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Ozone is one of the pollutants with most negative effects on human health and in general on the biosphere. Many data-acquisition
networks collect data about ozone values in both urban and background areas. Usually, these data are incomplete or corrupt and the
imputation of the missing values is a priority in order to obtain complete datasets, solving the uncertainty and vagueness of existing
problems to manage complexity. In the present paper, multiple-regression techniques and Artificial Neural Network models are
applied to approximate the absent ozone values from five explanatory variables containing air-quality information. To compare the
different imputationmethods, real-life data from six data-acquisition stations from the region of Castilla y León (Spain) are gathered
in different ways and then analyzed. The results obtained in the estimation of the missing values by applying these techniques and
models are compared, analyzing the possible causes of the given response.

1. Introduction and Related Work

The ozone (O3) is an odorless, colorless, and highly reactive
gas composed of three oxygen atoms. It is formed both
in the Earth’s upper atmosphere (stratospheric ozone) and
at ground level (tropospheric ozone). It can be “good” or
“bad” for people’s health and for the environment, depending
on its concentration levels and location in the atmosphere
[1].

Stratospheric O3 is formed naturally through the inter-
action of solar UltraViolet (UV) radiation with molecular
oxygen (O2). Ground-level or “bad” ozone is not emitted
directly into the air. In the 1950s, hydrocarbons and nitro-
gen oxides (NO𝑥) were identified as the two key chemi-
cal precursors of photochemical smog and its concomitant
high concentrations of O3 and other photochemical oxidant
[2]. The majority of ground-level O3 is formed from the
photochemical oxidation of Volatile Organic Compounds

(VOCs) in the presence of NO and other NO𝑥. Significant
sources of VOCs are chemical plants, gasoline pumps, oil-
based paints, autobody shops, and print shops. NO𝑥 result
primarily from high temperature combustion, and its most
significant sources are power plants, industrial furnaces and
boilers, and motor vehicles [3].

1.1. Importance of Ozone. The O3 exposition can cause dam-
age in different ways. In the stratosphere, reduced O3 levels
as a result of O3 layer depletion mean less protection from
the sun’s rays andmore exposure toUltraViolet B (shortwave)
rays (UVB) radiation at the Earth’s surface [4]. The effects
on human health of the O3 layer depletion have been much
analyzed, increasing the amount of UVB that reaches the
Earth’s surface. UVB causes nonmelanoma skin cancer and
plays a major role in malignant melanoma development.
In addition, UVB has been linked to the development of
certain cataracts, negative effects in patients with asthma, and
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other chronic respiratory disease. With respect to ground-
level O3, and its effects on human health, breathing O3 can
trigger a variety of health problems. People with asthma and
other chronic respiratory disease are a large and growing
segment of the population and are also known to be especially
susceptible to the effects of O3 exposure. On days with high
levels of O3, people with asthma tend to experience increased
respiratory symptoms [3]. The layer O3 depletion has also
negative effects on the process of the development of plants,
effects on the marine ecosystems like a direct reduction in
phytoplankton production, negative effects on materials like
biopolymers, and so forth. Tropospheric O3 does not provide
the protective function that it fulfills in the stratosphere, being
high reactivity. Its strong oxidizing capacity, when its levels
rise above the natural background, can cause adverse effects
inmaterials (derived from its corrosive effects), on vegetation
and ecosystems.

The present work focuses on tropospheric O3, which is
a risk for the air quality [3]. Given the increase in O3 levels
in the troposphere, it is currently considered one of the most
important atmospheric pollutants.

1.2. Ozone Level Monitoring. Around the world there are nu-
merous data-acquisition networks for themeasurement ofO3
levels and other pollutants, which consist of many stations
in different locations where different sensors measure corre-
sponding magnitudes.These network stations acquire data at
periodic intervals of time (periods between ten and fifteen
minutes are the most frequent ones) but frequently appear
missing or corrupted data. In Europe, data are considered as
corrupted when not meeting the Council Decision 97/101/EC
of January 27, 1997 [5], which establish a reciprocal exchange
of information and data from networks and individual
stations measuring ambient air pollution within the Member
States. Some of these networks provide information about the
validity of the data, indicating through codes if the data is
correct, it has not been possible to acquire, or it is corrupt,
but in other occasions this type of information is not provided
while the data are still missing. Some reasons for such failures
have been pinpointed [6], namely, a damaged cable, the loss of
proper electrical grounding, half-melted frost or snow on the
dome, communications failure, and so forth. Some of these
causes are temporary and may disappear spontaneously, but
other ones require the intervention of a maintenance task
force, and therefore errors persist for different periods of
time. The absence of valid data may also be due to reasons
such as the following: mishandling of samples, low signal-
to-noise ratio, measurement error, nonresponse, or deleted
aberrant value [7]. This is a problem for the analysis of the
information coming from the measurement networks, and
the imputation of these missing data [8] is necessary. Any of
the variables acquired in network stations may suffer from
the problem of the absence of data. If many data variables are
omitted or corrupted in the same record, the whole sample
must be withdrawn, when some models are applied [9],
for subsequent tasks such as control, classification, forecast.
Alternatively, if data for the same pollutant are missing in
several adjacent rows, removing that variable may also be an
alternative solution. In conclusion, having a complete set of

data is necessary to performa reliable study and to apply some
models that cannot deal with missing data.

1.3. Missing Values and Related Work. The standard classifi-
cation of missing data phenomenon [10] includes different
situations:

(i) Missing Completely At Random (MCAR), when the
probability of an instance (case) having a missing
value for a variable does not depend on either the
known values or the missing data.

(ii) Missing At Random (MAR), when the probability of
an instance having a missing value for a variable may
depend on the known values but not on the value of
the missing data itself.

(iii) Not Missing At Random (NMAR), when the prob-
ability of an instance having a missing value for a
variable could depend on the value of that variable.

As previous authors have pointed out, the complexity
varies between these patterns of missing data [11]. Usually, in
the case of air-quality data, missing values are associated with
MAR or MCAR. The circumstances that may interfere with
the acquisition of the data aremany and not easily predictable
[12].

To solve the missing data problem, a wide variety of
different methods have been applied up to now [8, 10, 13].
These imputation methods (IMs) are usually classified as
follows:

(i) Single imputation (SI): the method fills in one value
for each missing one [12].

(ii) Multiple imputation (MI): multiple simulated values
are generated at the same time [14].

The univariate and multivariate imputation methods
differ in which the approximation of themissing values of the
variable under study are calculated from the rest of the values
of the very same variable (univariate) or using values of the
rest of the variables (multivariate) [12].

