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Abstract

This research proposes the analysis and subsequent characterisation of Android malware families by means of low
dimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming from
the Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reduction
techniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum Likelihood
Hebbian Learning, Curvilinear Component Analysis, [Isomap and Self Organizing Map. Results obtained enable a clear visual
analysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Android
malware families. Interesting conclusions are obtained from the real-life data set under analysis.
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1 Introduction

Since the first smartphones came into the market in the late 1990s, sales on that sector have increased
constantly to the present day. Among all the available operating systems, Google’s Android has been,
and increasingly is, the most popular mobile platform [1]. The number of Android units sold in Q1
2017 worldwide raised to 379.98 million of 432.79 million units, that is a share of 87.79%. It is not
only the number of devices but also the number of apps—those available at Google Play (Android’s
official store) constantly increase, up to more than 3.4 million are available nowadays [2]. With regard
to the security issue, the number of malicious Android apps has greatly risen in the past four years;
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from the half million of them that were identified in 2013 to the nearly 3.5 million in 2017 [3].
Furthermore, it has been forecasted that increase in malware for Android devices is expected to
continue [3, 4]. This operating system is an appealing target for bad-intentioned apps, mainly because
of its open mentality, in contrast to iOS or some other operating systems.

Smartphone security and privacy still are nowadays major concerns although great efforts have
been devoted over the past years [5]. In order to address these issues, it is required to understand
the malware and its nature. Otherwise, it will not be possible to practically develop an effective
solution [6]. According to this idea of gaining deeper knowledge about malware nature, present
study is focused on the analysis of Android malware families. To do so, Malgenome (a real-life
publicly available) data set [7] has been analysed by means of several Dimensionality Reduction
Techniques (DRTs). From the samples contained in such data set, several alarming statistics were
found [6] that motivate further research on Android malware. That is the case of the 36.7% of the
collected samples that leverage root-level exploits to fully compromise the security of the whole
system or the fact that more than 90% of the samples turn the compromised phones into a botnet
controlled through network or short messages.

To characterize malware families, present study proposes a comprehensive comparison of many
DRTs, which are able to visualize a high-dimensionality data set (further described in Section 2),
to gain deep knowledge of Android malware families. Each individual from the Malgenome dataset
(a malware app) encodes the subset of selected features by using a binary representation (details on
Section 3). These individuals are grouped by families and then visualized trying to identify patterns
that exist across dimensional boundaries in the high-dimensional data set by changing the spatial
coordinates of malware family data. The main goal is to obtain an intuitive visualisation of the
malware families to draw conclusions about the structure of the data set and to characterize malware
families subsequently.

Neural networks have been applied to a wide variety of fields in recent decades [8—12];
additionally, neural DRTs have been previously applied to massive security data sets, such as those
generated by network traffic [13, 14], SQL code [15, 16], honeynets [17] and HTTP traffic [18].
In present paper, such methods are applied to a new problem, related to the characterisation and
knowing of malware families. On the other hand, several different techniques have been used to
differentiate between legitimate and malicious Android apps, such as machine learning [19-21],
knowledge discovery [22] and weighted similarity matching of logs [23], among others as well as
hybridisation approaches [24]. Although some visualisation techniques have been applied to the
detection of malware in general terms [25], few dimensionality-reduction proposals for Android
malware detection are available at present time. In [26] Pythagoras tree fractal is used to visualize
the malware data, being all apps scattered, as leaves in the tree. Authors of [27] proposed graphs
for deciding about malware by depicting lists of malicious methods, needless permissions and
malicious strings. In [28], visualisation obtained from biclustering on permission information is
described. Behaviour-related dendrograms are generated out of malware traces in [29], comprising
nodes related to the package name of the application, the Android components that has called
the API call and the names of functions and methods invoked by the application. Unlike previous
work, Android malware families (instead of malware apps) are visualized by DRTs in present paper.
Up to the authors knowledge, this is the first time that dimensionality-reduction models are applied
to visualize Android malware.

The rest of this paper is organized as follows: the applied neural methods are described in
Section 2, the setup of experiments for the Android Malware Genome data set is described in
Section 3, together with the results obtained and the conclusions of the study that are stated
in Section 4.
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2 Dimensionality reduction techniques

This work proposes the application of several DRTs for the visualisation of Android malware
data. Visualisation techniques are considered a viable approach to information seeking, as humans
are able to recognize different features and to detect anomalies by means of visual inspection
[30]. The underlying operational assumption of the proposed approach is mainly grounded in the
ability to render the high-dimensional traffic data in a consistent yet low-dimensional representation
[17, 18, 25]. In most cases, security visualisation tools have to deal with massive data sets with a
high dimensionality, to obtain a low-dimensional space for presentation [13, 15, 17, 18, 31, 32].

