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Abstract
We consider a family of population game dynamics known as Best Experienced

Payoff Dynamics. Under these dynamics, when agents are given the opportunity to
revise their strategy, they test some of their possible strategies a fixed number of times.
Crucially, each strategy is tested against a new randomly drawn set of opponents. The
revising agent then chooses the strategy whose total payoff was highest in the test,
breaking ties according to a given tie-breaking rule. Strict Nash equilibria are rest
points of these dynamics, but need not be stable. We provide some simple formulas
and algorithms to determine the stability or instability of strict Nash equilibria. JEL
classification numbers: C72, C73.

Keywords: Best Experienced Payoff; Procedural rationality; Payoff-sampling dynamics; Sta-
bility

1. Introduction

Most dynamics in Evolutionary Game Theory can be neatly seen as a combination of
a population game and a revision protocol (Sandholm, 2010). The population game assigns
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to each population state a vector of payoffs, one for each strategy in the population. The
revision protocol specifies how agents, using the payoff assigned to each strategy, update
their current strategy. A crucial assumption embedded in this framework is that, at any
population state, there is one single payoff assigned to each strategy. In population games
where agents are matched to play a symmetric normal form game, the payoff assigned to
each strategy is often the expected payoff the agent will obtain when using that strategy.
But how can agents know this expected payoff? Unless there is complete matching,
agents somehow know the exact population state, or agents are explicitly communicated
the precise expected payoff for each strategy, it seems unrealistic to assume that they
will all share exactly the same expectations for any given strategy. From this point of
view, it is noteworthy that many evolutionary dynamics from the economics literature
are informationally demanding in one important respect: they require agents to be fully
informed about the population’s current aggregate behavior. This assumption seems
rather strong in the large-population contexts to which evolutionary models are most
naturally applied.

In many situations, it seems more natural to assume that agents acquire information
by interacting with only a sample of the population, rather than assuming that they have
access to accurate statistics of the whole population. There are two distinct lines of research
that follow this approach while keeping the assumption that agents respond optimally to
the information they have.

The first line assumes that agents take samples of the actions being played in the
population, and they use these samples to make inferences about the distribution of
actions in the whole population, and to best respond to the estimates thus formed. This is
the approach followed by Sandholm (2001), Kosfeld et al. (2002), Osborne and Rubinstein
(2003), Kreindler and Young (2013), Oyama et al. (2015), Heller and Mohlin (2018), Salant
and Cherry (2020), and Sawa and Wu (2021). Under this approach, note that agents must
be aware of the population game they are playing, so they can best reply to their point
estimates of the population distribution of actions.1

A second approach –significantly less demanding on agents’ informational and com-
putational skills– was pioneered by Osborne and Rubinstein (1998) and Sethi (2000). Here,
revising agents try out a subset of the available strategies by playing them against ran-
domly drawn counterparts, and then choose the strategy that performed best in the test.
Crucially, each game is played against new randomly drawn counterparts, so sub-optimal
strategies may be selected in the test if they happened to be lucky in the random sampling

1The dynamics induced by this protocol have been termed sampling best response dynamics (see e.g.
Oyama et al. (2015)) and action-sampling dynamics (see e.g. Sethi (2021); Arigapudi et al. (2021, 2022)).
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of co-players. In this approach, note that agents do not even need to know that they are
playing a game. Agents who follow this revision protocol have been called procedurally
rational agents (Osborne and Rubinstein, 1998), and the evolutionary dynamics they pro-
duce are the so-called payoff-sampling dynamics (Sethi, 2021; Arigapudi et al., 2021, 2022)
or, more generally, Best Experienced Payoff (BEP) dynamics (Sandholm et al., 2019).2 These
dynamics are the main object of study in this paper.

The procedurally rational agents described before, and their associated BEP dynamics
and equilibria, have been used in a variety of applications including consumer choice
procedures and product pricing strategies (Spiegler, 2006a), markets with asymmetric in-
formation (Spiegler, 2006b), trust and delegation of control (Rowthorn and Sethi, 2008), the
Traveler’s Dilemma (Berkemer, 2008), market entry (Chmura and Güth, 2011), ultimatum
bargaining (Miȩkisz and Ramsza, 2013), use of common-pool resources (Cárdenas et al.,
2015), contributions to public goods (Mantilla et al., 2020), the Centipede game (Sandholm
et al., 2019; Izquierdo and Izquierdo, 2021), the Prisoner’s Dilemma (Arigapudi et al., 2021),
and coordination problems (Izquierdo et al., in press). Sethi (2021) studies the equilibria
of these processes in symmetric, finitely repeated games, with several applications.

Under BEP dynamics, strict Nash equilibria of a game correspond to states that are
rest points, but they may not be stable. Sandholm et al. (2020), building on Sethi’s (2000)
pioneering work, provide several sufficient conditions for instability and for asymptotic
stability of strict equilibria under BEP dynamics. Arigapudi et al. (2021) refine one of the
most general sufficient stability conditions in Sandholm et al. (2020), providing a tighter
one. While many of the stability and instability conditions in Sandholm et al. (2020) are
really simple and can be immediately checked from the payoffs of the game, the most
general stability condition (Theorem 2 II in Arigapudi et al. (2021)), and the most general
instability condition (Proposition 5.4 in Sandholm et al. (2020)) are –if taken at face value–
actually difficult to check, as they state a condition over all sets in a certain power set,
or require finding a subset of strategies that satisfies some condition. Here we show
that these general stability and instability conditions can be checked by conducting a
simple analysis, whose complexity is equivalent to carrying out an iterated elimination of
dominated strategies, and which admits a simple interpretation. We also provide some
tighter tests for specific BEP dynamics.

The rest of the paper is structured as follows. Section 2 contains a short introduction
to Best Experienced Payoff processes and their dynamics. In Section 3 we summarize
previous results on stability of strict equilibria, indicating also the new contributions in

2The term payoff-sampling dynamics is used when revising agents test all their available actions. Sandholm
et al. (2019) generalized payoff-sampling dynamics, allowing revising agents to consider subsets of their
available actions. This generalization led to the so-called family of Best Experienced Payoff (BEP) dynamics.
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this paper. Section 4 presents the new stability tests and formulas, Section 5 shows an
application of our results to tacit coordination games, and in Section 6 we state some
conclusions. The proofs, and some additional information, have been grouped in an ap-
pendix. All figures in this paper can be easily replicated with open-source freely available
software which also performs exact computations of rest points and exact linearization
analyses (EvoDyn-3s (Izquierdo et al., 2018) for figures 1-4 and BEP-TCG (Izquierdo and
Izquierdo, 2022) for figures 7-8).

2. Best experienced payoff protocols and dynamics

For notational simplicity, we keep our presentation to p-player symmetric games
played in one population, but all our results can be easily extended to asymmetric games
played in p populations. Following Sandholm et al. (2020), we consider a unit-mass
population of agents who are matched to play a symmetric p-player normal form game
G = {S,U}. This game is defined by a strategy set S = {1, . . . ,n}, and a payoff function
U : Sp

→ R, where U(i; j1, . . . , jp−1) represents the payoff obtained by a strategy i player
whose opponents play strategies j1, . . . , jp−1. Our symmetry assumption requires that the
value of U not depend on the ordering of the last p − 1 arguments. When p = 2, we
sometimes write Ui j instead of U(i; j).

Aggregate behavior in the population is described by a population state x in the simplex
X = {x ∈ Rn

+ :
∑

i∈S xi = 1}, with xi representing the fraction of agents in the population
using strategy i ∈ S. The standard basis vector ei ∈ X represents the pure (monomorphic)
state at which all agents play strategy i.

We consider Best Experienced Payoff (BEP) protocols defined by a triple (τ, κ, β). Under
BEP protocols, agents occasionally revise their current strategy by conducting tests of
alternative strategies.

The first parameter, namely the test-set rule τ, indicates how the set of strategies to be
tested is chosen. Specifically, here we consider the test-set rule τα, under which the revising
agent, when considering whether to change his current strategy, will also test other α − 1
randomly selected strategies in S (besides testing his current strategy). Naturally, α ∈ N
and 1 < α ≤ n. If all the strategies in S are tested, i.e. if α = n, then we have the test-all
rule, denoted by τall.

The second parameter, called the number of trials κ ∈ N, specifies the number of times
that each strategy will be played in the test. Thus, each strategy in the test set will be
played by the revising agent overκmatches, with each match requiring a new independent
sampling of p − 1 co-players.
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The last parameter in the BEP protocol, namely the tie-breaking rule β, indicates the rule
used to decide which strategy is selected when the best result (i.e. the greatest total payoff)
in the tests is obtained by more than one strategy. We will omit the last parameter when
our results are independent of the tie-breaking rule. Otherwise, we will focus on two
tie-breaking rules. The uniform-if-tie rule, βunif, selects any of the strategies that obtain
the best total payoff in the tests, each of these strategies with equal probability. This is
the rule that has been considered in almost all cases in the literature. The stick-if-tie rule,
βstick, chooses to keep using the current strategy if it obtains the best total payoff in the
tests, and, otherwise, it breaks ties by random uniform selection among the strategies that
obtained the best total payoff.

Well-known results of Benaı̈m and Weibull (2003) show that the behavior of a large but
finite population following the procedure above is closely approximated by the solution of
the associated mean dynamic, a differential equation which describes the expected motion
of the population from each state. This mean dynamic for BEP processes is (Sethi, 2000):

(1) ẋi = wi(x) − xi

where wi(x) is the probability with which strategy i is selected by a revising agent, i.e.,
the probability that it is tested, it obtains the best total payoff, and, if there are ties, it is
selected by the tie-breaking rule. The calculation of the term wi(x), i.e. the mean dynamic,
for BEP(τα, κ, β) processes, was formalized by Sandholm et al. (2020).

3. Stability and instability under BEP dynamics. Antecedents
and contribution

3.1 Background on stability and linear stability

Consider a C1 differential equation ẋ = V(x) defined on X whose forward solutions
(x(t))t≥0 do not leave X. State x∗ is a rest point or equilibrium of the dynamics if V(x∗) = 0,
so that the unique solution starting from x∗ is stationary.

A rest point x∗ is Lyapunov stable if for every neighborhood O of x∗, there exists a
neighborhood O′ of x∗ such that every forward solution that starts in O′ ∩ X is contained
in O. If x∗ is not Lyapunov stable it is unstable.

