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A B S T R A C T

Anaerobic membrane bioreactors have become an environmentally friendly solution for wastewater treatment.
The lack of sufficiently accurate mathematical procedures to model their behaviour and the fouling process of
the membranes, poses a challenge when trying to optimise their energy consumption and maintenance costs.
An accurate model of the fouling process of the membranes is critical to make the most of this technology. This
is a perfect scenario in which to introduce neural networks (NN) as an alternative to mathematical modelling.
However, the duration of the experiments and the difficulties in measuring some relevant variables, make it
hard to collect high quality datasets to train the NN. Our goal is to obtain a good prediction of the fouling
status of the membranes to enable an adjustment of operation conditions and maintenance procedures ahead
in time. To do so we must obtain high quality datasets to train our neural networks. The combination of static
and dynamic networks enables us to leverage the best prediction capabilities of each one. This combination
requires a preprocessing of the datasets that separates trends from oscillations. The outputs obtained need to
be put together to build up the predicted evolution of fouling. Accurate predictions are then extended from
25 to up to 75 filtration cycles. To maintain and even extend accuracy after sudden changes in operating
conditions, retraining the NN every 25 cycles is proposed. AI based real time predictions open a new scope
for decision making, and optimisation in the field of anaerobic membrane reactors.
. Introduction

Anaerobic membrane bioreactors (AnMBR) combine anaerobic di-
estion along with membrane technology to provide an efficient treat-
ent of wastewater with energy recovery as biogas. Their applications

ange from low concentrated domestic effluents to high concentrated
ndustrial wastewater. One of the key factors affecting their technical
nd economic viability is the filtration capacity of the membranes,
hich is reduced by fouling (Judd, 2011). Fouling is a complex prob-

em, affected by multiple factors, including wastewater characteristics,
embrane and biomass properties, and operational conditions such as

iltration flux and duration, backwash frequency, flux and duration
r gas sparging for membrane scouring and their mutual combination
Martínez et al., 2021).

Our goal is to extend membrane life and reduce maintenance costs
y modifying operating conditions to prevent high irreversible foul-
ng before it develops. Previous studies expose the lack of reliable
athematical models to relate operating conditions to membrane foul-

ng (Ludwig et al., 2012; Villarroel et al., 2013). Response surface
ethodology (RSM) has been used to investigate the effect of multiple

perating conditions of the bioreactor on a response variable, generally
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E-mail addresses: checam@ubu.es (J.M. Cámara), vdiezb@ubu.es (V. Diez), ciprianorr@ubu.es (C. Ramos).

the membrane fouling rate (Martínez et al., 2021). Artificial intelli-
gence has revealed as a viable solution to analyse the relationships
between different influential parameters and membrane status. Many
studies have been conducted on this area as summarised in Bagheri
et al. (2019). Irfan et al. (2022) compared membrane permeability
predictions obtained with RSM and feed forward neural networks,
checking that AI provided higher accuracy. Neural networks have been
applied in other water management related areas as well (Ostad-Ali-
Askari et al., 2017). Nevertheless, these relations do not offer enough
information for decision making. To prevent membrane fouling and
therefore modify operation settings of the plant, some sort of antici-
pation is required. Fouling prediction has not received much attention
in literature so far. A recent work (Nam et al., 2021) has tackled this
issue. Using state of the art artificial intelligence and machine learning
techniques, the authors predicted the behaviour of relevant parameters
affecting membrane fouling. These parameters were taken as inputs for
an integrated MBR model. This allowed the authors to make accurate
predictions one day ahead. Our final goal is similar to theirs, although
we avoid the use of mathematical models and rely uniquely on artificial
intelligence solutions to relate inputs and outputs.
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This work will demonstrate that this approach is feasible, yet not
imple. Most of its success is based on the quality of the datasets
ollected and the pre-processing of the information before entering
he neural network training process. One day ahead prediction is an
mbitious objective and will not be directly achieved but, by means of a
eriodic retraining process, the necessary anticipation can be obtained.

