 
considering other approaches is that the relations between 
the targets can provide useful prediction-related information; 
relations that are completely ignored with the ST method.

Stacked single-target (SST) [62] is an application of 
stacked generalization [75] to MTR, based on a multi-label 
method [28]. Training is performed in two stages: in the first, 
a set of m single-target models is built, one for each target, as 
in ST; in the second stage, another set of m models is built. 
The training data for the second stage models are the origi-
nal training data augmented with m features: the estimates 
of the targets from the first set of models. In prediction, 
firstly the models from the first stage are used to produce 
initial predictions for all m targets. Then, those predictions 
are used to augment the input that is, in turn, applied to the 

second stage models, which are used to produce the final 
predictions.

In SST, the training data for the second stage models 
have m additional features, one for each output. One issue 
is which values use for this features in the training data. 
One option is to use the actual output values, this variant is 
named SST-true. A possible problem with these approach 
is that in testing time the actual values are unknown and the 
output of the first stage models will be used. Another option, 
SST-train, is to use the values predicted by the first stage 
models for the training data for the second stage models. 
This second approach could overfit. Hence, a third approach, 
named SST-cv, is to use an internal cross validation; as it is 
done in stacking for singe outputs.

Ensemble of regressor chains (ERC) [62] is the adap-
tation of the ensemble of classifier chains method [56] to 
MTR. A regressor chain is formed of m STR models and 
has an associated random permutation of the targets. The 
first model predicts the first target in the permutation using 
the original features. The second model predicts the second 
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Fig. 2   An example of the Rotation Forest ensemble proposed in this paper, where data set rotation is performed before applying the MTR 
approach. All single-target tasks of a specific base model share the same rotation of the data (depicted using the same color)
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target, but using the original features as inputs, augmented 
with the prediction for the first target. In general, the i-th 
model predicts the i-th target in the permutation, using the 
original features and the predictions given by the previous 
i − 1 targets as inputs. Thus, the predictions of a random 
chain will depend on the order of the targets in the permu-
tation. An ERC is composed of several regressor chains, 
each one with its random permutation, but also built using 
bootstrap samples of the training set. The predictions of an 
ERC are the averages of the predictions of its members. As 
for SST, there are three variants: ERC-true, ERC-train, and 
ERC-cv.

Since some permutations can be more accurate than oth-
ers, instead of using random permutations for ERC, a per-
mutation based on some more sophisticated criterion may 
be selected. In [48], for example, the permutation is selected 
according to the correlations between targets. In [2] a model 
is built for each of the remaining targets and the one with the 
smallest error is selected for the chain.

As has been explained, the targets within a regressor 
chain are organized in a sequence. Alternatively, the targets 
within chaining trees [47] are organized in a tree, in which 
the targets appear as nodes. In each node, an ST regressor 
predicts the corresponding target, using the input features 
augmented with the predictions in the offspring.

In [80], the MTR problem is reduced to a single STR 
problem. The features are augmented with m binary features, 
one for each label. From among the m features, only one 
will be 1 and the others will be 0. These m features indicate 
the label to which the output corresponds. For each original 
training instance, there will be m instances within the result-
ing data set, one for each target.

In Random Linear Target Combinations [69], new tar-
gets are constructed using random linear combinations of 
the original targets, and an STR model is built for each one. 
The predicted values for the original targets are obtained by 
inverting the linear combinations.

In multi-target regression via target specific features [73], 
an STR model is built for each target. Additional features 
are included in the data sets used for training the models. 
Hierarchical clustering is used to group the targets, and a 
categorical feature with the cluster assignment is included 
in the data sets for all the targets. For each target, specific 
features are included, which are distances to cluster cent-
ers. These clusters group the instances according to instance 
similarity matrices obtained for each target. An initial simi-
larity matrix is obtained with boosting for each target and 
its final similarity matrix combines the matrices of all the 
targets taking into account the similarity between the targets.

It is also possible to reduce MTR to classification prob-
lems. In [63], Multi-target regression via quantization 
(MRQ) was proposed. The k-means method is used to divide 
the output space in clusters. The MTR problem is then 

reduced to multi-class classification, where the classes are 
the obtained clusters. Given the predicted class, the predic-
tions for the original outputs are the values of the centroid of 
the corresponding cluster. In the ensemble version (eMRQ) 
multiple quantizers are used, each one encoding a random 
subset of the outputs.

2.3 � Data reduction

As with other supervised learning tasks, pre-processing 
methods for data reduction are useful in MTR. First, the 
results from the pre-processed data sets can outperform the 
results from the original data sets. Second, the computing 
time and the memory necessary for building and using the 
regressors can be reduced.

The feature selection method proposed in [45] selects fea-
tures by applying a hierarchical clustering strategy based on 
information measures. Two groups of feature ranking meth-
ods were proposed in [53], one based on scores calculated 
from ensembles of predictive clustering trees and the other 
on the RReliefF method. Dimensionality reduction meth-
ods decrease the number of features, but instead of select-
ing a subset of features, these methods create new features. 
Methods for MTR include [78, 82], the method based on 
regularization proposed in [8] can be used for both selecting 
and learning features.

In [57] the authors adapted DROP [74] to MTR and pro-
posed an ensemble of instance selectors for prototype or 
instance selection. The ensemble was composed of m + 1 
selectors, one of which used the original data set, while one 
of the outputs was used as an additional input rather than an 
output in the others. In [43], a multi-objective evolutionary 
algorithm was used for instance selection.

2.4 � Ensemble methods

When we, as humans, have to make important decisions, 
we usually ask for different opinions. We do so, because 
we want to reduce the probability of an erroneous decision. 
Ensemble methods follow the same idea. An ensemble is 
formed by multiple base models, the predictions of which 
are combined. It has been demonstrated that the generaliza-
tion performance of the combined decision outperforms, at 
least, all but one of the base models [44, 55]. The perfor-
mance of the ensembles rely on the diversity of the base 
models. There is no point in using several models, if all of 
them predict the same output.

Problem transformation approaches can be considered 
ensemble methods, because the final model is composed 
of several models. Nevertheless, the ensemble and the base 
models solve different tasks: respectively, MTR and STR.

Ensemble methods composed of MTR base models are 
also possible. For instance, Bagging [14] and Random 
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Subspaces [32] can be used directly for MTR, although 
they were not originally proposed for multiple outputs. The 
method proposed in this paper, Rotation Forest for MTR, 
also belongs to that group. The base models for an MTR 
ensemble can be obtained with any MTR method, including 
problem reduction and algorithm adaptation methods.

One example is Ensemble of Regressor Chains (ERC), 
which is bagging using a problem transformation method 
(regressor chains) as the base model.

Stacked single-target (SST) is a problem transformation 
method, but it is also an application of stacked generalization 
combining two ST models: one composed by the regressors 
built on the original features, and another built on the origi-
nal features augmented with the predictions of the previous 
model. The same approach can be used with any other MTR 
method instead of ST.

