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A B S T R A C T

The paper presents a new methodology within the framework of the so-called compliant class-models, PLS2-CM,
designed with the purpose of improving the performance of class-modelling in a setting with more than two
classes. The improvement in the class-models is achieved through the use of multi-response PLS models with the
classes encoded via Error-Correcting Output Codes (ECOC), instead of the traditional class indicator variables
used in chemometrics.

The proposed PLS2-CM entails a decomposition of a class-modelling problem into a series of binary learners,
based on a family of code matrices with different code length, which are evaluated to obtain simultaneous
compliant class-models with the best performance.

The methodology develops both a new encoding system, based on multi-criteria optimization to search for
optimal coding matrices, and a new decoding system, based on probability thresholds to assign objects to class-
models. The whole procedure implies that the characteristics of the dataset at hand affect the final selection of the
coding matrix and therefore of built class-models, thus giving rise to a data-driven strategy.

The application of PLS2-CM to a variety of cases (controlled data, experimental data and repository datasets)
results in an enhanced class-modelling performance by means of the suggested procedure, as measured by the
DMCEN (Diagonal Modified Confusion Entropy) index and by sensitivity-specificity matrices. The predictive
ability of the compliant class-models has been evaluated.
1. Introduction

Class prediction in a multiclass context is a recurrent topic in che-
mometrics and, even more, in machine learning. In the 2-class case, a
series of binary classification algorithms can be applied to this task, some
of which can be naturally extended for a multiclass setting, such as neural
networks, decision trees, K-Nearest Neighbor (KNN), Naive Bayes, or
Support Vector Machines (SVM). Nevertheless, when the number of
categories or classes, k, is greater than two, class prediction is a more
complex problem due to class overlapping or class imbalance, and the
performance of different competing classifiers is not easy to measure and
compare.

An alternative, broadly spread, approach to manage the problem is
based on decomposing the multiclass classification problem into multiple
binary classifiers. A wide range of procedures have been suggested for
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such a decomposition: in One- versus All (OVA), a binary classifier
compares each class to all others, so k binary learners are used [1],
whereas in All versus All (AVA) or pairwise coupling [2], a binary clas-
sifier discriminates between each pair of classes discarding the remaining
ones, so k(k – 1)/2 binary classifiers are required. Decomposing a k-class
problem into k class-models is the proposal in Ref. [3] with an ensemble
of One-Class Classifiers (OCC) building each learner with the objects of a
single class, setting aside the examples from the other class (or classes).
Moreover, there are procedures inspired in those of DOE (Design of Ex-
periments) such as Hadamardmatrices [4] or symmetric factorial designs
[5].

The design of these binary classifiers has been largely enhanced with
an improved encoding strategy known as the Error Correcting Output
Codes (ECOC) [6,7]. The ECOC framework has been useful in the engi-
neering field and applied to different research areas.
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According to the pioneer work by Dietterich in 1995 [6], a multiclass
learning problem, a class-modelling problem for k > 2 in the present
paper, can be regarded as a communication problem: the information
about the actual class for a new object is transmitted over a channel,
which is made up of some predictor variables (a training dataset) and a
prediction model. As there may be flaws along the channel, whether it is
an unrepresentative training set, insufficient predictors, or an inadequate
predictionmodel, errors may arise in the predicted class for some objects.

Using an error-correcting code, the information of the k classes is
encoded into a series of binary learners, which can allow the channel to
recover from errors. This kind of code is defined by a matrix M of binary
values (�1 and þ1), with k rows or classes, and c columns or binary
learners. The i-th class (row) is then represented by a codeword ri of
length c, whereas every binary learner (column), f1, f2,…, fc, corresponds
to a partition of the k classes into two subsets (‘minus ones’ versus ‘plus
ones’).

Considering that two columns that only differ in the sign (i.e., fi ¼ -fj)
result in the same binary learner and that constant vectors (all 1 or all
�1) are discarded, the ‘binary complete’ ECOC matrix is the one with k
rows and all the different 2k�1-1 binary learners as columns. Conse-
quently, the design of a proper code for a given problem consists of
selecting the length c of the codeword, that is, to choose among the
complete ECOC matrix a suitable subset of c columns to construct M.

The implicit idea in OVA, namely that each learner is binary, is
generalized in Ref. [7] by introducing a code with three labels {-1, 0,
þ1}, in such a way that the class labelled as 0 does not intervene in the
corresponding ternary learner. This provides a unifying framework
including different types of encoding: OVA, pairwise, complete ECOC,
dense random coding DRC (all binary codes), and sparse random coding
(ternary codes). However, the ternary codes introduce two different
biases, giving rise to variations in decoding [8] and the need of defining a
new ternary ECOC distance [9].

To overcome these types of predefined output codes, Crammer and
Singer [10] published a general discussion on the design of output codes
for a given multiclass problem, showing that looking for an optimal code
is a NP-complete problem. They also argue that continuous codes may be
better than traditional discrete ones and provide an algorithm that is two
orders of magnitude faster than standard quadratic programming.

Traditionally, ECOC encoding has been performed through data-
independent algorithms where the coding matrix M is predefined
regardless data characteristics. More recently, research on ECOC has
been focused on data-dependent algorithms, with M based on the
different data distributions among classes and intended to search for
optimal class reassignments schemes. Several algorithms for this task are
shown in Ref. [11], such as DECOC, Forest-ECOC, and ECOC-ONE.
Setting aside a part of the training set to be used as a pre-
diction/validation set to estimate the misclassification error, there are
algorithms that use evolutionary computation [12] or the Receiver
Operating Characteristic (ROC) curve [13].

Conventionally, the ECOC framework adopts a static ensemble
strategy, in which, once the coding matrix M is defined, the corre-
sponding ECOC ensemble is fixed for the predictions of all new objects.

Some research is focused on implementing a dynamic ensemble se-
lection strategy (DES) [14], where each binary learner (column of the
coding matrix M) is matched with a set of feature subsets obtained by
several feature selection methods. Therefore, more columns may be
involved in the classification of tough classes or minority classes or even
variable-length codewords (VL-ECOC) are used [15], longer for the
though classes and shorter for the easy ones, at the expense of higher
computational costs [16].

Krawczyk [3] suggests the use of dynamic ensemble selection to
discard non-competent binary learners. In a k-class problem, a KNN al-
gorithm is used to pre-select the classes in a large neighborhood: when a
new object must be modeled, the 3 nearest neighbors are considered and
just the classes presented in this neighborhood will determine the binary
learners selected. Moreover, if certain classes are sparsely represented in
2

the neighborhood, because of outliers or noisy data, they are also
removed, thus improving class boundaries, and reducing misallocations.

In [17] the performance of six differently based learners (neural
networks, decision trees, support vector machines with a linear and a
Gaussian kernel, logistic regression, and naive Bayes classifiers) is stud-
ied. However, as the influence of the kind of binary learners used has not
been studied in detail, the encoding process is usually learner
independent.

In any case, when a new object x should be assessed, the c binary
learners are evaluated at x, and a vector with the outputs y¼(y1, y2, …,
yc) or predicted codeword is obtained. The stage of decoding usually
consists of comparing that predicted codeword y to the codeword ri of
each of the k classes, thus assigning the object to the closest one in terms
of a given similarity measure, such as the Hamming distance in Ref. [6],
or to the class that minimizes some loss function, as in Ref. [7]. In fact,
there are several ECOC decoding strategies, which can be grouped into
three types: i) those based on a distance between the output code (pre-
dicted codeword y) and a class codeword, ii) those based on a probability
of belonging to a class, and iii) those that compute a pattern space
transformation via cluster analysis of the output of the learner. A detailed
revision can be found in Refs. [8,18]. Ref. [11] contains code for nine
decoding designs of type i) and ii). Research on the matter is still open,
some advances can be seen in Ref. [14] where the decoding process se-
lects an optimal feature subset from the candidate subsets based on the
data complexity theory. The study uses different binary learners and
various ECOC algorithms to check their proposal and find a better per-
formance particularly in the minority classes. Liu et al. [16] introduce the
concept of soft recoding strategies designed by replacing elements in
code matrices with the mean values or the intervals of learner outputs.

Whatever the decomposition of the multiclass classification problem
into several binary classifiers, two perspectives can be adopted:
discrimination or class-modelling.

Unlike discrimination, the class-modelling methods aim at capturing
the unique properties of the target class, so each class model relies on
training objects of the target or positive class (þ1), while (�1) stands for
an object which does not satisfy the description of the target class. This
implies modelling the categories independently to one another, reason
why in chemometrics they are called one-class classifiers [19].