The novelty of this work resides mainly in four aspects. Firstly, the
se of a broad dataset of membrane fouling to ensure the best possible
raining of the neural networks. Data of membrane fouling include
lux and transmembrane pressure collected every two seconds and
ydraulic resistance and, particularly, reversible fouling rate processed
o obtain input and output values for each cycle for hundreds of
peration cycles. Secondly, the combination of two different neural
etwork technologies, Feed Forward Neural Network and Long Short
erm Memory, to leverage the best prediction capabilities of each one.
hirdly, the preprocessing of the dataset via a digital filter to feed each
etwork with the most adequate information. As a result, the prediction
f the fouling status of the membrane hours before a critical condition
s reached, to allow maintenance procedures and operating conditions
o be adjusted and extend membrane’s life.

The rest of the paper is organised as follows:

• Related work: a review of previous work by researchers in this
field is presented. It is mainly focused on the solutions pro-
posed for wastewater treatment plants and, more specifically, on
the application of Artificial Intelligence and Machine Learning
techniques on membrane fouling processes.

• Materials and methods: the experimental framework on which
this work has been based is described. Data selection, modelling
and prediction decisions are also presented. The use of digital
filters on data preprocessing is explained.

• Results and discussion: in this section the results obtained in this
work are presented, along with a discussion on how satisfactory
they are and how retraining can improve real time decision
making.

• Conclusions: the main achievements of the paper are detailed
along with an introduction to future research lines in this area.

. Related work

Intensive research has been conducted on how to control the fouling
rocesses, aiming to minimise maintenance works and maximise mem-
rane lifespan. Mathematical fouling-process models were applied to
he optimisation of operating conditions of membrane bioreactors. Li
nd mao Wang (2006) developed a mathematical model to determine
he pressure increase on the basis of filtrated volume per unit of area,
sing a potential equation of the main operating variables: filtration
lux, aeration intensity, sludge concentration, and sludge stickiness.
he model parameters were selected based on laboratory tests but also
n previous reported data and some other assumptions. The simulated
esults showed that membrane fouling was mainly affected by filtration
lux, followed by aeration intensity and sludge concentration. Wu et al.
2012) modified the aforementioned model, to include the effect of
olloidal and soluble components and solids of different floc size dis-
ribution. This revealed a detailed cake structure, including the spatial
istribution of cake porosity, the specific cake resistance, and the syn-
rgistic interactions among major fouling factors. The main limitation
f these models for their widespread application is the calibration of
odel parameters, including the density of deposited soluble, colloidal

omponents and suspended solids within the layer, as well as online
nalysis of particle size distribution for real-time prediction of mem-
rane fouling. This has led researchers to find alternative approaches.
eural networks have already been explored in literature with uneven

esults.
Soleimani et al. (2013) propose a model of a filtration unit for oily

astewater based on ultrafiltration membranes. Using trans-membrane
2

pressure (TMP), cross-flow velocity (CFV), feed temperature and pH
as inputs, the model produces values of permeation flux and fouling
resistance as outputs, using a multilayer perceptron training on a
dataset composed of input/output combinations measures over the
course of 2.5 h. During this short period of time, the membrane state is
considered steady. In this condition, the static neural network proposed
produces very accurate outputs as a response to inputs within the
bounds of the training dataset.

Mirbagheri et al. (2015a) simulate transmembrane pressure and
permeability as functions of: time, total suspended solids (TSS), chem-
ical oxygen demand (COD), solids retention time (SRT) and mixed
liquor suspended solids (MLSS). They use two types of forward neural
networks with one hidden layer in both cases. What is most relevant
as a precedent to our present work is that time is considered as an
input. Unlike (Soleimani et al., 2013) the authors collected data over
the course of 60 days, a period of time way too long to assume that
the membranes are in a steady state. Time reflects the progressive
fouling of the membranes; without time in the equation, the same
input parameters may produce different output values, thus making
the training process unfeasible. In Mirbagheri et al. (2015a), two
consecutive working regimes are considered: conditions during the first
half of the time taken for the experiments differ drastically from those
in the second half.

Hazrati et al. (2017) introduces the use of neural networks to model
COD and TMP as a function of hydraulic retention time (HRT) over
the course of several months. HRT took three different values, leading
to three consecutive working regimes. TMP grew steadily over time
despite of the regime, but, COD dropped significantly on each shift
on HRT. Despite these drops on HRT, the authors stick to time as a
representation of the membrane’s current state and the model works
fine.