Ensembles with random output selections were proposed 
in [17]. MTR models form the ensemble, but they only pre-
dict a randomly selected subset of the targets, except that 
the ensemble also includes a model that predicts all the tar-
gets. These random output selections when are combined 
with bagging or random forest increase the diversity of the 
results.

Another method where the models in the ensemble pre-
dict a subset of the targets was proposed in [66]. In that 
case, the targets were partitioned in non-overlapping subsets. 
Hence, each target was predicted by only one model, but one 
model could predict several targets.

3 � Rotation Forest

The main idea of Rotation Forest [58] is to train each model 
in the ensemble using a different rotation of the training 
data. If the method used for training the base models is sen-
sitive to rotations, as is the case for decision or regression 
trees, the base models can be very different. Moreover, these 
models can also be accurate because no information is lost 
with a rotation.

3.1 � Related methods

In the original paper where Rotation Forest is presented [58], 
the rotations were obtained using multiple PCA over subsets 
of features and instances and the base classifiers were deci-
sion trees. Nevertheless, similar approaches can be used with 
other methods for building the base models and obtaining 
the rotations. In fact, the main idea can be applied with any 
transformation of the data set, not just with rotations.

In Random Rotation Ensembles [12] the rotation matri-
ces are random. Supervised subspace projections are used 
in [26]. A Feature Weighted Rotation Forest is proposed in 
[72]. Kernel Rotation Forest [61] are based on kernel PCA. 
RotBoost [79] combines Rotation Forest with AdaBoost. It is 
also possible to combine Rotation and Random Forest [64]. 
Hybrid Rotation Forest [9] uses Extreme Learning Machines 
for building the base classifiers. Rotation Forest fuzzy rule-
based Classifier Ensemble is proposed in [54]. As can be 
noted, several variations and many proposals have been 
presented since the original Rotation Forest was published, 
but this paper focuses on the main idea of using PCA, for 
transforming the input space, and using trees as base models.

3.2 � Rotation Forest for multi‑target regression

Rotation Forest for MTR can be used for combining mod-
els obtained with any MTR algorithm, including problem 
transformation and algorithm adaptation methods. As was 
presented before, the drawback of using Rotation Forest 
directly for MTR is the waste of effort by performing many 
rotations (once for each single-target task times the ensem-
ble size). For avoiding this, the proposal presented below 
performs as many rotations, of the input space, as the size 
of the ensemble. Therefore, only one rotation is performed 
for all STR tasks of a single base regressor from the MTR 
algorithm chosen. The Rotation Forest for MTR is presented 
in Algorithm 1.
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Each of the L models in the ensemble, Dt , is built with 
a different rotation of the training data with each rotation 
defined by a rotation matrix. The procedure for obtaining 
each rotation matrix, �a

t
 , is as follows. The features are 

divided into groups where the number of groups, K, is an 
argument of the method. By default, K is selected so that the 
number of features in each group is three1.

A data set, �t,k , is considered for each group, formed only 
of the features of each group, �t,k . In the Rotation Forest 
method for classification [58], this data set is filtered, remov-
ing all the instances of a proper subset of the classes. For 
MTR it is also desirable to select a subset of the instances 
according to the output values, a random projection of the 
outputs is taken and the selected instances are those with 
the lowest values in this projection. The number of selected 
instances is randomly selected, by default between 10 and 
50% of the number of training instances.

A bootstrap sample, with a default sample size of 50% is 
taken from those selected instances. Then, Principal Com-
ponent Analysis (PCA) is applied to the sample, generating 
a rotation matrix, Ct,k.

The removal of instances with the lowest values from 
a random projection and in the bootstrap sample is for the 
sake of diversity. The same subset of features can be selected 
for several ensemble models (especially if the number of 
features is low). If the rotations are obtained by means of 

1  If the number of features is not a multiple of 3, the last group is 
completed with previously selected features.

PCA using all the training instances, then the rotated fea-
tures should be the same.

We therefore have a rotation matrix for each group of 
features that defines a new set of features on the basis of the 
PCA components. All the components of all the groups are 
gathered together in a single rotation matrix, �t . This matrix 
could not be used directly on the training data, because the 
features are not in the same order, so the rotation matrix 
is rearranged using a permutation matrix, �t , that simply 
reorders the features, yielding the final rotation matrix, �a

t
.

Finally, the training data set is rotated using the rotation 
matrix, then the rotated data set is used to build the base 
MTR model.

In the prediction stage, the instance � to be predicted, 
is rotated as many times as the ensemble size, using the 
corresponding rotation matrices. For each rotated instance, 
the corresponding base model generates a prediction and 
the predictions of the base models are then combined in an 
average value.

4 � Experiments and results

The objective of the experimentation is to validate the Rota-
tion Forest for MTR proposal, and to compare its perfor-
mance with other MTR ensembles. Regarding the different 
problem transformation approaches, other objective of this 
experimentation is to assess which performs better used 
along Rotation Forest.
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Firstly, the experimental setup is presented in Sect. 4.1. 
Secondly, the results and their discussion are reported in 
Sect. 4.2.

4.1 � Experimental setup

The description of the data sets, the algorithms used in 
the experimentation, and the evaluation measures used for 
assessing the performance of the methods are presented 
below.

4.1.1 � Data sets

Table 1 shows the data sets characteristics, obtained from 
[62]2 and [48]3. The data sets are very varied in nature 
(management, forecast, medicine, astronomy...), in size (the 

number of examples range between 49 and 9 803 ), in the 
number of features (between 6 and 576), and in the number 
of targets (between 2 and 16).

4.1.2 � Methods

Nine approaches for MTR were used:

–	 Single Target (ST).
–	 Three variants of Stacked Single Target (SST): SST-true, 

SST-train, and SST-cv.
–	 Three variants of Ensembles of Regressor Chains (ERC): 

ERC-true, ERC-train, and ERC-cv.
–	 Multi-target Regression via Quantization (MRQ) and the 

ensemble version of it (eMRQ).