This problem of identifying patterns that exist across dimensional boundaries in high-dimensional
data sets can be solved by changing the spatial coordinates of data. Projection methods project high-
dimensional data points onto a lower-dimensional space in order to identify ‘interesting’ directions
in terms of any specific index or projection. Having identified the most interesting projections, the
data are then projected onto a lower-dimensional subspace plotted in two or three dimensions, which
makes it possible to examine the structure with the naked eye [30].

2.1 Principal component analysis

Principal component analysis (PCA) is a well-known statistical model, introduced in [33], that
describes the variation in a set of multivariate data in terms of a set of uncorrelated variables, each of
which is a linear combination of the original variables. From a geometrical point of view, this goal
mainly consists of a rotation of the axes of the original coordinate system to a new set of orthogonal
axes that are ordered in terms of the amount of variance of the original data they account for.

PCA can be performed by means of neural models such as those described in [34] or [35].
It should be noted that even if we are able to characterize the data with a few variables, it does
not follow that an interpretation will ensue.

2.2 Maximum likelihood Hebbian learning

Maximum likelihood Hebbian earning (MLHL) [30] is based on Exploration Projection Pursuit
(EPP). The statistical method of EPP [30, 36, 37] was designed for solving the complex problem
of identifying structure in high-dimensional data by projecting it onto a lower-dimensional subspace
in which its structure is searched for by eye. To that end, an ‘index’ must be defined to measure the
varying degrees of interest associated with each projection. Subsequently, the data is transformed by
maximising the index and the associated interest. From a statistical point of view, the most interesting
directions are those that are as non-Gaussian as possible.

2.3 Cooperative MLHL

The Cooperative MLHL (CMLHL) model [38] extends the MLHL model, by adding lateral
connections between neurons in the output layer of the model. Considering an N-dimensional input
vector (x) and an M-dimensional output vector (y), with W;; being the weight (linking input neuron
J to output neuron 7), then CMLHL can be expressed as defined in (1-4).

1. Feed-forward step:

N
yi= Y Wxj, Vi (1)
=1
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2. Lateral activation passing:

yit+1D =y +7b-4]" ©)
3. Feedback step: l l
M
e =x— > Wi, Vj 3)
i=1
4. Weight change:
AWy = n.y;.sign(eplel’™! “)

Where 7 is the learning rate, t is the ‘strength’ of the lateral connections, b the bias parameter,
p a parameter related to the energy function and 4 a symmetric matrix used to modify the response
to the data. The effect of this matrix is based on the relation between the distances separating the
output neurons.

2.4 ISOMAP algorithm

ISOMAP nonlinear DRT [39] attempts to preserve pairwise geodesic (or curvilinear) distance
between data points. Geodesic distance is the distance between two points measured over the
manifold. ISOMAP defines the geodesic distance as the sum of edge weights along the shortest
path between two nodes. The doubly centered geodesic distance matrix K in ISOMARP is of the form
given by (5):

K =14 HD?H, )

where D?=D?;; means the element-wise square of the geodesic distance matrix D = [D;], and H is
the centring matrix, given by (6):

H=1,-yeyel (6)

where ey = [1...1]7 e RV.
The top N eigenvectors of the geodesic distance matrix represent the coordinates in the new
n-dimensional Euclidean space.

2.5 Curvilinear component analysis algorithm

Curvilinear component analysis (CCA) [40, 41] is a non-linear projection method that preserves
distance relationships in both input and output spaces. CCA is a useful method for redundant and
non-linear data structure representation and can be used in dimensionality reduction. CCA is useful
with highly non-linear data, where PCA or any other linear method fails to give suitable information.

CCA brings some improvements to other methods like Sammon’s Mapping [42], although when
unfolding a nonlinear structure, Sammon’s Mapping cannot reproduce all distances. One way to
get round this problem consists in favouring local topology: CCA tries to reproduce short distances
firstly, long distances being secondary. Formally, this reasoning led to the following error function
(without normalisation) defined in (7):

N

Ecca= D, (dfj - dfj)z Fi (dfj) : Q)

ij=1
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In comparison with Esgumon, Ecca has an additional weighting function F' depending on d§ and
on parameter A. The F factor is a decreasing function of its argument, so it is used to favour local
topology preservation. For example, F' could be a step function of (A-d).

