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Abstract

Phytoliths can be an important source of information related to environmental and climatic change, as well as to ancient plant use by
humans, particularly within the disciplines of paleoecology and archaeology. Currently, phytolith identification and categorization is per-
formed manually by researchers, a time-consuming task liable to misclassifications. The automated classification of phytoliths would allow
the standardization of identification processes, avoiding possible biases related to the classification capability of researchers. This paper pre-
sents a comparative analysis of six classification methods, using digitized microscopic images to examine the efficacy of different quantitative
approaches for characterizing phytoliths. A comprehensive experiment performed on images of 429 phytoliths demonstrated that the auto-
matic phytolith classification is a promising area of research that will help researchers to invest time more efficiently and improve their
recognition accuracy rate.
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Introduction

Cell morphologies [with sizes mostly varying between 10 and 200
μm (Dunn, 1983)] vary according to the specific function of the
tissue in which they develop. Phytoliths are particles of silica
formed in cell walls, cell interiors, or intercellular spaces of living
plants that can serve as archives of past vegetation in soils, as a
record of human activities in archaeological contexts and materi-
als, and in dental calculus and fecal materials as a result of food
habits of past and present populations (Piperno, 2014; Shillito,
2018). Plant taxonomy is often related to specific cell morpholo-
gies which might produce diagnostic phytoliths. In many cases,
phytolith morphology can provide information about the plant
organ as well as the plant taxon in which it was formed.

Because phytoliths are composed largely of amorphous silica
(SiO2) and are more resistant to weathering than most other micro-
fossils, phytolith analysis has been a very active and growing area of
research during the last few decades (Hart, 2016; Zurro et al., 2016;
Shillito, 2018). Phytoliths can provide hints and useful information
about past vegetation and climate as well as past plant consump-
tion, especially in circumstances where other sources of informa-
tion are unclear or scarce (e.g., Lombardo et al., 2019).

Landscape anthropization and past and present modifications of
the biosphere are currently hot research topics (Piperno et al., 2015),
and methodologies combining different sources of information
(multiproxy approaches) are becoming fundamental tools for disen-
tangling the relationship between the social and the environmental
systems (Mayle & Iriarte, 2014; Miehe et al., 2014). Because studies
are commonly carried out either at regional or global scales, or with
a long historical perspective, larger datasets are usually needed.

The development of an automatic classification framework for
phytolith analysis would allow researchers to focus their investiga-
tion on other issues, such as improving the efficiency of recovery
and calibration techniques, data integration, and interpretation of
results. Automated classification would also foster standardized
raw data production since data production depends, in several
areas of knowledge, on the capability of the analyst to identify
structures or patterns (Leighton et al., 2013). The identification
of phytoliths and other microscopic and microfossil proxies
(such as pollen or diatoms, for instance) is still carried out by
researchers manually under the microscope, where observer bias
and the relative experience of the analyst can lead to substantial
identification errors and difficulty with replication of the results
between labs (Peperzak, 2010; Mihlbachler et al., 2012).

An automated classification system would also help determine
the minimum number of individuals required for significance for
different research questions and in different environmental or
archaeological contexts (e.g., pollen sum or phytolith sum), see
a review in Strömberg (2009); Pearsall (2015); Zurro (2018).

*Author for correspondence: Débora Zurro, Email: debora@imf.csic.es
Cite this article: Díez-Pastor J-F, Latorre-Carmona P, Arnaiz-González Á, Ruiz-

Pérez J, Zurro D (2020) “You Are Not My Type”: An Evaluation of Classification
Methods for Automatic Phytolith Identification. Microsc Microanal 26, 1158–1167.
doi:10.1017/S1431927620024629

© The Author(s), 2020. Published by Cambridge University Press on behalf of the Microscopy Society of America. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Microscopy and Microanalysis (2020), 26, 1158–1167

doi:10.1017/S1431927620024629

https://doi.org/10.1017/S1431927620024629 Published online by Cambridge University Press

https://orcid.org/0000-0003-2498-9338
mailto:debora@imf.csic.es
https://doi.org/10.1017/S1431927620024629
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1431927620024629