However, whenmore than one class is being studied, a distinction can
be made [20] between ‘rigorous’ (equivalent to one-class classifiers) and
‘compliant’ class-modelling methods. The rigorous concept arises when
only objects of the modeled class are considered whereas the use of the
objects of the other classes for building the class-models make the tech-
nique a compliant class-modelling method. Alternative denominations
distinguish between soft or hard models [21,22] depending on whether
intersection between class models is allowed.

In the present work, a k-class problem is tackled using k class-models
that are built together in a compliant class-modelling situation.

Different proposals are found in literature for class-model building,
such as density-based methods, reconstruction-based methods,
boundary-based methods, and ensemble-based methods (see Ref. [23]
for further detail). Authors emphasize some advantages in the
class-modelling approach, provided a suitable algorithm is used, such as
avoiding overfitting, being more robust to class imbalance, or dealing
with noisy data in the target class that might cause a too large decision
boundary more likely to overlap others.

The class modelling approach is preferable in chemometrics, where
overlapping classes are likely to arise, due to the very nature of the
classes, or to their description by predictors without sufficient informa-
tion, and/or to an inadequate prediction procedure. So, instead of a
forced discrimination, a more realistic approach should include chances
of assigning an object to more than one class or even not assigning it at
all. A further discussion can be found in Refs. [24,25].

If an object (sample) is not identified as a member of any of the
modeled classes, it can be considered as a sample from an unknown class,
a counterfeit, or a sample of low quality, reason why class-modelling in
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chemometrics is widely applied in food authentication [26,27] or drug
authentication [28], for assessing PDO (Protected Designation of Origin)
[29], or for process control [25,30,31].

Examples of class-modelling techniques in chemometrics include
SIMCA (soft independent models of class analogy [32]), SVM (support
vector machine) [33] or UNEQ (unequal class models or unequal
dispersed classes [34]). Khan [35] proposes a taxonomy of
class-modelling techniques or one-class classifiers. A review of
class-modelling can be found in Refs. [20,21,36,37]. More recently,
Malyjurek [38] reviews the performance of SIMCA, One-Class Partial
Least Squares (OCPLS) [31,39], and other techniques such as kernel-PCA
[40], Support Vector Domain Description (SVDD) [41] and Potential
Functions Method (PFM) [42].

Some developments on compliant class-modelling via PLS (Partial
Least Squares) regression in chemometrics have been conducted in Refs.
[43–47], the so-called PLS-CM (Partial Least Squares for
Class-Modelling). Its suitability has been proved in this field provided
that typical data of chemical instruments entail a substantial number of
correlated variables, such as spectra.

When k ¼ 2, PLS-CM means using just a binary learner, and the
definition of the class model is well determined from the probability
distributions fitted to the predicted values of the response, separately for
each class, given a critical value or threshold. However, in a multiclass
context with more than two classes, k > 2, a larger number of binary
learners is required, which increase the number of responses to be fitted
with PLS. Consequently, PLS2 will be selected as a prediction model to
generalize PLS-CM as a compliant class-modelling method for multiclass
settings.

In the field of chemometrics, only three articles have been found that
apply coding using ECOC matrices though all of them for purely
discrimination tasks, whether to detect defects in potatoes with hyper-
spectral images and SVM [48], to classify extra-virgin olive oils of four-
teen different geographical origin with a commercial electronic nose and
multilayer perceptron [49], or to accurately distinguish the geographical
origins of wolfberry fruit with NIR data and a modified SVM as binary
learner [50].

No previous discussion about the ECOC coding strategy for PLS2 has
been found in literature. Usually, the default strategy for multiclass
problems is encoding them following OVA, meaning that the length of
the codeword is just defined as the number of classes and there are k
response variables. However, in PLS2, orthogonality is not required for
the response variables, so the prediction model can benefit from a more
efficient encoding within the ECOC framework.

The present work studies the effect of using ECOC matrices coupled
with PLS2 prediction models for class-modelling tasks with k classes (k >
2). As far as the authors know, neither ECOC codes have been used for
class-modelling techniques nor PLS2 regression has been used as a binary
learner.

2. PLS2-CM strategy: using ECOC matrices for designing class-
models for more than two classes

To use PLS2 together with error correcting codes as a class-modelling
technique, several aspects should be taken into account. All of them are
itemized in the present section to make it easier to understand the inte-
gration of all the elements of the proposal.

As the PLS2 algorithm is well known in chemometrics, it suffices to
say that a matrix of predictor variables X is assumed, with N objects
belonging to k conceptually different classes. The following subsections
describe the procedure of computing the matrix of responses to be fitted
with PLS2 by using an ECOC matrix M (precisely, the rows of response
matrix Y will be the corresponding rows in the coding matrix M).

2.1. Error-correcting code design

Given a problem of class modelling with k classes and a given c, length
3

of the codeword, an ECOCmatrix is a k� cmatrix (k rows and c columns)
of the form M ¼ ðmijÞ with mij 2 f� 1;1g. We will denote as ri ¼ ðmi1;

mi2; …; micÞ; i ¼ 1; :::; k, the rows in M and by cj ¼
ðm1j; m2j; …; mkjÞT ; j ¼ 1; :::; c, its column vectors, each one repre-
senting the corresponding fj binary learner or binary classifier.

As an example, Table 1 shows three different code matrices for k ¼ 4
classes. Thus, they all have four rows but different length of the codeword
c. Matrix M1 has c ¼ 7 binary learners, M2 has c ¼ 4 columns for coding
the classes, and M3 is a coding matrix with a codeword length of c ¼ 3.

As mentioned, the complete code is the exhaustive code for k classes,
made up of binary leaners which correspond to all the non-trivial parti-
tions of the set of k classes into two subsets (positive and negative). After
removing columns that only differ in sign and the constant vectors (all�1
or all þ1 columns), this coding system produces at most (2k�1-1) useable
columns (binary learners).

As k ¼ 4 in Table 1, the complete code will be the matrix with c ¼
23–1 ¼ 7 columns, that is, the 4 � 7 matrix named M1. If an object be-
longs to the ith class (i ¼ 1,…, 4) the corresponding codeword (response
vector for fitting with PLS2) would be ri, the ith row of the corresponding
coding matrix. For example, an object of class 2 is encoded as vector (�1,
�1,�1, �1,þ1,þ1,þ1), which is the second row ofM1, but as (�1,þ1,
�1, �1) if we were to use M2.

On the other hand, looking at the coding matrix by columns, each
binary learner fi is associated with a partition of the four classes into two
subsets (kind of super classes) A and B, which comprise the objects with
code �1 and þ1, respectively. For example, for f4 in M1, A is composed
only for class 2 whereasB is the union of classes 1, 3, and 4, whereas f5 on
its part opposes classes 3 and 4 in A to classes 1 and 2 in B.

In that sense, in bothM2 andM3 in Table 1, superclassB only contains
one class at a time:M2 has c¼ 4 binary learners (f1 to f4), each one with a
single þ1 as against the remaining �1, it is the usual OVA code. A small
variation of it is M3, it needs only three binary classifiers as f4 of M2 is
discarded, but the common f1, f2, and f3 are one versus all classifiers,
hence the notation (OVAv) [22,51].

Finally, asM1 is the complete code, it contains all binary learners inM2
(andM3): f1 is the same, f2, f3, and f4 inM2 are, respectively f4, f6, and f7 inM1
(only a changeof sign). Therefore, onewouldprobably tend to think that it is
better to always use the complete code. However, taking into account that c
determines the dimension of the response space to be fitted with PLS2 and
that 2k�1 increases very rapidly with k, the question that arises is whether it
is possible to obtain the same, or even better, performance by using shorter
codewords. In other words, in the example in Table 1, is it worth to increase
from three to seven responses when usingM1 instead ofM3? If the answer is
no, the question that still remains is why this particular three columns were
selected, and if any other three would provide the same performance.

In summary, if a code with length c < 2k�1-1 is desired, it must be
decided how to choose the c columns, i.e., which particular c columns
should be selected from the complete code.

With this goal, in Refs. [6,52] different criteria are described, that is,
different properties of theMmatrix that a priori improve the performance
of a code. Basically, there are five criteria, detailed in the following
paragraphs, and related to the fact that to achieve the capability of cor-
recting errors, the design of such a M matrix should satisfy some condi-
tions, like that the codeword for each class (different rows in M) should
be well separated from those used for each of the other classes, and also
the different binary learners (columns in M) should define different
enough A and B super classes.