A rest point x∗ is attracting if there is a neighborhood O of x∗ such that all solutions
that start in O ∩ X converge to x∗. If a rest point x∗ is Lyapunov stable and attracting,
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it is asymptotically stable. In this case, the maximal (relatively) open3 set of states in X
from which solutions converge to x∗ is called the basin of attraction of x∗. If the basin of
attraction of x∗ contains int(X), we call x∗ almost globally asymptotically stable; if it is X itself,
we call x∗ globally asymptotically stable.

By the definition of the derivative, the value of V in a (relative) neighborhood O ∩ X
of a rest point x∗ can be approximated via

V(x) = 0 +DV(x∗)(x − x∗) + o(|x − x∗|)

where DV(x∗) is the Jacobian matrix of V (more precisely, the Jacobian of a C1 extension
of V to Rn such that the first-order partial derivatives of the component functions of the
extension are defined at x∗) evaluated at state x∗. The stability of x∗ can be analyzed by
considering the eigenvalues of DV(x∗) corresponding to those eigenvectors lying in the
tangent space TX = {z ∈ Rn :

∑
i zi = 0}. If all such eigenvalues have negative real parts,

then x∗ is linearly stable. If any of those eigenvalues has positive real part, then x∗ is linearly
unstable. A linearly stable rest point is asymptotically stable, and solutions starting near
the rest point converge to it at an exponential rate (Perko, 2001; Sandholm, 2010).

3.2 Linear stability analysis of strict Nash equilibria under BEP dynamics

Focusing now on the BEP dynamics (1), consider a strict strategy s in a symmetric
p-player game, i.e., a strategy s such that the strategy profile (s, s, ..., s) is a strict Nash
equilibrium of the game. Following Osborne and Rubinstein’s (1998) pioneering study
of rest points of the BEP(τall, κ, βunif) dynamic, and Sethi’s (2000) stability analysis of the
BEP(τall, 1, βunif) dynamic, Sandholm et al. (2020) show that the linear stability analysis of
a strict Nash equilibrium state es – a monomorphic state where all players use the same
strict strategy s – under any BEP(τ, κ, β) dynamic, can be reduced to the analysis of an n×n
matrix Vκ,s = (vκ,si j ) of total payoffs vκ,si j , defined by

vκ,si j = (κ − 1)U(i; s, s, ..., s) +U(i; j, s, ..., s)

To simplify the notation, we will drop the superindex s when it is clear that we are refering
to a specific equilibrium strategy s, in which case we will use Vκ and vκi j. The Jacobian of
the dynamics at the equilibrium es can be calculated from the terms in Vκ. The term vκi j

is the total payoff to strategy i when, over its κ trials, it meets exclusively players using
the strict Nash strategy s, except in one trial, where exactly one of the (p − 1) co-players

3A set is relatively open in X if it is the intersection of X with an open set in Rn.
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uses strategy j. The reason why these are the only relevant payoffs for a linear stability
analysis is that, in the proximity of the strict equilibrium, where xs = 1− ϵ, the probability
of any random sample of ακ (p − 1) co-players with more than one co-player choosing a
strategy other than s is O(ϵ2).

Thus, when α strategies are tested, the relevant sampling events –those whose proba-
bility is O(1) or O(ϵ), but is not O(ϵ2)– are:

i) Those in which all the ακ (p − 1) randomly sampled co-players use strategy s. In
this case, a test of strategy s provides the total payoff vκss and a test of strategy i , s
provides the total payoff vκis. Since s is a strict Nash strategy, vκss > vκis , so, if strategy s
is in the test set, then it will be selected.

ii) Those in which all but one of the sampled co-players use strategy s and exactly one
co-player (the ”deviating co-player”) uses strategy j , s. Assuming all strategies are
tested:

• If, in a battery of tests (for which nκ (p − 1) co-players are sampled), the single
deviating co-player using strategy j is met when testing strategy s, the total
payoffs in the battery of tests are vκsj (when testing s) and {vκis}i∈S∖{s} (when testing
the other strategies). Defining S2 ≡ argmaxi,s vκis = argmaxi,s U(i; s, s, ..., s), we
have that either the selected strategy belongs to S2, or the selected strategy is s,
depending on the comparison of vκsj and vκts ≡ maxi,s vκis. In case of equality, the
tie-breaking rule would apply.

• If the deviating co-player is met when testing strategy i , s, the total payoffs
are vκss, vκi j and {vκks}k∈S∖{s,i}. Since every element in {vκks}k∈S∖{s,i} is less than vκss, the
selected strategy is either s or i, depending on the comparison of vκss and vκi j. In
case of equality, the tie-breaking rule would apply.

To analyze the stability of a strict equilibrium state es, Sandholm et al. (2020) consider
a change of variables that takes es to the origin 0 (by eliminating the coordinate xs, given
that

∑n
i=1 xi = 1) and show that the Jacobian of the dynamics at the origin is DW(0) =

DW+(0)−I(n−1), where DW+(0) is a matrix of non-negative terms that can be easily calculated
from the terms in Vκ, following the previous discussion.

3.3 Instability results

A series of instability results (i.e. sufficient conditions for instability) can be derived
from the analysis of Vκ by considering that the Perron-Frobenius eigenvalue of DW+(0) is
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at least as large as the Perron-Frobenius eigenvalue of any principal submatrix of DW+(0),
which is in turn bounded from below by the minimum sum of the elements in each of its
columns (or rows). If the Perron-Frobenius eigenvalue of DW+(0) is greater than 1, then
DW(0) has a real positive eigenvalue4 and, consequently, es is unstable. A general condition
that guarantees instability following this approach is provided by Proposition 5.4 (ii) in
Sandholm et al. (2020), which states that es is linearly unstable under any BEP(τα, κ, β)
dynamic if, for some nonempty J ⊆ S ∖ {s},

(2) (p − 1)κ
α − 1
n − 1

∑
i∈J

1[vκi j > vκss] + 1[S2 ⊆ J] 1[vκsj < vκts]

 > 1 for all j ∈ J,

where 1[·] denotes a Boolean function that takes the value 1 if the condition in the brackets
is met, and the value 0 otherwise. Under BEP(τall, κ, β) dynamics (i.e., for α = n) and
given a subset of strategies J ⊆ S ∖ {s}, this result considers a tight bound on the column
sums of the submatrix of DW+(0) corresponding to the strategies in J,5 and it is, up
to our knowledge, the most general available result that guarantees instability under
BEP(τall, κ, β) dynamics (for any tie-breaking rule) with either κ > 1 or p > 2. And the
result applies to BEP(τα, κ, β) dynamics as well.

3.4 Stability results

A series of stability results (i.e. sufficient conditions for stability) can also be derived
from the analysis of Vκ by considering that, if DW+(0) is a triangular matrix, its eigenvalues
are its diagonal elements. If the eigenvalues λi of DW+(0) are all less than one, then the
eigenvalues of DW(0), which are λ′i = λi−1, are all negative and, consequently, es is stable.
This can be used to show, for instance, that, under any BEP(τα, κ, β) dynamics, any strict
equilibrium state is asymptotically stable if the number of trials is larger than a certain
threshold (Sandholm et al., 2020, Corollary 5.8).

Under BEP(τall, κ) dynamics, the most general condition that guarantees that the Jaco-
bian of DW+(0) can be arranged as a triangular matrix whose diagonal elements are 0 is
the existence of an ordering of the strategies in S such that, for all i, j , s with i ≥ j we
have: vκss > vκi j and, if i ∈ S2, vκsj > vκis. This is a refinement of Proposition 5.9 in Sandholm
et al. (2020) that can be shown to be equivalent to the sufficient condition for asymptotic
stability in Theorem 2 (II) in Arigapudi et al. (2021).

Arigapudi et al. (2021) focus on the BEP(τall, κ) dynamic and on a family of games that

4If λ is an eigenvalue of DW+(0), then (λ − 1) is an eigenvalue of DW(0) = DW+(0) − I.
5See note at the beginning of appendix A.2.
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satisfy a specific genericity requirement, which here we term κ-generic games (Arigapudi
et al., 2021, Definition 4). They show that their sufficient condition for asymptotic stability
of strict Nash equilibria is both sufficient and necessary in κ-generic games with either
more than two players (p > 2) or more than one test of each strategy (κ > 1). However,
their stability condition is difficult to check if followed literally, since it involves testing a
requirement on each and every set in the power set of S ∖ {s}. The requirement of having
a κ-generic game can also be too stringent in practical cases, as it may not be satisfied even
by two-player games with generic payoff matrices. As an illustration, none of the more
than 20 numeric examples in Osborne and Rubinstein (1998), Sethi (2000), Sandholm et al.
(2019, 2020), Sethi (2021) and Arigapudi et al. (2021) are κ-generic.

3.5 Contribution

In this paper we:

i) Show that the general sufficient condition for instability of strict equilibria indicated
above (Sandholm et al., 2020, Proposition 5.4 (ii)), which applies under any BEP(τα, κ)
dynamics, can be checked using a simple algorithm. The complexity of this algorithm
is equivalent to performing an iterated elimination of dominated strategies.

ii) Show that a similarly simple algorithm can be used to check the general sufficient
condition for asymptotic stability of strict equilibria under BEP(τall, κ) dynamics in-
dicated in Section 3.4,6 i.e., the most general condition that guarantees, under any
tie-breaking rule, a triangular Jacobian DW(0) with all diagonal values (eigenvalues)
equal to −1. We also provide a tighter stability test under the specific tie-breaking
rule βstick, a rule that favors stability under BEP(τall, κ) dynamics.

iii) Discuss conditions under which the sufficient condition for asymptotic stability in ii) is
also necessary for stability, for different BEP(τall, κ) dynamics. This extends the results
of Arigapudi et al. (2021) by removing the constraint that the game be κ-generic.

iv) Apply our results to explore the predictive power of BEP dynamics in tacit coordina-
tion games. In these games, most game theoretical models do not correspond well
with experimental evidence.

6As indicated before, this is equivalent to the sufficient condition for asymptotic stability in Arigapudi
et al. (2021), Theorem 2, II.