Automatic classification has become a common tool in many
scientific research areas, including remote sensing (Li et al., 2019),
autonomous driving (Chen et al., 2018), and medicine
(Selvikvåg-Lundervold & Lundervold, 2019). In addition, optical
character recognition (OCR) is now a standard tool within the
humanistic disciplines (Hockey, 1994; Crane et al., 2007; Traub
et al., 2015). These methodologies are being increasingly adopted
at the macro-scale level for archaeological research, including the
analysis of landscapes using satellite images (Davis, 2019), the
study of objects, such as ceramic typologies (Hein et al., 2018),
or petroglyphs (Seidl et al., 2015). Despite the increase in its
use in archaeology, automatic classification systems still remain
an under-utilized tool when considering the potential of these
methodologies within the discipline. In archaeobotanical studies,
where the standard count number under the microscope has been
fixed between 250 and 500 individuals per sample (depending on
the technique, the research question, etc; Wright, 2010; Pearsall,
2015; Zurro, 2018), several attempts have been made to make
this step of the research process much faster and more efficient,
especially for microremains such as starches (Wilson et al.,
2010; Arráiz et al., 2016) and pollen (France et al., 2000; Li
et al., 2004; Treloar et al., 2004; Ticay-Rivas et al., 2011; Boser
et al., 2020).

There have been several studies that used quantitative phyto-
lith morphometric size and shape parameters for the identifica-
tion of morphometric characteristics (Ball et al., 2016; Out &
Madella, 2016; Portillo et al., 2019). Recently, researchers have
started to design computing methods for the automatic identifica-
tion of phytoliths (Evett & Cuthrell, 2016; Cai & Ge, 2017;
Gallaher et al., 2020).

Evett & Cuthrell (2016) established the conceptual basis for the
application of semi-automated classification methods to morpho-
metric phytolith analysis, describing detailed procedures and
strategies to be tested while acknowledging current technical lim-
itations. The authors examined functional aspects regarding
image acquisition, morphometric parametrisation (e.g., geometric
parameters and elliptic Fourier analysis), classification techniques
(multivariate statistics versus supervised learning models), and the
development of a semi-automated phytolith analysis system.

Cai & Ge (2017) extracted grass short cell phytoliths from the
leaves of 23 taxa belonging to the subfamilies Ehrhartoideae,
Bambusoideae, and Pooideae. They used morphometric data
from scanning electron microscopy (SEM) images to train a clas-
sifier to successfully distinguish different genera within the
Oryzeae even though they all produce the same phytolith
morphotypes.

Gallaher et al. (2020) used three-dimensional (3D) geometric
morphometrics and supervised classification algorithms to: (1)
analyze the shape and size of modern grass phytoliths from 70
species of the subfamilies Anomochlooideae, Bambusoideae,
Oryzoideae, Pharoideae, and Puelioideae; (2) build a classification
model based on the short cells extracted from these modern sam-
ples; and (3) classify fossil grass phytoliths from Eocene sediments
through the application of the previous resulting model. The
results showed high classification scores among clades at different
taxonomic levels even when different clades shared the same
morphotypes.

This paper aims to analyze the applicability of machine learn-
ing algorithms for automatic phytolith classification, reducing
time spent on phytolith identification under the microscope
and human error. The scope of this paper can be summarized
as follows:

• The classification of eight different phytolith morphotypes, cor-
responding to morphotypes commonly found in archaeological
assemblages: spheroid, bilobate, cross, saddle, rondel-trapezoid,
acute bulbosus, elongate, and bulliform flabellate (as defined in
Neumann et al. (2019)). Although subtypes of some of these
morphotypes have been widely recognized, only broad catego-
ries were taken into account. These morphotypes include (1)
a wide variability in shapes and sizes, as well as (2) a degree
of overlap (occurring in some cases), so that efficiency of the
methods used can be tested accurately.

• Experimental comparison of six classification algorithms,
including lazy learning techniques [k-nearest neighbors
(k-NN)], to more advanced ones [support vector machines
(SVM)].

• Two different feature extraction techniques were used, including
geometric morphometric descriptors and elliptic Fourier
descriptors (EFDs).

This paper is organized as follows: Section “Materials and
Methods” presents the main steps of the computer-assisted
morphometric-based phytolith analysis proposed, including how
the images were collected and processed to obtain the features
(Subsection “Generation of the Samples”) and the different
types and characteristics of classifiers used in the comparative
analysis (Subsection “Computer-Assisted Morphometric-Based
Phytolith Analysis”). Section “Results and Discussion” presents
and discusses the classification results obtained using the different
algorithms. The main conclusions are drawn in Section
“Summary and Conclusions, and finally, future work is detailed
in Section “Future Research Lines”.

Materials and Methods

Phytolith classification was accomplished by applying the flow-
chart shown in Figure 1. A series of microscopic images was
acquired, and the contour for each individual phytolith was
drawn using an annotation tool. From the contours, a mask
was created by the system in order to separate the phytolith
from the background. By using these contours, a series of geomet-
ric and mathematical features (defining the shape of each phyto-
lith) was computed and used to train a group of six classifiers,
followed by a comparative performance analysis of these classifi-
ers. Each methodological stage will be explained in deeper detail
in the following subsections.

