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Abstract: The aim of this work is to completely solve the reversibility problem for symmetric linear
cellular automata with radius r = 3 and null boundary conditions. The main result obtained is the
explicit computation of the local transition functions of the inverse cellular automata. This allows
introduction of possible and interesting applications in digital image encryption.
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1. Introduction and Preliminaries

The notion of cellular automaton was originated by Von Neumann and S. Ulam [1], and it can be
defined as a simple computational model capable of simulating complex phenomena. This concept
was popularized in the seventies by M. Gardner with John Conway’s Game of Life [2], and was
brought into academic fashion by S. Wolfram [3] in the eighties. Since then, cellular automata have
been extensively analyzed, and not only from a theoretical perspective [4,5]; they have also been used
to simulate different phenomena [6–8].

One can find different definitions of cellular automaton depending on the perspective [9]. J. Kari
defines them as ultradiscrete dynamical systems that consist of a finite collection of state automata
(called cells) that are endowed with a state at every time step and these states change according to
a local transition function. The variables of this function are the states at the previous step of time of
the cell itself and its neighborhood.

More precisely, a cellular automaton over the finite field F2 = {0, 1} is given by a 3-uplet
A = (C, f ,N ), such that C is the cellular space, f is the local transition function, and N is the
neighborhood. Specifically, C is formed by n cells that are arranged uniformly in a one-dimensional
lattice. Each of them is endowed with a state from F2 that changes at every step of time according to
a local transition function f . Specifically, if st

i stands for the state of the i-th cell at time t, then

st+1
i = f

(
st

i−k− , . . . , st
i−1, st

i , st
i+1, . . . , st

i+k+
)

, 1 ≤ i ≤ n, (1)

where k−, k+ ∈ N, and N (i) = {i− k−, . . . , i− 1, i, i + 1, . . . , i + k+} represent the neighborhood of
the i-th cell. As the cellular space is constituted by n cells (the cellular space is finite), some type of
boundary conditions must be stated in order to define the dynamics of the system in a proper way.
This work deals with null boundary conditions, that is, st

i = 0 for each t when i /∈ {1, 2, . . . , n}.
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The cellular automaton is linear when its local transition function f is linear. Moreover, a linear
cellular automaton is said to be symmetric of radius r if k− = k+ = r. Consequently, its local transition
function is

st+1
i =

r⊕
k=−r

λkst
i+k, λk ∈ F2, 1 ≤ i ≤ n. (2)

This cellular automaton will be denoted by An,r. Note that we are dealing with 1D boolean
cellular automata.

If Ct =
(
st

1, st
2, . . . , st

n
)
∈ Fn

2 is the global configuration of An,r at step of time t, the local transition
function leads to global transition function F, such that

F : Fn
2 → Fn

2 (3)

Ct 7→ Ct+1 = F
(
Ct)

The graphical illustration of the global evolution of a CA can be obtained using the simple
evolution diagram and the global state transition diagram. The evolution diagram is a two-dimensional
grid, where the rows represent the configurations of the cellular automaton (that are sequentially
computed from the initial configuration) such that the color of each site is black for state 1 or white
for state 0. On the other hand, the global state transition diagram can be defined as a directed
graph whose nodes represent the configurations of the cellular automaton and whose edges represent
transformations Ct 7→ Ct+1.

If the global transition function F is bijective, the cellular automaton is said to be reversible.
Thus, the evolution backwards can be computed by means of the inverse cellular automaton whose
global transition function is F−1 [10,11]. Reversibility is probably the most studied property of cellular
automata; not only have several theoretical works appeared (see, for example, works by the authors
of [12–16]), but different applications based on this property have also been proposed (see, for example,
work by the authors of [17–20]).

The reversibility problem for symmetric linear cellular automata endowed with periodic boundary
conditions has been tackled in several works [21–24] and completely solved by I. Siap, H. Akin, and
M.E. Koroglu [25] and the explicit expressions for the inverse of a reversible cellular automaton with
(2r + 1)-cyclic rule are given in the work by the authors of [23]. On the other hand, in the case of null
boundary conditions, the cases r = 1 and r = 2 have been tackled in works by the authors of [26,27];
moreover, in the work by the authors of [28], it is shown that the symmetric linear cellular automaton
of radius r, whose cellular space is formed by n = 2r + 1 cells, is reversible.