2.6 Self-Organizing Maps

Among the great variety of tools for multidimensional data visualisation, several of the most widely
used are those belonging to the family of the topology-preserving maps [43—48]. Probably the best
known among these algorithms is the Self-Organizing Map (SOM) [43, 45, 49, 50]. It is based on a
type of unsupervised learning called competitive learning, which is an adaptive process in which the
units in a neural network gradually become sensitive to different input categories or sets of samples
in a specific domain of the input space. The main feature of the SOM algorithm is its topology
preservation. When not only the winning unit but also its neighbours on the lattice are allowed to
learn, neighbouring units gradually specialize to represent similar inputs, and the representations
become ordered on the map lattice.

An input vector (x) is presented to the network and the node of the network in which the weights
(W;) are closest (in terms of Euclidean distance) to x, is chosen:

¢ = argmin ([lx — Wil) . @®)

The weights of the winning node and the nodes close to it are then updated to move closer to the
input vector. There is also a learning rate parameter that usually decreases as the training process
progresses. The weight update rule for inputs is defined as follows:

AW; =nhei(x —W;), VieN, ©)

Where W; is the weight vector associated with neuron i, x is the input vector and % is the
neighbourhood function.

3 Experiments & results

As previously mentioned, several different DRTs (see Section 2) have been applied to analyse
Android malware. Present section introduces the analysed data set as well as the main obtained
results.

3.1 Malgenome data set

The Malgenome dataset [6], coming from the Android Malware Genome Project [7], has been
analysed in present study. It is the first large collection of Android malware (1,260 samples) that was
split in malware families (49 different ones). It covered the majority of existing Android malware,
collected from the beginning of the project in August 2010.

Data related to many different apps from a variety of Android app repositories were accumulated
for over more than one year. Additionally, malware apps were thoroughly characterized based on
their detailed behaviour breakdown, including the installation, activation and payloads.

Collected malware was split in families that were obtained by ‘carefully examining the related
security announcements, threat reports, and blog contents from existing mobile antivirus companies
and active researchers as exhaustively as possible and diligently requesting malware samples from
them or actively crawling from existing official and alternative Android Markets’ [6]. The defined
families are as follows: ADRD, AnserverBot, Asroot, BaseBridge, BeanBot, BgServ, CoinPirate,
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Crusewin, DogWars, DroidCoupon, DroidDeluxe, DroidDream, DroidDreamLight, DroidKungFul,
DroidKungFu2, DroidKungFu3, DroidKungFu4, DroidKungFuSapp, DoidKungFuUpdate, End-
ofday, FakeNetflix, FakePlayer, GamblerSMS, Geinimi, GGTracker, GingerMaster, GoldDream,
Gone60, GPSSMSSpy, HippoSMS, Jifake, jSMSHider, Kmin, Lovetrap, NickyBot, Nickyspy, Pjapps,
Plankton, RogueLemon, RogueSPPush, SMSReplicator, SndApps, Spitmo, TapSnake, Walkinwat,
YZHC, zHash, Zitmoand Zsone. Samples of 14 of the malware families were obtained from the
official Android market, while samples of 44 of the families came from unofficial markets. As some
families are present in both markets (official and unofficial), the final data set to be analysed consists
of 49 samples (one for each family) and each sample is described by 26 different features derived
from a study of each one of the apps. The features are divided into six categories, as can be seen in
Table 1.

TABLE 1. Features describing each one of the malware families in the Malgenome dataset

Category #1: Installation Category #3: Privilege escalation
1 Repackaging 14 exploid
2 Update 15 RATC/zimperlich
3 Drive-by download 16  ginger break
4  Standalone 17  asroot
Category #2: Activation 18 encrypted
5 BOOT Category #4: Remote control
6 SMS 19  NET
7 NET 20  SMS
8§ CALL Category #5: Financial charges
9 USB 21 phone call
10 PKG 22 SMS
11 BATT 23 block SMS
12 SYS Category #6: Personal information stealing
13 MAIN 24 SMS

25  phone number
26 user account

The features describing each family take the values of 0 (if that feature is not present in that
family) or 1 (if the feature is present).