Generation of the Samples

Phytoliths were extracted from sediment samples collected in four
different locations: archaeological site Isla Manechi,
pre-Columbian raised fields and palaeosols from the Llanos de
Moxos (Bolivia), and archaeological site Caldeirão from the
state of Amazonas in Brazil.

We decided to work with material from soils as this material is
part of our daily routine. Paleoecological and archaeological
research, as well as studies related to agronomy or pedology
(among others), constitute a fundamental part of current phyto-
lith studies so that specialists working with phytoliths from soils
constitute the majority of the research that is currently being car-
ried out within this field of study.

Because substantial weathering of soil phytoliths can change
their morphological characteristics, when choosing samples for
this study, we discarded individuals showing any slight
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mechanical breakage or a high degree of chemical dissolution
(thus, altering their shape). Those phytoliths whose surface was
affected by partial dissolution but had their shape unaltered
were included in the study, without changing sample
characteristics.

The extraction followed standard procedures (Madella et al.,
1998; Lombardo et al., 2016). Phytoliths were mounted on micro-
scope slides using Entellan® New (Merck), and images were
obtained using an Olympus BX51 transmitted light microscope
with an Olympus SC50 camera and the Olympus Stream Basic
image processing software (version 1.9.4). Images were taken at
×500 on-scope magnification under automatic exposure and
exported as .jpeg files with a resolution of 2,560 × 1,920 px.

Photomicrographs were taken according to the most recogniz-
able view for each morphotype, that provided a clear morpholog-
ical outline, discarding any surficial feature such as surcate or
verrucate textures (see Madella et al., 2005; Neumann et al.,
2019). Most phytoliths were photographed from apex/planar
view (following a top-to-base perspective) except for rondel-
trapezoid, acute bulbosus and a few bulliform flabellate that
were captured from the side view.

The total number of photomicrographs obtained for each mor-
photype is shown in Table 1. Only nonarticulated (not attached to
any other phytoliths) were considered and just one photomicro-
graph per phytolith was recorded. The total number of samples
was 429. All the images are publicly available at https://reposi-
tori.upf.edu/handle/10230/44939, all the morphotypes have at
least 50 samples, and the dataset is fairly balanced (i.e., there is
a similar number of samples per class).

The image of each phytolith was digitized, using an open-
source web annotation tool called VGG Image Annotator.1 This
tool allows a researcher to create a control-points based contour
of each object of interest in an image and then obtain the coordi-
nates of each control point that defines the shape of the object.
These coordinates were used to create a mask,2 and these masks
were then processed to obtain a series of geometrical features
which define the feature vector for each sample object. The phy-
tolith contour selection is a non trivial task, due to the 3D nature
of phytoliths. For this reason, the contours are usually fuzzy and
can be different depending on the person who is drawing their
shape. With the aim of removing the bias associated with this
issue, the digitization was made by only one researcher (for
removing, at least, inter-person variation).

A mosaic composition of the images acquired of different phy-
toliths, and their corresponding masks obtained after processing

the .csv files from the annotator, are shown in Figure 2. The geo-
metric features used in the study are detailed in Table 2.

Computer-Assisted Morphometric-Based Phytolith Analysis

According to Evett & Cuthrell (2016), a computer-assisted phyto-
lith automatic classification system should be formed by three
blocks: data acquisition, classification, and database integration.
In this paper, we focus on the classification stage.

The task of predicting the class of an unknown sample is called
classification in the machine learning community. The classifica-
tion task presented here aims to predict the class of a phytolith
(i.e., its morphotype) from its photomicrograph, using algorithms
or classifiers.

The classification scheme includes cropping of the phytolith
image to isolate the phytolith; feature extraction—converting the
cropped image into an array of features; and using the extracted
features to train the classifier. Classifier training is the process
by which the patterns of the different classes (morphotypes) are
learnt by the algorithm. Once the classifier has been trained,
the model “has learnt” how to distinguish between phytoliths of
different classes, and this knowledge can be applied to classify
unknown phytoliths.

Feature Extraction
Feature extraction involves transforming the picture into a set/
array/vector of numeric features/attributes that summarizes the
image characteristics.3 The main problem with these techniques,
is that they commonly need thousands or millions of examples
to be trained.

Each phytolith image used for training or classification is con-
verted into a feature vector, which is the input data to the

Fig. 1. Visual representation of the computer-assisted morphometric-based phytolith classification system.