The main objective of this work is to completely solve the reversibility problem for the symmetric
linear cellular automaton with n cells and radius r = 3, which is denoted by An,3. Specifically,
the explicit expressions of the local transition matrices of the inverse cellular automata are computed,
and an illustrative application of this result to the encryption of digital images is proposed.

The rest of the paper is organized as follows. Section 2 is devoted to introduce the particular
characteristics of symmetric cellular automata with radius r = 3 and endowed with null boundary
conditions; the reversibility problem is tackled in Section 3. In Section 4, some potential applications in
the field of digital image encryption are shown. Finally, the conclusions are presented in Section 5.

2. The Symmetric Linear Cellular Automata with r = 3

The explicit expression of the local transition function of the symmetric cellular automaton with
radius r = 3 and n cells, An,r, is as follows.

st+1
i = st

i−3 ⊕ st
i−2 ⊕ st

i−1 ⊕ st
i ⊕ st

i+1 ⊕ st
i+2 ⊕ st

i+3 = st
i ⊕

3⊕
k=1

(
st

i−k ⊕ st
i+k
)

, 1 ≤ i ≤ n. (4)
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If Ct =
(
st

1, st
2, . . . , st

n
)

, ∈ Fn
2 is the global configuration of the cellular automaton at step of time t,

then its global evolution is given by

Ct+1 = F
(
Ct) = Mn · Ct, (5)

where Mn is the local transition matrix. If null boundary conditions are considered, then Mn is a band
matrix of order n with bandwidth r = 3 whose coefficients inside the band are all equal to 1, that is,

Mn =



1 1 1 1 0 · · · · · · · · · · · · 0

1
. . . . . . . . . . . . . . .

...

1
. . . . . . . . . . . . . . . . . .

...

1
. . . . . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . 0
...

. . . . . . . . . . . . . . . . . . . . . 1
...

. . . . . . . . . . . . . . . . . . 1
...

. . . . . . . . . . . . . . . 1
0 · · · · · · · · · 0 0 1 1 1 1



∈ Mn (Z2) . (6)

In Figure 1a, the evolution state diagram of the cellular automaton A201,3 is shown when the

initial configuration is given by C0 =

(
0,

(100)
· · · , 0, 1, 0,

(100)
· · · , 0

)
. Furthermore, in Figure 1b, the evolution

state diagram associated to A201,3 is introduced when the initial configuration C0 is randomly defined.

Figure 1. (a) Evolution diagram of A201,3 when C0 =

(
0,

(100)
· · · , 0, 1, 0,

(100)
· · · , 0

)
. (b) Evolution diagram

of A201,3 when the initial configuration is selected at random.

3. The Reversibility Problem

Taking into account the notion of reversibility and the interpretation of the dynamics of An,r

in terms of linear algebra, this cellular automaton is said to be reversible when its local transition
matrix is nonsingular, and consequently its inverse is the local transition matrix of the inverse cellular
automaton. Consequently, in this case, the order and characteristics of the transition matrix determine
the reversibility of the cellular automata. For example, A7,3 and A8,3 are reversible, whereas A9,3 is
not. In Figures 2 and 3, the global state transition diagrams of A7,3 and A8,3 are shown; note that
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as they are reversible, each configuration has a unique predecessor. In this case, each configuration
C = (s1, s2, . . . , sn) ∈ Fn

2 is represented by the number ∑n
1 si2i. Conversely, A9,3 is not reversible,

and some configurations in the global state transition diagram have more than one predecessor
(see Figure 4).

Figure 2. Global state transition diagram of A7,3.
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Figure 3. Global state transition diagram of A8,3.
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Figure 4. Global state transition diagram of A9,3.

Specifically, the following result holds.

Theorem 1. The symmetric linear cellular automaton with r = 3, An,3, is reversible if and only if n = 7k or
n = 7k + 1, with k ∈ Z+.