With the aim of reducing the complexity of other MI
applied methods [11], the present paper focuses on single and
multivariate imputation for theO3magnitude in air pollution
datasets. To do so, multiple-regression (linear and nonlinear)
techniques together with Artificial Neural Networks (ANN)
are applied to real-life datasets obtained from public air-
quality networks.

Up to now, different Artificial-Intelligence (AI) tech-
niques have been applied for imputation of missing data. In
[7] imputation methods based on six different techniques
are compared: K-Nearest Neighbors (KNN), Fuzzy K-Means
(FKM), Singular Value Decomposition, Bayesian Principal
Component Analysis (bPCA) and Multiple Imputations by
Chained Equations. These methods are applied to four
datasets split into two groups of various sizes: small datasets
(Iris and E. coli) and large datasets (breast cancers 1 and 2).
bPCA and FKM appeared to be the most robust imputation
methods in the tested conditions.

In [15] the accuracy of different imputation methods is
evaluated: MissForest (MF) and Multiple Imputation based
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on Expectation-Maximization (MIEM), along with two other
imputation methods: Sequential Hot-Deck and Multiple
Imputation based on Logistic Regression (MILR). The mod-
els are applied over fourteen binary datasets, with a range of
missing data rates between 5% and 50%.The results from 10-
fold Cross-Validation (CV) show that the performance of the
imputation methods varies substantially between different
classifiers and at different rates of missing values.

Althoughmany imputationmethods have been proposed
up to now, scant attention has been paid to validate ANN for
such a task, taking advantage of their regression capability
[16]. Among these previous studies, ANN have been applied
for the estimation of lost values in [17], where the main goal
is identifying Learning Disabilities (LD) in children at early
stages. In [18], authors proposed a SI approach relying on a
Multilayer Perceptron (MLP) whose training is conducted
with different learning rules, and a MI approach based on
the combination of MLP and KNN. 24 real and simulated
datasets from theUCI repository, the Promise repository, and
mldata.org were exposed to a perturbation experiment with
random generation of monotone missing data pattern.

In [19] six different types of ANN are proposed as
IM: MLP and its variations (the Time-Lagged Feedforward
Network (TLFN)), the Generalized Radial-Basis-Function
(GRBF) network, the Recurrent Neural Network (RNN), and
its variations (the Time Delay Recurrent Neural Network
(TDRNN)). Additionally, the Counterpropagation Fuzzy-
Neural Network (CFNN) along with different optimization
methods is applied for infilling missing daily total precipita-
tion and extreme temperature series from 15weather stations.
The standard MLP and TLFN appear to provide the most
accurate reconstruction of missing precipitation and daily
extreme temperatures records with results for the R correla-
tion coefficient between the observed and the reconstructed
daily series close to 1.

In [20] a novel nonparametric algorithm named Gen-
eralized regression neural network Ensemble for Multiple
Imputation (GEMI) is proposed. Additionally, a SI version of
this approach (GESI) is proposed.The algorithms were tested
on 98 synthetic and real-world datasets. All simulation results
show the advantages of GEMI as comparedwith conventional
algorithms. GEMI has heavy memory storage requirements
but outperformed other SI algorithms.

In [21] fifteen real and simulated datasets are exposed to a
perturbation experiment, based on the random generation of
missing values. Several architectures and learning algorithms
for the MLP are tested and compared with three classic
imputation procedures: mean/mode imputation, regression,
and hot-deck [22].

In [23] a methodology based on GaussianMixtureModel
(GMM) and Extreme Learning Machine (ELM) is developed
and tested on some datasets from the UCIMachine Learning
Repository and the LIACC regression repository. GMM is
used to model the data distribution which is adapted to
handlemissing values, while ELMenables devising aMultiple
Imputation strategy for final estimation. The combination
of GMM and ELM is shown to be superior in almost all
tested cases over the method based on conditional mean
imputation.

In [24] a SI approach relying on aMLP and aMI approach
based on the combination of MLP and K-NN is proposed.
The models are applied to 18 real and simulated datasets
like domains such as biology, medicine, chemistry, electron-
ics, social surveys, census, and business. For datasets with
only quantitative variables MIMLP model provided the best
results, with IMLP being the best method for datasets with
categorical variables.

In [25] a two-stage hybrid model for filling the missing
values using fuzzy c-means clustering and MLP is proposed.
It is applied to a Wine dataset with a 1% to 5% of generated
missing values and the accuracy of themodel is checked using
the Mean Absolute Percentage Error (MAPE). The MAPE
obtained for stage 2 (MLP regression to the obtained dataset
as a result of applying fuzzy c-means in stage 1) is 4.95% for
1% missing-value records and 8.36% for 5% missing-value
records.

In the case of air-quality data, few imputation methods
have been proposed up to now. In [13], an important set of
SI: Listwise, Unconditional mean, Modified Median, Prin-
cipal Component-based, Expectation-Maximization (EM)
(Regularized-EM), and MI methods are applied to three
datasets with the most important pollutant variables (NO,
NO2, NO𝑥, CO, O3, PM10, and PM2.5) and a percentage of
missing data among the 3.85% and the 23.52% depending
on the year. Missing data of the eight variables are imputed
in order to assess the effectiveness of the methods applied.
In general, MI tends to yield more scattered values than its
counterparts, mainly when the variables havemany voids and
they correlate poorly to the other variables likeCOwith 43.5%
of missing data in 2006 and they correlate poorly to the other
variables.

In [11] some methods for the imputation of missing air-
quality data are compared: in the context of SI (linear, spline,
and nearest neighbor interpolations), MI (regression-based
imputation, multivariate nearest neighbor, Self-Organizing
Maps (SOM), andMultilayer Backpropagation (MLBP) nets)
and hybrid methods of the aforementioned. The dataset uses
the most common pollutants: NO𝑥, NO2, O3, PM10, SO2,
and CO concentrations, all on a time-scale of one per hour
(hourly averaged), together with four meteorological param-
eters. The performance of the proposed univariate missing
data interpolation was limited, and in general they were able
to fill only very short gaps of contiguous missing data. The
general performance of the applied imputation methods was
fair good when considering the pollutants (NO𝑥, NO2, O3,
PM10, SO2, and CO) which are the most important ones in
terms of air-quality modelling, but not so good regarding
meteorological variables. The results suggested that SOM
and MLBP are the methods of choice for air-quality data
imputation and even better results can be achieved by using
the MI.