In what follows,M is a k � c coding matrix and the metric to compare
rows and columns in M will be the Hamming distance. In general, for n-
dimensional binary vectors, the Hamming distance is defined in Eq. (1),
where card refers to the cardinal number of the corresponding set.

dHðu; vÞ¼ dHððu1; :::; unÞ; ðv1; :::; vnÞÞ¼ cardfijui 6¼ vig (1)

Notice that dH is always a natural number, which is the number of
coordinates by which u and v differ.



Table 1
Different code matrices for four classes, and their quantification in terms of the five criteria in Eqs. (2)–(6).

Name Coding matrix crit1 crit2 crit3 crit4 crit5

M1 Complete code f1 f2 f3 f4 f5 f6 f70
BBBBB@

þ1 þ1 þ1 þ1 þ1 þ1 þ1

�1 �1 �1 �1 þ1 þ1 þ1

�1 �1 þ1 þ1 �1 �1 þ1

�1 þ1 �1 þ1 �1 þ1 �1

1
CCCCCA

4 4 0 1 3

M2

OVA (one vs all)
f1 f2 f3 f40

BBBBB@

þ1 �1 �1 �1

�1 þ1 �1 �1

�1 �1 þ1 �1

�1 �1 �1 þ1

1
CCCCCA

2 2 0 2 2

M3

OVAv
f1 f2 f30

BBBBB@

þ1 �1 �1

�1 þ1 �1

�1 �1 þ1

�1 �1 �1

1
CCCCCA

1 2 0 2 2
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Regarding codeword for class separation (rows inM), the key feature
of a code to be able to correct errors is related to the minimum of the
Hamming distance between any pair of codewords. This is because, if this
minimum is equal to d, the code can correct at least ðd�1Þ =2 single er-
rors, since the nearest codeword to the one predicted for a new object will
still be the correct codeword.

2.1.1. Criterion 1
Minimum of the Hamming distances, dH in eq. (1), between any pair

of rows ri and rj in M, which is related to the ability of the code M to
correct errors, that is, to distinguish one class from another.

Intuitively, one code is better than another if the former has a larger
minimum than the latter. Furthermore, it is shown in Ref. [7] that a great
minimum distance improves the bound related to the generalization
error of the classifier.

Therefore, the first criterion, crit1 as precisely defined in Eq. (2),
should be maximized when looking for an optimal coding matrix M of a
given length c.

crit1ðMÞ¼mini;j;i 6¼j

�
dH

�
ri; rj

��
(2)

2.1.2. Criterion 2
Closely related to the previous one, the second criterion in Eq. (3) is

the maximum of the Hamming distances between pairs of rows, since the
larger the maximum, the better the coding matrix.

crit2ðMÞ¼maxi;j;i6¼j

�
dH

�
ri; rj

��
(3)

Like the first one, crit2 should be maximized.

2.1.3. Criterion 3
The effectiveness of a code improves if the Hamming distance be-

tween pairs of rows shows little variation [52]. Consequently, the dis-
tribution of the k�ðk�1Þ =2 Hamming distances between rows in M is
compared to a uniform distribution. This is done by summing up the
square of the differences between the vector of frequencies of the Ham-
ming distances in M and those expected under a uniform distribution, as
defined in Eq. (4),

crit3ðMÞ¼
Xb

i¼a

�
fri � kðk � 1Þ

2ðb� aþ 1Þ
�2

(4)

where a ¼ crit1ðMÞ, b ¼ crit2ðMÞ and fri is the frequency of the i-th
Hamming distance in M. When a ¼ b, crit3 is set to zero. To obtain a
distribution as close to the uniform as possible, crit3 should be minimized.

Regarding the columns in M, it is intended to obtain sufficient
4

separation between the binary learners (provided that they are not
identical or differing in sign) to avoid simultaneous errors. In the ECOC
framework, the misclassification errors can be due either to the decision
rule or to the inability of the subproblems, solved by each binary learner,
to represent the global modelling. The subproblems, represented by each
column, will contribute better to the global modelling the greater the
Hamming distance between all columns ci and cj of the coding matrixM.
This issue is quantified with the criteria 4 and 5 in Eqs. (5) and (6).

2.1.4. Criterion 4
The fourth criterion defined in Eq. (5) is the minimum distance be-

tween any pair of columns (binary learners) in M.

crit4ðMÞ¼mini;j;i 6¼j

�
dH

�
ci; cj

��
(5)

As explained, crit4 should be maximized for optimal code matrices.

2.1.5. Criterion 5
Like with the rows, the maximum Hamming distance between col-

umns should bemeasured. This is the crit5 in Eq. (6), which should also be
maximized.

crit5ðMÞ¼maxi;j;i 6¼j

�
dH

�
ci; cj

��
(6)

Table 1 contains the values of the five criteria for the different code
matrices. They are not directly comparable to each other when the code
matrices have different c.

If k ¼ 3, the complete code with 22–1 ¼ 3 binary learners f1, f2, and f3
(three columns) coincides with the OVA code, that is, a 3� 3 matrix with
ones in the main diagonal and �1 elsewhere. For c ¼ 2, there are three
different code matrices, namely those with f1 and f2, f1 and f3, or f2 and f3.
All of them differ in the same number of coordinates and for both rows
and columns, so the threematrices have the same value in all five criteria.

When k > 3, the optimum value for the five criteria can no longer be
achieved in a single coding matrixM. For example, with k ¼ 5 and c ¼ 9,
there are 5005 different ECOC matrices. Ten of them achieve the
maximum of crit1 (which is 5), while the maximum of crit2 (which is 8) is
achieved in 70 matrices, all different from the previous ten. Analogously,
80 matrices achieve the minimum in crit3, but none of them reach the
maximum in either crit1 or crit2.

Consequently, a systematic procedure for selection of one or several
ECOCmatrices is needed. Up to k¼ 5, it is feasible to compute all possible
combinations of c columns among the total 2k�1 -1 and, thus, the com-
plete population of criteria values. However, for six or more classes, and
c > 5, this is not viable, and a sample of matrices from the whole pop-
ulation should be selected.
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2.1.6. Column selection for k-classes (3 < k < 6)
Starting with less than six classes (3 < k < 6), the procedure consists

of the following steps:

Step 1. - For a value of c, all the possible k � c code matrices M are
computed with c binary learners (c columns) extracted from the complete
code. The total number of matrices is q ¼ ð2k�1 � 1Þ! =ðc!ð2k�1 � 1 �
cÞ!Þ. For example, q ¼ 3003 with k ¼ 5 classes and c ¼ 5 binary learners
for the coding matrix, only one of them corresponds to the usual OVA
code.

Step 2. - For each of the q code matrices M, the five criteria in Eqs.
(2)–(6) are computed. In this way, there are q vectors of five values that
qualify the corresponding code in M. Among the q values for each cri-
terion, the maximum and minimum value is known, which are the target
values for the different criteria.

As the criteria behave oppositely, the desirability function approach
[53], widely used for multiresponse experimental optimization [54], is
selected to reach a compromise among them.

In short, it starts with the definition of individual desirability func-
tions to map the individual values of every criterion into [0, 1], in such a
way that the value 0 is assigned for inadmissible values of the corre-
sponding criterion and 1 for the target values. In this way, the possible
effect of each criterion being on a different scale is avoided.

The precise definition of the four individual desirability functions di
for the criteria to be maximized (i ¼ 1, 2, 4, and 5), namely crit1, crit2,
crit4, and crit5, is in eq. (7).

diðcritiÞ ¼ 1:00 if criti takes the maximum among the q values
diðcritiÞ ¼ 0:01 if criti takes the minimum; among the q values
diðcritiÞ linear between 0:01 and 1:00; for the remaining values of criti

(7)

Eq. (8) corresponds to the individual desirability function d3 for crit3
that must be minimized.

d3ðcrit3Þ ¼ 1:00 if crit3 takes the minimum among the q values
d3ðcrit3Þ ¼ 0:01 if crit3 takes the maximum of the q corresponding values
d3ðcrit3Þ linear between 0:01 and 1:00; otherwise

(8)

Finally, the global desirability function, D, assigns a weighted geo-
metric mean of functions di, i¼ 1, 2,…, 5, to eachM according to eq. (9).

Dðcrit1; crit2;… ; crit5Þ ¼ dw1
1 dw2

2 dw3
3 dw4

4 dw5
5 (9)

with 0 � wi � 1; i ¼ 1;2; :::;5 and
P5

i¼1wi ¼ 1. The weights wi allow
to give different importance to each individual criterion.

The coding matrices of interest are those with maximum value of D,
ideally 1. Usually, the maximum of the global desirability function D in
eq. (9) is reached for several code matrices M.

Step 3. Each of these optimal coding matrices is used to define Y and
build k-class-models with PLS2. Finally, the one with the best perfor-
mance in the class-modelling task is selected.