–9–



4. Stability and instability tests

4.1 s-stabilizing and potentially s-stabilizing strategies

In this section, we define s-stabilizing and potentially s-stabilizing strategies in subsets
J ⊆ S ∖ {s}. Informally, a s-stabilizing strategy in J is a strategy that, under a BEP(τall, κ)
dynamic, does not contribute to the growth of the fraction of players using the strategies
in J, when the population state is close to the strict equilibrium state es. In contrast, if
a strategy is not potentially s-stabilizing in J, it is associated to at least some minimum
contribution to the growth of the fraction of players using the strategies in J, when the
population state is close to the strict equilibrium state es, under any BEP(τα, κ) dynamic.

Definition (s-stabilizing and potentially s-stabilizing strategies). Let s be a strategy such
that the strategy profile (s, s, ..., s) is a strict Nash equilibrium of the game. Let S2 be the set
of strategies that obtain the second-best payoff, vκts, when playing against s-players, i.e.,
S2 ≡ argmaxi,s vκis = argmaxi,s U(i; s, s, ..., s), and vκts ≡ maxi,s vκis. Let J be a non-empty set
J ⊆ S ∖ {s}. A strategy j ∈ J is s-stabilizing in J, for a number of trials κ, if

• vκi j < vκss for all i ∈ J, and

• If S2 ∩ J , ∅, then vκsj > vκts.

A strategy j ∈ J is potentially s-stabilizing in J, for a number of trials κ, if

• vκi j ≤ vκss for all i ∈ J, and

• If S2 ⊆ J, then vκsj ≥ vκts. □

Clearly, every s-stabilizing strategy in J is potentially s-stabilizing in J. To understand
the previous conditions, consider a test of each strategy by a revising agent who, when
sampling the required nκ (p − 1) co-players, meets just once a deviating co-player not
using strategy s, but using strategy j ∈ J instead. The condition vκi j < vκss guarantees that, if
the deviating j-player is met when testing strategy i ∈ J, the total payoff vκi j to strategy i is
less than the total payoff vκss to strategy s, so strategy s is selected. Similarly, the condition
((S2 ∩ J , ∅) ⇒ vκsj > vκts) guarantees that, if the deviating j-player is met when testing
strategy s (in which case the maximum of the payoffs obtained by all the strategies is
either vκsj or vκts), no strategy i ∈ J is selected. Intuitively, in a neighborhood of es, if j is
s-stabilizing in J then we could say that j does not help any other strategy in J (including
itself) to destabilize es.
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With relation to the analysis of the Jacobian of the BEP(τall, κ) dynamics at es, if a
strategy j is s-stabilizing in a subset of strategies J, then j has a null contribution (on the
column corresponding to j) to the principal submatrix of DW+(0) associated to J. And
if, starting from J1 = S ∖ {s}, a process of iterative elimination of s-stabilizing strategies
(see appendix A.1) eliminates all strategies in S ∖ {s}, then DW+(0) can be arranged (by
reordering the strategies) as a triangular matrix with a zero diagonal (so the eigenvalues
of DW+(0) are 0, and the eigenvalues of DW(0) are −1), proving asymptotic stability of es.

Note that if, for a number of trials κ0 and some subset of strategies J, a strategy j ∈ J is
s-stabilizing in J, then j is s-stabilizing in J for any κ > κ0.

In contrast, if a strategy j is not potentially s-stabilizing in some subset of strategies
J (such that j ∈ J), then the (positive or destabilizing) contribution of j to the principal
submatrix of the Jacobian of the dynamics corresponding to the strategies in J, in the
column corresponding to j, is guaranteed to be above a certain threshold value, under any
BEP(τα, κ) dynamic. If there is some subset of strategies J such that every strategy j ∈ J
is not potentially s-stabilizing in J, the fact that the sum of the terms in every column of
the principal submatrix of DW(0) associated to J is above a threshold value can be used
to obtain a lower bound for the Perron–Frobenius eigenvalue of DW(0), and to guarantee
instability of the equilibrium.

Note that if, for a number of trials κ0 and some subset of strategies J, a strategy j ∈ J is
not potentially s-stabilizing in J, then j is not potentially s-stabilizing in J for any κ < κ0.

4.2 Instability under BEP(τα, κ) dynamics

Our first proposition shows that a tight sufficient test for instability of strict equilibria
under any BEP(τα, κ) dynamics can be carried out by analyzing the iterated elimination of
potentially s-stabilizing strategies in S ∖ {s}. Although the process of iterated elimination
may be considered evident, a formal description can be found in appendix A.1. All the
proofs have been relegated to appendix A.2.

Note that if a strategy j ∈ J ⊆ S ∖ {s} is potentially s-stabilizing in J, then j is also
potentially s-stabilizing in any subset of J containing j. As a consequence, the order in
which potentially s-stabilizing strategies are iteratively eliminated does not alter the final
set of surviving strategies.

Proposition 4.1. Let es be a strict equilibrium. If for a number of trials κ0 > n−1
(p−1)(α−1) some

strategy survives the iterated elimination of potentially s-stabilizing strategies in S∖ {s}, then state
es is unstable under any BEP(τα, κ) for any κ satisfying n−1

(p−1)(α−1) < κ ≤ κ0.
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Corollary 4.2. Let es be a strict equilibrium. If for a number of trials κ0 some strategy survives
the iterated elimination of potentially s-stabilizing strategies in S ∖ {s}, then state es is unstable
under any BEP(τall, κ) for any κ with 1 < κ ≤ κ0, and, if p > 2, for any κ ≤ κ0.

Example 4.1. Consider the game with payoffmatrix

Ui j = Vκ=1 =


3 0 0
2 0 0
2 0 0

 , which leads to Vκ=2 =


6 3 3
4 2 2
4 2 2

 .
Corollary 4.2 shows that the equilibrium state e1 is unstable under BEP(τall, κ = 2)

dynamics. This can be proved by noting that, for κ = 2, strategies 2 and 3 survive the
iterated elimination of potentially 1-stabilizing strategies, since none of them is potentially
1-stabilizing in J = S ∖ {s} = {2, 3}. This is so because, for s = 1 and j ∈ J, we have that
S2 = {2, 3} ⊆ J but vκ=2

1 j = 3 < 4 = vκ=2
t1 . However, for κ = 2, this game satisfies the necessary

conditions for asymptotic stability in Theorem 2 in Arigapudi et al. (2021), which are
not sufficient in this case, since the game is not κ-generic. Thus, Corollary 4.2 (and
Proposition 4.1, more generally) can be used to prove the instability of strict equilibria on
which Theorem 2 in Arigapudi et al. (2021) remains silent.

(i) tie-breaking rule βunif (ii) tie-breaking rule βstick

Figure 1: BEP(τall, 2, β) dynamics in the game of Example 4.1 for two tie-breaking rules: βunif (left) and βstick

(right).

Figure 1 shows the BEP(τall, 2, β) dynamics in the game of Example 4.1 for two tie-
breaking rules: βunif (left) and βstick (right).7 As proved above for any tie-breaking rule, it

7In the figures, colors represent speed of motion: red is fastest, blue is slowest. Isolated rest points are
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can be seen that state e1 is unstable under both dynamics. _

4.3 Asymptotic stability under BEP(τall, κ) dynamics

Proposition 4.3. Let es be a strict equilibrium. If for a number of trials κ0 no strategy survives
the iterated elimination of s-stabilizing strategies in S ∖ {s}, then state es is asymptotically stable
under any BEP(τall, κ) with κ ≥ κ0.

As before, note that if a strategy j ∈ J ⊆ S ∖ {s} is s-stabilizing in J, then j is also
s-stabilizing in any subset of J containing j. As a consequence, the order in which
s-stabilizing strategies are iteratively eliminated does not alter the final set of surviv-
ing strategies. For a fixed κ, the stability condition in Proposition 4.3 can be shown to
be equivalent to the stability condition in Arigapudi et al. (2021) [Theorem 2, II],8 so the
former can be seen as a quick and easy way of checking the latter. In terms of the complex-
ity of checking these conditions according to their formulation, Proposition 4.3 involves
checking the existence of s-stabilizing strategies in at most n−1 subsets of S, while a direct
check of the stability condition in Arigapudi et al. (2021) involves checking an existence
condition in 2n−1 subsets of S (in all the subsets of S ∖ {s}). If, for instance, the number
of strategies is n = 11, the difference would be checking 10 subsets using Proposition 4.3
versus checking 210 = 1024 subsets otherwise.

Example 4.2. Consider the coordination game with payoffmatrix

(3) Ui j =



U11 0 0 ... 0
0 U22 0 ... 0

0 0 . . .
...

...
... U(n−1)(n−1) 0

0 0 ... 0 Unn


,

with Uss > 0 for all s ∈ S, so all strategies are strict Nash strategies. In this game, for
i, j ∈ S∖ {s} and i , j, we have vκ,sss = κUss, vκ,ssj = (κ−1)Uss, vκ,sii = Uii and vκ,si j = 0. Therefore,
strategy j ∈ J ⊆ S ∖ {s} is s-stabilizing in J if and only if the following two conditions are
satisfied:

represented with circles: red if the rest point is asymptotically stable, and white if it is unstable. Connected
components of rest points are represented with lines: purple if Lyapunov stable, and white if unstable.

8It is not difficult to show that the sufficient condition for stability in Arigapudi et al. (2021) can be equiv-
alently formulated in terms of iterated elimination of strategies that are not weakly supported (according
to their definition) by any other strategy. This is so because if a strategy j is not weakly supported by any
strategy in a set J that includes j, then j is not weakly supported by any strategy in any subset of J that
includes j.
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• vκi j < vκss for all i ∈ J ⇔ U j j < κUss ⇔ κ >
U j j

Uss
.

• If S2 ∩ J , ∅ then vκsj > vκts ⇔ (κ − 1)Uss > 0 ⇔ κ > 1.

Thus, j ∈ J ⊆ S∖ {s} is s-stabilizing in J if and only if κ > max
(U j j

Uss
, 1
)
. Similarly, it is easy

to check that strategy j ∈ J ⊆ S ∖ {s} is potentially s-stabilizing in J if and only if κ ≥
U j j

Uss
.

Now, let Umax = maxi∈S Uii be the highest possible payoff and let Smax = {i ∈ S | Uii =

Umax} be the set of strategies that obtain the highest possible payoff in the game when
playing against themselves.