Table 1. Distribution of Phytolith Images Per Morphotype (Class).

Phytolith Class Number of Images

Bilobate 55

Bulliform flabellate 60

Cross 63

Elongate 50

Spheroid 51

Rondel-trapezoid 50

Saddle 50

Acute bulbosus 50

Total number of images 429

1VGG Image Annotator can be found at: http://www.robots.ox.ac.uk/~vgg/software/
via/.

2In image processing, an object mask is an image with pixels of only two values (also
called a binary image) where the pixels that belong to or define an object are assigned a
value (e.g., zero) and the rest of the image pixels have a different value (e.g., one). This
image representation is very useful in many image processing methodologies.

3Other techniques, such as deep neural networks, have been recently proposed for
avoiding feature extraction (Sun et al., 2013).
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classifier. The following three sets of attributes were considered in
this paper:

1. Geometric and morphological attributes. A great number of
geometrical descriptors have been proposed in the literature
to characterize the external shape of an object and are the
basis of phytolith nomenclature (Madella et al., 2005; Ball
et al., 2016; Neumann et al., 2019). These features are
explained in Table 2 and were obtained from the created

image masks. Since 16 geometric and morphological descrip-
tors were used, the length of the feature vector was also 16.

2. Elliptic Fourier descriptors (EFDs) These descriptors are very
commonly used when representing the shape of a contour in
a way that is invariant to rotation and size (Kuhl &
Giardina, 1982). The PyEFD programming library was used
to extract these descriptors.4 The parameters associated with
this extraction process were set as follows: the order of the

Fig. 2. Some examples of the images used in the study, and the corresponding created masks. Eight images of each of the eight phytolith classes, from top to
down: spheroid, rondel-trapezoid, cross, bulliform flabellate, bilobate, saddle, acute bulbosus, and elongate. Each case shows the original image, as well as the
binary mask used to obtain the set of features.

4https://pyefd.readthedocs.io/en/latest/.
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Fourier coefficients was fixed at 10, and normalization was set
equal to True (recommended settings for shape classification).
This method generates 4 coefficients for each order, which
therefore forms a feature vector of length 40 (= 4 × 10).
However, when normalized, the first three coefficients are
constant and can therefore be disregarded as valid descriptors.
Consequently, the final length of the feature vector was 37.

3. Both: the geometric and morphological features together with
the EFDs. The feature vector is created by joining (concatenat-
ing) the two previous feature vectors into a new one. Therefore,
the length of the feature vector was 53 (= 16 + 37).

Principal component analysis (PCA) reduces the dimensional-
ity of the datasets (i.e., the number of attributes/features) and has
demonstrated its effectiveness in some studies (Cai & Ge, 2017).
For this reason, we generated the PCA decomposition of the
EFDs and formed the feature vector retaining 99% of the
explained variance. Because the classification results obtained
using the reduced feature vector were systematically worse, we
did not report them in Section “Results and Discussion”.

Classification Methods
The number of classification methods in machine learning is very
large, mainly because there is no single classifier that outperforms
all others for all problems. This is called the no free lunch theorem
(Wolpert & Macready, 1997). For that reason, we tested several
classification algorithms using the features defined above:

• The k-nearest neighbors (k-NN) algorithm (Fix & Hodges,
1951; Cover & Hart, 1967). This method assumes the intuitive
reasoning that the nearest5 points (representing the samples to
be classified) in a dataset should be more similar than those that
are further away, often assessed using a distance measure. In
k-NN, an object is classified by assigning it to the class which
is most common among its nearest neighbors (where k is the
number of neighbors to account for, and is a positive integer,
typically odd and relatively small). If k = 1, then the object is
simply assigned to the class of its single nearest neighbor. A
value of k = 3 was used in this study.

• Support vector machines (SVM) (Boser et al., 1992), with a
Gaussian kernel (radial basis function—RBF). SVM is a classi-
fication method which has gained interest recently, due in
part to its capability to deal with problems with a small number
of samples in high-dimensional feature spaces. It was originally
developed for linearly separable problems, aimed at obtaining
the hyperplane whose distance to the two groups of data points
(called margin), representing the two classes, was maximal.
SVM was generalized later to deal with nonlinearly separable
problems using the so-called (transformational) Kernel trick
(Boser et al., 1992). A mathematical transformation function
is applied to map the nonlinear separable dataset into a higher
dimensional space where the samples can be linearly separated
using an hyperplane. Under this mathematical framework, two
parameters emerge (C, γ). Their value is usually obtained using
a nested cross-validation with k folds. In our case, a commonly
used value in the literature was selected, k = 5. The two-
dimensional (2D) (C, γ) parameter space was explored using
a grid search strategy, with C ranging from 1 × 10−2 to 1 ×
1010 and γ ranging from 1 × 10−9 to 1 × 103, in both cases
with 13 values equally spaced on a logarithmic scale.