As it can be noticed, the procedure described in step1-step3 is different
from the customary procedure of considering a single coding matrix M,
selected for a prefixed pair (k, c), i.e., with a single predefined c (usually
1, k, or k �1).

It is also noteworthy that a “k-class-model” comprises the overall set
of the k different class-models built for each class, which are computed
together and evaluated against one another. In that sense, it is concep-
tually different from just k independent one-class classifiers, in other
words, it is a compliant class-modelling method which is evaluated as
such.

2.1.7. Column selection for k-classes (k � 6)
The approach in the previous section is no viable with k � 6. For

example, if k ¼ 6, the complete code has 31 binary learners, and the
5

possible code matrices with c ¼ 15 or 16 would be 300540195 � 3.0 �
108 and increasing with the number of classes.

For this reason, instead of computing the five criteria for the whole
family of possible code matrices, a subset of mmatrices with c columns is
randomly selected and the procedure in section 2.1.1 is applied to the m
matrices. In this situation, it is expected that the maximum of the
desirability function is reached in a single matrix M, reason why the
procedure is repeated several times (taking samples of m matrices each
time).
2.2. Decoding. Making a k-class-model via PLS2

Step 3 in section 2.1 (irrespective of k) involves the computation of k-
class-models from the predicted responses of a PLS2model fitted with the
corresponding Y, whose rows are selected from the optimal coding
matrices, according to the matching class.

There are bibliographic references of use of ECOC matrices to
discriminate among k classes by using c binary/ternary learners, that is,
the discriminant rule assigns all the objects to one, and only one, class.
There is not object without a predicted class or any ambiguity in the
assignation. The class-modelling strategy followed in the present paper,
widely spread in chemometrics (particularly in food authentication),
essentially differs from this approach because there can be objects
outside all class-models and objects that belong to more than one class-
model.

As it has been pointed out, the use of PLS as binary class-modelling
based on a hypothesis test on the distribution of the predicted re-
sponses in the two classes is very versatile and efficient [55–58].

The possibility of fitting several responses with a PLS model, the so-
called PLS2 model which finds a compromise between the covariance
of predictors and responses, makes the study of the “hyphenation” PLS2-
ECOC interesting given that all the found approaches of using PLS2 as a
classifier always use OVA for encoding classes in the response matrix (or
the OVAv to avoid collinearity among responses). With the criteria in
Eqs. (2)–(6), these two options would be poorly valued (see Table 1).
Moreover, their codeword length c is directly determined by the number
of classes, that is, c is either k or k-1.

An advantage of PLS models is the definition of a kind of domain for
the model, the PLS-box [59], which is the region in the space of the latent
variables bounded by the critical values for T and Q2 statistics at a given
confidence level. As all the responses are fitted together, PLS2 provides
the additional advantage of having a common PLS-box for the c binary
learners.

Specifically, for a given problem, as usual, X ¼ ðxijÞ; i ¼
1; :::; N ; j ¼ 1; :::; vwill denote the predictor data matrix, so that, xij is
the value that the j-th predictor takes on the i-th object.

Each object belongs to one of k classes, and following the steps in
section 2.1, there is a coding matrix M with c columns (length of the
codeword for these k classes).

The response matrix on its part, Y ¼ ðyijÞ i ¼ 1; :::; N ; j ¼ 1; :::; c
with yij 2 f� 1;1g, is the matrix whose rows are copies of the corre-
sponding row in M, according to the class the object belongs to.

The procedure for building a k-class-model that follows is also item-
ized to facilitate its comprehension.

Stage 1.- Fitting a prediction model.
X and Y are used to fit a PLS2 model with a given number of latent

variables, namely a linear function f : ℝv → ℝc. Provided that an object
ðx1; :::; xvÞ is in the PLS-box, its predicted values in eq. (10) are those that
correspond to each single classifier fi up to the c binary learners.

f ðx1; :::; xvÞ¼ ðf1ðx1; :::; xvÞ; f2ðx1; :::; xvÞ;…; fcðx1; :::; xvÞÞ¼ ðby1;…;bycÞ (10)

Then, considering the corresponding super classes A and B for each
binary learner, there are two subsets of predicted values, fi ðAÞ and
fi ðBÞ.

Stage 2.- Fitting probability distributions to the predicted responses.
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It cannot be assumed that the values fi ðAÞ and fi ðBÞ follow a pre-
stablished probability distribution (e.g., normal) [60]. Therefore, for
each binary classifier fi, a univariate kernel density [61] is estimated,
separately for fi ðAÞ and fi ðBÞ, by a normal kernel smoothing function
and an optimal bandwidth for estimating normal densities.

Stage 3.- Class-models for A and B for each fi ; i ¼ 1; :::; c.
For given probabilities αi and βi (that can be different for each binary

learner), the fitted distribution in stage 2 is used to compute critical
values CViðAÞ and CViðBÞ with the conditions established in Eqs. (11)
and (12).

Pfbyi 2 fiðAÞ j byi �CViðAÞg¼ αi (11)

Pfbyi 2 fiðBÞ j byi �CViðBÞg¼ βi (12)

Notice that the definitions in Eqs. (11) and (12) imply that αi would be
a large value, say 0.95, whereas βi would be close to zero, e.g., 0.10.

Stage 4.- Decoding.
For each object x ¼ ðx1; :::; xvÞ in the PLS-box, if byi ¼ fiðx1; :::; xvÞ �

CViðAÞ, then the i-th coordinate on the decoding vector will be�1, and ifbyi ¼ fiðx1; :::; xvÞ > CViðBÞ, the coordinate will be þ1.
For each binary learner, the objects whose predicted values are be-

tween the corresponding critical values present two possibilities: i) if
CViðAÞ < CViðBÞ, the object will not be assigned, neitherþ1 nor�1, and
ii) when CViðAÞ > CViðBÞ, the object is assigned to both þ1 and �1
(intersection).

By applying the rule with all classifiers, each object will be related to
zero, one, or more decoding vectors (vectors of length c with the
assignations).

Stage 5.- Assignation of objects to class-models.
Finally, the object x ¼ ðx1; :::; xvÞ is inside the i-th class-model if the

codeword of the i-th class inM is one of the decoding vectors related to it.
Depending on the number of decoding vectors associated to the object

in stage 4, x can be inside one or several class-models, or even outside all
of them. In other words, we have a k-class-model.
2.3. Model assessment

The characteristics of class-models are usually evaluated in term of
sensitivity and specificity. Sensitivity refers to the capacity of the class-
model to contain its own objects and specificity is related to the proper
rejection of foreign objects. They are estimated, respectively, as the rate
of objects of the class correctly inside the class-model and the rate of
objects outside the class that are also outside the class-model. Conse-
quently, both values vary between 0 and 1, the nearer to 1 the better the
model, though in general sensitivity and specificity behave oppositely.

With k classes, there is k values of sensitivity and specificity. How-
ever, it is more informative to break down the specificity of each class-
model into specificities computed between pairs of classes. By arran-
ging sensitivities and pair-wise specificities in matrix form, each k-class-
model can be evaluated in terms of a sensitivity-specificity matrix S ¼
(sij), which is a k� k square matrix with sij 2 ½0; 1�. In sij the first subindex
(i) refers to the real class (Ci) an object belongs to and the second (j) to
whether it is inside the class-model constructed for Cj. Consequently, the
main diagonal contains sensitivities, and the off-diagonal terms, pairwise
specificities, with the different specificities for each individual class-
models in the columns of matrix S.

The evaluation of the performance of the k-class-models for Step 3 in
section 2.1 will be based on the sensitivity-specificity matrices, whose
information will be summarized by an index grounded in the notion of
entropy. This performance measure, DMCEN (Diagonal Modified
Confusion Entropy), has been largely discussed in Ref. [24] and its code is
available through MATLAB Central File Exchange [62]. Although the
index also varies between 0 and 1 for every matrix S, contrary to sensi-
tivity and specificity, the lower the DMCEN value, the better the
k-class-model related to S.
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In the PLS2-CM strategy, a family of code matrices with different code
length c for each k is used to obtain the k-class-model with the best
performance. As a consequence, the characteristics of the dataset at hand
influence the final selection of the coding matrix and hence of the k-class-
model. So, the procedure developed is a data-driven strategy.

3. Materials and methods

3.1. Simulated datasets

To better understand the behavior of PLS2-CM, some data are simu-
lated as FTIR spectra, built from spectra of toluene, xylene, and naph-
thalene (solvent and concentrations) recorded in the spectral region from
650 to 4000 cm�1 using an Agilent DialPath module for the Agilent Cary
630 FTIR. Figure S1 in the supplementary material shows the three
experimental spectra, as well as the experimental details to obtain them.