Applying Proposition 4.3, we can deduce that, for any strict strategy s ∈ S, state es is
asymptotically stable under any BEP(τall, κ) for every κ > Umax

Uss
, since this condition guar-

antees that all strategies are s-stabilizing, so no strategy survives the iterated elimination
of s-stabilizing strategies. In particular, if s ∈ Smax, es is asymptotically stable for every
κ > Umax

Umax
= 1.

Applying Corollary 4.2, we can deduce that if s < Smax, state es is unstable under
any BEP(τall, κ) for every 1 < κ < Umax

Uss
, since this condition guarantees that any strategy

i ∈ Smax is not potentially s-stabilizing in any subset that contains it, so it survives the
iterated elimination of potentially s-stabilizing strategies in S ∖ {s}.

So, to sum up, in coordination game (3) with Uss > 0 for all s ∈ S, under any BEP(τall, κ)
with κ > 1, es is asymptotically stable for κ > Umax

Uss
and es is unstable for 1 < κ < Umax

Uss
.

The stability of es in the remaining cases, i.e. for κ = 1 and for κ = Umax
Uss

(if Umax
Uss
∈ N),

depends on the tie-breaking rule.
Figure 2 illustrates these results by showing the BEP(τall, κ, βunif) dynamics in the

coordination game (3) with n = 3 strategies and Uii = i. For κ = 2, e1 is unstable (since
1 < κ < Umax

Uss
= 3

1 = 3), e2 is asymptotically stable (since κ > Umax
Uss
= 3

2 = 1.5), and e3 is
asymptotically stable (since s = 3 ∈ Smax and κ > 1). For κ ≥ 4, e1 becomes asymptotically
stable too (since κ > Umax

Uss
= 3

1 = 3). _

4.4 Stability under BEP(τall, κ, βunif) dynamics

In this section we study whether the lack of fulfillment of the sufficient condition
for asymptotic stability in Proposition 4.3 can guarantee instability. Arigapudi et al.
(2021) show that, for BEP(τall, κ) dynamics with either κ > 1 or p > 2, a sufficient stability
condition that is equivalent to Proposition 4.3, is both sufficient and necessary in κ-generic
games. However, the requirement of being κ-generic can be quite restrictive in practice,
as pointed out in Section 3.

Here we remove the genericity condition and focus on BEP(τall, κ, βunif) dynamics in any
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(i) κ = 2 (ii) κ = 4

Figure 2: Coordination game (3) with n = 3 strategies, where Uii = i, under BEP(τall, κ, βunif) dynamics, for
κ = 2 (left) and κ = 4 (right).

game, given that this is the family of BEP dynamics considered in most previous studies
in the literature. In the next section, we will also consider BEP(τall, κ, βstick) dynamics, as
this alternative tie-breaking rule can be regarded as more natural in many cases.

For BEP(τall, κ, βunif) dynamics, we show that the sufficient condition for asymptotic
stability in Proposition 4.3 is also necessary for stability for any κ > n; more tightly, for
any κ > |S2|+1

p−1 . If the second-best payoff when playing against s-players is obtained by a
single strategy (i.e., if |S2| = 1),9 then this property holds for any κ > 2 (for any κ, if p > 3).

Our next result (i.e. Proposition 4.4) is also relevant because it shows that under
BEP(τall, κ, βunif) dynamics, beyond some small values of κ, and as κ grows, we will find
either permanent asymptotic stability or a single transition from instability to permanent
asymptotic stability. A transition from stability to instability can only happen within the
small values of κ indicated in the proposition.

Proposition 4.4. Let es be a strict equilibrium and let S2 = argmaxi,s U(i; s, s, ..., s). If for
a number of trials κ0 no strategy survives the iterated elimination of s-stabilizing strategies in
S ∖ {s}, then state es is asymptotically stable under BEP(τall, κ, βunif) dynamics for any κ ≥ κ0.
Otherwise:

• State es is unstable under BEP(τall, κ, βunif) dynamics for any κ satisfying |S2|+1
p−1 < κ ≤ κ0,

and also for any κ > 2
p−1 satisfying

v1
ss−min j∈S∖{s} v1

sj

v1
ss−v1

ts
< κ ≤ κ0.

9Note that the condition |S2| = 1 is much weaker than the condition that a game has to satisfy in order to
be κ-generic.
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• State es is unstable under BEP(τα, κ, βunif) dynamics for any κ satisfying n−1
α−1

min(|S2|+1,α)
p−1 <

κ ≤ κ0.

Example 4.3. Consider the BEP(τall, κ, βunif) dynamics on the coordination game with payoff
matrix (3), with Uss > 0 for all s ∈ S. Recall that Umax = maxi∈S Uii and Smax = {i ∈ S | Uii =

Umax}.
In addition to what we inferred in Example 4.2 for any BEP(τall, κ) dynamic, applying

Proposition 4.4 we can address the stability of es<Smax for κ = Umax
Uss

under BEP(τall, κ, βunif).
We could not do this using Corollary 4.2 because this stability depends on the tie-breaking
rule. Here we deduce that if s < Smax, state es is unstable under BEP(τall, κ, βunif) for any
κ ≤ Umax

Uss
, assuming κ > 2.

In Example 4.2 we showed that, in this game, j ∈ J ⊆ S ∖ {s} is s-stabilizing in J if and
only if κ > max

(U j j

Uss
, 1
)
. Thus, if s < Smax and κ ≤ Umax

Uss
, any strategy i ∈ Smax survives

the iterated elimination of s-stabilizing strategies in S ∖ {s} so, applying Proposition 4.4

and noting that
v1

ss−min j∈S∖{s} v1
sj

v1
ss−v1

ts
= Uss−0

Uss−0 = 1 and p = 2, we can state that es is unstable for any

κ ≤ Umax
Uss

, assuming κ > 2
p−1 = 2.

Figure 2 shows the BEP(τall, κ, βunif) dynamics in the coordination game (3) with n = 3
strategies and Uii = i. For κ = 3, e1 is unstable (since κ ≤ Umax

Uss
= 3

1 = 3), while for κ ≥ 4,
e1 is asymptotically stable (since κ > Umax

Uss
= 3

1 = 3). _

(i) κ = 3 (ii) κ = 4

Figure 3: Coordination game (3) with n = 3 strategies, where Uii = i, under BEP(τall, κ, βunif) dynamics, for
κ = 3 (left) and κ = 4 (right).
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4.5 Stability under BEP(τall, κ, βstick) dynamics

For BEP(τall, κ, βstick) dynamics, here we provide an improved sufficient condition for
asymptotic stability, tighter than Proposition 4.3, and prove that this sufficient condition
for asymptotic stability is also necessary for stability for any κ > |S2|

p−1 . If the second-best
payoff when playing against s-players is obtained by a single strategy (i.e., |S2| = 1), then
this condition holds for any κ > 1 (for any κ, if p > 2). To show this, first we need to define
weakly s-stabilizing strategies.

Definition (Weakly s-stabilizing strategies). We say that a strategy j ∈ J is weakly s-
stabilizing in J, for a number of trials κ, if

• vκi j ≤ vκss for all i ∈ J, and

• If S2 ∩ J , ∅, then vκsj ≥ vκts. □

Any s-stabilizing strategy in J is weakly s-stabilizing in J, so if the iterated elimina-
tion of s-stabilizing strategies in S2 ∖ {s} eliminates all strategies (proving stability under
BEP(τall, κ) dynamics), so does the iterated elimination of weakly s-stabilizing strategies.
The second process, however, can prove stability under BEP(τall, κ, βstick) dynamics in
additional cases. We illustrate this fact in Example 4.4 (also, compare Figure 3(i) vs
Figure 4(ii)).

Proposition 4.5. Let es be a strict equilibrium and let S2 = argmaxi,s U(i; s, s, ..., s). If for a
number of trials κ0 no strategy survives the iterated elimination of weakly s-stabilizing strategies
in S∖ {s}, then state es is asymptotically stable under BEP(τall, κ, βstick) for any κ ≥ κ0. Otherwise,

it is unstable for any κ with |S2|

p−1 < κ ≤ κ0, and also for any κ > 1
p−1 with

v1
ss−min j∈S∖{s} v1

sj

v1
ss−v1

ts
< κ ≤ κ0.

Note that, if |S2| = 1, then the condition κ > |S2|

p−1 holds for any κ > 1 (for any κ, if p > 2).

Example 4.4. Consider the BEP(τall, κ, βstick) dynamic on the coordination game with payoff
matrix (3), with Uss > 0 for all s ∈ S. Recall that Umax = maxi∈S Uii and Smax = {i ∈ S | Uii =

Umax}.
In Example 4.2 we showed that, in this game, j ∈ J ⊆ S ∖ {s} is s-stabilizing in J if and

only if κ > max
(U j j

Uss
, 1
)
. Following the same reasoning, it is easy to check that j ∈ J ⊆ S∖ {s}

is weakly s-stabilizing in J if and only if κ ≥
U j j

Uss
.

Applying Proposition 4.5, we can then deduce that state es is asymptotically stable for
every κ ≥ Umax

Uss
, since this condition guarantees that all strategies are weakly s-stabilizing,

so no strategy survives the iterated elimination of weakly s-stabilizing strategies. In
particular, if s ∈ Smax, es is asymptotically stable for every κ ≥ Umax

Umax
= 1. If s < Smax
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and κ < Umax
Uss

, any strategy i ∈ Smax is not weakly s-stabilizing, so it survives the iterated

elimination of weakly s-stabilizing strategies in S∖{s}. Therefore, noting that
v1

ss−min j∈S∖{s} v1
sj

v1
ss−v1

ts
=

Uss−0
Uss−0 = 1 and p = 2, we can state that es is unstable for any κ such that 1

p−1 = 1 < κ < Umax
Uss

.

To sum up, under BEP(τall, κ, βstick), es is asymptotically stable if κ ≥ Umax
Uss

, and unstable
if 1 < κ < Umax

Uss
. In particular, if s ∈ Smax, then es is asymptotically stable for every κ.

(i) κ = 2 (ii) κ = 3

Figure 4: Coordination game (3) with n = 3 strategies, where Uii = i, under BEP(τall, κ, βstick) dynamics, for
κ = 2 (left) and κ = 3 (right).