3.2 Results

For comparison purposes, some different projection models have been applied, whose results are
shown below.

PCA Projection
Figure 1 shows the principal component projection (components 1 and 2) obtained by applying
PCA to the previously described data.

In Figure 1 it can be seen that most of the malware families are grouped in a main group
(left side of the figure) while just a few families can be identified away from this cluster
(groups 1 and 2). Group 1 gathers two families (BaseBridge and AnserverBot), which are the only
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FIGURE 1. PCA projection of Malgenome families.

two families in the data set that combine repackaging and update installation. Group 2 gathers four
families (DroidKungFul, DroidKungFu?2, DroidKungFu3 and DroidKungFuSapp), which are the
only ones in the data set presenting the encrypted privilege escalation.

Additionally, this first projection let us identify that some families are projected at the very same
place. By getting back to the data we have realized that these families take the very same values for
all the features. This is the case of Walkinwat and FakePlayer on one hand and for DroidKungFul,
DroidKungFu?2, DroidKungFu3 and DroidKungFuSapp on the other hand. It means that, by taking
into account the features in the analysed data set, it will not be possible to distinguish Walkinwat
from FakePlayer malware or any of the 4 mentioned variants of DroidKungFu malware.

MLHL Projection

Figure 2 shows the MLHL projection of the analysed data (two main components). MLHL projection
shows the structure of the data in a way that a kind of ordering can be seen in the data set. However,
as it is more clearly shown in the CMLHL projection (Figure 3), MLHL is not further described.
The parameter values of the MLHL model for the projections shown in Figure 2 are as follows:
number of output dimensions, 3; number of iterations, 100; learning rate, 0. 2872; p, 0.4852.

CMLHL Projection
When applying CMLHL to the analysed data set, the projection (two main components) shown in
Figure 3 has been obtained. As expected, CMLHL obtained a sparser projection than MLHL and
PCA, revealing the structure of the data set in a clearer way.
The parameter values of the CMLHL model for the projections shown in Figure 3 are as follows:
number of output dimensions, 3; number of iterations, 100; learning rate, 0.0406; p, 1.92; t, 0.44056.
In Figure 3 it is easy to visually identify at least two main groups of data, labelled as 1 and 2. It has
been checked that families in each one of these groups are similar in a certain way; group 1 gathers
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all the families with dangerous SMS activity, as ‘SMS activation’ and ‘SMS financial charges’
are present in all the families in this group. On the other hand, none of the families in this
group present any of the following features: USB or ‘PKG activation’ and ‘user-account personal
information stealing’. This group is also characterized by the almost complete absence of privilege
escalation, as only one of those features (RATC/Zimperlich) is present in only one of the families
(BaseBridge). Regarding group 2, none of the families present the feature ‘phone-call financial
charges’.

From a deeper analysis of such groups, some subgroups can be distinguished and are identified in
Figure 4. Additionally, the families located in each one of these groups are listed in Table 2.

All the variants of DroidKungFu malware are located in the bottom-left side of the projection
(groups 2.2, 2.3 and 2.5). Jifake and Zitmo are gathered in the same subgroup (2.1) as they are the
only two families in group 2 presenting the drive-by download installation feature.

ISOMAP Projection

In Figure 5 it is shown the projections obtained by ISOMAP algorithm where each sample is
labelled with the name of the family it belongs.

The parameter values of the ISOMAP model for the projection shown in Figure 5 are as follows:
number of neighbours, 10.

ISOMAP clearly visualize the internal data set structure, with a main division into 2 groups
(1 and 2 in Figure 5). For a deeper analysis, these two main groups are split in different subgroups
as shown in Figure 6.

From the groups in Figure 5, it can be highlighted that group 1 contains Malgenome families that
present ‘standalone’ but not ‘repackaging’ installation features (see Table 3). However, in case of
group 2, none of its samples present ‘standalone installation’ feature and all of them present the
‘repackaging installation’ feature.