The procedure to generate the simulated spectra, similar to the one in
Ref. [63], is as follows.

For each class, n spectra of length l (l ¼ 1798 in the present case) are
simulated. They form matrix X of size n � l. The assumption is that every
spectrum is the sum of two contributions, according to equation (13).

X¼Xu þ Xd (13)

where Xu represents the part of the spectra that is common to all the
classes, and Xd the part specific to each class.

To build the spectra of every type, the common part is computed as in
equation (14).

Xu ¼ tupT
napht (14)

with tu a vector of scores, with n random numbers following a folded-
normal distribution with parameters (0.6, 0.1), which are the mean
and standard deviation of the raw normal distribution [64], and pTnapht is
the row vector with the FTIR spectrum of naphthalene. The specific part
is defined in equation (15).

Xd ¼Xd1 þXd2 ¼ td1pT
tol þ td2ð1þ td1ÞpT

xyl (15)

Being td1 and td2 vectors with also n scores extracted from two folded-
normal distributions with parameters (m1, s1) and (m2, s2), respectively.

For the four cases that will be studied in section 4.1, scores tu td1, and
td2 are generated independently for each class and simulated case, while
the standard deviations s1 and s2 are kept at 0.05, so that the classes only
differ in the means m1 and m2.

Table S1 in the supplementary material shows the different values of
(m1, m2) defined for the four cases studied. For cases 1 and 2, the means
of the four classes are located at the vertices of a square of side 0.2 and
0.1, respectively, as it is illustrated in Fig. 1a) for side 0.2. Cases 3 and 4
have five classes whose means are at the vertices of a regular pentagon
with side 0.2 and 0.1, respectively, centered at (0.5, 0.5). Fig. 1b) also
depicts the geometric layout of the points (m1, m2) for case 3.

The same structure is observed in Fig. 2 that graphs the scores of a
Principal Component Analysis (PCA) of the generated spectra, for cases 1
to 4, Fig. 2a) to 2d) respectively. Comparing to Fig. 1, the projections of
the different classes maintain the relative position of the points (m1, m2)
defining the classes. It is also observed that the confusion among classes
increases when reducing the distance between vectors (m1, m2) when
passing from Case 1 to 2, or from Case 3 to 4, and also among the classes
of the same case.

Fig. 3 shows the 400 spectra of the four classes simulated for case 1,
where it is difficult to observe the differences among classes, which are
depicted separately per class in Figure S2 in the supplementary material.

3.2. Non-simulated datasets

Table 2 summarizes the numerical characteristics of the different



Fig. 1. Schema of (m1,m2) for: a) Case1, b) Case 3, of section 3.1.

Fig. 2. PCA scores of the simulated spectra, section 3.1. a) Case 1; b) Case 2; c) Case 3; d) Case 4.

Fig. 3. Four hundred simulated spectra in Case 1. Class 1 in black, class 2 in
green, class 3 in red, and class 4 in magenta. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of
this article.)

Table 2
Description of the datasets used in the analysis.

Dataset No.
objects

No.
Variables

No.
classes

No. objects per class

Nutrient
monitoring

414 11 4 84, 84, 122, 122

GranaPadano1 95 11 5 11, 21, 18, 19, 18
GranaPadano2 95 18 5 11, 21, 18, 19, 18
GranaPadano3 95 29 5 11, 21, 18, 19, 18
Thyroid 2642 5 4 17, 33, 25, 2567
Dermatology 366 33 6 112, 61, 72, 49, 52, 20
Glass 214 9 6 70, 76, 17, 13, 9, 29
Olives 572 8 9 25, 56, 206, 36, 65, 33,

50, 50, 51
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datasets studied in this work. The Nutrient Monitoring dataset has 4
classes. The dataset has 414 objects and 11 variables. The first 5 variables
are macronutrients (Mg, Ca, K, P, N) and the last 6 micronutrients (Na, B,
Cu, Zn, Mn, Fe), all of themmeasured on two organs of the plant over two
7

periods of time. These differences constitute the 4 classes, namely C1
(organ 1-period 1), C2 (organ 2-period 1), C3 (organ 1-period 2), and C4

(organ 2-period 2).
Grana Padano's datasets refer to samples of Grana Padano cheese

(registered as European Union Protected Designation of Origin) on which
casein fractions have been obtained from casein hydrolysis, measured by
two different electrophoresis techniques [65]. These 3 datasets have 5
classes (C1, C2, C3, C4, and C5) that correspond to different months of
cheese curing (4, 7, 9, 12, and 15 months, respectively) being 12 months
the minimum curing required for this cheese. The number of objects per
class can be seen in the 5th column of Table 2. There are 95 samples with
different number of variables: The GranaPadano1 dataset contains the 11
variables obtained by means of Poly-Acrylamide Gel Electrophoresis
(PAGE), whereas GranaPadano2 has 18 variables obtained when
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characterizing the cheese by means of Poly-Acrylamide Gel Isoelectric
Focusing (PAGIF). GranaPadano3 contains 29 variables resulting from
the fusion of the different measurements in the two previous datasets.

The Thyroid dataset [66] consists of 2642 patients distributed in four
classes: C1, replacement therapy; C2, underreplacement; C3, over-
replacement; and C4, negative. The five continuous variables have been
selected as predictor variables: TSH, thyroid stimulating hormone; T3,
triiodothyronine; TT4, total L-thyroxine; T4U, thyroxine uptake; and FTI,
free thyroxine index.

The following datasets, Dermatology and Glasswith the characteristics
in Table 2, have also been taken from the UCI Machine Learning Re-
pository [65].

Finally, some methods of multivariate data analysis have been
applied to the recognition of the geographical origin of food. As the
research on samples of Mediterranean olive oils has shown [67], the
chemometric methods can be very useful to control the geographical
origin of olive oil samples. The Olives dataset used here contains the
percentages of eight fatty acids (palmitic, palmitoleic, stearic, oleic,
linoleic, eicosanoic, linolenic, and eicosenoic) found in the lipid fraction
of 572 Italian olive oils, from 9 growing regions: 4 from southern Italy
(North and South Apulia, Calabria, Sicily), two from Sardinia (Inland and
Coastal) and 3 from northern Italy (Umbria, East and West Liguria).

In summary, datasets with different characteristics are used to check
the proposal, the number of classes ranging from 4 to 9. In terms of the
number of objects, the largest dataset (Thyroid) with thousands of objects
presents a noticeable class imbalance, whereas classes within the
remaining datasets (tens or hundreds of objects) are generally more
balanced. In addition, the number of predictors is also quite diverse
(ranging from only 5 to 33).
3.3. Application of the proposed procedure

In all the analyses conducted in the search for the optimal ECOC
matrices (Step 2, section 2.1), the global desirability D of the q or m
candidate ECOC matrices has been evaluated with the weights (3/10, 3/
10, 2/10, 1/10, 1/10) in equation (9).

When k is equal to 4 and 5, Table 3 shows the number of different
ECOC matrices for each combination of number of classes (k) and code
length, c. From them, the number of ECOC matrices where the maximum
D is reached is in brackets.

For example, for k ¼ 5 classes and code length equal to 8, there are
6435 different ECOCmatrices, 16 of which reach the maximum of overall
desirability. Each of these 16 matrices are used to encode the classes
defining different Y matrices and, thus, different PLS2 models.

When k ¼ 6, if c is 4 or 5, it is still possible to perform an exhaustive
search within the space of all possible ECOC matrices, which are 31,465
and 169,911, with 360 and 60 ECOC matrices with maximum D,
respectively. Beyond that, a manageable sample of matrices must be
taken.

For a particular problem, k is known. In the studies conducted for the
present paper, when k is equal to 4 or 5, c ranges from k-1 to the number
of columns of the binary complete ECOC matrix (2k�1-1) and similarly,
when k ¼ 6 and c is equal to 4 or 5.

When k > 6 and c > 5, the search for an ECOC matrix with maximum
Table 3
Number of ECOC matrices for each number of classes, k, and code length, c. In brac
desirability is reached with weights (3/10, 3/10, 2/10, 1/10, 1/10) for the five crite

c

3 4 5 6 7 8

k¼ 4 35 (12) 35 (3) 35 (12) 6 (4) 1 (1
k¼ 5 455 (12) 1365 (3) 3003 (3) 5005

(7)
6435
(36)

6435
(16)

k¼ 6 4495
(120)

31,465
(360)

169,911
(60)

7 � 105 3 � 106 8 � 106
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D is performed with the procedure described in section 2.1.2. This pro-
cess is repeated 20 times, so 20 different coding matrices are available to
solve the modelling problem.