Figure 4 shows the BEP(τall, κ, βstick) dynamics in the coordination game (3) with n = 3
strategies and Uii = i. For κ = 2, e1 is unstable (since 1 < κ < Umax

Uss
= 3

1 = 3), e2 is
asymptotically stable (since κ ≥ Umax

Uss
= 3

2 = 1.5), and e3 is asymptotically stable (since
s = 3 ∈ Smax). For κ ≥ 3, e1 is also asymptotically stable (since κ ≥ Umax

Uss
= 3

1 = 3). _

5. Application: tacit coordination games

5.1 Introduction

In this section, we apply our results to the tacit coordination games studied by Van
Huyck et al. (1990).10 These games formalize a symmetric situation where a group of
individuals must decide how much effort to put into a common project. If everyone works

10We thank an anonymous reviewer for suggesting the application of our stability results under BEP
dynamics to these coordination games, which combine an interesting structure with available experimental
evidence, and illustrate a nice feature of BEP dynamics.
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equally hard, the return obtained by each of the individuals per unit of effort exceeds its
cost. Thus, the more effort they collectively put, the greater the profit (i.e. payoff) they
will obtain. However, the output of the project depends solely on the minimum effort
made by any of the individuals; thus, if any one works less than the rest, the extra effort
put by the others goes to waste.

Formally, tacit coordination games are symmetric p-player games with strategy space
S = {1, ...,n} (denoting the player’s effort or contribution) and payoff function

U(i; j1, . . . , jp−1) = a min(i, j1, . . . , jp−1) − b i,

where a > b ≥ 0 are two parameters controlling the return and the cost of effort units,
respectively.

Note that every homogeneous pure strategy profile (i, i, ..., i), in which all the p players
choose the same strategy i, is a Nash equilibrium, and these equilibria are strictly Pareto
ranked, with their rank preference growing with i. However, at any given situation,
selecting the lowest strategy chosen by the rest of the players is always a best reply. This
means that, at any equilibrium (i, ..., i), if any player deviates to a lower strategy j < i,
then, following suit and changing to strategy j is always a best response. This creates a
tension that can induce players to lower their strategy or “effort” as soon as any other
player does –or as soon as they believe that any other player may do it.

Table 1 represents the payoff function for the 3-strategy case (n = 3). The row headings
on the payoff matrices in Table 1 indicate the strategy chosen by the player that receives
the payoff. The column headings indicate the minimum value of the strategies chosen by
the other (p − 1) players.

Table 1: Payoffmatrices for a p-player tacit coordination game with three strategies (n = 3). Left: general
case. Middle: a = 2 and b = 1. Right: a = 1 and b = 0.

min of others’ strategies

1 2 3
1 a − b a − b a − b
2 a − 2b 2a − 2b 2a − 2b
3 a − 3b 2a − 3b 3a − 3b

min of others’ st.

1 2 3
1 1 1 1
2 0 2 2
3 −1 1 3

min of others’ st.

1 2 3
1 1 1 1
2 1 2 2
3 1 2 3

For b > 0, the unique best reply to any (partial) pure strategy profile ( j1, . . . , jp−1) used
by the other players is the minimum of their contributions, i.e. min( j1, . . . , jp−1). The
monomorphic states ei, with i ∈ {1, ..., n}, are consequently the only pure-strategy Nash
equilibrium states of the game, and they are all strict. Strategy 1 (the maxmin strategy)
is called the secure strategy, while strategy n is called the efficient strategy because, if
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adopted by everyone, it corresponds to the efficient equilibrium profile (n, ..., n). For
b = 0, the efficient strategy n is weakly dominant (see Table 1, right matrix) and en is the
only strict Nash state.

All symmetric strict Nash equilibria satisfy most equilibrium refinements and corre-
spond to evolutionarily stable states, according to the standard definition of evolutionary
stability (Weibull, 1995).11 However, experimental evidence clearly shows that human
subjects do discriminate between different strict equilibria in these games. Van Huyck
et al. (1990) present and discuss neat experimental evidence on these games with n = 7
strategies, repeatedly played within (fixed) groups of different sizes. Their most striking
findings are summarized below:12

• Games with b > 0. The behavior of human subjects in these games clearly depends
on the number of players. When the game is played in very small groups (i.e.,
p = 2 players), there is a clear tendency to choose the efficient strategy.13 In contrast,
in groups with several players (p ≈ 15), the distribution of strategies is initially
diverse, and then the vast majority of players approach the lowest effort (i.e. the
secure strategy 1) fairly quickly –in ten periods or less–, even when the experiment
is repeated with the same group of co-players: “most people appear to consider
the highest effort a good bet in small groups, but not in large groups” (Crawford,
1991). Note that this clear pattern of discrimination between strict Nash equilibria,
dependent on the number of players and against the payoff-dominance criterion in
the case of large groups, cannot be explained along the lines of traditional game
theory (Crawford, 1991).

• Games with b = 0. In between two rounds of repeatedly playing the stage game with
b > 0 within a large group (at both of which nearly all subjects ended up choosing
the lowest effort; even faster and more sharply in the second round), Van Huyck
et al. (1990) put the same groups to play one round of the game with b = 0 for
five periods. In stark contrast with the results for b > 0, in this intermediate round
with b = 0, nearly all players chose the highest effort in virtually all periods. This
suggests that the consistent results obtained with b > 0 (both before and after playing
the repeated game with b = 0) were not due to players’ misunderstanding of the
incentives structure, but to strategic uncertainty, i.e. players’ uncertainty about how

11Crawford (1991) provides a detailed analysis of these games and shows that the only equilibrium state
that satisfies a finite-population definition of evolutionary stability is the secure state e1.

12We refer to each play of the stage game as one period, and we use the term round for several consecutive
periods.

13Van Huyck et al. (1990) also present results on setups where players were randomly paired after every
period. In that case, they did not find any stable pattern of behavior.
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the other players may respond to the multiplicity of strict Nash equilibria (Crawford,
1991).

5.2 Results

Without aiming to provide an explanation for the regularities found by Van Huyck
et al. (1990) – we refer the reader to Crawford’s (1991) insightful analysis for a discussion
of possible explanations –, our goal in this section is to explore whether BEP dynamics
can capture the discrimination between different strict Nash equilibria shown by humans
in tacit coordination games, and its dependence on the number of players p. We include
the most relevant results of this analysis below (proofs are included in the appendix).

The stability analysis of strict equilibria states under BEP dynamics is more interesting
for low values of the number of trials κ, since for sufficiently large values of κ, every strict
equilibrium is asymptotically stable.

a) Games with b > 0. The stability of the different strict Nash states is highly dependent
on the number of players p. For two players, the efficient state en (maximum contri-
bution) is Lyapunov stable under any BEP(τall, 1), while (assuming that the number
of strategies is greater than 1 + a

a−b ) the secure state e1 (minimum contribution) is
unstable (see Figure 5(i) for the three-strategy case). By contrast, for more than two
players, the efficient state en is unstable (under any BEP(τall, 1) dynamic14), while
the secure state e1 is asymptotically stable (under every BEP(τall, κ) dynamics). Fig-
ure 5 illustrates these results for a game with n = 3 strategies under BEP(τall, 1, βstick)
dynamics.

(i) p = 2 (ii) p = 3 (iii) p = 15

Figure 5: Tacit coordination game with n = 3 strategies and a = 2b > 0 (see Table 1) under
BEP(τall, κ = 1, βstick) dynamics, for number of players p = 2 (left), p = 3 (middle) and p = 15 (right).

14Proposition 4.1 also shows that the efficient state en is unstable for every BEP(τα, 1) dynamics if p > n.
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The fact that increasing the number of players favors the instability of en and the
stability of e1 is in full accordance with experimental evidence.

Let us now analyze the stability of the intermediate strict Nash states e2, ..., en−1 for
p > 2. We find three cases:

i) a < 2b. In this case, every intermediate state e2, ..., en−1 is unstable under
BEP(τall, κ < a

a−b ) dynamics, and also under BEP(τα, κ < a
a−b ) dynamics if p > n,

leaving e1 as the only asymptotically stable strict Nash state (this includes the
cases κ = 1 and κ = 2, given that a

a−b > 2). In turn, every intermediate state
e2, ..., en−1 is asymptotically stable under every BEP(τall, κ > a

a−b ) dynamics. The
stability of the intermediate states in the borderline case κ = a

a−b depends on the
tie-breaking rule (instability under βunif, stability under βstick).

Figure 6 illustrates these results for a game with n = 3 strategies under BEP(τall, κ, βstick)
dynamics. Note that, in the cases where the intermediate state is stable (i.e.
κ > 2), its basin of attraction is rather small compared with the basin of attrac-
tion of the secure state e1.

(i) κ = 1 (ii) κ = 3 (iii) κ = 5

Figure 6: Tacit coordination game with n = 3 strategies, p = 3 players, a = 3, and b = 2 (see Table 1) under
BEP(τall, κ, βstick) dynamics, for number of trials κ = 1 (left), κ = 3 (middle) and κ = 5 (right).

ii) a = 2b. In this case, every intermediate state e2, ..., en−1 is unstable under
BEP(τall, κ = 1, βstick) dynamics for p > 3, leaving e1 as the only asymptotically
stable strict Nash state. This is also the case under BEP(τall, κ = 1, βunif) dynam-
ics with p > 4, and under BEP(τα, κ = 1, βunif) dynamics with p ≥ 2n. For κ > 2,
every intermediate state is asymptotically stable under every BEP(τall, κ > 2)
dynamics. The case κ = 2 depends on the tie-breaking rule (stability under
βstick, instability under βunif).

iii) a > 2b. In this case, for p > 2, every intermediate state e2, ..., en−1 is asymptotically
stable under BEP(τall, κ) dynamics. Note, however, that the basin of attraction
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of these intermediate states is again rather small compared with the basin of
attraction of the secure state e1, especially if p is large (see Figure 7).

(i) p = 5 (ii) p = 10 (iii) p = 15

Figure 7: Tacit coordination game with n = 3 strategies and a > 2b > 0 (see Table 1) under BEP(τall, κ = 1)
dynamics (for any tie-breaker), for number of players p = 5 (left), p = 10 (middle) and p = 15 (right).

b) Games with b = 0. In this case, strategy n is weakly dominant and the efficient state
en is the only strict Nash equilibrium state. For p = 2 players, this efficient state is al-
most globally asymptotically stable under both BEP(τall, 1, βunif) and BEP(τall, 1, βstick).
Besides, for any number of players, en is asymptotically stable under BEP(τall, κ > 1)
dynamics, and also under the BEP(τall, 1, βstick) dynamic.15 Figure 8 illustrates these
results for a game with n = 3 strategies under the BEP(τall, 1, βstick) dynamic.