As shown in Figure 6, group 1 is divided into 2 subgroups (Gla and Glb), where Gla
gathers families that do not present the ‘BOOT activation’ feature as opposed to G1b, where its
samples present this ‘BOOT activation’ feature. Similarly, G2 is clearly divided into 2 subgroups
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FIGURE 4. CMLHL projection of Malgenome families with identified subgroups.
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TABLE 2. Families’ allocation to subgroups defined in CMLHL projection
Group Subgroup Families
1.1 BaseBridge, BeanBot
1 1.2 Zsone
1.3 GGTracker, GPSSMSSpy, HippoSMS, RogueSPPush, Spitmo
1.4 BgServ, Geinimi, GoldDream, Lovetrap, Pjapps
2.1 Jifake, Zitmo
2.2 DroidKungFuUpdate
73 Asroot, DogWars, DroidDeluxe, DroidDream, DroidKungFul,
' DroidKungFu?2, DroidKungFu3, DroidKungFuSapp, FakeNetflix
ADRD, AnserverBot, DroidCoupon, DroidDreamLight, Endofday,
2 2.4 FakePlayer, jSMSHider, SMSReplicator, SndApps, TapSnake, Walkinwat,
zHash
2.5 DroidKungFu4, GamblerSMS, GingerMaster, Gone60, Plankton
2.6 CoinPirate, NickyBot, RoguelLemon
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(G2a and G2b), with analogous characteristics to samples in Gla and G2a, respectively

FIGURE 5. ISOMAP projection of Malgenome families.

(‘BOOT activation’ for G2a and the opposite for G2b). Finally, G2a presents samples with dangerous
activity of ‘NET remote control’ (group G2a.l) and samples without such dangerous feature
(group G2a.2).

Table 3 shows the Malgenome families contained in each one of the identified groups and the
features characterising all the families in that group.
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— 2 3 4
FIGURE 6. ISOMAP projections of Malgenome families with identified subgroups.

CCA Projection
Figure 7 presents the projection obtained by CCA of Malgenome families, where it can be seen that
a clear internal structure of the data set can not be identified, and malware families can not be clearly
gathered in groups, as it happened in previous results.

Different combinations of values were tested for the parameters of the CCA model. The best
projection obtained is the one shown in Figure 7, which was generated with the following: 1,000
epochs; alpha, 0.5; and lambda, 1.5152.

SOM results

Finally, SOM has been also applied to the Malgenome data set and the obtained U-matrix is shown
in Figure 8. Each one of the neurons in the map has been labelled with the names of the malware
families to which the neuron responds. From this figure, and according to the inter-neuron distances,
neurons in the map could easily be split in two main groups (G1 and G2). At the same time, G1 could
be divided into two subgroups (Gla and G1b), and Gla could also be divided into three subgroups
as neuron distances are high between them (blue colour means high distance in Figure 8). In the case
of G2, authors believe that it can not be divided into subgroups, as neuron distances within G2 are
quite small, so it can not be said that families in this group (G2) are very different.

The parameter values of the SOM model for the mapping shown in Figure 8 are the following:
map size, [7, 5]; lattice, hexagonal; neighbourhood function, Gaussian. On the other hand, some
metrics about the obtained mapping are as follows: quantisation error = 1.1 and topographic
error = 0.0. In general terms, it can be said that the ‘repackaging installation’ and ‘standalone
installation’ features are the only ones that let distributing samples in groups G1 and G2. In the
case of subgroups Gla and Glb, it is the presence of the ‘SMS financial charges’ feature what
characterize malware families in each one of them.

Table 4 shows the Malgenome families contained in each one of the identified groups by the
SOM network and the features characterising all the families in that group. General information
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TABLE 3. Families’ allocation to subgroups defined in ISOMAP projection

Group Subgroup Families and features

RogueSPPush, GPSSMSSpy, Asroot, FakeNetflix, Walkinwat,
FakePlayer, Plankton, SMSReplicator, Lovetrap, DroidDeluxe,
Spitmo, Zitmo, Spitmo, RogueLemon, Gone60, GGTracker, Kmin
Present features, 4 (standalone installation) and
5 (BOOT activation); Not-present feature,
1 (repackaging installation)
Gl NickyBot, Nickyspy, zHash, SndApps, YZHC, TapSnake,
Crusewin, GamblerSMS
Gl1b Present features, 4 (standalone installation);
Not-present feature, 1 (repackaging installation) and
5 (BOOT activation)

Zsone, Jifake, DogWars, HippoSMS, DoidKungFuUpdate
Present features, 1 (repackaging installation) and

5 (BOOT activation); Not-present feature,

4 (standalone installation) and 19 (NET remote control)

G2a JSMSHider, BeanBot, AnserverBot, DroidDream
G242 Present features, 1 (repackaging installation),
’ 5 (BOOT activation) and 19 (NET remote control);
Not-present feature, 4 (standalone installation)

G2 DroidKungFu4, BaseBridge, BgServ, Endofday,
DroidDreamlLight, Pjapps, DroidCoupon, CoinPirate, Geinimi,
ADRD, GingerMaster, DroidKungFuSapp, DroidKungFu3,
G2b DroidKungFu2, DroidKungFul
Present features, 1 (repackaging installation) and
19 (NET remote control); Not-present feature,
4 (standalone installation) and 5 (BOOT activation)

Gla

G2a.l

(present and not-present features) of a group (i.e. group 1) is applicable to all malware families
contained in its subgroups (i.e. subgroups Glal, G1b etc.).