In SST-true and ERC-true, when targets are used as inputs, 
their values are the true values. The values in SST-train and 
ERC-train are the predictions given by the regressors. 10 
fold cross validation (without repetition) was used to obtain 

Table 1   Data sets 
characteristics

Data set Examples Features Targets References

Num. Nom.

andro (Andromeda) 49 30 0 6 [30, 62]
atp1d (airline ticket price) 337 411 0 6 [62]
atp7d (airline ticket price) 296 411 0 6 [62]
cal-housing 1 032 7 0 2 [48]
edm (electrical discharge machining) 154 16 0 2 [40]
enb (energy efficiency building) 768 8 0 2 [62, 67]
fri-c0-500-25 (Friedman) 500 20 0 6 [48]
jura 359 15 0 3 [29, 62]
m5spec 699 80 0 3 [48]
mp5spec 699 80 0 4 [48]
mp6spec 699 80 0 4 [48]
oes10 (occupational employment survey) 403 298 0 16 [62]
oes97 (occupational employment survey) 334 263 0 16 [62]
osales (online sales) 639 401 0 12 [38, 62]
polymer 61 10 0 4 [48]
puma32H 819 27 0 6 [48]
puma8NH 2 457 6 0 3 [48]
rf1 (river flow) 9 125 64 0 8 [62]
rf2 (river flow) 9 125 576 0 8 [62]
scm1d (supply chain management) 9 803 280 0 16 [62]
scm20d (supply chain management) 8 966 61 0 16 [62]
scpf (see click predict fix) 1 137 23 0 3 [39, 62]
sf1 (solar-flare) 323 0 10 3 [23]
sf2 (solar-flare) 1 066 0 10 3 [23]
slump 103 7 0 3 [62, 77]
stock 950 7 0 3 [48]
Wisconsin (breast cancer) 194 31 0 2 [48]
wq (water quality) 1 060 16 0 14 [24]

2  http://​mulan.​sourc​eforge.​net/​datas​ets-​mtr.​html.
3  http://​people.​vcu.​edu/​~acano/​MTR-​SVRCC/​datas​ets.​zip.

http://mulan.sourceforge.net/datasets-mtr.html
http://people.vcu.edu/%7eacano/MTR-SVRCC/datasets.zip
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the values for SST-cv and ERC-cv. These approaches were 
taken from [62], where SST and ERC had the best results in 
a comparison that also included Multi-Objective Random 
Forest [42], Trace Norm Regularization multi-task learning 
[7], a Dirty model for multi-task learning [35], and Random 
Linear target Combinations [69].

ST, SST, and ERC combine single target regressors. In 
[62], the methods that were considered for STR were ridge 
regression, regression tree, support vector regression, and 
bagging (with regression trees) and stochastic gradient 
boosting. The best results were achieved by bagging. MRQ 
and eMRQ use a method for classifier construction. In [63] 
bagging was also used, but with classification (instead of 
regression) trees.

There are five variants for each of the nine MTR 
approaches, depending on the STR method: BagP, BagU, 
RanF,RotF, and RotRanF. Bagging with pruned trees (BagP) 
was included, because it was the method used in [62] and [63]. 
Bagging with unpruned trees (BagU) was included, because 
Bagging usually works better with more unstable base classi-
fiers, and pruning makes decision trees less diverse. Random 
Forest [15] (RanF) is a variant of Bagging that uses more 
unstable trees as base classifiers (Random trees). The fourth 
variant, Rotation Forest (RotF), was used with unpruned trees. 
Finally, RotRanF also used the Rotation Forest method but 
using random trees (i.e., the trees used in Random Forest).

The order of the multi-target approaches and the regres-
sion methods associated with each name indicates the order 
in which they were applied, i.e. which one is the argument. 
Hence, BagP, BagU, and RanF appear as suffixes, while 
RotF and RotRanF appear as prefixes. For instance, in SST-
true-RanF, the SST-true approach was used with RanF as an 
argument. In RotF-SST-true, RotF was used with SST-true 
as argument. The base regressor for this SST-true was a sin-
gle unpruned regression tree and, likewise, for all the cases 
where RotF was used. In all the cases where RotRanF was 
used, such as RotRanF-SST-true, the base regressor was a 
single random tree.

4.1.3 � Settings

The performance was measured using aRRMSE [13, 62], 
the average Relative Root Mean Squared Error. The RRMSE 
was calculated for each of the, m, targets and the values were 
averaged:

where, �test are the outputs for the test set and, for target j, �j 
is the actual value, �̂j is the prediction given by the model, 
and �j is the average value in the training data.

1
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�

�
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The experiments were performed using Mulan [68]. The 
results were obtained using a tenfold cross validation. There 
is an inner loop that only uses the training data for the cross-
validation of SST-cv and ERC-cv.

The ensemble size for BagP, BagU, RanF, RotF, and 
RotRanF was set at 100. The ensemble size (the number of 
chains) for ERC with BagP, BagU, and RanF was set at 10. 
As ERC with these methods is an ensemble of ensembles, 
the number of regressors for each target was set at 10 × 100 
(as in [62]). The ensemble size of ERC was set at 1, for the 
methods with RotF-ERC (e.g. RotF-ERC-true) and RotRanF, 
but there were 100 chains4, because 100 was the ensemble 

Table 2   Results for methods with ST

The best result for each dataset is highlighted in italics

ST-BagP ST-BagU ST-RanF RotF-ST RotRanF-ST

andro 0.6016 0.5281 0.5142 0.4906 0.5722
atp1d 0.3735 0.3692 0.4021 0.3694 0.4133
atp7d 0.5248 0.4978 0.5297 0.4807 0.5665
cal-housing 0.6441 0.6207 0.6398 0.5708 0.5811
edm 0.7421 0.7295 0.7319 0.7041 0.7076
enb 0.1166 0.1140 0.1082 0.1080 0.1038

fri-c0-500-
25

0.9214 0.9279 0.9335 0.9387 0.9484

jura 0.5891 0.5882 0.5768 0.5698 0.5701
m5spec 0.5503 0.5787 0.6122 0.0525 0.0725
mp5spec 0.5112 0.5344 0.5728 0.0521 0.0759
mp6spec 0.5167 0.5405 0.5764 0.0478 0.0791
oes10 0.4200 0.4084 0.4101 0.4387 0.4175
oes97 0.5248 0.5159 0.5095 0.5043 0.5179
osales 0.7479 0.7204 0.7107 0.7278 0.6850

polymer 0.6186 0.5673 0.5024 0.5580 0.6426
puma32H 0.8716 0.8627 0.9340 0.9129 0.9485
puma8NH 0.8140 0.7913 0.7741 0.7706 0.7715
rf1 0.0796 0.0882 0.0735 0.0533 0.0721
rf2 0.0866 0.0910 0.0849 0.0841 0.0703

scm1d 0.3189 0.3016 0.2913 0.2820 0.3010
scm20d 0.4066 0.3676 0.3672 0.3483 0.3820
scpf 0.8371 0.9504 0.8260 0.8166 0.8521
sf1 1.1354 1.4839 1.6386 1.3705 1.5562
sf2 1.1494 1.4487 1.4231 1.4105 1.4529
slump 0.6878 0.6699 0.6717 0.6098 0.6466
stock 0.1840 0.1667 0.1462 0.1387 0.1443
Wisconsin 0.9314 0.9582 0.9564 0.9349 0.9385
wq 0.9083 0.9111 0.9073 0.8988 0.9071
Mean 0.6005 0.6190 0.6223 0.5444 0.5713
Average 

rank
3.7143 3.3929 3.2143 1.6786 3.0000

4  There can be repetitions among these chains, specially if the num-
ber of targets is low.
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size for RotF. In this case, the number of regressors for each 
target was only 100 × 1.