• Multilayer perceptron (MLP) (Rosenblatt, 1958). A MLP is a
type of feedforward artificial neural network (ANN), formed
by at least three layers of nodes: (a) an input layer, (b) a hidden
layer, and (c) an output layer. All nodes (except for the input
ones) are neurons characterized by a nonlinear activation func-
tion. MLPs are trained using back-propagation of errors and are
nonlinear versions of the perceptron classifier.6 Several parame-
ters must be tuned in ANNs. In our experiments, the number of
iterations was fixed at 1,000. The regularization parameter, α
(used to avoid the so-called overfitting problem) as well as
the number of hidden neurons, were optimized using a nested
five-fold cross-validation strategy (in a similar way as it was
applied for SVM). The parameter space was explored using a
grid search. Range in α was [1 × 10−5, 1 × 10−1], and five values
equally spaced on a logarithmic scale were considered. The
number of hidden neurons were {50, 100, 200, 500, 1,000}.

• Decision trees (Tree) (Breiman, 2017). Decision trees are clas-
sification methods that use a tree-like model for making deci-
sions. In the root of the tree, all examples are used to find
which feature is the best to split the group of instances into
two subsets, which are then assigned to two new nodes (that
are called children nodes). This process is repeated in a recur-
sive way until a stopping criterion is reached. The nodes that

Table 2. Geometrical and Morphological Descriptors to Characterize the
External Shape of an Object (Ball et al., 2016).

Attribute Description

Perimeter Length of the boundary of an object

Convex
perimeter

Perimeter of the convex hull that encloses the
phytolith

Area Simple area enclosed by the phytolith boundary

Convex area Area of the convex hull that encloses the phytolith

Major axis length Length of the major axis for the ellipse the
phytolith is inscribed in

Minor axis
length

Length of the minor axis for the ellipse the
phytolith is inscribed in

Equivalent
diameter

Diameter of a circle with the same area as the
phytolith

Form factor = 4× Area× p
Perimeter2

. It is 1.0 for a perfect circle
and diminishes for irregular shapes

Length Longest cord within the phytolith

Width The minor dimension of the phytolith. It can be
obtained as the diameter of the smallest hole the
object can pass through

Convexity = convex−perimeter
perimeter ; It is 1.0 for a perfectly convex

shape, diminishes if there are irregularities in the
boundary

Solidity = Area
convex−area; It is 1.0 for a perfectly convex shape,

diminishes if there are surface indentations

Aspect ratio = Length
Width

Roundness = 4× Area
p × Length2. It is 1.0 for perfect circle and

diminishes with elongation of the phytolith

Compactness = Equivalent−diameter
length

5k-NN needs a distance function to perform classification, Euclidean distance (com-
puted using the hyperspace defined by the feature vector of the examples/points) is com-
monly used because it is easy to understand. Nevertheless, any other distance function
could be used.

6The first perceptron classifier initially proposed by Rosenblatt (1958) now includes
several improvements related to ANNs.

1162 José‐Francisco Díez‐Pastor et al.

https://doi.org/10.1017/S1431927620024629 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620024629


have not got any children are called leafs, and they make the
decision of the class that will be assigned to an example. The
decision tree can be seen as a sequence of if/else sentences
that determines the decision process of the classifier.

• Random forest (RF). Ensemble learning methods do not train
one single model (e.g., one tree), but several of them. The idea
behind ensemble learning is the way an expert committee works
in real-life, i.e., it is usually easier to properly predict something
when the prediction is made by more than one expert, and a
consensus is obtained from them. RF generates a group of deci-
sion trees (called base classifiers in ensemble learning) during
the training stage. In the prediction stage, each base classifier
predicts a class, and the class selected the most (the mode) is
the final prediction of the ensemble. RFs are used to correct
the tendency of the decision trees to overfit.7 The main param-
eter of a RF is its size (i.e., the number of trees that are generated
into the ensemble); in our study, 100 decision trees were used, a
common value for this ensemble method.