For each ECOC matrix with maximum D, the class each object of X
belongs to is encoded, thus obtaining the matrix Y with which the PLS2
models are constructed, also varying the number of latent variables from
1 to min{9, v-1}, with v being the number of predictor variables of the X
dataset. In all cases, the corresponding PLS-box has been constructed at
0.99 confidence level for T2 and Q statistics.

In the modelling of each superclass, A and B, probabilities αi ¼ 0.99
and βi ¼ 0.01 are defined for all binary learners (see equations (11) and
(12)).

Finally, the calculation of the DMCEN of all the ECOCmatrices built is
conducted and the matrix with minimum DMCEN is selected.

4. Results and discussion

This section shows the impact of using encodings other than OVA,
which is the usual one in chemometrics. Therefore, the results of using
OVA are compared with the ones obtained with the procedure explained
in the previous sections, PLS2-CM, which includes the selection of the
code length c, coding matrixM, and the number of latent variables of the
PLS2 model.

The results obtained with PLS2 and OVA and with PLS2-CM are
compared on the basis of the reached DMCEN value as well as on the
sensitivity-specificity matrices of the k-class-models.
4.1. Simulated datasets

The results of modelling the four simulated datasets with the pro-
posed procedure is shown in Table 4 and discussed below.

The sensitivity-specificity matrices for the 4-class-models computed
for the dataset with four classes at the vertices of a square and more
distant (Case 1) show that the 4-class-models result in large sensitivities
and perfect specificities between non-adjacent classes in Fig. 1a) as s12 ¼
s21¼ 1 and s34 ¼ s43¼ 1. However, specificities from adjacent classes are
lower as expected. While they do not exceed 0.90 with the OVA encod-
ing, the ECOC approach using 5 binary learners raises them mostly well
above 0.90, thus getting a better class-modelling as the decrease in
DMCEN (from 0.27 to 0.17) reflects.

When the four classes are closer, as in Case 2 illustrated in Fig. 2b),
sensitivities remain high, but specificities decrease markedly as expected.
With the OVA encoding, they decrease not only for the adjacent classes
(whose sij fall below 0.30) but also for the non-adjacent ones, whose
specificities, s12 ¼ 0.37, s21 ¼ 0.65 and s34 ¼ 0.59, s43 ¼ 0.49, are not as
close to 1 as in the previous case. Although specificities increase overall
with the ECOC encoding, which happens to use the same number of bi-
nary learners as OVA, i.e. 4, this lack of specificity is not fully solved due
to the actual closeness between the simulated classes.

Case 3, where the means are located at the vertices of a regular
pentagon centered on (0.5, 0.5) with larger side (0.2), Fig. 1b), shows a
similar pattern as Case 1. Sensitivities are high but the problem of
specificity focuses on adjacent classes: the values for s12, s21, s23, s32, s34,
s43, and s54, s45 range from 0.50 to 0.75. Fortunately, the ECOC proposal
kets, the number of ECOC matrices in which the maximum value of the overall
ria used.

9 10 11 12 13 14 15

5005
(180)

3003
(30)

1365
(5)

455
(30)

105
(20)

15 (15) 1 (1)

2 � 107 4 � 107 8 � 107 1 � 108 2 � 108 3� 108 3 �
108



Table 4
Class-models for the simulated spectral datasets. Codification: OVA, One versus All; ECOC, Error Correcting Output Code; c, code length. Measure of model performance:
DMCEN, Diagonal Modified Confusion Entropy.

OVA ECOC

DMCEN (c) Sensitivity-specificity matrix DMCEN (c) Sensitivity-specificity matrix
Case1 0.2654 (4)

0
BB@

0:96 1:00 0:87 0:82
1:00 0:99 0:80 0:78
0:88 0:90 0:99 1:00
0:83 0:85 1:00 0:98

1
CCA

0.1725 (5)
0
BB@

0:97 1:00 0:98 0:93
1:00 0:99 0:96 0:91
0:94 0:96 0:97 1:00
0:91 0:94 1:00 0:98

1
CCA

Case 2 0.4615 (4)
0
BB@

1:00 0:37 0:24 0:26
0:65 0:97 0:26 0:19
0:30 0:25 0:96 0:59
0:25 0:20 0:49 0:97

1
CCA

0.4486 (4)
0
BB@

0:97 0:41 0:33 0:39
0:75 0:96 0:44 0:40
0:45 0:35 0:97 0:72
0:38 0:24 0:59 0:99

1
CCA

Case 3 0.2818 (5)
0
BBBB@

0:98 0:66 1:00 1:00 0:59
0:70 1:00 0:58 1:00 1:00
1:00 0:58 0:96 0:53 1:00
1:00 1:00 0:74 0:99 0:74
0:69 1:00 1:00 0:72 0:98

1
CCCCA

0.1397 (9)
0
BBBB@

0:96 0:96 1:00 1:00 0:95
0:97 0:99 0:92 1:00 1:00
1:00 0:97 0:98 0:93 1:00
1:00 1:00 0:94 0:99 0:96
0:95 1:00 1:00 0:95 0:98

1
CCCCA

Case 4 0.4411 (5)
0
BBBB@

0:98 0:29 0:79 0:80 0:25
0:30 0:98 0:27 0:74 0:74
0:82 0:20 0:94 0:20 0:62
0:74 0:70 0:23 0:97 0:21
0:24 0:74 0:67 0:20 0:96

1
CCCCA

0.4295 (9)
0
BBBB@

0:98 0:36 0:83 0:85 0:44
0:44 0:98 0:44 0:81 0:76
0:77 0:35 0:95 0:37 0:81
0:79 0:80 0:29 0:95 0:46
0:41 0:74 0:77 0:40 0:95

1
CCCCA
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with 9 binary learners notably improves the 5-class-model (DMCEN
0.1397 vs 0.2818 in OVA), achieving specificities well above 0.90 even
for the adjacent classes.

Finally, when the five classes are closer (Case 4 depicted in Fig. 2d)),
the 5-class-model has lower quality (compared to Case 3), regardless the
encoding system (DMCEN above 0.40 in both systems). Sensitivities
remain high, but the lack of specificity between adjacent classes is more
obvious (sij<0.30 for OVA encoding) even if an ECOC approach is
applied, as specificities increase but those of adjacent classes do not reach
0.50.

In summary, through these datasets, whose degree of overlap be-
tween classes is under control, it is shown that the PLS2 with ECOC
encoding procedure reflects both the overlap caused by the proximity
between the classes of spectra (comparing the distance 0.2 and 0.1) and
the one caused by the relative position of the classes, contiguous classes
vs distant classes, when the distance remains constant. In all cases, the
use of the ECOC encoding improves 4 (5)-class-models.

4.2. Non-simulated datasets

The results of the application of the suggested procedure to datasets
listed in Table 2 are shown in Table 5 and discussed below individually.

Nutrient monitoring: The quality of the 4-class-model for the Nutrient
monitoring dataset with OVA encoding is reflected by a low DMCEN
(0.21), high sensitivities for all the classes but low specificity between
several classes. The poorest results in specificity have to do with classes
C1 versus C3 (s31 ¼ 0.55, s13 ¼ 0.73) as well as classes C2 versus C4 (s24 ¼
0.46, s42 ¼ 0.69).

The improvement brought by the ECOC encoding (c ¼ 5) on these
specificities leads to a better overall model (DMCEN ¼ 0.16), where all
specificities exceed 0.70 at the cost of a minimal fall of sensitivities.

GranaPadano1: 5-class-models for the GranaPadano1 dataset have
high sensitivities for all the classes but very bad specificities for some
‘contiguous’ (similar cheese curing period) classes, reaching the worst
possible values in s32 ¼ 0 and s34 ¼ 0 with OVA coding.

This problem is slightly improved with the ECOC encoding using the
6 suggested binary learners, thus achieving greater specificities overall,
even in the worst cases mentioned which become s32 ¼ 0.61 and s34 ¼
0.28.

GranaPadano2: A quick look at the sensitivity-specificity matrix for
GranaPadano2 dataset allows us to conclude that variables measured by
means of PAGIF provide less sensitive but more specific class-models
than those observed with PAGE in GranaPadano1.