For MRQ and eMRQ, the settings were taken from [63]. 
The ensemble size was 100. For MRQ, the number of cen-
troids was 50. For eMRQ, the total number of quantizers 
was the number of targets multiplied by 3. In each quantizer 
the number of centroids was selected randomly in [50, 100] 
and the number of targets in each subquantizer was selected 
randomly in [1, 2]. The ensemble sizes for MRQ and eMRQ 
are reduced to 1 when used as based methods for RotF and 
RotRanF, because for these methods the ensemble size is 
100.

Average ranks [22] were used to compare several methods 
on several data sets. For each data set the methods are sorted 
from best to worst and assigned a ranking value between 
1 and the total number of methods. In the case of ties, the 
methods are assigned an average value. For instance, if four 
methods share the best result, they are all assigned a rank of 

2.5. The average rank of each method is the average of the 
ranks from all the data sets.

For comparing multiple classifiers over multiple data sets, 
we followed [33]5, based on [10, 22, 25]. The Friedman test 
was used to reject the null hypothesis. A pairwise post-hoc 
analysis was performed with the Wilcoxon signed-rank test 
with Holm’s alpha correction.

The methods were also compared using the Bayesian 
Signed-Rank Test [11], the Bayesian equivalent of the Wil-
coxon signed-rank test. In that test, the value of the Region of 
Practical Equivalence (ROPE) was set to 0.01 for aRRMSE. 
Two methods were considered equivalent when the differ-
ence in their performance was smaller than this “ROPE”. 
The test yielded three probabilities: (1) one method is better 
than the other, (2) vice-versa, or (3) they are in the “ROPE”.

Table 3   Results for methods 
with SST-true

The best result for each dataset is highlighted in italics

SST-true-BagP SST-true-BagU SST-true-RanF RotF-SST-true RotRanF-SST-true

andro 0.6029 0.5430 0.5212 0.5029 0.5844
atp1d 0.3757 0.3722 0.4008 0.3684 0.4088
atp7d 0.5610 0.5266 0.5270 0.4964 0.5701
cal-housing 0.7642 0.7201 0.6676 0.6105 0.5953

edm 0.7471 0.7285 0.7209 0.7044 0.7045
enb 0.1448 0.1501 0.1261 0.1259 0.1113

fri-c0-500-25 0.9218 0.9296 0.9385 0.9358 0.9473
jura 0.5942 0.5905 0.5787 0.5707 0.5698

m5spec 0.5526 0.5806 0.6255 0.0536 0.0727
mp5spec 0.5145 0.5376 0.5852 0.0531 0.0773
mp6spec 0.5210 0.5433 0.5862 0.0492 0.0793
oes10 0.4206 0.4087 0.4121 0.4383 0.4160
oes97 0.5262 0.5184 0.5092 0.5071 0.5140
osales 0.7514 0.7220 0.7043 0.7101 0.6883

polymer 0.7059 0.6749 0.5594 0.5930 0.6393
puma32H 0.8757 0.8675 0.9382 0.9151 0.9482
puma8NH 0.8292 0.8080 0.7925 0.7854 0.7719

rf1 0.0973 0.1078 0.0772 0.0591 0.0768
rf2 0.1062 0.1115 0.0836 0.0904 0.0710

scm1d 0.3336 0.3141 0.2908 0.3016 0.3108
scm20d 0.4268 0.3847 0.3662 0.3799 0.4146
scpf 0.8299 0.8398 0.8051 0.9126 0.8566
sf1 0.9975 1.1773 1.5609 1.1758 1.5243
sf2 0.9798 1.3365 1.6409 1.3159 1.6774
slump 0.7216 0.6844 0.6845 0.6108 0.6538
stock 0.1837 0.1670 0.1458 0.1428 0.1482
wisconsin 0.9307 0.9569 0.9465 0.9340 0.9258

wq 0.9141 0.9148 0.9076 0.9028 0.9083
Mean 0.6046 0.6149 0.6322 0.5445 0.5809
Average rank 3.7500 3.5357 2.9643 1.9643 2.7857

5  Code available at https://​github.​com/​hfawaz/​cd-​diagr​am.

https://github.com/hfawaz/cd-diagram
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4.2 � Results and discussion

Table 2 shows the results (aRRMSE) for the methods using 
the Single Target (ST) approach: with BagP, BagU, RanF, 
RotF, and RotRanF. The best result for each data set appears 
in italics. The table also shows the mean aRRMSE values 
across all the data sets and the average ranks.

The results for methods with Stacked Single Target 
(SST) are shown in Tables 3 (SST-true), 4 (SST-train) and 
5 (SST-cv). For Ensembles of Regressor Chains (ERC), the 
results are shown in Tables 6 (ERC-true), 7 (ERC-train), 
and 8 (ERC-cv). The results for Multi-target Regression via 
Quantization are in Tables 9 (MRQ) and 10 (eMRQ).

In Tables 2, 3, 4,5,6,7,8,9 and 10, the method with RotF 
has by far the best mean aRRMSE, the top average rank, and 
is the best method for most data sets.

Table 11 shows the results for the nine methods that use 
RotF. None of the methods show a clear advantage. The top 
average rank is for RotF-ERC-train, while the best mean 
aRRMSE is for RotF-eMRQ. The best results for the data 
sets are fairly spread out across the methods, there are three 
methods that are the best for six data sets: RotF-ST, RotF-
SST-train, and RotF-eMRQ.

4.2.1 � aRRMSE differences

Figure 3 shows the boxplots of the differences in aRRMSE 
for the nine MTR approaches (ST, SST-true, SST-train, SST-
cv, ERC-true, ERC-train, ERC-cv, MRQ, and eMRQ) with 
BagP, BagU , RanF and RotRanF against their correspond-
ing RotF variant. The positive values indicate that the variant 
with RotF is better. Most of the differences represented in 

Table 4   Results for methods 
with SST-train

The best result for each dataset is highlighted in italics

SST-train-BagP SST-train-BagU SST-train-RanF RotF-SST-train RotRanF-
SST-train

andro 0.5400 0.4970 0.4951 0.4944 0.5797
atp1d 0.3716 0.3635 0.3981 0.3651 0.4094
atp7d 0.5143 0.5019 0.5236 0.4746 0.5685
cal-housing 0.6939 0.6803 0.6514 0.5758 0.5990
edm 0.7430 0.7182 0.7004 0.7003 0.7045
enb 0.1229 0.1307 0.1216 0.1133 0.1105

fri-c0-500-25 0.9249 0.9278 0.9376 0.9365 0.9500
jura 0.5918 0.5896 0.5766 0.5682 0.5721
m5spec 0.5931 0.6395 0.6516 0.0510 0.0734
mp5spec 0.5645 0.5968 0.6134 0.0486 0.0780
mp6spec 0.5687 0.6036 0.6186 0.0442 0.0782
oes10 0.4201 0.4079 0.4097 0.4390 0.4175
oes97 0.5259 0.5179 0.5102 0.5053 0.5177
osales 0.7093 0.7081 0.6929 0.6633 0.6899
polymer 0.5701 0.5340 0.4794 0.5193 0.6454
puma32H 0.8719 0.8650 0.9346 0.9121 0.9468
puma8NH 0.8111 0.7836 0.7713 0.7676 0.7713
rf1 0.0775 0.0901 0.0737 0.0536 0.0792
rf2 0.0837 0.0903 0.0722 0.0835 0.0695