(i) p = 2 (ii) p = 3 (iii) p = 15

Figure 8: Tacit coordination game with n = 3 strategies and b = 0 (see Table 1) under BEP(τall, κ = 1, βstick)
dynamics, for number of players p = 2 (left), p = 3 (middle) and p = 15 (right).

Thus, in general terms (but also with a few exceptions –e.g. see footnote 15), BEP(τall, κ)
dynamics with a low number of trials κ seem to exhibit regularities similar to those

15However, Proposition 4.4 shows that en is unstable under the BEP(τall, 1, βunif) dynamic for p > 3, and
under BEP(τα, 1, βunif) dynamics for p ≥ 2n.
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observed in the experimental evidence for tacit coordination games, i.e.: (i) for b > 0, clear
discrimination between strict Nash states, selecting the secure state e1 in large groups but
not in games with two players, and (ii) for b = 0, a clear tendency to select the weakly
dominant strategy.

5.3 Discussion

Strict Nash states are stable under most deterministic evolutionary dynamics (Sand-
holm, 2014), such as all monotone imitative dynamics (e.g. the replicator dynamics (Taylor
and Jonker, 1978)), all sign-preserving excess payoff dynamics (e.g. the BNN dynamic
(Brown and von Neumann, 1950)), and all pairwise comparison dynamics (e.g. the Smith
(1984) dynamic). The intuition is that, in a small neighborhood of a strict Nash state es,
the strict Nash strategy s is the unique best reply to every population state in terms of
expected payoffs.

However, consider a population state in which most players use the strict Nash strat-
egy s and a small fraction ϵ of players use strategy j , s. Under random matching, the
probability that an s-player happens to be in a p-player group in which there is at least one
j-co-player is approximately ϵ times the number (p − 1) of co-players (considering a first-
order approximation). This means that, given a fixed fraction of j-players in a population,
the larger the number of players p in a game, the larger the probability of finding at least
one co-player using strategy j. If agents revise their strategies based on the performance
that those strategies provide when tested in specific groups of p (randomly drawn) players
–instead of looking at the expected payoff of each strategy in the population–, then the
number of players p can have a large influence on the population dynamics.

Experimental results in tacit coordination games constitute a clear example of the prac-
tical relevance of the number of players in the stability of different strict Nash equilibria,
and BEP dynamics in tacit coordination games also illustrate this effect. Focusing on tacit
coordination games with a < 2b and BEP(τall, κ = 1) dynamics, suppose that most players
(a fraction 1 − ϵ) use strategy s > 1 and a small fraction ϵ of players use strategy j < s.
Most of the revising s-players who, when testing strategy s, happen to meet a j-co-player
in their group, will then adopt some strategy lower than s (under test-all, they will likely
adopt strategy s − 1, because, when testing strategies against a group of s-players, s − 1 is
the second-best reply, after s). As discussed before, the number of such revising agents
is roughly proportional to the number of co-players (p − 1).16 To be specific, they will be
approximately (1 − ϵ) ϵ (p − 1). In turn, most of the ϵ j-players will adopt strategy s when

16In contrast, note that under best-response dynamics (in terms of expected payoff), no s-player would
change strategy for sufficiently low ϵ.
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revising. Thus, if (1− ϵ) ϵ (p− 1) > ϵ, i.e. if p > 2−ϵ
1−ϵ , state es is unstable. This is the intuition

why, for a sufficiently large number of co-players (p > 2 under τall; p > n under τα), the
efficient and the intermediate strict Nash states become unstable.17

Note that BEP dynamics capture the effect that the number of players p can have in the
stability of a strict Nash state in tacit coordination games, via the probability of meeting
a deviating j-co-player in a group of p players, which is an increasing function of p. This
increasing probability of meeting a deviating j-co-player is also likely to be an important
factor to explain the effect of the number of players in the experimental results, as pointed
out by Van Huyck et al. (1990, p. 236). In any case, it is important to emphasize that many
experimental designs in the literature do not readily fit in the evolutionary framework
we have assumed here, and one would expect additional factors to be at play in those
experimental studies (see Crawford (1991)).

6. Conclusions

Strict Nash equilibria correspond to rest points under Best Experienced Payoff dynam-
ics, but these rest points may be unstable. In this paper we provide a simple test, with
a simple interpretation, that guarantees asymptotic stability under BEP(τall, κ) dynamics.
We also provide a related simple test that guarantees instability of strict equilibria under
the more general family of BEP(τα, κ) dynamics.

Focusing on BEP(τall, κ, βunif) dynamics, which is the family of BEP dynamics prevalent
in the literature, and for values of the number of trials κ above a small threshold value
κ1 ≤ n, our stability test proves either asymptotic stability or, otherwise, instability. We
also show that, for κ > n and as κ increases, any strict equilibrium is either always asymp-
totically stable or there is a single transition from instability to asymptotic stability, within
a bounded range of values of κ18. Similar results are obtained for the BEP(τall, κ, βstick)
dynamic, for which we present an even tighter asymptotic stability test.

Finally, in order to illustrate our results and to explore the predictive power of BEP
dynamics, we have conducted a detailed analysis of the stability of strict equilibria in tacit
coordination games. In these games, experimental evidence is at odds with the predictions
of most game theoretical analyses.

17Similar arguments can be applied for the other sampling dynamics, i.e. sampling best response dynamics
or action-sampling dynamics, under which strict Nash states can also be unstable (Sandholm, 2001).

18Sandholm et al. (2020) provide bounds on the values of κ that can correspond to instability.
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A. Appendix

A.1 Iterated elimination of strategies

Definition (Survivors of iterated elimination of strategies satisfying conditionC in a finite
set Ω). Let J0

≡ Ω and define Jm recursively by

Jm = {i ∈ Jm−1
| i does not satisfy condition C in Jm−1

}.

The (potentially empty) set J|Ω| is the set of strategies that survive iterated elimination of
strategies satisfying condition C in setΩ. An algorithm for this procedure is described in
Algorithm 1.

Algorithm 1 Iterated elimination of strategies satisfying condition C in set Ω

J← Ω
while ∃ j ∈ J | j satisfies condition C in J do

J← J ∖ { j ∈ J | j satisfies condition C in J}
end while ▷ J at the end is the set of all surviving strategies after iterated elimination

A.2 Proofs

Note. Bound on the Perron-Frobenius eigenvalue of DW+(0) under BEP dynamics, based on the
columns of the principal submatrices of DW+(0).

Under BEP(τall, κ) dynamics, the inflow (positive) terms in column j of DW+(0) are
associated to the terms 1[vκi j > vκss], 1[vκts > vκsj], 1[vκi j = vκss] or 1[vκts = vκsj], when the
corresponding cases in the brackets hold, i.e., when the indicator function takes the value
1. The inflow associated to the last two terms, 1[vκi j = vκss] and 1[vκts = vκsj], is 0 under
tie-breaking rules that always select the agent’s current strategy if it is among the optimal
tested strategies (such as βstick). In this case, the less favorable for the instability of s,
the inflow (positive) terms in column j of DW+(0) are (p − 1)κ 1[vκi j > vκss], at position
DW+

i j(0), plus a total inflow of (p−1)κ 1[vκts > vκsj] distributed (according to the tie-breaking
rule) among the rows of DW+(0) corresponding to the strategies in S2. Consequently,
given a subset J ⊆ S ∖ {s} and considering its associated principal submatrix DW+

J (0),
corresponding to the strategies in J, the largest value that we can guarantee (for every
tie-breaking rule) for the sum of the terms in the column of DW+

J (0) corresponding to
strategy j is (p− 1)κ

∑
i∈J 1[vκi j > vκss], plus, if S2 ⊆ J, (p− 1)κ 1[vκts > vκsj]. Considering τα, for

κ > n−1
(p−1)(α−1) (with τall, either p > 2 or k > 2 are enough to satisfy this condition) it can be
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shown, following arguments similar to the proof of fact 2 in Arigapudi et al. (2021), that
proposition 5.4 (ii) in Sandholm et al. (2020), which is based on the bound discussed here
(by columns), is more general than proposition 5.4 (i), which is based on a bound by rows
that considers only the terms 1[vκi j > vκss]. □

Proof of Proposition 4.1. Considering κ = κ0, if the iterated elimination of potentially
s-stabilizing strategies does not eliminate all strategies in S ∖ {s}, then there is some
non-empty set J ⊆ S ∖ {s} which does not contain any potentially s-stabilizing strategies.
This implies that for every j ∈ J, either ∃i ∈ J such that vκi j > vκss or (S2 ⊆ J and vκsj < vκts).
With these conditions, proposition 5.4 of Sandholm et al. (2020) guarantees instability of
the strict equilibrium if κ > n−1

(p−1)(α−1) . The extension to κ < κ0 comes from the fact that
if a strategy is not potentially s-stabilizing in J for a number of trials κ0, then it is not
potentially s-stabilizing in J for any κ < κ0. □

Proof of Proposition 4.3. Following Sandholm et al. (2020), consider a change of variables
for the population state (x1, x2, ..., xn) that sends the equilibrium es to the origin 0, by
eliminating the coordinate xs while keeping the labeling of the other coordinates. In this
system, consider the Jacobian of the dynamics at the equilibrium, DW(0). Let DWJ(0) be
the square submatrix of DW(0) whose rows and columns correspond to the strategies in
J. If j is s-stabilizing in J for κ = κ0, then the column of DWJ(0) corresponding to strategy
j is made up (see Sandholm et al. (2020)) by zeros in all non-diagonal positions, with a
value −1 at the diagonal position. Let ( j1, j2, ..., jn−1) be an ordering of the (n− 1) strategies
in S ∖ {s} that iteratively eliminates s-stabilizing strategies. Then the column of DW(0)
corresponding to strategy j1 is made up by zeros in all non-diagonal positions, with a
value −1 at the diagonal position. Considering the cofactor expansion of the determinant
of the Jacobian along the column corresponding to j1, and denoting by DW−{ j1}(0) the
submatrix of DW(0) obtained by eliminating the column and row corresponding to j1,
we have that |DW(0)| = (−1) |DW−{ j1}(0)|. Now, the column of DW−{ j1}(0) corresponding
to strategy j2 is made up by zeros in all non-diagonal positions, with a value −1 at the
diagonal position. Proceeding secuentially with the other strategies we obtain |DW(0)| =
(−1) |DW−{ j1}(0)| = (−1)2

|DW−{ j1, j2}(0)| = ... = (−1)n−1, i.e., all the eigenvalues of the Jacobian
have negative real parts, which implies asymptotic stability of the equilibrium. The result
for κ ≥ κ0 follows from the fact that if a strategy is s-stabilizing in J for a number of trials
κ0, then it is s-stabilizing in J for any κ > κ0. □