Proof. Assume that the arithmetic is performed in F2 and set Mn the transition matrix of An,r.
From Lemma (2) of the work by the authors of [28], it is det (Mn) = det

(
Mn−(2r+1)

)
. Consequently,

if n = (2r + 1)m + p with m ∈ N and 0 ≤ p ≤ 2r, then det (Mn) = det
(

M(2r+1)+p

)
. A simple

computation shows that

det (Mn) = det
(

M(2r+1)+p

)
=

{
1, if p = 0, 1
0, if 2 ≤ p ≤ 2r

(7)

Consequently,

det (Mn) =

{
1, if n = (2r + 1)m or n = (2r + 1)m + 1 with m ∈ Z+

0, otherwise
(8)

thus finishing, taking r = 3.

Furthermore, it is possible to compute in an explicit way the expression of the inverse cellular
automata as follows.



Mathematics 2019, 7, 816 7 of 15

Theorem 2. (1) The local transition matrix of the inverse cellular automaton when n = 7k, k ∈ Z+ is

I7k =


I7 H

(k−1)
· · · H

HT I7
. . .

...
...

. . . . . . H
HT · · ·

(k−1)
HT I7


∈ M7k (Z2) , (9)

where

I7 =



0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 1 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0


∈ M7 (Z2) , H =



0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


∈ M7 (Z2) . (10)

(2) The local transition matrix of the inverse cellular automaton when n = 7k + 1, k ∈ Z+ is

I7k+1 =



I8 J J
(k−2)
· · · J

JT K7 L · · · L

JT LT . . . . . .
...

...
...

. . . . . . L
JT LT · · ·

(k−2)
LT K7


∈ M7k+1 (Z2) , (11)

where

I8 =



1 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 1


∈ M8 (Z2) , (12)

J =



0 0 0 1 0 0 1
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 1


∈ M8×7 (Z2) , (13)
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K7 =



0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 1


∈ M7 (Z2) , (14)

L =



0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 1


∈ M7 (Z2) . (15)

Proof. (1) For the sake of simplicity, we can suppose that I7k =
(
Ωij
)

1≤i,j≤k where Ωij ∈ M7 (Z2) is
defined as follows.

Ωij =


I7, if i = j
H, if i < j
HT , if i > j

(16)

On the other hand, set

M7k =
(
∆ij
)

1≤i,j≤k =



M7 N 0
(k−2)
· · · 0

NT M7 N
. . .

...

0 NT . . . . . . 0
...

. . . . . . . . . N
0 · · ·

(k−2)
0 NT M7


∈ M7k (Z2) , (17)

the local transition matrix of the CA A7k,3, such that

∆ij =


M7, if i = j
N, if j = i + 1
NT , if j = i− 1
0, otherwise

(18)

with

N =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0


∈ M7 (Z2) . (19)

Then we have to proof that I7k ·M7k = M7k · I7k = Id ∈ M7k (Z2).



Mathematics 2019, 7, 816 9 of 15

First of all, suppose that I7k ·M7k =
(
Φij
)

1≤i,j≤k such that Φij ∈ M7 (Z2), then

Φij =
k

∑
l=1

Ωil · ∆l j. (20)

Now, we can distinguish five cases depending on the values of subindices i and j:

(a) Assume i = j, then

Φii =
k

∑
l=1

Ωil · ∆li = Ωi,i−1 · ∆i−1,i + Ωii · ∆ii + Ωi,i+1 · ∆i+1,i, (21)

since ∆ij = 0 when |i− j| > 1. Then, taking into account Equations (16) and (18), it is

Φii = HT · N + I7 ·M7 + H · NT = Id ∈ M7 (Z2) . (22)

(b) Suppose that j = i + 1 (the coefficients of the first upper diagonal of I7k ·M7k), then from
Equations (16) and (18) we obtain

Φi,i+1 =
k

∑
l=1

Ωil · ∆l,i+1 = Ωii · ∆i,i+1 + Ωi,i+1 · ∆i+1,i+1 + Ωi,i+2 · ∆i+2,i+1

= I7 · N + H ·M7 + H · NT = 0 ∈ M7 (Z2) . (23)

(c) If j = i − 1 (the coefficients of the first lower diagonal of I7k · M7k), then, using
Equations (16) and (18), the following result holds.