1.4. Main Contributions. Themain contributions of this work
are as follows:

(i) Deep study of the real-life human health protection
task in Spanish region of Castilla y León.

(ii) Multisensor of O3 data analysis.
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(iii) Experimental evaluation of the proposed approach
based on multiple-regression techniques together
with ANNmodels.

To the best of authors knowledge, this is the first approach
of imputationmethods of O3 based on bothMLP and Radial-
Basis-Function Networks.

The rest of this paper is organized as follows. Section 2
presents the techniques and models applied. Section 3 details
the real-life case study that is addressed in present work,
while Section 4 describes the experiments and results. Finally,
Section 5 sets out the main conclusions and future work.

2. Regression Techniques and ANN Models

In order to fill missing or corrupted values of O3 in high
dimensional datasets with air-quality information, two re-
gression techniques and two ANNmodels have been applied
in present study. This set of techniques applied as imputation
methods is described in this section.

2.1. Regression Techniques. Linear regression attempts to
model the relationship between two variables by fitting a
linear equation to observed data. One variable is considered
to be an explanatory variable, and the other is considered to
be a dependent variable [26].

The general purpose of multiple regressions [27] is to
learn more about the relationship between several indepen-
dent or predictor variables and a dependent or criterion
variable.

2.1.1. Multiple Linear Regression. Multiple linear regression
(MLR) attempts to model the relationship between two or
more explanatory variables and a response variable by fitting
a linear equation to observed data [28]. Every value of the
independent variable (𝑥) is associated with a value of the
dependent variable (𝑦). The population regression line for 𝑝
explanatory variables

𝑥1, 𝑥2, . . . , 𝑥𝑝 (1)

is defined to be

𝑢𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑝. (2)

This line describes how the mean response 𝑢𝑦 changes
with the explanatory variables. The observed values for y
vary about their means 𝑢𝑦 and are assumed to have the same
standard deviation 𝜎. The fitted values 𝑏0, 𝑏1, . . . , 𝑏𝑝 estimate
the parameters 𝛽0, 𝛽1, . . . , 𝛽𝑝 of the population regression
line.

Since the observed values for y vary about their means
u𝑦, the multiple-regression models include a term for this
variation. The model is expressed as DATA = FIT + RESID-
UAL, where the “FIT” term represents the expression 𝛽0 +𝛽1𝑥1 + 𝛽2𝑥2 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑝. The “RESIDUAL” term represents
the deviations of the observed values 𝑦 from their means 𝑢𝑦,
which are normally distributed with mean 0 and variance 𝜎.
The notation for the model deviations is 𝜀.

Formally, the model for multiple linear regression, given
n observations, is [28]

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖
for 𝑖 = 1, 2, . . . , 𝑛. (3)

2.1.2. Multiple Nonlinear Regression. A Multiple Nonlinear
Regression (MN-LR) is a form of regression analysis in which
observational data are modelled by a function which is a
nonlinear combination of themodel parameters and depends
on one ormore independent variables [29].The data are fitted
by a method of successive approximations.

The parameters can take the form of an exponential,
trigonometric, power, or any other nonlinear function. To
determine the nonlinear parameter estimates, an iterative
algorithm is typically used.

𝑦 = 𝑓 (𝑋, 𝐵) + 𝜀, (4)

where 𝐵 represents nonlinear parameter estimates to be
computed, 𝑋 is the dependent or criterion variables, and𝜀represents the error terms.

2.2. Artificial Neural Networks. Artificial Neural Networks
(ANN), also known as Artificial Neural Systems (ANS),
connectionist systems, adaptive networks, and distributed
and parallel processing are simplified models of natural
neural systems. The following definition, given by Hecht-
Nielsen in 1989 [30], formalizes the concept of ANN:

An ANN is a parallel processing computer system
distributed, consisting of a set of elementary pro-
cessing units equipped with a small local memory
and interconnected in a network through connec-
tionswith associatedweights. Each processing unit
has one or more input connections and a single
output connection that links to many collateral
connections as desired. All processing associated
with an elementary unit is a local, i.e. depends
only on the values that take input signals from the
unit and the internal state of the same.

2.2.1. Multilayer Perceptron (MLP). The MLP consists of a
systemof simple interconnected neurons or nodes.Thenodes
are connected by weights and output signals which are a
function of the sum of the inputs to the node modified
by a simple nonlinear transfer, or activation, function. The
architecture consists of several layers of neurons; the input
layer serves to pass the input vector to the network.The terms
“input vectors” and “output vectors” refer to the inputs and
outputs of the MLP and can be represented as single vectors
[31]. A MLP may have one or more hidden layers and finally
an output layer. MLP are fully connected, with each node
connected to every node in the next and previous layer.

To perform a comprehensive comparison, the MLP is
trained with the following algorithms:

(1) Levenberg-Marquardt backpropagation (LM)
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(2) Gradient Descent with momentum and adaptive
learning rate backpropagation (GDX) [32]

(3) Batch Training with weight and bias learning rules
(TB)

(4) Scaled Conjugate Gradient backpropagation (SCG)
(5) Bayesian Regularization backpropagation (BR).

2.2.2. Radial-Basis-Function Networks (RBFN). In a RBFN
[33] each unit in the hidden layer of this network has its
own centroid, and, for each input vector 𝑥 = (𝑥𝑙, 𝑥2, . . . , 𝑥𝑛),
it computes the distance between 𝑥 and its centroid. Its
output of the unit is calculated as a nonlinear function of this
distance.

Assuming that there are r input nodes and m output
nodes, the overall response function without considering
nonlinearity in an output node has the following form [34]:

𝑀∑
𝑖=1

𝑊𝑖 ∗ 𝐾(𝑥 − 𝑧𝑖𝜎𝑖 ) = 𝑀∑
𝑖=1

𝑊𝑖 ∗ 𝑔(
𝑥 − 𝑧𝑖𝜎𝑖 ) , (5)

where 𝑀 ∈ N is the number of units in the hidden layer,𝑊𝑖 ∈ R𝑚 is the vector of weights linking the 𝑖th hidden-layer
unit to the output nodes, x is an input vector, K is a radially
symmetric kernel function of a unit in the hidden layer, z𝑖
and 𝜎𝑖 are the centroid and smoothing factor of the 𝑖th kernel
node, respectively, and 𝑔: [0,∞) → R is a function called the
activation function, which characterizes the kernel shape.