scm1d 0.3119 0.3016 0.2859 0.2902 0.3105
scm20d 0.3709 0.3541 0.3400 0.3560 0.4146
scpf 0.8553 0.8616 0.8073 0.7972 0.8407
sf1 1.1270 1.4447 1.5905 1.3628 1.5401
sf2 0.9448 1.0888 1.2130 1.4414 1.4458
slump 0.6664 0.7032 0.6907 0.6125 0.6554
stock 0.1771 0.1633 0.1447 0.1398 0.1468
wisconsin 0.9287 0.9537 0.9371 0.9354 0.9321
wq 0.9110 0.9139 0.9095 0.9009 0.9083
Mean 0.5926 0.6082 0.6125 0.5411 0.5734
Average rank 3.5357 3.5000 2.9643 1.7857 3.2143
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the boxplots and, in all the cases, the average and median 
differences, are all positive. This remarks that the use of 
RotF is always improving the performance.

Figure  4 shows the boxplots of the differences in 
aRRMSE of the methods with RotF and RotF-ST. Positive 
values indicate that RotF-ST is a better option. The average 
difference is negative, with the only exceptions of RotF-
SST-true and RotF-MRQ, but the median difference is only 
favorable (negative) for RotF-SST-train and RotF-ERC-train.

4.2.2 � Ranks

Table 12 shows the average rankings of the 45 methods 
tested. The eight top positions are for methods with RotF. 
The two top methods are RotF-ERC-train and RotF-SST-
train, while the third method is RotF-ST.

Figure 5 shows boxplots for the ranks, from the 45 meth-
ods under consideration. For each data set, every method 

is assigned a rank between 1 and 45. For each method its 
boxplot is from the ranks across all the data sets. Smaller 
values, i.e., at the right, indicate better ranks. The methods 
with better ranks include RotF.

Figure 6 also shows boxplots for the ranks, but grouped 
by family methods: the nine multi-target approaches and 
methods with RotF (Fig. 6b). The corresponding RotF vari-
ant shows better ranks from among the nine multi-target 
approaches. Among the RotF variants, the best ranks are for 
RotF-ERC-train and RotF-SST-train, while the third method 
is RotF-ST.

Figure 7 shows the average ranks and critical difference 
diagrams [22] for the Wilcoxon signed-rank test with Holm’s 
correction [10, 33]. A thick horizontal line shows a group of 
classifiers that are not significantly different.

In some cases, it is possible that the horizontal line 
includes a pair of classifiers that are significantly different, 
because the test is performed for pairs of classifiers without 

Table 5   Results for methods 
with SST-cv

The best result for each dataset is highlighted in italics

SST-cv-BagP SST-cv-BagU SST-cv-RanF RotF-SST-cv RotRanF-SST-cv

andro 0.5793 0.5035 0.4795 0.4892 0.5966
atp1d 0.3717 0.3669 0.4005 0.3693 0.4133
atp7d 0.5074 0.4936 0.5278 0.4779 0.5650
cal-housing 0.6592 0.6328 0.6234 0.5733 0.5932
edm 0.7396 0.7271 0.7104 0.7040 0.7107
enb 0.1205 0.1218 0.1218 0.1093 0.1112
fri-c0-500-25 0.9203 0.9286 0.9375 0.9347 0.9540
jura 0.5906 0.5912 0.5938 0.5713 0.5716
m5spec 0.5638 0.5531 0.5789 0.0550 0.0728
mp5spec 0.5165 0.5086 0.5361 0.0517 0.0757
mp6spec 0.5129 0.5096 0.5362 0.0473 0.0762
oes10 0.4205 0.4077 0.4140 0.4389 0.4205
oes97 0.5243 0.5159 0.5060 0.5051 0.5203
osales 0.7260 0.7303 0.6613 0.7044 0.6884
polymer 0.6605 0.6357 0.6398 0.5664 0.6771
puma32H 0.8775 0.8776 0.9501 0.9202 0.9577
puma8NH 0.8325 0.8232 0.8194 0.7942 0.8074
rf1 0.0775 0.0886 0.0727 0.0546 0.0792
rf2 0.0836 0.0897 0.0757 0.0850 0.0714

scm1d 0.3077 0.2942 0.2794 0.2949 0.3095
scm20d 0.3539 0.3326 0.3031 0.3726 0.4165
scpf 0.8310 0.9568 0.9206 0.8144 0.8522
sf1 1.0680 1.2805 1.2634 1.2528 1.4567
sf2 1.0553 1.7773 1.6863 1.3263 1.5541
slump 0.6953 0.6840 0.6998 0.6115 0.6657
stock 0.1784 0.1624 0.1482 0.1415 0.1517
wisconsin 0.9333 0.9584 0.9474 0.9331 0.9232

wq 0.9095 0.9104 0.9076 0.9023 0.9085
Mean 0.5934 0.6236 0.6193 0.5393 0.5786
Average rank 3.3571 3.4286 3.1071 1.8214 3.2857
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taking into account the rest of classifiers and the aver-
age ranks. For instance, for SST-true, RotF-SST-true (the 
method with best rank) is not significantly different from 
SST-true-BagP (worst rank) but it is significantly different 
from RotRanF-SST-true (second best rank).

RotF-ST, RotF-MRQ, and RotF-eMRQ are significantly 
different from all the other methods in their group. The criti-
cal difference diagram for methods with RotF shows that 
many variants are not significantly different.

4.2.3 � Bayesian tests

Figure 8 shows the posteriors for the Bayesian sign-rank 
tests. In these triangles [11, 37], the bottom-left and bottom-
right regions correspond to the case where one method is 
better than the other or vice-versa. The top region represents 

the case where the “ROPE” is more probable. The corner 
triangles show the probability of each region. For each of the 
seven multi-target methods under consideration, four trian-
gles are shown, comparing BagP, BagU, RanF, and RotRanF 
with RotF. The bottom right region of the triangles, where 
the point clouds are mainly concentrated, signal where the 
method with Rotation Forest is better. The numeric values 
in the triangles corners indicate the proportion of points in 
each region. As can be noted, all the values at the bottom 
right of the triangles are greater than 0.9. This remarks the 
superiority of the RotF according to Bayesian test.