DMCEN improves with ECOC (from 0.3519 to 0.2919) due to the
improved specificity of contiguous classes (similar curing period of
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cheese) without losing sensitivity with respect to OVA encoding.
GranaPadano3: According to the results just shown, it is not surprising

that the 5-class-models for the GranaPadano3 dataset shows that the
fusion of data greatly improves the class-models with the two encodings,
with low values of DMCEN (0.0913 with OVA and 0.0707 with ECOC). It
is noteworthy that the class-model of C4 (12-months), of particular in-
terest in this context, has a value of 1 for all pairwise specificities (in both
rows and columns except for s45 ¼ 0.95 with OVA), and sensitivity 0.95
with OVA-encoding, whereas using the ECOC proposal this class becomes
perfectly defined, with the sensitivities of the remaining classes barely
affected.

Thyroid: Under the OVA encoding, the 4-class-model for the Thyroid
dataset shows two class-models with sensitivity below 0.90 (C1 and C3),
but its main flaw is the lack of specificity affecting all the class-models,
mainly the one for C4, where low values in s14, s24 and s34 imply that
the class-model of C4 accepts patients from all other classes. It is worth
mentioning that the class-modelling has to deal with three minority
classes of patients, C1 (replacement therapy), C2 (under-replacement)
and C3 (over-replacement), whose sizes do not exceed a few tens, against
a majority class C4 (size 2567).

The problems are not solved by the proposed ECOC strategy, but the
overall picture slightly improves due to the larger sensitivities of C1 and
C3 and a better specificity in relation to C1 and C2 (higher values of s21
and s12). Although specificity problems remain, 3 binary learners are
enough to achieve even a better result than the four binary learners
usually applied.

Dermatology: The high quality of the 6-class-models to determine the
type of Erythematous-Squamous Disease (Dermatology dataset) is re-
flected by a low DMCEN of approximately 0.07 with both encodings. The
OVA encoding provides a sensitivity-specificity matrix with just one
specificity below 0.90. As s24 ¼ 0.82, the class-model for C4 (pityriasis
rosea) is including patients actually having seborrheic dermatitis, C2.
Similarly, the class-model for C2 is also accepting like 8% of patients
really having C4 (s42¼ 0.92) so some confusion occurs between these two
diseases.

Although there is obviously not much room for improvement, the
ECOC approach involves the same number of binary learners here (from
c ¼ 4 to 25, the smallest DMCEN is reached at c ¼ 6). The effect seems to
be that it rebalances the sensitivities and specificities of the two classes
involved (s22 ¼ 0.95, s44 ¼ 0.94, s24 ¼ 0.84 and s42 ¼ 0.84), but does not
overcome the confusion mentioned. However, it slightly enhances the
overall class-modelling, increasing the sensitivities of most class-models
(around 0.95 or more) and keeping the remaining specificities at their
maximum value.

Glass: Regarding the class-modelling of six types of glasses (glass



Table 5
Class-models for datasets in Table 2. Codification: OVA, One Versus All; ECOC, Error Correcting Output Code. Measure of model performance: DMCEN, Diagonal
Modified Confusion Entropy. c is the codeword length.

OVA
DMCEN (c)

Sensitivity-specificity matrix ECOC
DMCEN
(c)

Sensitivity-specificity matrix

Nutrient
monitoring

0.21059 (4)
0
BB@

0:94 1:00 0:73 1:00
1:00 0:95 1:00 0:46
0:55 1:00 0:98 1:00
1:00 0:69 0:99 1:00

1
CCA

0.16481
(5)

0
BB@

0:94 1:00 0:96 1:00
1:00 0:90 1:00 0:77
0:94 1:00 0:97 1:00
1:00 0:73 1:00 0:98

1
CCA

Grana-Padano1 0.3918 (5)
0
BBBB@

1:00 0:89 0:95 0:95 1:00
0:57 1:00 0:52 0:05 0:38
1:00 0:00 1:00 0:00 0:78
0:95 0:42 0:26 0:95 0:11
1:00 0:83 0:83 0:72 1:00

1
CCCCA

0.3806 (6)
0
BBBB@

1:00 0:84 0:95 1:00 1:00
0:67 1:00 0:52 0:38 0:67
1:00 0:61 0:94 0:28 0:72
1:00 0:63 0:53 0:95 0:32
1:00 0:83 0:83 0:56 1:00

1
CCCCA

Grana-Padano2 0.3519 (5)
0
BBBB@

0:89 0:89 0:89 0:95 0:89
0:90 0:95 0:76 0:76 0:76
0:89 0:83 0:94 1:00 0:83
0:95 0:95 0:95 1:00 0:95
0:95 0:83 0:83 0:83 0:94

1
CCCCA

0.2919 (7)
0
BBBB@

0:89 0:63 0:84 1:00 1:00
0:90 0:95 0:57 0:86 0:90
1:00 1:00 0:94 1:00 0:89
0:95 0:95 0:95 1:00 0:95
1:00 0:89 0:89 0:67 0:94

1
CCCCA

Grana-Padano3 0.0913 (5)
0
BBBB@

0:95 1:00 1:00 1:00 1:00
1:00 0:95 0:95 1:00 0:90
1:00 1:00 0:94 1:00 1:00
1:00 1:00 1:00 0:95 0:95
1:00 0:94 1:00 1:00 1:00

1
CCCCA

0.0707 (7)
0
BBBB@

0:95 0:95 1:00 1:00 1:00
1:00 0:95 0:95 1:00 1:00
1:00 1:00 0:94 1:00 1:00
1:00 1:00 1:00 1:00 1:00
1:00 0:94 1:00 1:00 0:94

1
CCCCA

Thyroid 0.4259 (4)
0
BB@

0:88 0:65 0:18 0:12
0:88 1:00 1:00 0:00
0:16 1:00 0:84 0:16
0:81 0:08 0:93 0:97

1
CCA

0.3764 (3)
0
BB@

0:94 0:71 0:18 0:06
0:91 1:00 1:00 0:00
0:16 1:00 0:96 0:16
0:83 0:07 0:92 0:97

1
CCA

Dermatology 0.0725 (6)
0
BBBBBB@

0:97 1:00 1:00 1:00 1:00 1:00
1:00 0:93 1:00 0:82 1:00 1:00
1:00 1:00 0:99 1:00 1:00 1:00
1:00 0:92 1:00 0:96 1:00 1:00
1:00 1:00 1:00 1:00 0:94 1:00
1:00 1:00 1:00 1:00 1:00 0:90

1
CCCCCCA

0.0690 (6)
0
BBBBBB@

0:98 1:00 1:00 1:00 1:00 1:00
1:00 0:95 1:00 0:84 1:00 1:00
1:00 1:00 0:99 1:00 1:00 1:00
1:00 0:84 1:00 0:94 1:00 1:00
1:00 1:00 1:00 1:00 1:00 1:00
1:00 1:00 1:00 1:00 1:00 0:95

1
CCCCCCA

Glass 0.4621 (6)
0
BBBBBB@

1:00 0:06 0:27 1:00 0:19 0:23
0:21 0:95 0:36 0:89 0:16 0:16
0:12 0:00 1:00 1:00 0:06 0:18
1:00 0:23 1:00 0:85 0:46 0:23
0:89 0:33 0:56 0:89 0:89 0:33
0:86 0:62 0:93 0:72 0:59 0:93

1
CCCCCCA

0.3934 (4)
0
BBBBBB@

0:99 0:10 0:01 1:00 0:76 1:00
0:21 0:96 0:22 0:70 0:58 0:78
0:00 0:18 1:00 1:00 0:94 1:00
1:00 0:23 1:00 0:92 0:54 0:46
0:89 0:56 0:89 0:56 0:89 0:00
0:93 0:93 0:97 0:90 0:86 1:00

1
CCCCCCA

Olives 0.3343 (9)
0
BBBBBBBBBBBB@

0:80 0:72 1:00 0:56 1:00 1:00 0:96 1:00 1:00
0:75 0:98 0:75 0:07 1:00 1:00 0:70 1:00 0:98
0:98 0:94 1:00 0:89 1:00 1:00 0:98 1:00 1:00
0:61 0:44 0:69 0:67 1:00 1:00 0:75 1:00 1:00
1:00 1:00 1:00 0:91 0:97 0:80 0:65 1:00 1:00
1:00 1:00 1:00 1:00 0:94 0:94 1:00 1:00 1:00
1:00 0:84 1:00 0:92 0:96 1:00 0:82 0:94 0:84
1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00
1:00 1:00 1:00 1:00 1:00 1:00 0:98 1:00 0:94

1
CCCCCCCCCCCCA

0.2627
(16)