Φi,i−1 =
k

∑
l=1

Ωil · ∆l,i−1 = Ωi,i−2 · ∆i−2,i−1 + Ωi,i−1 · ∆i−1,i−1 + Ωii · ∆i,i−1

= HT · NT + HT ·M7 + I7 · NT = 0 ∈ M7 (Z2) . (24)

(d) Now we will compute the coefficients Φij with 3 ≤ i ≤ k and 1 ≤ j ≤ i− 2 corresponding
to the entries below the first lower diagonal. In this case

Φij =
k
∑

l=1
Ωil · ∆l,j = Ωi,j−1 · ∆j−1,j + Ωij · ∆jj + Ωi,j+1 · ∆j+1,j

=

{
Ωi1 · ∆11 + Ωi2 · ∆21 = HT ·M7 + HT · NT , if j = 1
Ωi,j−1 · ∆j−1,j + Ωij · ∆jj + Ωi,j+1 · ∆j+1,j = HT · N + HT ·M7 + HT · NT , if 2 ≤ j ≤ i− 2

= 0 ∈ M7 (Z2) .

(25)

(e) Finally consider the coefficients above the first upper diagonal, Φij with 1 ≤ i ≤ k− 2 and
i + 2 ≤ j ≤ k. A similar calculus shows that

Φij =
k
∑

l=1
Ωil · ∆l,j = Ωi,j−1 · ∆j−1,j + Ωij · ∆jj + Ωi,j+1 · ∆j+1,j

=

{
Ωi,j−1 · ∆j−1,j + Ωij · ∆jj + Ωi,j+1 · ∆j+1,j = H · N + H ·M7 + H · NT , if i + 2 ≤ j ≤ k− 1
Ωi,k−1 · ∆k−1,k + Ωik · ∆kk = H · N + H ·M7, if j = k

= 0 ∈ M7 (Z2) .

(26)

Consequently,

Φij =

{
Id, if i = j
0, if i 6= j

(27)

thus I7k ·M7k = Id ∈ M7k (Z2). In a similar way, one can check that M7k · I7k = Id ∈ M7k (Z2).



Mathematics 2019, 7, 816 10 of 15

(2) First of all, note that the local transition matrix of the inverse cellular automaton can be expressed
in terms of a block matrix, as follows.

I7k+1 =

 I7k [JT LT(k−1)
· · · LT ]T

[JT LT(k−1)
· · · LT ] K7

 (28)

where [JT LT(k−1)
· · · LT ] ∈ M7,7k (Z2). On the other hand, it is also easy to check that

M7k+1 =

 M7k [0
(k−1)
· · · 0 QT ]T

[0
(k−1)
· · · 0 QT ] M7

 (29)

where

Q =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0


∈ M8,7 (Z2) . (30)

To finish the proof, we have to prove that I7k+1 ·M7k+1 = M7k+1 · I7k+1 = 0. Note that

I7k+1 ·M7k+1 =

 I7k ·M7k + [J L
(k−2)
· · · L]T · [0

(k−2)
· · · 0 QT ] I7k · [0

(k−2)
· · · 0 Q]T + [J L

(k−2)
· · · L]T ·M7

[JT LT(k−2)
· · · LT ] ·M7k + K7 · [0

(k−2)
· · · 0 QT ] [JT LT(k−2)

· · · LT ] · [0
(k−2)
· · · 0 Q]T + K7 ·M7

 . (31)

Now, by recurrence over k it is easy to check that

Id = I7k ·M7k + [J L
(k−2)
· · · L]T · [0

(k−2)
· · · 0 QT ] ∈ M7k (Z2) , (32)

Id = [JT LT(k−2)
· · · LT ] · [0

(k−2)
· · · 0 Q]T + K7 ·M7 ∈ M7 (Z2) , (33)

0 = I7k · [0
(k−2)
· · · 0 Q]T + [J L

(k−2)
· · · L]T ·M7 ∈ M7k,7 (Z2) , (34)

0 = [JT LT(k−2)
· · · LT ] ·M7k + K7 · [0

(k−2)
· · · 0 QT ] ∈ M7,7k (Z2) , (35)

thus finishing. A similar argument shows that M7k+1 · I7k+1 = 0.