Proof of Proposition 4.4. The stability part comes from Proposition 4.3. For the instability
part, first consider κ = κ0. If the iterated elimination of s-stabilizing strategies does not
eliminate all strategies in S ∖ {s}, then there is some non-empty set J ⊆ S ∖ {s} which does

–27–



not contain any s-stabilizing strategies. This means that for every j ∈ J, either ∃i ∈ J such
that vκi j ≥ vκss or (S2 ∩ J , ∅ and vκsj ≤ vκts). Considering this and Lemma A.1 below, which
is a direct adaptation of proposition 5.4 in Sandholm et al. (2020) for the BEP(τα, κ, βunif)
dynamics, we have that the minimum possible value of the left hand side on Equation (4)
is (p − 1)κ 1

|S2|+1 , so the condition κ > |S2|+1
p−1 guarantees instability under BEP(τall, κ, βunif)

dynamics. If
v1

ss−min j∈S∖{s} v1
sj

v1
ss−v1

ts
< κ, then vκsj > vκts for all j , s and the minimum possible value

indicated before is (p−1)κ1
2 , so the condition κ > 2

p−1 guarantees instability. The adaptation
of these results to BEP(τα, κ, βunif) dynamics is immediate considering Equation (5). The
extension to κ < κ0 comes from the fact that if a strategy is not s-stabilizing in J for a
number of trials κ0, then it is not s-stabilizing in J for any κ < κ0.

Lemma A.1. Let es be a strict equilibrium, let S2 = argmaxi,s U(i; s, s, ..., s), and let t ∈ S2. Under
any BEP(τall, κ, βunif) dynamic, state es is linearly unstable if, for some nonempty J ⊆ S ∖ {s}, the
following condition holds for all j ∈ J:

(p − 1)κ

∑
i∈J

1[vκi j > vκss] +
1
2

∑
i∈J

1[vκi j = vκss]

(4)

+ (p − 1)κ |S2 ∩ J|
(

1
|S2|

1[vκsj < vκts] +
1

|S2|+11[vκsj = vκts]
)
> 1

And under any BEP(τα, κ, βunif) dynamic, letting b = min(|S2|, α − 1), state es is linearly
unstable if, for some nonempty J ⊆ S ∖ {s}, the following condition holds for all j ∈ J:

(p − 1)κ
α − 1
n − 1

∑
i∈J

1[vκi j > vκss] +
1
2

∑
i∈J

1[vκi j = vκss]

(5)

+ (p − 1)κ
α − 1
n − 1

|S2 ∩ J|
(

1
b 1[vκsj < vκts] +

1
b+11[vκsj = vκts]

)
> 1

□

Proof of Proposition 4.5. The stability part comes from adapting the proof of Proposi-
tion 4.3 to the BEP(τall, κ, βstick) dynamic, considering that the Jacobian DW(0) for the
BEP(τall, κ, βstick) dynamic has components (Sandholm et al., 2020):

DWi j(0) =

(p − 1)κ 1[vκi j > vκss] − 1[ j = i] if i < S2,

(p − 1)κ
(
1[vκi j > vκss] +

1
|S2|

1[vκis > vκsj]
)
− 1[ j = i] if i ∈ S2.

For the instability part follow the steps in the proof of Proposition 4.4, noting that if a
non-empty set J ⊆ S ∖ {s} does not contain any weakly s-stabilizing strategies, then, for
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every j ∈ J, either ∃i ∈ J such that vκi j > vκss or (S2 ∩ J , ∅ and vκsj < vκts). Note also that the
equivalent of Equation (2) for the BEP(τall, κ, βstick) dynamic is

(p − 1)κ

∑
i∈J

1[vκi j > vκss] + |S2 ∩ J|
(

1
|S2|

1[vκsj < vκts]
) > 1

□

Proofs of statements in Section 5.2 (Results on Tacit Coordination Games). For the analysis of
the stability of the strict Nash states of a p-player tacit coordination game under BEP
dynamics, we calculate the values vκ,si j , which in this case are:

vκ,si j = (κ − 1)U(i; s, s, ..., s) +U(i; j, s, ..., s)

= (κ − 1) a min(i, s) − κ b i + a

min(i, j) if p = 2

min(i, j, s) if p > 2
.

The n×n matrices Vκ=1,s for p = 2 and for p > 2 are shown in tables 2 and 3 respectively.
Note that Vκ=1,s for p = 2 (Table 2) is the payoff matrix Ui j. Matrices Vκ,s for κ > 1 can
be easily calculated from the corresponding matrix Vκ=1,s by adding, to every column in
Vκ=1,s, column s of Vκ=1,s times (κ − 1).

Table 2: Matrix Vκ=1,s for tacit coordination games with p = 2 players. This is also the payoffmatrix of the
game if p = 2.

1 2 3 . . . n
1 a − b a − b a − b . . . a − b
2 a − 2b 2a − 2b 2a − 2b . . . 2a − 2b
3 a − 3b 2a − 3b 3a − 3b . . . 3a − 3b
...

...
...

...
. . .

...

n a − nb 2a − nb 3a − nb . . . na − nb

a) Games with b > 0.

Results about the stability of the efficient state en and of the secure state e1.

– For p = 2, the efficient state en is Lyapunov stable under any BEP(τall, 1).

Proof. Direct application of Proposition 5.11(i) in Sandholm et al. (2020), noting
that Unn > Ui j for all i, j , n (see Table 2). □
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Table 3: Matrix Vκ=1,s for tacit coordination games with more than two players (i.e. p > 2).

1 2 . . . s − 1 s s + 1 . . . n
1 a − b a − b . . . a − b a − b a − b . . . a − b
2 a − 2b 2a − 2b . . . 2a − 2b 2a − 2b 2a − 2b . . . 2a − 2b
...

...
...

. . .
...

...
...

. . .
...

s − 1 a − (s − 1)b 2a − (s − 1)b . . . (s − 1)(a − b) (s − 1)(a − b) (s − 1)(a − b) . . . (s − 1)(a − b)
s a − sb 2a − sb . . . (s − 1)a − sb s(a − b) s(a − b) . . . s(a − b)

s + 1 a − (s + 1)b 2a − (s + 1)b . . . (s − 1)a − (s + 1)b sa − (s + 1)b sa − (s + 1)b . . . sa − (s + 1)b
...

...
...

. . .
...

...
...

. . .
...

n a − nb 2a − nb . . . (s − 1)a − nb sa − nb sa − nb . . . sa − nb

– For p = 2 and n > 1 + a
a−b , the secure state e1 is unstable under any BEP(τall, 1).

Proof. Direct application of Proposition 5.4(i) in Sandholm et al. (2020), consid-
ering the subset of strategies J = {n,n − 1} and noting that, if n > 1 + a

a−b , then
U11 < Ui j for i, j ∈ J (see Table 2). □

– Proposition 4.1 shows that the efficient state en is unstable under any BEP(τall, 1)
dynamic if p > 2, and under every BEP(τα, 1) dynamics if p > n.

Proof. Table 3 shows matrix Vκ=1,s for p > 2. For s = n we have S2 = {n − 1} and
v1,s

s(n−1) = (n− 1) a− n b < (n− 1)(a− b) = v1,s
ts . Consequently, strategy (n− 1) is not

potentially n-stabilizing in any set that contains it, and Proposition 4.1 shows
that en is unstable under the BEP(τall, 1) dynamic for p > 2, and under every
BEP(τα, 1) dynamics for p > n. □

– Proposition 4.3 shows that the secure state e1 is asymptotically stable under
every BEP(τall, κ) dynamics if p > 2.

Proof. Table 3 shows matrix Vκ=1,s for p > 2. For s = 1 and κ = 1, the condition
vκ=1

i j < vκ=1
ss = s (a − b), which implies satisfaction of part of the conditions for

s-stabilizing strategies, holds for all i, j , s. Looking at matrix Vκ=1,s=1, we
have S2 = {2} and v1,s

sj = a − b > a − 2b = v1,s
ts . Consequently, all strategies are

1-stabilizing in S ∖ {1} for κ = 1, and we can apply Proposition 4.3 to state that
the secure state e1 is asymptotically stable under every BEP(τall, κ). □

Results about the stability of the intermediate strict Nash states e2, ..., en−1.

i) a < 2b. Proposition 4.1 shows that every intermediate state e2, ..., en−1 is unstable
under BEP(τall, κ < a

a−b ) dynamics for p > 2, and under every BEP(τα, κ < a
a−b )

dynamics for p > n. Conversely, if κ > a
a−b , then Proposition 4.3 shows that
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every intermediate state is asymptotically stable under every BEP(τall, κ > a
a−b )

dynamics for p > 2. The case κ = a
a−b depends on the tie-breaking rule. For

p > 2, Proposition 4.4 shows that every intermediate state is unstable under
BEP(τall, κ = a

a−b , β
unif), and Proposition 4.5 shows that every intermediate state

is stable under BEP(τall, κ = a
a−b , β

stick).

Proof. Table 3 shows matrix Vκ=1,s for p > 2. For s ∈ {2, ...,n − 1}, the condition
vκi j < vκss = κ s (a − b), which implies satisfaction of part of the conditions for s-
stabilizing strategies, holds for all i, j , s. Given that a < 2b, we have S2 = {s−1}.

We can now compute vκ,ss(s−1) = κs(a − b) − a, and vκ,sts = vκ,s(s−1)s = κ(s − 1)(a − b).
Therefore, the condition vκ,ss(s−1) ≥ vκ,sts holds if and only if κ ≥ a

a−b .