Figure 9 shows the posteriors for the Bayesian sign-
rank tests, comparing RotF-ST with the rest of multi-target 
methods also using RotF. In this case, the points clouds are 
mostly in the “ROPE” region, with the exceptions of MRQ 

Table 6   Results for methods 
with ERC-true

The best result for each dataset is highlighted in italics

ERC-true-BagP ERC-true-BagU ERC-true-RanF RotF-ERC-true RotRanF-
ERC-true

andro 0.5961 0.5257 0.5119 0.5012 0.5844
atp1d 0.3710 0.3675 0.3990 0.3692 0.4069
atp7d 0.5343 0.5035 0.5281 0.4870 0.5684
cal-housing 0.6682 0.6252 0.6442 0.5857 0.5860
edm 0.7435 0.7272 0.7205 0.7010 0.7168
enb 0.1253 0.1258 0.1147 0.1151 0.1080

fri-c0-500-25 0.9206 0.9267 0.9306 0.9384 0.9516
jura 0.5906 0.5871 0.5731 0.5699 0.5722
m5spec 0.5522 0.5797 0.6206 0.0528 0.0707
mp5spec 0.5145 0.5375 0.5826 0.0523 0.0770
mp6spec 0.5203 0.5433 0.5842 0.0491 0.0763
oes10 0.4202 0.4084 0.4057 0.4375 0.4186
oes97 0.5254 0.5168 0.5058 0.5094 0.5211
osales 0.7280 0.6901 0.6996 0.6934 0.6846

polymer 0.6568 0.6022 0.5090 0.5763 0.6292
puma32H 0.8729 0.8637 0.9339 0.9139 0.9493
puma8NH 0.8204 0.7964 0.7802 0.7765 0.7752

rf1 0.0843 0.0918 0.0698 0.0564 0.0890
rf2 0.0935 0.0954 0.0767 0.0865 0.0756

scm1d 0.3257 0.3049 0.2882 0.2978 0.3065
scm20d 0.4272 0.3784 0.3560 0.3989 0.4178
scpf 0.8120 0.8312 0.8022 0.8235 0.8440
sf1 1.0501 1.2819 1.5511 1.2286 1.5391
sf2 1.0532 1.3690 1.4806 1.3535 1.5746
slump 0.7006 0.6704 0.6699 0.6182 0.6530
stock 0.1779 0.1602 0.1442 0.1409 0.1463
wisconsin 0.9310 0.9573 0.9427 0.9316 0.9254

wq 0.9097 0.9098 0.9025 0.9013 0.9072
Mean 0.5973 0.6063 0.6188 0.5416 0.5777
Average rank 3.7143 3.3571 2.8571 2.0000 3.0714
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and eMRQ. Therefore none of the multi-target methods 
show a clear advantage over ST when using RotF.

5 � Conclusions

In this paper, the Rotation Forest ensemble method has been 
adapted and tested for multi-target regression. Rotation For-
est (RotF) has been compared with Bagging and Random 
Forest in several MTR approaches, based on reducing the 
problem to several STR problems: single target (ST), stacked 
single target (SST), Ensembles of Regressor Chains (ERC), 
and Multi-target Regression via Quantization (MRQ and 
eMRQ). Both SST and ERC with three variants: true, train, 
and cv (cross validation), depending on which values are 

used when other outputs are used as inputs. Rotation Forest 
showed a clear advantage for the nine resulting multi-target 
approaches.

When comparing the nine multi-target approaches using 
Rotation Forest, the best methods were RotF-SST-train and 
RotF-ERC-train. Fortunately, the most expensive methods 
with internal cross validation hardly appeared necessary.

In contrast, none of the methods showed a clear advan-
tage6 over the most straightforward approach: RotF-ST. 
As it was noted, this method treats each output indepen-
dently. Hence, it raises the question of whether the results 

Table 7   Results for methods 
with ERC-train

The best result for each dataset is highlighted in italics

ERC-train-BagP ERC-train-BagU ERC-train-RanF RotF-ERC-train RotRanF-
ERC-
train

andro 0.5384 0.4898 0.4998 0.4923 0.5783
atp1d 0.3675 0.3578 0.3983 0.3669 0.4107
atp7d 0.5094 0.4859 0.5264 0.4789 0.5664
cal-housing 0.6274 0.6008 0.6326 0.5692 0.5859
edm 0.7418 0.7223 0.7192 0.6984 0.7168
enb 0.1169 0.1180 0.1128 0.1106 0.1073

fri-c0-500-25 0.9218 0.9258 0.9305 0.9374 0.9501
jura 0.5899 0.5870 0.5731 0.5692 0.5711
m5spec 0.5815 0.6222 0.6324 0.0508 0.0707
mp5spec 0.5605 0.5802 0.5948 0.0488 0.0785
mp6spec 0.5636 0.5945 0.5992 0.0464 0.0742
oes10 0.4198 0.4080 0.4062 0.4377 0.4189
oes97 0.5250 0.5163 0.5062 0.5088 0.5198
osales 0.6985 0.6838 0.6881 0.6566 0.6867
polymer 0.5771 0.5266 0.4778 0.5144 0.6045
puma32H 0.8710 0.8617 0.9314 0.9129 0.9494
puma8NH 0.8108 0.7837 0.7677 0.7668 0.7725
rf1 0.0743 0.0852 0.0675 0.0534 0.0747
rf2 0.0820 0.0871 0.0756 0.0826 0.0796
scm1d 0.3043 0.2918 0.2851 0.2890 0.3067
scm20d 0.3549 0.3381 0.3357 0.3720 0.4171
scpf 0.8212 0.8628 0.8073 0.8142 0.8361
sf1 1.1318 1.4440 1.6009 1.3549 1.5425
sf2 1.0869 1.2284 1.2833 1.4144 1.5253
slump 0.6692 0.6744 0.6693 0.6201 0.6520
stock 0.1738 0.1579 0.1432 0.1388 0.1464
wisconsin 0.9298 0.9555 0.9499 0.9313 0.9237

wq 0.9053 0.9041 0.9014 0.8991 0.9072
Mean 0.5912 0.6033 0.6113 0.5406 0.5740
Average rank 3.3929 3.2500 2.9286 2.0000 3.4286

6  There is neither advantage according to the average ranks nor 
Bayesian tests from the results of all the data sets. But for particular 
data sets the results were improved with other RotF methods.
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of RotF-ST can be improved using other MTR approaches, 
considering output dependencies for building the models 
that are combined in Rotation Forest. Moreover, Rotation 
Forest can also be used with other STR methods instead of 
regression trees.

In the proposed method, rotation matrices are obtained 
using PCA, an unsupervised method. The use of supervised 
projection methods for MTR, instead of PCA, could improve 
the performance of this method and represents an area for 
future research.