3. Case Study

In present study, data from air-quality stations in Castilla y
León (CyL) are analyzed. CyL is a Spanish region located at
the north-center of the Iberian Peninsula. It is composed of
nine provinces and it is the most extensive region of Spain
with a total surface of 94,226 square kilometers and the sixth
with more population: 2,435,797 habitants. Gross Domestic
Product (GDP) in CyL represents the 5.3% of country’s
GDP [35]. Climate in CyL approaches what is known as
the continental ocean, characterized by cold winters and hot
summers with short spring and autumn periods.

CyL region provides a wide network of stations [36]
for the acquisition of air-quality data. These data are public
available according to the Open Data Initiative from the
Spanish Government [37].

Stations from this network have some interesting charac-
teristics:

(1) Stations are classified in types: urban, background,
and oriented to the vegetation protection [36].

(2) These stations collect the fundamental air-quality
pollutants, and among them is the O3, which is the
objective pollutant of this study. Daily averages data
[38] of each pollutant are provided in each location.

(3) This data presents empty or corrupted data in all of its
variables in some rows and in a reasonable percentage
to be estimated.

Figure 1: Location of the six selected stations in CyL, by Google
Maps.

In the present study, pollutant data recorded in six
different stations from the CyL network are analyzed. Daily
data averages from years 2000 to 2008 have been selected.
For some periods of time within the selected time window,
data are not available for all the variables and, thus, the
whole example is rejected for the study. Three of the stations
are located in the center of the cities and labeled as urban
stations; these stations are oriented to the protection of
the human health. The other three stations are background
stations and are also oriented to the protection of the
human health. These stations measure a greater number
of pollutants than the other type of stations and are the
most important ones in terms of air quality, and many of
them are not collected at the stations for the vegetation
protection.This fact is important for the determination of the
O3missing values, as this gas is especially harmful for human
health.

The three urban stations considered in present study are
as follows:

(1) Ávila. “Bus Station” station. Geographical coordi-
nates: 40.65914, −4.68237; 1150 meters above sea level
(masl).

(2) Aranda de Duero. “Jardines de Don Diego” station.
Geographical coordinates: 41.67111, −3.68388; 801
masl.

(3) León. “Avda. San Ignacio de Loyola” station. Geo-
graphical coordinates: 42.60388, −5.58722; 838 masl.

The three background stations are as follows:

(1) Burgos. “Fuentes Blancas” station. Geographical co-
ordinates: 42.33611, −3.63611; 929 masl.

(2) Segovia. “Acueducto” station. Geographical coordi-
nates: 40.95555, −4.11055; 951 masl.

(3) Medina del Campo (Valladolid). “Bus Station” station.
Geographical coordinates: 41.31638, −4.90916; 721
masl.

Figure 1 shows the location of the six selected stations that
have been studied in the present paper.

The pollutants gathered in the above-mentioned stations
and analyzed in the present study are as follows:
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Table 1: Correlation matrix of the six variables in the dataset.

O3 CO NO NO2 PM10 SO2
O3 1.000 −0.123 −0.161 −0.202 0.072 −0.013
CO −0.123 1.000 0.360 0.412 0.358 0.299
NO −0.161 0.360 1.000 0.540 0.233 0.330
NO2 −0.202 0.412 0.540 1.000 0.330 0.257
PM10 0.072 0.358 0.233 0.330 1.000 0.251
SO2 −0.013 0.299 0.330 0.257 0.251 1.000

Table 2: Percentage of missing and corrupted data for each one of the analyzed variables.

O3 NO NO2 CO PM10 SO2
Missing 8.104% 8.020% 8.034% 8.554% 9.131% 8.196%
Corrupted 1.857% 2.047% 1.815% 2.926% 2.413% 1.801%
Total 9.961% 10.067% 9.849% 11.480% 11.544% 9.997%

(1) Ozone (O3), 𝜇g/m3, secondary pollutant. See Sec-
tion 1.

(2) Carbon monoxide (CO), mg/m3, primary pollutant.
It is an odorless, colorless gas formed by the incom-
plete combustion of fuels. When people are exposed
to CO gas, the COmolecules will displace the oxygen
in their bodies and lead to poisoning [39].

(3) Nitric oxide (NO), 𝜇g/m3, primary pollutant. NO is
a colorless gas which reacts with ozone undergoing
rapid oxidation to NO2, predominant in the atmo-
sphere [39].

(4) Nitrogen dioxide (NO2), 𝜇g/m3, primary pollutant.
From the standpoint of health protection, nitrogen
dioxide has set exposure limits for long and short
duration [39].

(5) Particulate matter (PM10), 𝜇g/m3, primary pollutant.
These particles remain stable in the air for long peri-
ods of time without falling to the ground and can be
moved significant distances by the wind. It is defined
by the ISO as follows: “particles which pass through
a size-selective inlet with a 50% efficiency cut-off at
10 𝜇m aerodynamic diameter. PM10 corresponds to
the ‘thoracic convention’ as defined in ISO 7708:1995,
Clause 6” [40].

(6) Sulphur dioxide (SO2), 𝜇g/m3, primary pollutant. It
is a gas. It smells like burnt matches. Its smell is
also suffocating. SO2 is produced by volcanoes and in
various industrial processes. In the food industry, it
is also used to protect wine from oxygen and bacteria
[39].

Primary pollutants are injected into the atmosphere di-
rectly. Secondary pollutants are formed in the atmosphere
through chemical and photochemical reactions from the
primary pollutants [36].

All data from these six variables were normalized for the
study. On the other hand, all of them are highly decorrelated.
Table 1 shows the correlation matrix of the six pollutants of
the case study.

It is worth mentioning that O3 is the most independent
pollutant, as its correlation coefficients with the rest of the
variables are close to zero.

There are a total of 13,526 samples, as one sample per
day (daily average) was collected for the twelve months of
every year, between years 2000 and 2008, in the six stations
analyzed in this study.Missing or corrupted data appear in all
the variables in some rows, which are omitted for the study.

Table 2 shows the percentage ofmissing or corrupted data
presented in each variable in the whole dataset.

All the samples with at least one missing or corrupted
value were removed from the dataset.

4. Experiments, Results, and Discussion

Themain target of this paper is to fill missing O3 values in air
pollution datasets. To do so, several imputation methods are
comprehensively compared as described below.

4.1. Experimental Settings. The imputation methods describ-
ed in Section 2 are applied to different datasets, all of them
with the six variables described in Section 3:

(1) TheWholeDataset (WD), comprising the 13,526 sam-
ples: results for this datasets are shown in Section 4.2.

