

Modification of brewer's spent grain after sc-CO₂ extraction: improvement of sugar and phenolic compounds release

UNIVERSIDAD DE BURGOS

Patricia Alonso-Riaño*, Rodrigo Melgosa, Esther Trigueros, Sagrario Beltrán, María Teresa Sanz Diez Research group INDUSTRIAL AND ENVIRONMENTAL BIOTECHNOLOGY (www.ubu.es/bioind)

Department of Biotechnology and Food Science (Chemical Engineering Division). University of Burgos, 09001 Burgos, Spain. *pariano@ubu.es

BSG is the most abundant brewing industry byproduct (85%), generated after the mashing and wort filtration process.

VE-1

Carbohydrate composition of the BSG and the sc-CO₂ raffinate in a dry and free-fat basis (g/100 g $_{\rm BSG}$).

Carbohydrate	BSG (%)	Raffinate (%)
Glucans	42 ± 2	43 ±1
Xylans	15 ± 1	15.2 ± 0.1
Arabinans	8 ± 1	7.5 ± 0.5

CH's composition were not significantly different after sc-CO₂ treatment.

Supercritical CO, extraction 80 °C, 40 MPa

Double effect of sc-CO₂ in a biorefinery context to include the BSG into a circular economy concept:

✓ Green solvent for **oil recovery**

P-1

Pretreatment agent for further improvement of the enzymatic hydrolysis yield of the sc-CO₂ treated BSG

sc-CO₂ treatment enhanced glucose yields for all the enzyme concentrations assayed

Cellulose dose (% w/w)	Increase in glucose yield (%)
0.25	8
0.5	14

Enzymatic hydrolysis by cellulase

1,4-(1,3:1,4)-β-D-Glucan 4-glucanohydrolase, EC 3.2.1.4
from Aspergillus niger (Sigma-Aldrich)
Cellulase activity: 1.18 U/mg

Operating conditions

T= 50 °C pH= 5 (acetate buffer) 5% dry BSG (% *w/v*) % Cellulase = 0.25 % -1 %, enzyme:BSG ratio (*w/w*)

16 –		
		\diamond

70

The **improvement** in enzymatic hydrolysis rate and yield after sc-CO₂ treatment could be attributed to:

- > the **removal** of the **lipid** fraction.
- surface morphology modification.

Improvement of phenolic compounds release after sc-CO₂ treatment

Phenolic compounds release yield by different treatments

Treatment	Cumaric acid, µg/g _{BSG}	Vanillin, µg/g _{BSG}	Ferulic acid, µg/g _{BSG}
Celullase, 1 %	3.0 ± 0.3	20 ± 1	274 ± 4
sc-CO ₂ + Celullase, 1 %	3.9 ± 0.3	21 ± 2	341 ± 6

SEM micrographs (1000 x magnifications) of the different BSG samples: untreated BSG, sc-CO₂ treated BSG and after enzymatic hydrolysis

- Untreated BSG: more rigid and continuous surface
- sc-CO₂ treated BSG: irregular porosity and lamellar structure.

Xilanase, 1 %	6 ± 1	111 ± 3	52.4 ± 0.9
Alakaline hydrolysis	538 ± 4	217 ± 1	1305.7 ± 0.5
Subcritical water 185 °C	60 ± 8	330 ± 11	144 ± 10

- ✓ p-Coumaric acid concentration increased 30%
- ✓ Ferulic acid concentration increased 25%
- ✓ The concentration of vanillin was similar in both hydrolysates.

The release of ferulic acid by CO_2 + Celullase, 1 % was noticeable higher than those obtained by other hydrolytic methods with exception than alkaline hydrolysis

ACKNOWLEDGEMENTS

To JCyL and ERDF for financial support of project BU050P20 To Agencia Estatal de Investigación for financial support of project PID2019-104950RB-I00 / AEI / 10.13039/501100011033 To JCyL and ESF for E. Trigueros (ORDEN EDU/574/2018) and P. Alonso-Riaño predoctoral (EDU/556/2019) contracts R. Melgosa is supported by a Beatriz Galindo Research Fellowship [BG20/00182]

Europa impulsa nuestro crecimiento