• Gradient boosting trees (GBT) (Friedman, 2001). GBT, as well
as RFs, is an ensemble technique. Nevertheless, GBT trains the
base classifiers in a different way than RF: whereas RF trains
each base classifier independently of each other, GBT trains
the base classifiers in a sequential order, one by one.
Specifically, GBT generates base classifiers iteratively: the first
classifier predicts the original class labels of the samples, the
second classifier predicts the error made by the first classifier,
the third classifier predicts the error made by the classifier
formed by the first two base classifiers, and so on. The idea
of GBT is to focus the learning process on those examples
that are more difficult to predict. Like RF, GBT has an essential
parameter: the number of base classifiers, which was set to 100.

Some of the main advantages and disadvantages of the classi-
fiers explained above are summarized in Table 3. The character-
istics that all the classifiers had in common were not included
in the table for readability purposes.

All the experiments were performed using the Scikit-learn
Python library (version 0.23.1) (Pedregosa et al., 2011); the source
code can be publicly accessed on Github.8 Unless stated otherwise,
the program’s default classifier parameters were used. For each
feature, data values were transformed and standardized to mean
0 and standard deviation 1. The classification accuracy was
assessed by applying a 10-fold cross-validation strategy, using
the three types of feature vectors mentioned above.

Results and Discussion

The accuracy for the six classification algorithms trained with the
three sets of features is shown in Table 4. The best result for each
column (i.e., for each set of features) is highlighted in bold. The
best result overall the table is highlighted in italics and bold.
The 95% confidence intervals were obtained using the 10-fold
cross-validation strategy.

Classifiers trained with EFDs alone performed worse than
those trained with geometric and morphological descriptors.
The combined EFDs together with geometric and morphological
descriptors outperformed the solo descriptors for all the classifiers
but the SVM classifier. The best result was achieved by SVM

(exclusively trained with the geometric and morphological attri-
butes) and by RF (trained with both: EFDs and geometric and
morphological). Although this may seem counterintuitive, basic
geometric attributes are in fact the basis for phytolith identifica-
tion, classification, and nomenclature (Madella et al., 2005;
Neumann et al., 2019).

The Kruskal–Wallis H test (Kruskal & Wallis, 1952) and the
Wilcoxon signed-rank test (Wilcoxon, 1945) were used in order
to assess whether the differences between the classifiers were sig-
nificant or not. This was done in two different ways: one versus
one (using Wilcoxon signed-rank test) and all versus all (using
Kruskal–Wallis H test).

First of all, Kruskal–Wallis was used to determine whether
there was significant differences across all methods overall (mul-
tiple comparison), showing that the differences between the meth-
ods were significant at a 95% confidence level. Then, Kruskal–
Wallis was performed by columns (for each one of the feature
sets) giving the same conclusion, i.e., the differences between
the accuracies on a column were significantly different at 95%
of confidence.

In the same way, the Wilcoxon signed-rank test was first used
to compare the best result overall against all the other classifiers.
Finally, the Wilcoxon signed-rank test was applied to compare the
best classifier of each column in Table 4 (i.e., each set of features),
against all the other classifiers in the same column.

For the first column (morphological and geometric features),
the best classifier was SVM and it was significantly better than
any other classifier trained with this set of features. For the second
column (EFDs), RF was the best classifier and it was statistically
indistinguishable at 95% of confidence from GBT (this was high-
lighted with a △ symbol close to these results). Finally, in the last
column (all features), RF was the best classifier and it was statisti-
cally indistinguishable from SVM (this was highlighted with a †
symbol close to these results). Moreover, the best overall result
(SVM trained with morphological and geometric features) was
compared against all the other results using Wilcoxon, showing
that it was statistically indistinguishable from SVM, GBT, and
RF trained with all the features (this was highlighted by enclosing
the results into a box).

The accuracy per morphotype/class for the six classifiers
trained with the geometric and morphological descriptors are
gathered in Table 5. Note that the Macro avg. value does not
match the accuracy of the classifier of Table 4 because the former
is the mean of accuracies per class, not the global accuracy.
Table 5 shows that certain phytolith morphotypes, including bul-
liform flabellate, elongate, and spheroid are more easily identified
than others for most of the classifiers, probably due to their dis-
tinctive shape. On the other hand, some morphotypes, such as
saddle, are more problematic to identify for all classifiers.

The confusion matrix, which presents the hits (images prop-
erly identified) and misses (images wrongly predicted), obtained
for SVM trained with the geometrical and morphological features,
is shown in Figure 3a. The classification rate is high for most of
the morphotypes, being the cross morphotype the most problem-
atic with 49 hits and 14 misses. Moreover, the same information
as that shown in the confusion matrix, is presented in percentage
terms in Figure 3b.

Images of four examples of incorrect classification results are
illustrated in Figure 4.