(2) The Season Dataset (SD): samples in WD are split
in four subsets according to the four seasons of the
year: spring (3,453 samples), summer (3,349 samples),
autumn (3,295 samples), and winter (3,429 samples).
Results for this dataset are shown in Section 4.3.

(3) The Type station Dataset (TD): samples in WD are
split into two subsets according to the type of the
station where the data come from; “urban” (6,763
samples) or “background” (6,763 samples). Results for
this datasets are shown in Section 4.4.

For the three datasets, both statistical and neural imputa-
tion methods were applied and the performance is calculated
through n-fold Cross-Validation (CV).Themain idea behind
CV is to split data, normally many times, for estimating the



Complexity 7

Table 3: Linear regression and nonlinear regression results for the WD.

Method MSE Time (s)
Mean STD Mean STD

MLR 5.490𝐸 − 06 2.311𝐸 − 08 0.089 0.216
MN-LR 5.415E − 06 2.437𝐸 − 08 2.143 0.254

Table 4: Radial-basis function network results for the WD.

# of neurons MSE Time (s)
Mean STD Mean STD

10 5.104E − 06 2.723𝐸 − 08 0.050 1.091
30 5.108𝐸 − 06 1.273𝐸 − 08 0.050 1.091
50 5.105𝐸 − 06 2.513𝐸 − 08 0.047 0.098

risk, error, or performance of each algorithm. Part of data (the
training samples) is used for training each algorithm, and the
remaining part (the validation samples) is used for validating
the algorithm(s). Then, CV selects the algorithm with the
smallest estimated risk [41]. CV prevents from overfitting
because the training sample is independent of the validation
sample.The number of the 𝑘 parameters (data partitions) was
10 for all the experiments in the present study. It means that
90% of the data are used for training and 10% for validation.
In the case of neural models, the training process is repeated
ten times (one for each fold). In the case of MLP, training is
also repeated for each training algorithm (see Section 2.2).
For all the experiments theMean and the Standard Deviation
(STD) of the Mean Square Error (MSE) for the ten folds
are presented in Tables 3–11. The Mean and the STD of the
execution time (in seconds) are also presented in Tables 3–11
for the 10 folds.

For MLP and RBFN different network topologies have
been applied: combinations of 10, 20, and 30 neurons in the
hidden layer. Additionally, in the case of MLP, the model is
trained 10 times with the same combination of parameters
to reduce the effect of randomness and get more statistically
significant results.

4.2. Results from theWhole Dataset. In this section, results in
terms of MSE and execution time when applying MLR, MN-
LR, RBFN, and MLP to the WD are presented.

In Tables 3 and 4, it can be observed that the MSE Mean
values for the determination of the O3 are very similar for
the three appliedmethods (MLR,MN-LR, and RBFN). In the
case of RBFN, slightly lower values of MSE are obtained, with
the lowest one being obtained with 10 neurons in the hidden
layer. Regarding execution times, the MN-LR method turns
out to be the slowest and RBFN the quicker. The high values
of STD for the runtime in the case of RBFN are due to the fact
that it greatly varies from one fold to the others.

As it can be seen in Table 5, the LM, SCG, and BR training
algorithms present the lowest values ofMSEMean in all cases
(10, 30, and 50 neurons) and very close to those shown in
Tables 3 and 4. The lowest value of MSE was obtained with
the LM learning algorithm and 50 neurons. The learning
algorithm that attained the worst results (in terms of MSE)

is GDX. With respect to execution time, the SCG algorithm
attained the best results, while LM and BR are the second
best ones, while TB was the slowest of the five algorithms.
Obviously, the training algorithms take more time when 50
neurons are defined in the hidden layer, the TB algorithm
being the one with greatest effect.

4.3. Results from the Season Dataset. In Tables 6–8 results of
applyingMLR,MN-LR, RBFN, andMLP to subsets with data
from the four seasons of the year (spring, summer, autumn,
and winter) are presented.

In Tables 6 and 7 the 3 methods present similar values
in MSE Mean, and the lowest MSE Mean is achieved by the
RBFN with 50 neurons in the hidden layer for the summer
season. The MSE Mean values are higher than that observed
for the WD. The season of the year with the lowest values
of MSE Mean is the summer. One reason may be that there
are few variations in pollution conditions during summer
time. This is due to the small variation in weather conditions
during summer as well as low industrial activity and traffic in
urban areas due to vacation time. Furthermore, correlation
coefficients in more than 20 pollutants analyzed in [42] are
higher for measurements in the summer compared with
correlations for measurements over all days combined. The
season of the year with the worst results in the calculation
of the MSE has been the autumn in the case of the two
regression techniques and RBFN, although the differences
between the three seasons (spring, summer, and autumn)
is not significant. In terms of execution time, it is probed
once again that MN-LR is the slowest method, while RBFN
is the quickest one, returning very similar results for the four
seasons of the year.

In Table 8, similarly to Table 5, the training algorithms
that achieve the best results in terms of MSE Mean are LM,
SCG, and BR. LM achieved the best value of MSE Mean in
10 of the 12 cases shown in Table 8, being exceeded by BR
by a minimum value for the winter and spring seasons with
a configuration of 10 neurons. GDX records the worst MSE
values in the 12 cases shown in Table 8. Again, the best MSE
Mean is obtained for the summer season, reducing the MSE
Mean in comparison with those registered by RBFN. The
season of the year with the worst results in the calculation of
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Table 5: Multilayer perceptron results for the WD.

# of neurons Training algorithm MSE Time (s)
Mean STD Mean STD

10

LM 4.731𝐸 − 06 5.143𝐸 − 08 0.070 0.287
GDX 1.129𝐸 − 04 6.825𝐸 − 05 0.317 0.287
TB 5.889𝐸 − 05 4.973𝐸 − 05 0.642 0.022
SCG 5.216𝐸 − 06 1.514𝐸 − 07 0.060 0.001
BR 4.775𝐸 − 06 1.092𝐸 − 07 0.074 0.003

30

LM 4.599𝐸 − 06 1.015𝐸 − 07 0.102 0.442
GDX 4.045𝐸 − 04 3.523𝐸 − 04 0.481 0.442
TB 4.223𝐸 − 05 2.087𝐸 − 05 1.420 0.025
SCG 5.162𝐸 − 06 1.19𝐸 − 07 0.063 0.001
BR 4.727𝐸 − 06 5.667𝐸 − 08 0.102 0.005

50

LM 4.512E − 06 8.952𝐸 − 08 0.160 1.080
GDX 1.541𝐸 − 04 3.722𝐸 − 04 0.648 1.080
TB 4.812𝐸 − 05 3.032𝐸 − 05 2.156 0.051
SCG 5.014𝐸 − 06 8.322𝐸 − 08 0.068 0.001
BR 4.731𝐸 − 06 1.099𝐸 − 07 0.161 0.010

Table 6: Linear regression and nonlinear regression results for the Season Dataset.