Table 8   Results for methods 
with ERC-cv

The best result for each dataset is highlighted in italics

ERC-cv-BagP ERC-cv-BagU ERC-cv-RanF RotF-ERC-cv RotRanF-ERC-cv

andro 0.5668 0.4931 0.4838 0.4862 0.5865
atp1d 0.3724 0.3668 0.3999 0.3702 0.4096
atp7d 0.5124 0.4893 0.5237 0.4857 0.5726
cal-housing 0.6133 0.5845 0.6124 0.5729 0.5855
edm 0.7407 0.7280 0.7185 0.6976 0.7167
enb 0.1136 0.1111 0.1124 0.1075 0.1063

fri-c0-500-25 0.9199 0.9254 0.9307 0.9407 0.9514
jura 0.5896 0.5889 0.5780 0.5689 0.5736
m5spec 0.5527 0.5483 0.5922 0.0535 0.0713
mp5spec 0.5156 0.5060 0.5516 0.0525 0.0765
mp6spec 0.5101 0.5072 0.5541 0.0502 0.0761
oes10 0.4199 0.4074 0.4059 0.4375 0.4161
oes97 0.5239 0.5153 0.5063 0.5082 0.5221
osales 0.7131 0.7005 0.6673 0.7114 0.6846
polymer 0.6348 0.6044 0.5799 0.5488 0.6499
puma32H 0.8738 0.8659 0.9387 0.9159 0.9546
puma8NH 0.8209 0.8013 0.7890 0.7799 0.7897
rf1 0.0745 0.0844 0.0692 0.0542 0.0826
rf2 0.0814 0.0870 0.0762 0.0833 0.0741

scm1d 0.3008 0.2849 0.2810 0.2913 0.3054
scm20d 0.3377 0.3155 0.3063 0.3917 0.4130
scpf 0.8299 0.9310 0.8536 0.8290 0.8503
sf1 1.0887 1.3001 1.3977 1.2729 1.5100
sf2 1.0879 1.3811 1.4931 1.3265 1.5076
slump 0.6888 0.6749 0.6786 0.6235 0.6593
stock 0.1743 0.1577 0.1431 0.1404 0.1476
wisconsin 0.9321 0.9578 0.9522 0.9329 0.9203

wq 0.9059 0.9038 0.9004 0.9005 0.9054
Mean 0.5891 0.6008 0.6106 0.5405 0.5757
Average rank 3.6429 3.0714 2.8929 2.0357 3.3571
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Table 9   Results for methods 
with MRQ

The best result for each dataset is highlighted in italics

MRQ-BagP MRQ-BagU MRQ-RanF RotF-MRQ RotRanF-MRQ

andro 0.9541 0.7702 0.5442 0.7519 0.6608
atp1d 0.4742 0.4792 0.4977 0.4060 0.4326
atp7d 0.5830 0.4541 0.5247 0.5202 0.5927
cal-housing 0.8333 0.8380 0.8398 0.5943 0.6203
edm 0.8895 0.8075 0.8177 0.7144 0.7219
enb 0.1891 0.1664 0.1519 0.1240 0.1174

fri-c0-500-25 1.2028 1.2031 1.2289 0.9600 0.9748
jura 0.7623 0.7282 0.7683 0.5878 0.6100
m5spec 0.7290 0.7414 0.7298 0.0660 0.0813
mp5spec 0.6626 0.6717 0.6829 0.0611 0.0816
mp6spec 0.6691 0.6868 0.6971 0.0573 0.0779
oes10 0.5080 0.5228 0.4834 0.4351 0.4429
oes97 0.6423 0.6196 0.5947 0.5316 0.5416
osales 0.7617 0.7603 0.8614 0.6685 0.7324
polymer 0.9582 0.8444 0.8764 0.7211 0.6547

puma32H 1.1513 1.1537 1.2022 0.9521 0.9629
puma8NH 1.0096 1.0233 1.0274 0.7890 0.7846

rf1 0.2014 0.2007 0.2003 0.1693 0.1961
rf2 0.2014 0.2008 0.2002 0.1709 0.1851
scm1d 0.4507 0.4408 0.4349 0.3905 0.4061
scm20d 0.4777 0.4576 0.4548 0.4274 0.4580
scpf 0.9565 1.2044 0.9920 0.7923 0.8155
sf1 0.8251 1.0590 1.6798 0.8873 1.4494
sf2 0.8217 0.8373 0.9071 0.9677 1.3620
slump 0.9267 0.9301 0.8872 0.6770 0.6968
stock 0.2132 0.2056 0.1980 0.1611 0.1699
wisconsin 1.2824 1.2974 1.3553 0.9282 0.9440
wq 1.0659 1.0837 1.0744 0.9117 0.9189
Mean 0.7287 0.7282 0.7469 0.5508 0.5961
Average rank 3.7500 3.7857 3.8571 1.3571 2.2500
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Table 10   Results for methods 
with eMRQ

The best result for each dataset is highlighted in italics

eMRQ-BagP eMRQ-BagU eMRQ-RanF RotF-eMRQ RotRanF-eMRQ

andro 0.7856 0.6582 0.5748 0.7117 0.6633
atp1d 0.3850 0.3778 0.4589 0.3883 0.4276
atp7d 0.5112 0.3933 0.4815 0.5162 0.5771
cal-housing 0.7151 0.7023 0.7164 0.5869 0.6217
edm 0.8195 0.7694 0.7713 0.7120 0.7162
enb 0.1693 0.1537 0.1367 0.1202 0.1155

fri-c0-500-25 1.0614 1.0562 1.0632 0.9455 0.9613
jura 0.6592 0.6461 0.6439 0.5719 0.5991
m5spec 0.6901 0.6938 0.6983 0.0623 0.0733
mp5spec 0.6315 0.6217 0.6454 0.0594 0.0761
mp6spec 0.6384 0.6543 0.6708 0.0538 0.0748
oes10 0.4859 0.4668 0.4589 0.4144 0.4293
oes97 0.6077 0.6008 0.6022 0.5172 0.5379
osales 0.8022 0.7461 0.8095 0.6708 0.7046
polymer 0.7140 0.6132 0.7488 0.6534 0.6187
puma32H 0.9775 0.9697 1.0210 0.9373 0.9494
puma8NH 0.8732 0.8818 0.8948 0.7792 0.7746

rf1 0.0606 0.0582 0.0743 0.0634 0.1018
rf2 0.0601 0.0582 0.0577 0.0551 0.0805
scm1d 0.3103 0.2932 0.2834 0.2923 0.3155
scm20d 0.3289 0.3062 0.3028 0.3534 0.3915
scpf 0.8411 0.9862 0.9290 0.7642 0.8218
sf1 0.8251 0.9357 1.6814 0.8943 1.4568
sf2 0.8186 0.8477 0.8772 0.8326 1.3811
slump 0.8562 0.8643 0.8260 0.7283 0.7100

stock 0.1591 0.1475 0.1358 0.1403 0.1481
wisconsin 1.0857 1.1069 1.0932 0.9246 0.9363
wq 1.0440 1.0121 1.0193 0.8907 0.8972
Mean 0.6399 0.6293 0.6670 0.5228 0.5772
Average rank 3.6786 3.0714 3.6786 1.7857 2.7857
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Table 11   Results for methods with RotF