0
BBBBBBBBBBBB@

0:92 0:92 0:92 0:84 0:92 0:92 0:96 0:92 0:92
1:00 0:89 0:11 0:09 1:00 0:98 0:89 0:98 1:00
1:00 0:00 1:00 0:45 0:99 1:00 0:99 0:97 1:00
0:97 0:75 0:75 0:81 1:00 1:00 0:97 1:00 1:00
1:00 1:00 1:00 1:00 1:00 0:77 0:80 1:00 1:00
1:00 1:00 1:00 1:00 0:21 0:94 1:00 1:00 1:00
1:00 1:00 1:00 1:00 1:00 1:00 0:90 0:96 0:90
1:00 1:00 1:00 1:00 1:00 1:00 0:96 0:98 1:00
1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 0:90

1
CCCCCCCCCCCCA
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dataset) according to their oxide content, the traditional OVA encoding
leads to poor specificities throughout the whole matrix, particularly in
the last two columns, i.e. from glasses coming from tableware, C5, and
headlights, C6. Values of specificities s15, s16, s25, s26, s35, s36 and s46 (all
of them below 0.25) indicate that the class-models for these two types of
glasses (C5 and C6) are including glasses from building-windows, C1 and
C2, vehicle windows C3, or even containers, C4. When the ECOC strategy
is implemented, specificities involving classes C5 and C6 largely rise,
while keeping or increasing the sensitivities of almost all the class-models
above 0.90. Besides the fall in DMCEN (from 0.46 to 0.39), the class C6,
headlight glasses, becomes much better modeled as figures on both the
sixth row and column of the sensitivity-specificity matrix show. Besides,
this general improvement is achieved with an ECOC coding matrix of just
four binary learners instead of the six used with OVA.

Olives: The last dataset aims to jointly model olive oils of 9 Italian
regions from their percentage composition of fatty acids. Starting with
OVA encoding, an overall assessment according to DMCEN (0.3343) al-
lows to say that the 9-class-model shows high sensitivities for olive oils of
most of the regions, except for C4, Sicilian oils, which present the lowest
sensitivity (0.67), as well as specificity problems related to southern re-
gions, particularly South Apulia (C2), and to a lesser extent Apulia (C1).
Oils from the remaining areas seem to be properly modeled, notably
those collected in the northern Italy (West Liguria, C8, and Umbria, C9),
with large sensitivities and almost all specificities at their maximal
10
values, as the two last rows and columns of the sensitivity-specificity
matrix point out.

Once the suggested ECOC encoding is introduced, the overall per-
formance improves (DMCEN ¼ 0.2627). Concerning Sicilian oils, C4,
specificities generally increase (except for s34), which implies better
delimitation regarding southern olive oils and greater sensitivity for this
class-model. With respect to C1, with greater sensitivity (0.92) and
specificities mostly exceeding 0.90, a better class-model is achieved so
North Apulia olive oils become better delimited. On the contrary,
confusion between olive oils from South Apulia (C2) and Calabria (C3) is
observed (low values of s32 and s23). Finally, olive oils from the northern
Italy regions of West Liguria, C8, and Umbria, C9, remain properly
modeled while the class-model for oils of East Liguria, C7, attains larger
sensitivity and specificities.

In the last case, where 9 classes have to be modeled, the ECOC
encoding suggested comprises 16 binary learners (virtually without
computational cost) which achieve better performance than the 9 in
OVA.

This is the most frequent situation observed: the ECOC strategy leads
to a larger number of binary learners than the one used in more tradi-
tional encoding methods such as OVA.

However, the Thyroid and Glass datasets share an interesting prop-
erty: the codeword length is lower in ECOC than in OVA, thus meaning
that the number of binary learners with the ECOC approach suggested is



Fig. 4. DMCEN of the different models in the twelve datasets. Blue bars are for
OVA encoding, orange ones for ECOC. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 5. DMCEN of the different models in the four cases in the simulated
spectra. Blue bars are for OVA encoding, orange ones for ECOC. Final t (solid
colours) means results in training, p means those in prediction (dashed bars).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 6. DMCEN of the different models in the eight non-simulated datasets. Blue
bars are for OVA encoding, orange ones for ECOC. Final t (solid colours) means
results in training, p means those in prediction (dashed bars). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.
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not necessarily higher than the number of classes (see also that in the
Dermatology dataset this number turns out to be the same).

Overall, the analysis of this series of datasets, with such different
characteristics among them, is summarized in Fig. 4 that contains the
DMCEN values for all the models, and for both encodings: ECOC
matrices, computed by optimizing the five suggested criteria, and the
usual OVA. It is clear that the former improves in all cases the quality of
the built class-models in relation to the latter.

4.3. Comparing ECOC versus OVA encodings in prediction

The previous section shows how ECOC encoding improves the per-
formance of the k-PLS2-CM compliant model. The analysis has been
conducted in training, so it is interesting to check whether the behavior is
maintained in prediction. With this aim, datasets have been split into two
subsets, denoted as TR for training and TS for the external test. As usual,
the k-PLS2-CM model is built with TR and applied to predict the samples
in TS.

Although there are several methods in the literature to obtain TR and
TS, those based on distances between objects, such as K–S algorithm by
Kennard-Stone [68] or DUPLEX [69], are the most usual.

In chemometrics, the comparative analysis of K–S, which searches for
a uniform distribution of the objects, and the methods based on clus-
tering objects [70] are relevant. The recent review by Xu and Goodacre
[71] updates the analysis of splitting methods.

To obtain TR and TS, the Kennard-Stone method has been used in the
present work. In each class C, the method sequentially selects a preset
percentage of samples to be in TR in such a way that they are as uniformly
distributed as possible in the class, including samples at the boundary as
well. The remaining samples (not selected) are kept in the test set, TS.

For each of the 12 sets (four with simulated spectra in section 3.1 and
the eight described in Table 2), the training set TR is made with 70% of
the objects of each class, independently selected according to K–S algo-
rithm. With the TR, the k-PLS2CM compliant model is computed as in
section 3.3, and subsequently applied to the 30% of objects per class set
aside in the corresponding TS.

The resulting DMCEN in both training (OVAt and ECOCt) and pre-
diction (OVAp and ECOCp) are depicted in Fig. 5 for the simulated
spectra and in Fig. 6 for the non-simulated datasets. The corresponding
sensitivity-specificity matrices are in the supplementary material, tables
S2 and S3.

For the simulated spectra, DMCEN in cases 1 and 3 follows the same
behavior as when the models are built with all the objects, section 4.1
and Fig. 4. There are larger differences between OVA and ECOC encod-
ings in case 3 (five classes) than in case 1 (four classes), whereas the
differences are shorter when the classes are closer to each other (cases 2
and 4). The results in prediction are similar to those in training with
lower DMCEN for ECOC than for OVA encoding.

Similar comments apply for the 8 non-simulated datasets analysed in
section 4.2, whose DMCEN values in Fig. 6 maintains the same pattern as
that in Fig. 4. Overall, the k-PLS2 compliant class-models are stable in
prediction, with lower (better) DMCEN values for the models computed
with the ECOC matrices in training. Regarding the DMCEN values
computed in prediction (dashed bars in Fig. 6), the same behavior is
observed, ECOC encoding improves models as against the OVA ones.

For Grana Padano 2, Grana Padano 3, Thyroid and Glass datasets,
irrespective of encoding, the DMCEN values in prediction are lower than
in training. This is likely due to the presence of small classes (see
Table 2), affecting the selection made by the K–S algorithm, especially
when no guarantee exists of objects being evenly distributed within a
class.
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5. Conclusions

The coupling of the use of optimal ECOCmatrices to build PLS2-based
class-models shows that response encoding for PLS2 modelling is
important and should not be limited to OVA (or OVAv).

In that sense, multi-criteria optimization to obtain proper ECOC
matrices is efficient and has not been previously considered in the
literature on the subject.

The possibility of constructing ECOC matrices of a prefixed code
length and the evaluation of the obtained class-models in terms of
sensitivity and specificity by means of DMCEN inserts the characteristics
of the dataset into the construction of the ECOC matrix itself.

The procedure is flexible enough to incorporate, in a specific class-
modelling problem, characteristics of interest in the construction of the
optimal ECOC matrix, for example, maintaining the greatest specificity
between two groups of classes. To do it, it suffices to define restrictions
on the Hamming distances, which would then be included in the search
for the optimal desirability.

The assignment of objects to classes defined by probability thresholds
is a noteworthy aspect, since it directly links the length of the code with
an assignment to the most demanding class.

In all the cases studied, the k-class-model obtained has shown an
improvement over the model based on class indicator variables (OVA).
Moreover, when the structure of the classes is known, like in the simu-
lated spectra, the resulting sensitivity-specificity matrices reflect this
structure.

The predictive ability of the compliant class-models is evaluated by
setting aside 30% of objects per class by means of the Kennard-Stone
algorithm. The results show stable models, with ECOC outperforming
OVA encoding.
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