Subset Method MSE Time (s)
Mean STD Mean STD

Spring MLR 1.895𝐸 − 05 1.406𝐸 − 07 0.085 0.208
MN-LR 1.895𝐸 − 05 1.242𝐸 − 07 0.169 0.298

Summer MLR 2.101𝐸 − 05 1.447𝐸 − 07 0.085 0.215
MN-LR 1.343E − 05 1.365𝐸 − 07 0.665 0.321

Autumn MLR 2.106𝐸 − 05 2.079𝐸 − 07 0.085 0.208
MN-LR 2.101𝐸 − 05 1.447𝐸 − 07 0.677 0.259

Winter MLR 1.895𝐸 − 05 1.406𝐸 − 07 0.088 0.214
MN-LR 1.895𝐸 − 05 1.242𝐸 − 07 0.168 0.274

Table 7: Radial-basis function network results for the Season Dataset.

Subset # of neurons MSE Time (s)
Mean STD Mean STD

Spring
10 1.845𝐸 − 05 1.687𝐸 − 07 0.046 0.096
30 1.847𝐸 − 05 1.06𝐸 − 07 0.050 0.098
50 1.846𝐸 − 05 1.297𝐸 − 07 0.047 0.096

Summer
10 1.308𝐸 − 05 1.549𝐸 − 07 0.045 0.098
30 1.310𝐸 − 05 1.389𝐸 − 07 0.045 0.096
50 1.306E − 05 1.344𝐸 − 07 0.047 0.096

Autumn
10 1.986𝐸 − 05 1.176𝐸 − 07 0.046 0.096
30 1.987𝐸 − 05 2.323𝐸 − 07 0.046 0.097
50 1.987𝐸 − 05 2.199𝐸 − 07 0.045 0.095

Winter
10 1.845𝐸 − 05 1.687𝐸 − 07 0.046 0.100
30 1.847𝐸 − 05 1.060𝐸 − 07 0.045 0.093
50 1.846𝐸 − 05 1.297𝐸 − 07 0.046 0.096
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Table 8: Multilayer perceptron results for the Season Dataset.

Subset # of neurons Training algorithm MSE Time (s)
Mean STD Mean STD

Spring

10

LM 1.696𝐸 − 05 2.550𝐸 − 07 0.063 0.086
GDX 3.298𝐸 − 04 8.39𝐸 − 04 0.183 0.086
TB 5.870𝐸 − 05 2.590𝐸 − 05 0.383 0.049
SCG 1.959𝐸 − 05 3.439𝐸 − 07 0.056 0.001
BR 1.695𝐸 − 05 1.988𝐸 − 07 0.076 0.015

30

LM 1.531𝐸 − 05 4.107𝐸 − 07 0.068 0.217
GDX 6.652𝐸 − 04 1.051𝐸 − 03 0.210 0.217
TB 1.069𝐸 − 04 3.909𝐸 − 05 0.473 0.019
SCG 1.870𝐸 − 05 2.857𝐸 − 07 0.055 0.005
BR 1.562𝐸 − 05 3.915𝐸 − 07 0.071 0.225

50

LM 1.473𝐸 − 05 4.138𝐸 − 07 0.080 0.181
GDX 6.286𝐸 − 04 1.200𝐸 − 03 0.253 0.181
TB 1.564𝐸 − 04 1.402𝐸 − 04 0.770 0.075
SCG 1.809𝐸 − 05 3.768𝐸 − 07 0.056 0.001
BR 1.580𝐸 − 05 3.697𝐸 − 07 0.089 0.490

Summer

10

LM 1.009𝐸 − 05 1.203𝐸 − 07 0.059 0.0663
GDX 4.718𝐸 − 04 4.791𝐸 − 04 0.166 0.0663
TB 7.65𝐸 − 05 6.231𝐸 − 05 0.355 0.0396
SCG 1.217𝐸 − 05 2.749𝐸 − 07 0.053 0.0007
BR 1.010𝐸 − 05 1.436𝐸 − 07 0.064 0.0059

30

LM 9.171𝐸 − 06 2.713𝐸 − 07 0.065 0.440
GDX 8.070𝐸 − 04 1.446𝐸 − 03 0.202 0.440
TB 9.117𝐸 − 05 5.051𝐸 − 05 0.500 0.047
SCG 1.118𝐸 − 05 4.118𝐸 − 07 0.056 0.001
BR 9.822𝐸 − 06 3.107𝐸 − 07 0.073 0.004

50

LM 8.673E − 06 3.284𝐸 − 07 0.083 0.225
GDX 4.572𝐸 − 04 9.864𝐸 − 04 0.253 0.225
TB 1.269𝐸 − 04 6.38𝐸 − 05 0.743 0.019
SCG 1.089𝐸 − 05 1.561𝐸 − 07 0.057 0.001
BR 9.851𝐸 − 06 2.165𝐸 − 07 0.085 0.003

Autumn

10

LM 1.622𝐸 − 05 2.146𝐸 − 07 0.061 0.101
GDX 1.598𝐸 − 04 3.096𝐸 − 04 0.168 0.101
TB 7.248𝐸 − 05 3.589𝐸 − 05 0.351 0.058
SCG 1.904𝐸 − 05 2.617𝐸 − 07 0.055 0.001
BR 1.628𝐸 − 05 7.680𝐸 − 07 0.071 0.009

30

LM 1.495𝐸 − 05 3.564𝐸 − 07 0.067 0.196
GDX 1.045𝐸 − 03 1.520𝐸 − 03 0.204 0.196
TB 1.09𝐸 − 04 6.737𝐸 − 05 0.506 0.048
SCG 1.808𝐸 − 05 2.756𝐸 − 07 0.054 0.001
BR 1.522𝐸 − 05 3.456𝐸 − 07 0.069 0.001

50

LM 1.401𝐸 − 05 1.926𝐸 − 06 0.079 0.307
GDX 5.676𝐸 − 04 1.700𝐸 − 03 0.240 0.307
TB 1.005𝐸 − 04 6.447𝐸 − 05 0.734 0.029
SCG 1.758𝐸 − 05 5.509𝐸 − 07 0.054 0.001
BR 1.559𝐸 − 05 6.591𝐸 − 07 0.083 0.103
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Table 8: Continued.