RotF-ST RotF-SST-
true

RotF-SST-
train

RotF-SST-cv RotF-ERC-
true

RotF-ERC-
train

RotF-ERC-
cv

RotF-MRQ RotF-eMRQ

andro 0.4906 0.5029 0.4944 0.4892 0.5012 0.4923 0.4862 0.7519 0.7117
atp1d 0.3694 0.3684 0.3651 0.3693 0.3692 0.3669 0.3702 0.4060 0.3883
atp7d 0.4807 0.4964 0.4746 0.4779 0.4870 0.4789 0.4857 0.5202 0.5162
cal-housing 0.5708 0.6105 0.5758 0.5733 0.5857 0.5692 0.5729 0.5943 0.5869
edm 0.7041 0.7044 0.7003 0.7040 0.7010 0.6984 0.6976 0.7144 0.7120
enb 0.1080 0.1259 0.1133 0.1093 0.1151 0.1106 0.1075 0.1240 0.1202
fri-c0-500-25 0.9387 0.9358 0.9365 0.9347 0.9384 0.9374 0.9407 0.9600 0.9455
jura 0.5698 0.5707 0.5682 0.5713 0.5699 0.5692 0.5689 0.5878 0.5719
m5spec 0.0525 0.0536 0.0510 0.0550 0.0528 0.0508 0.0535 0.0660 0.0623
mp5spec 0.0521 0.0531 0.0486 0.0517 0.0523 0.0488 0.0525 0.0611 0.0594
mp6spec 0.0478 0.0492 0.0442 0.0473 0.0491 0.0464 0.0502 0.0573 0.0538
oes10 0.4387 0.4383 0.4390 0.4389 0.4375 0.4377 0.4375 0.4351 0.4144

oes97 0.5043 0.5071 0.5053 0.5051 0.5094 0.5088 0.5082 0.5316 0.5172
osales 0.7278 0.7101 0.6633 0.7044 0.6934 0.6566 0.7114 0.6685 0.6708
polymer 0.5580 0.5930 0.5193 0.5664 0.5763 0.5144 0.5488 0.7211 0.6534
puma32H 0.9129 0.9151 0.9121 0.9202 0.9139 0.9129 0.9159 0.9521 0.9373
puma8NH 0.7706 0.7854 0.7676 0.7942 0.7765 0.7668 0.7799 0.7890 0.7792
rf1 0.0533 0.0591 0.0536 0.0546 0.0564 0.0534 0.0542 0.1693 0.0634
rf2 0.0841 0.0904 0.0835 0.0850 0.0865 0.0826 0.0833 0.1709 0.0551

scm1d 0.2820 0.3016 0.2902 0.2949 0.2978 0.2890 0.2913 0.3905 0.2923
scm20d 0.3483 0.3799 0.3560 0.3726 0.3989 0.3720 0.3917 0.4274 0.3534
scpf 0.8166 0.9126 0.7972 0.8144 0.8235 0.8142 0.8290 0.7923 0.7642

sf1 1.3705 1.1758 1.3628 1.2528 1.2286 1.3549 1.2729 0.8873 0.8943
sf2 1.4105 1.3159 1.4414 1.3263 1.3535 1.4144 1.3265 0.9677 0.8326

slump 0.6098 0.6108 0.6125 0.6115 0.6182 0.6201 0.6235 0.6770 0.7283
stock 0.1387 0.1428 0.1398 0.1415 0.1409 0.1388 0.1404 0.1611 0.1403
wisconsin 0.9349 0.9340 0.9354 0.9331 0.9316 0.9313 0.9329 0.9282 0.9246

wq 0.8988 0.9028 0.9009 0.9023 0.9013 0.8991 0.9005 0.9117 0.8907

Mean 0.5444 0.5445 0.5411 0.5393 0.5416 0.5406 0.5405 0.5508 0.5228

Average rank 4.0000 6.2143 3.6071 4.9286 5.4286 3.1429 4.7857 7.3571 5.5357
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Differences with RotF-ST.

Differences with RotF-SST-true.

Differences with RotF-SST-train.

Differences with RotF-SST-cv.

Differences with RotF-ERC-true.

Differences with RotF-ERC-train.

Differences with RotF-ERC-cv.

Differences with RotF-MRQ.

Differences with RotF-eMRQ.

Fig. 3   Boxplots of the error differences. The boxplots on the right do not include the outliers. The average differences are marked with a red dot 
( ) (color figure online)
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Fig. 4   Boxplots of the error differences between methods with RotF and RotF-ST. The boxplots on the right do not include the outliers. The 
average differences are marked with a red dot ( ) (color figure online)

Table 12   Average ranks from 
all the considered methods

Method Rank Method Rank Method Rank

RotF-ERC-train 9.6429 ERC-train-BagP 20.6786 SST-true-RanF 24.7143
RotF-SST-train 10.0000 RotRanF-ERC-train 20.8571 SST-cv-BagP 24.7500
RotF-ST 11.3571 ERC-cv-BagP 21.3214 SST-train-BagP 24.8214
RotF-ERC-cv 12.7500 RotRanF-SST-true 21.7857 ST-BagP 25.4643
RotF-SST-cv 12.9643 RotRanF-ERC-true 22.0357 RotRanF-eMRQ 26.3571
RotF-ERC-true 14.1071 RotRanF-SST-train 22.1071 ERC-true-BagP 26.9286
RotF-eMRQ 14.8214 RotRanF-ERC-cv 22.2143 SST-true-BagU 28.2857
RotF-SST-true 17.0357 SST-cv-RanF 22.2857 eMRQ-BagU 29.7500
ERC-train-RanF 17.5000 ST-RanF 22.5714 SST-true-BagP 29.8214
ERC-cv-RanF 18.3214 ERC-true-BagU 23.2500 eMRQ-RanF 31.9286
ERC-cv-BagU 18.3571 ST-BagU 23.8929 eMRQ-BagP 32.0714
ERC-train-BagU 19.3571 RotRanF-SST-cv 24.1429 RotRanF-MRQ 32.1429
ERC-true-RanF 19.6071 SST-train-BagU 24.2500 MRQ-BagU 39.6071
RotRanF-ST 19.8214 SST-cv-BagU 24.6786 MRQ-BagP 40.7500
SST-train-RanF 20.1071 RotF-MRQ 24.7143 MRQ-RanF 41.0714
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Fig. 5   Boxplots for the ranks, 
from all the considered meth-
ods. The methods are sorted by 
their median value. The average 
ranks are marked with a red dot 
( ) (color figure online)
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Fig. 6   Boxplots for the ranks, from different groups of methods. The average ranks are marked with a red dot ( ) (color figure online)
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Fig. 7   Critical difference 
diagrams
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Fig. 8   Posteriors for the Bayesian sign-rank tests. Each row is for a multi-target method while the columns are for ensemble methods (BagP, 
BagU, RanF, and RotRanF). Each triangle compares the ensemble method of the column with RotF, for the multi-target method of the row
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