Cai & Ge (2017), instead of working with general types,
focused their research specifically on the classification of short
cell phytoliths, aiming at taxonomical identification and obtaining

7The overfit is the ability/pathology of some models to adapt too close to the original
data losing their ability to generalize or to predict future observations reliably.

8Repository at: https://github.com/alvarag/AutomaticPhytolithClassification.
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results comparable to ours, with SVM performing the best of the
models they tested.

In a similar way, Gallaher et al. (2020) carried out an auto-
matic classification process of grass short cells. However, they
considered a 3D morphometric approach, instead of a 2D strat-
egy. They showed that linear discriminant analysis (LDA) gave
the best classification results, while SVM and MLP algorithms
exhibited the worst.

Within scientific praxis, classification constitutes a problem
limitation per se and categories are established according to
research questions, meaning they can focus on specific aspects
of research material, thus obviating many others. Morphotypes
are somehow an idealized and simplified result (an abstract ver-
sion) of what constitutes reality on the basis of chosen criteria
that allow distinguishing a type from the rest of types under con-
sideration (Rovner & Russ, 1992). In addition, existing phytoliths
classifications have been developed in different areas of the globe,
so that classification systems are neither standardized, nor neces-
sarily compatible or covering completely the phytolith variability.

We have used general categories that all specialists recognize,
but that can be further subdivided. The case of grass short cells
is paradigmatic, and several researches carry out subclassification
processes when those morphotypes can provide further taxo-
nomic information (Barboni & Bremond, 2009; Gallaher et al.,
2020). The existing internal variability within our samples is
probably producing a loss of accuracy on the results. Incorrect

classifications may have occurred because of the similarity in
some of the morphologies. For example, some acute bulbosus
have a quadrangular form similar to elongates (see Fig. 2).
Another important reason for error might be that the classifiers
only consider phytoliths as 2D bodies and the identification of
phytoliths might depend on their spatial orientation when
mounted on the slides since even slight differences in the position
of a morphotype could affect how the descriptors describe its
shape up to a point that it might lead to a misclassification result.

Approaches to archaeobotanical remains, such as the one pre-
sented here, are still scarce. Regarding Evett & Cuthrell (2016),
Cai & Ge (2017), or Gallaher et al. (2020) although they all
develop similar methodologies to identify phytoliths, the objec-
tives, as well as the selected criteria, are not comparable to the pre-
sent study.

Summary and Conclusions

Phytolith identification and classification is a time-consuming
task subject to human errors. Automatic classification techniques
have been recently proposed to help solve these problems (Evett &
Cuthrell, 2016; Cai & Ge, 2017).

Our study presents a computer-assisted morphometric-based
model for automatic recognition of phytoliths using photomicro-
graphs of phytoliths preserved in archaeological samples. Only
non-weathered phytoliths were selected to carry out this pilot
study.

Morphological features were extracted from a dataset of 429
phytolith images composed of eight phytolith morphotypes.
Three feature extraction methods were applied, and six classifica-
tion techniques were tested.

The most accurate results were obtained with SVM and RFs.
This result was not unexpected because both SVM and RF have
shown high classification accuracy results in other applications.
Interestingly, SVM behaved quite differently compared with
most of the other classifiers. While SVM performed better
when trained with only morphological and geometric features,
the other classifiers performed better when using both character-
istics (EFDs combined with morphological and geometric fea-
tures), probably because irrelevant attributes can seriously affect
SVM performance (Weston et al., 2001). Some elliptical Fourier
descriptors can be substantially discriminatory, while others
might not, which could improve the performance of classifiers
such as RFs or GBTs (classifiers that deal better with irrelevant
attributes), while damaging the SVM classifier.

We found that the accuracy results obtained by SVM, RF, and
GBT, trained with all features (EFDs and morphological and geo-
metric features) were statistically indistinguishable at 95% of

Table 3. Main Properties of the Different Classifiers Used in the Study.

Characteristic k-NN SVM MLP Tree RF GBT

Training time Fast Slow Slow Fast Medium Medium

Testing time Slow Fast Fast Fast Fast Fast

Tendency to overfit Medium High High High Medium Medium

Number of parameters Low High High Low Low Low

Ease of interpretation Yes No No Yes No No

Deal with many features Bad Good Good Good Good Good

Table 4. Accuracy Scores and 95% Confidence Intervals for the Six Classifiers
Trained with the Three Different Sets of Features: Morphological and
Geometric, EFDs, and Both (All). The best classifier for each column is
highlighted in boldface, and the best classifier overall is highlighted in italics.
All the results that are statistically indistinguishable from the best overall are
shown in a box. By columns, the symbols (Δ and •) represent those classifiers
statistically indistinguishable from the best classifier of its column: using
EFDs (Δ) and using all features (•).