Subset # of neurons Training algorithm MSE Time (s)
Mean STD Mean STD

Winter

10

LM 1.573𝐸 − 05 2.204𝐸 − 07 0.060 0.105
GDX 3.380𝐸 − 04 8.630𝐸 − 04 0.170 0.105
TB 9.792𝐸 − 05 1.398𝐸 − 04 0.356 0.008
SCG 1.811𝐸 − 05 3.452𝐸 − 07 0.055 0.001
BR 1.558𝐸 − 05 1.229𝐸 − 06 0.065 0.016

30

LM 1.423𝐸 − 05 2.490𝐸 − 07 0.070 0.122
GDX 5.721𝐸 − 04 7.005𝐸 − 04 0.215 0.122
TB 1.253𝐸 − 04 4.611𝐸 − 05 0.490 0.035
SCG 1.710𝐸 − 05 3.509𝐸 − 07 0.056 0.001
BR 1.475𝐸 − 05 2.85𝐸 − 07 0.103 0.096

50

LM 1.355𝐸 − 05 6.746𝐸 − 07 0.080 0.155
GDX 6.788𝐸 − 04 5.702𝐸 − 04 0.247 0.155
TB 1.324𝐸 − 04 1.253𝐸 − 04 0.757 0.011
SCG 1.670𝐸 − 05 4.094𝐸 − 07 0.055 0.001
BR 1.478𝐸 − 05 2.93𝐸 − 07 0.080 0.115

Season dataset
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Figure 2: Boxplot for the MLP applied to the Season Dataset (SD).

the MSE has been the spring, although the difference in this
term between spring, autumn, and winter is minimal.

In terms of execution time, it can be said that the SCG
algorithm is the fastest one (in terms ofmean execution time),
with slight variations (low STD). LM and BR perform very
well according to runtime with very similar result. Finally,
the TB algorithm is the slowest one in the 12 cases shown in
Table 8. This algorithm is very sensitive in its execution time
to the increase in the number of neurons in the hidden layer. It
is worth mentioning that the best value in terms of execution
time has been obtained by SCG and for the summer season,
the same for which the best value of MSE is achieved.

Figure 2 shows the boxplot for the results shown in
Table 8. Each box represents the MSE Mean values for the
whole dataset (four seasons), for a certain number of neurons
and a training algorithm.

In Figure 2 it can be observed that the LM and SCG
training algorithms outperform the other algorithms and that
the TB algorithm achieved the worst results. It is also worth
mentioning that, in general terms, increasing the number of
neurons in the hidden layer causes an increase in the MSE
due to the loss of generalization capability of the models

(especially in the TB and GDX algorithms). The difference
between the 25th and 75th percentiles is also higher in
the case of algorithms achieving poor results in the Season
Dataset, especially for the TB training algorithm.

4.4. Results from the Station Type Dataset. Tables 9–11 show
the results of applying the four techniques to two different
subsets, according to the station type: urban or background
(see Section 4.1 for further details).

MLR, according to Sections 4.2 and 4.3, again MN-LR,
and RBF achieve similar results in estimating the MSE, but
in this occasion it is higher than in Sections 4.2 and 4.3. In
turn, the urban stations get a betterMSE than the background
stations; this indicates that the pollution levels are more
constant in the urban stations than in the ones furthest from
the center. In terms of the execution time, the MN-LR is
again the slowest method. The RBFN shows a more efficient
response than the regression methods.

For MLP, and in similar way compared to the other
datasets (Sections 4.2 and 4.3), the training algorithms which
achieved the lowest MSE Mean values are LM, SCG, and
BR. These values are similar to those obtained by RBFN
(Table 10) and lower than the values associated with the
regression techniques in Table 9. According to the station
type, generally speaking, lower MSE values were obtained
for the “urban” stations, in comparison with “background”
stations. The lowest MSE value was obtained for “urban”
stationswith 50 neurons and LMalgorithm.Theonly training
algorithm which returns higher values of MSE Mean for the
“urban” stations than for the “background” stations is GDX.
This happened for the three different numbers of neurons,
while the other four algorithms get lower values of MSE for
the “urban” stations for the different numbers of neurons
in the hidden layer. The lower value in the MSE makes the
“urban” stations easier to estimate the missing O3 values;
this is due to fewer variations in the pollution values in
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Table 9: Linear regression and nonlinear regression results for the Station Type Dataset.

Subset Method MSE Time (s)
Mean STD Mean STD

Urban MLR 9.922𝐸 − 06 3.297𝐸 − 08 0.053 0.190
MN-LR 9.352E − 06 3.840𝐸 − 08 1.172 0.249

Background MLR 1.148𝐸 − 05 2.495𝐸 − 08 0.092 0.214
MN-LR 1.141𝐸 − 05 6.084𝐸 − 08 0.204 0.297

Table 10: Radial-basis function network results for the Station Type Dataset.

Subset # Neurons MSE Time (s)
Mean STD Mean STD

Urban
10 8.480𝐸 − 06 4.001𝐸 − 08 0.047 0.086
30 8.486𝐸 − 06 3.531𝐸 − 08 0.047 0.094
50 8.477E − 06 5.212𝐸 − 08 0.047 0.083

Background
10 8.559𝐸 − 06 4.078𝐸 − 08 0.047 0.095
30 9.654𝐸 − 06 3.401𝐸 − 08 0.047 0.096
50 1.141𝐸 − 05 6.084𝐸 − 08 0.045 0.093

the predictive variables throughout the year in this type of
stations.

In terms of execution time, the SCG algorithm is the
quickest one in the six cases shown inTable 11 followed byLM,
with no big difference depending on the number of neurons
in the hidden layer, only a little faster with 10 neurons. The
slowest train algorithm is again TB in the six cases, as it was
identified from these results with the exposed results inTables
5 and 8.

4.5. Discussion. The two applied regression techniques (MLR
and MN-LR) obtained similar values of MSE in most cases,
in terms of both Mean and STD. However, MN-LR obtained
poor results according to execution time (Tables 3, 6, and
9), even worse than the slowest training algorithm for MLP
(GDX and TB in Tables 5, 8, and 11).