Thus, if κ < a
a−b , then vκ,ss(s−1) < vκ,sts , so strategy (s−1) is not potentially s-stabilizing

in any set that contains it, and Proposition 4.1 shows that every intermediate
state es ∈ {e2, ..., en−1} is unstable under BEP(τall, κ < a

a−b ) dynamics for p > 2, and
under every BEP(τα, κ < a

a−b ) dynamics for p > n.

Conversely, if κ > a
a−b , then vκ,ss(s−1) > vκ,sts , so strategy (s − 1) is s-stabilizing in

S∖ {s}. After eliminating strategy (s− 1), all the other strategies are s-stabilizing
in J = S∖ {s, s− 1}, since vκi j < vκss = κ s (a− b) for all i, j , s and S2 ∩ J = ∅. Thus,
no strategy survives the iterated elimination of s-stabilizing strategies, and we
can apply Proposition 4.3 to state that every intermediate state es ∈ {e2, ..., en−1}

is asymptotically stable under every BEP(τall, κ > a
a−b ).

The case κ = a
a−b > 2 depends on the tie-breaking rule.19 For p > 2, Proposi-

tion 4.4 can be applied to prove that every intermediate state is unstable under
BEP(τall, κ = a

a−b , β
unif),20 and Proposition 4.5 can be applied to prove that every

intermediate state is asymptotically stable under BEP(τall, κ = a
a−b , β

stick).21 □

ii) a = 2b. Proposition 4.5 shows that every intermediate state e2, ..., en−1 is unstable
under BEP(τall, κ = 1, βstick) dynamics for p > 3. Proposition 4.4 shows that
they are also unstable under BEP(τall, κ = 1, βunif) dynamics for p > 4 and under
every BEP(τα, κ = 1, βunif) dynamics for p ≥ 2n.

Conversely, if κ > 2, then Proposition 4.3 shows that every intermediate state
is asymptotically stable under every BEP(τall, κ > 2) dynamics for p > 2.

19Given that a < 2b, we have a
a−b > 2.

20In this case, strategy (s − 1) is not s-stabilizing in any set that contains it and |S2 |+1
p−1 =

2
p−1 < 2 if p > 2.

21In this case, strategy (s − 1) is weakly s-stabilizing in S ∖ {s}. After eliminating strategy (s − 1), all the
other strategies are weakly s-stabilizing in J = S ∖ {s, s − 1}, since vκi j < vκss = κ s (a − b) for all i, j , s and
S2 ∩ J = ∅. Thus, no strategy survives the iterated elimination of weakly s-stabilizing strategies.
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The borderline case κ = 2 depends on the tie-breaking rule. For p > 2, Propo-
sition 4.4 shows that every intermediate state is unstable under BEP(τall, κ =

2, βunif), and Proposition 4.5 shows that every intermediate state is stable under
BEP(τall, κ = 2, βstick).

Proof. Table 3 shows matrix Vκ=1,s for p > 2. For s ∈ {2, ...,n − 1}, the condition
vκi j < vκss = κ s (a − b), which implies satisfaction of part of the conditions for
s-stabilizing strategies, holds for all i, j , s. Given that a = 2b, we have S2 = {s−
1, s+1}, and vκ,sts = vκ,s(s−1)s = vκ,s(s+1)s = κ (s−1)(a−b). We also have vκ,ss(s−1) = κ s (a−b)−a
and vκ,ss(s+1) = κ s (a − b). Thus, vκ,ss(s−1) > vκ,sts if and only if κ > a

a−b = 2; and it is
always the case that vκ,ss(s+1) > vκ,sts .

Therefore, if κ > a
a−b = 2, then vκ,ss(s−1) > vκ,sts , so strategies (s−1) and (s+1) are both

s-stabilizing in S∖{s}. After eliminating both of them, all the other strategies are
s-stabilizing in J = S∖ {s, s− 1, s+ 1}, since vκi j < vκss = κ s (a− b) for all i, j , s and
S2 ∩ J = ∅. Thus, no strategy survives the iterated elimination of s-stabilizing
strategies, and we can apply Proposition 4.3 to state that every intermediate
state es ∈ {e2, ..., en−1} is asymptotically stable under every BEP(τall, κ > a

a−b = 2)
if p > 2.

The case where κ ≤ a
a−b = 2 depends on the tie-breaker. Let us start with

βunif. If κ ≤ a
a−b = 2, then vκ,ss(s−1) ≤ vκ,sts , so strategy (s − 1) is not s-stabilizing

in any set that contains it. Thus, Proposition 4.4 can be applied to prove that
every intermediate state is unstable under BEP(τall, κ = 1, βunif) if p > 4, under
BEP(τall, κ = 2, βunif) if p > 2, and under every BEP(τα, κ = 1, βunif) dynamics for
p ≥ 2n.22

Let us now focus on βstick. If κ = a
a−b = 2, then vκ,ss(s−1) = vκ,sts , so strategies (s − 1)

and (s + 1) are both weakly s-stabilizing in S ∖ {s}. After eliminating both of
them, all the other strategies are weakly s-stabilizing in J = S ∖ {s, s − 1, s + 1},
since vκi j < vκss = κ s (a − b) for all i, j , s and S2 ∩ J = ∅. Thus, no strategy
survives the iterated elimination of weakly s-stabilizing strategies, and we can
apply Proposition 4.5 to state that every intermediate state es ∈ {e2, ..., en−1} is
asymptotically stable under every BEP(τall, κ = 2, βstick).

If κ = a
a−b < 2, then vκ,ss(s−1) < vκ,sts , so strategy (s − 1) is not weakly s-stabilizing in

any set that contains it. In this case, Proposition 4.5 shows that every interme-
diate state es ∈ {e2, ..., en−1} is unstable under BEP(τall, κ = 1, βstick) dynamics for

22Note that |S2 |+1
p−1 =

3
p−1 < 1 if p > 4; |S2 |+1

p−1 =
3

p−1 < 2 if p > 2; and n−1
α−1

min(|S2 |+1,α)
p−1 < 1 if p ≥ 2n.
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p > 3.23 □

iii) a > 2b. Proposition 4.3 shows that every intermediate state e2, ..., en−1 is asymp-
totically stable under every BEP(τall, κ) dynamics for p > 2.

Proof. Table 3 shows matrix Vκ=1,s for p > 2. For s ∈ {2, ...,n − 1}, the condition
vκi j < vκss = κ s (a − b), which implies satisfaction of part of the conditions for s-
stabilizing strategies, holds for all i, j , s. Given that a > 2b, we have S2 = {s+1}.

We can now compute vκ,ss(s+1) = κ s (a − b), and vκ,sts = vκ,s(s+1)s = κ (s (a − b) − b).
Therefore, the condition vκ,ss(s+1) > vκ,sts always holds. Thus, strategy (s + 1) is
s-stabilizing in S ∖ {s}. After eliminating strategy (s + 1), all the other strategies
are s-stabilizing in J = S ∖ {s, s + 1}, since vκi j < vκss = κ s (a − b) for all i, j , s and
S2 ∩ J = ∅. Thus, no strategy survives the iterated elimination of s-stabilizing
strategies, and we can apply Proposition 4.3 to state that every intermediate
state es ∈ {e2, ..., en−1} is asymptotically stable under every BEP(τall, κ). □

b) Games with b = 0.

– For p = 2 players, the efficient state en is almost globally asymptotically stable
under both BEP(τall, 1, βunif) and BEP(τall, 1, βstick).

Proof. Direct application of Proposition 5.11(ii) in Sandholm et al. (2020), noting
that if s = n, for all i, j , s, we have Usj = a j ≥ min(Ui j,Uis) = min(a min(i, j), i a) =
a min(i, j) (see Table 2). □

– For p ≥ 2, Proposition 4.3 shows that en is asymptotically stable under every
BEP(τall, κ > 1) dynamics, and Proposition 4.5 shows that en is asymptotically
stable under every BEP(τall, κ, βstick) dynamics.

Proof. For s = n and i, j , s, we have vκi j = (κ − 1) i a + a min(i, j), and vκss =

(κ − 1) n a + a n = κn a. Thus, vκi j < vκss for all i, j , s, which implies satisfaction
of part of the conditions for s-stabilizing strategies and for weakly s-stabilizing
strategies.

Looking at matrix Vκ=1,s=n, we have S2 = {n − 1}. We can now compute vκ,ss(n−1) =

vκ,sn(n−1) = (κ − 1) a n + a (n − 1), and vκ,sts = vκ,s(n−1)n = (κ − 1) a (n − 1) + a (n − 1).
Therefore, condition vκ,ss(n−1) > vκ,sts holds if κ > 1, and condition vκ,ss(n−1) ≥ vκ,sts holds
if κ ≥ 1. Thus, strategy (s + 1) is s-stabilizing in S ∖ {s} if κ > 1 and weakly

23Note that |S2 |

p−1 =
2

p−1 < 1 if p > 3.
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s-stabilizing in S ∖ {s} for κ = 1 . After eliminating strategy (n − 1), all the other
strategies are s-stabilizing in J = S ∖ {s,n − 1} for any κ, since vκi j < vκss for all
i, j , s and S2 ∩ J = ∅.

Thus, if κ > 1, no strategy survives the iterated elimination of s-stabilizing
strategies, and we can apply Proposition 4.3 to state that en is asymptotically
stable is asymptotically stable under every BEP(τall, κ > 1).

Similarly, if κ = 1, no strategy survives the iterated elimination of weakly
s-stabilizing strategies, and we can apply Proposition 4.5 to state that en is
asymptotically stable under every BEP(τall, κ, βstick). □

– Proposition 4.4 shows that, under BEP(τall, 1, βunif) dynamic, en is unstable for
every number of players p > 3, and under every BEP(τα, 1, βunif) dynamics for
p ≥ 2n.

Proof. Looking at matrix Vκ=1,s=n, we have S2 = {n − 1}. We can now compute
vκ=1,s

s(n−1) = v1,n
n(n−1) = a (n − 1), and vκ=1,s

ts = v1,n
(n−1)n = a (n − 1). Therefore, vκ,ss(n−1) = vκ,sts .

Consequently, strategy (n− 1) is not n-stabilizing in any set that contains it, and
Proposition 4.4 shows that en is unstable under the BEP(τall, 1, βunif) dynamic for
p > 3, and under every BEP(τα, 1, βunif) dynamics for p ≥ 2n.24 □

□
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