4 Conclusions

From the results shown in Section 3, it can be concluded that DRTs are an interesting proposal to
visually analyse the structure of a high-dimensionality data set in general terms. More specifically,
when studying Android malware families, this kind of techniques let us gain deep knowledge about
the nature of such app families. Thanks to the obtained projections, similarities and differences of
the studied families are identified.

From the extensive set of applied DRTs, PCA, MLHL and CCA failed in generating an informative
visualisation of samples by reducing the dimensionality of them to two dimensions. On the other
hand and generally speaking, it can be said that the DRTs that group malware families are able
to do that in a way that is consistent with the seminal characterisation of Malgenome data set [7].
More precisely, it is worth mentioning that installation features (repackaging and standalone) have
been identified by ISOMAP and SOM as the most important ones for a general characterisation of
Android malware families (see Section 3 for further details). It is an important result as repackaging
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FIGURE 7. CCA projection of Malgenome families.
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FIGURE 8. SOM U-matrix for Malgenome families with identified groups.

is one of the most common techniques applied to hide malware (86% of the malware apps in the
original data set were repackaged versions of different legitimate apps including paid apps, popular
game apps, powerful utility apps etc. [6]).
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TABLE 4. Families allocation to subgroups defined in SOM u-matrix

G1
Present feature, 1 (repackaging installation);
Not-present feature, 4 (standalone installation)

Gla
Present feature, 22 (SMS financial charges)

Glal DroidKungFul, DroidKungFu2, DroidKungFu3, DroidKungFuSapp
Present features, 11 (BATT activation), 14 (exploid privilege escalation) and
18 (encrypted privilege escalation);
Not-present feature, 2 (update installation), 24 (SMS personal information
stealing)

Gla2 DroidCoupon, DroidDreamLight, GingerMaster, ADRD
Not-present features, 11 (BATT activation), 14 (exploid privilege escalation)
and 18 (encrypted privilege escalation), 2 (update installation) and
24 (SMS personal information stealing)

Gla3 AnserverBot, BaseBridge
Present features, 11 (BATT activation), 2 (update installation) and 24
(SMS personal information stealing);
Not-present feature, 14 (exploid privilege escalation) and 18 (encrypted
privilege escalation)

Other samples ~ DogWars, DoidKungFuUpdate, DroidDream, DroidKungFu4, Jifake

G1b
Not present features, 22 (SMS financial charges)

BeanBot, BgServ, CoinPirate, Endofday, Geinimi, GoldDream, HippoSMS, jSMSHider, Pjapps,
Zsone

G2
Present features, 4 (standalone installation);
Not-present feature, 1 (repackaging installation)

Asroot, Crusewin, DroidDeluxe, FakeNetflix, FakePlayer, GamblerSMS, GGTracker, Gone60,
GPSSMSSpy, Kmin, Lovetrap, NickyBot, Nickyspy, Plankton, RogueLemon, RogueSPPush,
SMSReplicator, SndApps, Spitmo, TapSnake, Walkinwat, YZHC, zHash, Zitmo

In a complementary way, CMLHL identified some activation (SMS, USB and PKG) and financial
charges (SMS and phone call) as the most important ones for such a task. Knowledge generated
by the application of DRTs could be applied to improve the detection rate of Android malware at
different stages (markets, devices etc.) thanks to the characterisation of the different families.

As a final conclusion, it can be said that the identification and characterisation of Android malware
is still an open challenge that requires great efforts to be devoted in the coming years.

5 Future work

As future work it is planned to apply new DTR models and compare them with other supervised
algorithms such as decision trees in order to gain deep knowledge of the data set. It will also be
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analysed by other data sets related to cybersecurity applying the same approach followed in this
research in order to generalize to other data sets the proposed method.
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