For the ANN models (RBFN and MLP), different com-
binations of neurons in the hidden layer were compared.
For the sake of brevity, only the results for 10, 30, and 50
neurons (Tables 4, 5, 7, 8, 10, and 11) have been included in
the present paper. In the case of RBFN, the best execution
times are achieved, outperforming the fastest algorithm for
MLP (SCG in Tables 5, 8, and 11). In the case of MLP,
varying results have been obtained, depending on the training
algorithm applied, obtaining the best results (in terms of
MSE) when learning through the LM and SCG algorithms.
SCG algorithm additionally is the fastest one. GDX has
been identified as the algorithm with worst error, as can be
seen in Tables 5, 8, and 11. No significant improvement is
observed in the estimation of missing values according to
MSE when increasing the number of neurons of the hidden
layer. On the contrary, the selection of the training algorithm
has been identified as a key factor when applying MLP. An
increase in the number of neurons in RBFN does not affect
considerably the accuracy of the results in terms of MSE
and execution time (see Tables 4, 7, and 10). MLP achieved

a better value of MSE if the training algorithm is properly
selected.

Taking into account the different datasets, the lowestMSE
for the Season Dataset is obtained for the summer season
when applying the LM training algorithm with 50 neurons,
without big differences between the other three seasons of the
year. For the spring, autumn, andwinter seasons the bestMSE
corresponds to the LM algorithm combined with 50 neurons.
In terms of execution time, the fastest experiment was that
applying RBF with 10 and 30 neurons for the summer season,
SCG for 50 neurons in the case of spring season, RBF with
50 neurons for autumn season, and RBF with 30 neurons for
the winter season. In the case of the Station Type Dataset,
“urban” stations, the best results in terms of MSE for the
“urban” stations and for the summer season are accompanied
by the lowest execution times. Itmust bementioned that good
results have been obtained, in terms of MSE, when applying
the four imputation methods to the WD. This fact indicates
no great variations neither between theweather seasons of the
year nor between the analyzed types of station (“urban” and
“background”).

5. Conclusions

In the present work, several different imputation methods
are proposed for dealing with missing O3 values in multi-
dimensional real-life datasets with air-quality information.
To do this, two multiple-regression techniques (linear and
nonlinear) and two ANN models (RBFN and MLP) with
different training algorithms anddifferent number of neurons
in the hidden layer have been compared. As a validation
scheme, 10-fold cross-validation has been applied to the
different datasets. The imputation task has been carried out
firstly on the complete dataset, and on different datasets,
where the original data are split according to two criteria:
according to the season and according to the station type.
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Table 11: Multilayer perceptron results for the Station Type Dataset.

Subset # of neurons Training algorithm MSE Time (s)
Mean STD Mean STD

Urban

10

LM 6.785𝐸 − 06 2.563𝐸 − 07 0.062 0.092
GDX 8.761𝐸 − 05 1.457𝐸 − 04 0.223 0.092
TB 5.551𝐸 − 05 2.967𝐸 − 05 0.411 0.029
SCG 8.305𝐸 − 06 3.095𝐸 − 07 0.058 0.001
BR 6.572𝐸 − 06 2.574𝐸 − 07 0.069 0.002

30

LM 6.237𝐸 − 06 1.037𝐸 − 07 0.081 0.176
GDX 2.256𝐸 − 04 4.360𝐸 − 04 0.292 0.176
TB 6.583𝐸 − 05 2.762𝐸 − 05 0.834 0.028
SCG 7.752𝐸 − 06 1.808𝐸 − 07 0.058 0.001
BR 6.527𝐸 − 06 4.274𝐸 − 07 0.086 0.004

50

LM 6.059E − 06 7.950𝐸 − 08 0.110 0.230
GDX 6.550𝐸 − 04 1.165𝐸 − 04 0.379 0.230
TB 6.975𝐸 − 05 2.578𝐸 − 05 1.168 0.026
SCG 7.527𝐸 − 06 1.559𝐸 − 07 0.062 0.002
BR 6.437𝐸 − 06 1.117𝐸 − 07 0.108 0.014

Background

10

LM 6.964𝐸 − 06 7.935𝐸 − 08 0.064 0.125
GDX 1.125𝐸 − 04 2.734𝐸 − 04 0.226 0.125
TB 1.109𝐸 − 04 7.399𝐸 − 05 0.444 0.069
SCG 8.106𝐸 − 06 2.258𝐸 − 07 0.056 0.002
BR 7.036𝐸 − 06 1.47𝐸 − 07 0.069 0.008

30

LM 6.469𝐸 − 06 6.612𝐸 − 08 0.077 0.204
GDX 1.9𝐸 − 04 2.6𝐸 − 04 0.294 0.204
TB 8.202𝐸 − 05 2.319𝐸 − 05 0.848 0.012
SCG 7.707𝐸 − 06 1.100𝐸 − 07 0.059 0.001
BR 6.813𝐸 − 06 3.061𝐸 − 07 0.079 0.010

50

LM 6.184𝐸 − 06 6.764𝐸 − 08 0.107 0.317
GDX 3.1𝐸 − 04 8.9𝐸 − 04 0.383 0.317
TB 7.926𝐸 − 05 5.183𝐸 − 05 1.205 0.070
SCG 7.625𝐸 − 06 9.986𝐸 − 08 0.062 0.001
BR 6.743𝐸 − 06 1.253𝐸 − 07 0.111 0.006

The following conclusions are worth mentioning:
(1) MLR and MN-LR attained very similar results in

terms of MSE and execution time. These results are
slightly worse than those obtained by the two ANN
models (RBFN and MLP). The lowest value of MSE
has been obtained for the WD (applying MN-LR
technique) and the highest one for the SD (also
applying MN-LR technique).

(2) In the case of RBFN, slight differences have been
obtained when varying the number of neurons in
the hidden layer, in terms of both the MSE and the
execution time. The best results have been obtained
for theWD (with 10 neurons in the hidden layer) and
the worst for the SD (with 50 neurons in the hidden
layer), as it happened for MLR and MN-LR.

(3) In the case of MLP, the best results are achieved when
using the LM training algorithm and a number of 50
neurons in the hidden layer. As in the previous case

(RBFN), the best results are obtained for theWD and
the worst results for the SD, with small differences
between the results in the three datasets. These are
the best result from the whole experimentation in the
present paper. The results obtained by MLP improve
those obtained by RBFN, only when applying the LM
training algorithm.

(4) The CV technique guarantees reliability of the results
when dealing with large datasets.

As future work, the application of additional artificial-
intelligence models for the imputation of O3 and other
pollutants is proposed, comparing the results with those
obtained in the present study.
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