Classifier
Features Used for Training

Morph. and Geom. EFDs All

SVM 0.8741±0.032 0.7087±0.041 0.8460± 0.030 •

RF 0.7880±0.029 0.7760±0.050Δ 0.8741±0.034 •

GBT 0.7716±0.043 0.7621±0.055Δ 0.8344±0.046

k-NN 0.7064±0.029 0.6037±0.053 0.7460±0.040

Tree 0.6993±0.046 0.6060±0.018 0.7366±0.031

MLP 0.6994±0.049 0.6317±0.033 0.7552±0.056
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confidence (using Wilcoxon) from the SVM trained only with
morphological and geometric features.

While deep learning needs thousands of images per class,
machine learning methodologies basically require a balanced
dataset. Despite the fact that the sample size was relatively small
in this study, this was not an unachievable hindrance, in the
sense that machine learning methodologies are much more adapt-
able tools than nonspecialists could expect.

Studies such the one presented here are crucial to advance in
research using proxies like phytoliths or other botanical microfos-
sils. At the moment, we are experiencing a trial and error period
regarding morphometrics and automatic identification in phyto-
lith studies. We need to increase our common experience on

using such methods so that criteria can be hierarchized according
to their capability to train the algorithms and produce the best
results.

Automatization processes and image processing techniques
will substantially reduce time-consuming tasks such as standard
microscopy analysis. At the same time, they will limit the subjec-
tive bias stemming from different researchers due to differences in
background, training level, and regional experience (i.e., phytolith
assemblages in the American tropics differ from the Near Eastern
Neolithic). Standardization will produce data that is comparable
worldwide.

The study presented in this paper constitutes the first step
in developing a tool that will assist in the identification and

Table 5. Accuracy Per Morphotype for Each One of the Classifiers Used, Trained with the Geometric and Morphological Features.

Phytolith Class kNN SVM Tree RF GBT MLP

Bilobate 0.5091 0.8727 0.5818 0.7455 0.7636 0.5273

Bulliform flabellate 0.9333 0.9333 0.9333 0.9167 0.9000 0.9500

Cross 0.5873 0.7778 0.5714 0.6984 0.6984 0.7460

Elongate 0.7800 0.9200 0.6800 0.8400 0.8000 0.7800

Spheroid 0.7451 0.9020 0.7255 0.9020 0.8431 0.7255

Rondel-trapezoid 0.7200 0.8800 0.7200 0.7800 0.7400 0.6400

Saddle 0.6600 0.8400 0.6200 0.6000 0.6400 0.5400

Acute bulbosus 0.7200 0.8800 0.7600 0.8200 0.7800 0.6400

Macro avg. 0.7069 0.8757 0.6990 0.7878 0.7706 0.6936

Std. dev. 0.1276 0.0491 0.1173 0.1059 0.0812 0.1383

Fig. 3. (a) Confusion matrix of the SVM classifier trained with morphological and geometric features. (b) Matrix obtained by normalizing the results in the confusion
matrix, to present them on a success percentage basis. Darker colors represent higher values. The darker the diagonal, the better the classification result.

Fig. 4. Four examples of incorrect classifications results: (a,b) cross phytoliths, classified as saddle, and (c,d) elongate phytoliths, classified as acute bulbosus.
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classification process. Even though several researchers have
attempted to create automatic tools for the identification of
archaeobotanical remains, none of the attempts has produced a
tool that is accessible online or as a downloadable app. We are
sharing the code used in our research (which is accessible at
https://github.com/alvarag/AutomaticPhytolithClassification) to
stimulate other researchers to join in the effort to build a real
and functional tool that can be trained online, increasing its
accuracy.

Future Research Lines

The development of new features and the application of feature
selection techniques are some of the research avenues we are plan-
ning to explore. It would be important to determine which attri-
butes are the most representative ones. In particular, the use of
irrelevant or redundant attributes usually induces a lower classi-
fier performance and higher execution times. Therefore, the appli-
cation of different types of feature selection strategies to this
problem would probably result in the improvement of the general
performance of most of classifiers (Guyon & Elisseeff, 2003).

Other potentially beneficial research lines would include (a)
analysis of the impact of the sample size on the phytolith classi-
fication success rate, (b) application to new morphotypes and
descriptors and sub-classification of morphotypes according to
more detailed features, (c) isolation of taxonomically diagnostic
morphotypes, and (d) automatic isolation and digitization of
the outline of a phytolith from a photomicrograph in order to
achieve a completely automatic phytolith identification system.
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