4. A Potential Application to Image Encryption

This section introduces a possible application for image encryption of the theoretical results shown
in Section 3. J. Fridrich proposed a methodology to design cryptographic protocols for digital images
consisting of the successive application of two phases: the confusion phase and the diffusion phase [29].
In the confusion phase, all pixels of the digital image are permuted without changing its numerical
color code (that is the histogram of the image remains constant), whereas, in the diffusion phase,
the color code of each pixel is modified according to different mathematical techniques. This paradigm
has been considered in the great majority of digital image encryption protocols proposed in the
scientific literature (see, for example, works by the authors of [30,31]).

A gray-scale digital image can be interpreted as an r× s matrix Y =
(
Yij
)

1≤i≤r,1≤j≤s, where the
coefficient Yij ∈ Z256 represents the numeric value of the gray level assigned to pixel (i, j). On the other
hand, an RGB color digital image is defined by means of an array X =

(
Xij
)

1≤i≤r,1≤j≤s of dimension
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r× s, such that Xij =
(

Rij, Gij, Bij
)
∈ Z256 ×Z256 ×Z256. In this case, the coordinates of Xij denote the

intensity of each color (red, green, and blue, respectively) as an integer between 0 and 255.
The reversibility of A8,3 (whose global transition function is denoted by F8) shown in the last

section allows defining a byte-level transformation T that could be used as a part of the diffusion phase
of an encryption algorithm for both gray-scale and RGB color digital images. It is defined as follows.

(a) If Y ∈ Mr,s (Z256) stands for the matrix associated to a gray-scale image, then the transformed
image is defined by the matrix T (Y) =

(
Ỹij
)

1≤i≤r,1≤j≤s ∈ Mr,s (Z256), Ỹij is the decimal

expression associated to Fk
8
(
Cij
)
, Cij is the binary expression (one byte) associated to Yij,

and k ∈ Z+.
(b) If X =

(
Xij
)

1≤i≤r,1≤j≤s is the array representing an RGB color digital image, then T (X) =(
X̃ij
)

1≤i≤r,1≤j≤s determines the transformed digital image, such that X̃ij =
(

R̃ij, G̃ij, B̃ij
)

with

R̃ij = decimal expression associated to Fk
8

(
CR

ij

)
, (36)

G̃ij = decimal expression associated to Fk
8

(
CG

ij

)
, (37)

B̃ij = decimal expression associated to Fk
8

(
CB

ij

)
, (38)

where CR
ij , CG

ij , and CB
ij are the binary expressions of Rij, Gij, and Bij, and k ∈ Z+, respectively.

In Figures 5 and 6, two illustrative examples of this technique are shown. As the global state
transition diagram ofA8,3 exhibits 16 cycles of length 14, four cycles of length 7, and four time-invariant
configurations (see Figure 3), T is a periodic transformation of period 14. As a consequence, the original
image is recovered after 14 iterations.

Figure 5. Cont.
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Figure 5. Gray-scale images obtained by applying A8,3.

Figure 6. Cont.
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Figure 6. Color images obtained by applying A8,3.

It is important to note that this transformation by itself is not secure against cryptanalysis (see,
for example, the homogeneous patterns exhibited by some transformed images in the examples).
In this sense, it is necessary to include it as a part of a more complex algorithm.

5. Conclusions

In this work, the reversibility problem for symmetric linear cellular automata with n cells, radius
r = 3, and state set F2 has been completely solved. Specifically, it is shown that these 1D boolean
cellular automata are reversible when n = 7k or n = 7k+ 1 with k ∈ Z+, and, in these cases, the explicit
expressions of the inverse cellular automata are derived in terms of the local transition matrices.

Furthermore, a potential application to Cryptography has been presented. Specifically, these
reversible cellular automata can be used as additional transformations to be applied in the diffusion
phase of a digital image encryption algorithm.

Future work aims at exploring other applications of reversible cellular automata, such as voting
systems, data compression, etc.
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