Unlike the already mentioned precedents, Geißler et al. (2005),
relies on a recurrent neural network to model permeate flux on a
submerged membrane bioreactor. The Elman network takes into con-
sideration its current state along with the input values to produce its
prediction. This behaviour considers the passage of time to improve
predictions trying to reflect the influence of the system’s recent history
on the coming outputs. Filtration and backwash times are also taken
as input values. Nevertheless, the authors took hourly averages of
all inputs to train the network which, depending on the length of
the filtration cycle, may have produced some oscillation in the data.
More recently, Woo et al. (2022) show how AI can be used to predict
membrane’s lifetime over long periods of time.

Bagheri et al. (2019) presented a review of all what, to that date,
had been done around Artificial Intelligence applied to membrane foul-
ing in filtration systems. The authors classify previous work according
to different concepts: modelling, simulation and prediction. Although
not mentioned among their classificatory factors, optimisation is also
present in the review.

The three major areas where Artificial Intelligence may be applied
to these filtration systems are:

• Modelling: creation of a model of a certain filtration system to re-
produce, accurately enough, system’s behaviour under several dif-
ferent operating conditions. Modelling facilitates the analysis of
the underlying mechanisms of the filtration system. The internal
dependencies, weights in the case of neural networks, may reveal
interesting actual dependencies within the AnMBR plant under
scrutiny. Modelling enables system simulation as an alternative
to real testing thus reducing testing times from hours/weeks
to seconds/minutes. This concept includes both modelling and
simulation concepts used in Bagheri et al. (2019). Several AI
based techniques for fouling modelling are compared in Hamedi
et al. (2019). In this study, temperature, permeate flux mixed
liquid suspended solid and transmembrane pressure are taken
as input parameters. The authors concluded that LSSVM models

outperform other techniques such as MLP. Similarly Radial Basis
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Function Neural Networks have been explored in other studies
(Mahmod and Wahab, 2017; Mirbagheri et al., 2015b) as an
alternative to FFNN, yielding even better accuracy. Although not
common in this field, some other applications introduce different
algorithms to determine the optimal number of neurons (Giwa
et al., 2016) or to replace back propagation in FFNN training.
Genetic Algorithms are a popular solution (Montana et al., 1989),
but more recently other interesting alternatives have been ex-
plored: optimal foraging and marine technology are explored
in Ho et al. (2021), an antlion optimiser is introduced in Ho
et al. (2022) and balancing composite motion optimisation is
applied in Khatir et al. (2021), among others. In many cases,
the extra computational complexity these techniques introduce,
is offset by the quality of training. Modelling may also be used,
not to reproduce membrane’s performance, but to investigate the
relative influence of different input parameters on this behaviour
(Schmitt et al., 2018).

• Prediction: in Bagheri et al. (2019) static neural networks such
as the multilayer perceptron, used to generate output values pro-
duced by input values that are within the training intervals, are
referred to as ‘‘predictive’’. This definition of prediction, although
common in literature, does not anticipate response values ahead
in the future.

• Optimisation: this concept entails the use of a previously gen-
erated model of the actual system to feed an optimisation al-
gorithm in search of the best settings to obtain a certain re-
sponse. Soleimani et al. (2013) implemented a multi-objective
optimisation procedure based on genetic algorithms to maximise
permeation flux and minimise fouling resistance.

Zhao et al. (2020) review the application of artificial intelligence
nd machine learning to wastewater treatment and provides a classifi-
ation of the technologies applied to the different processes involved.
his study revealed that different approaches have been adopted by
ifferent authors so the best technique to be applied is still an open
uestion. Previous attempts to predict the future behaviour of filtration
embranes are presented in Shi et al. (2021); authors present a

omparison between AI based procedures, mathematical and mech-
nism analysis. They conclude that future research should address
embrane’s remaining useful life prediction. A more recent review

rom Kamali et al. (2021) focuses on membrane fouling processes and
oncludes that ‘‘AI methodologies have not yet been employed for the
monitoring and control of membranes for water and wastewater treatments
specifically in case of MBRs’’. Nevertheless, almost simultaneously to
this statement, Nam et al. (2021) introduces a novel methodology to
obtain predictions over membrane behaviour and apply them to make
real time decisions meant to decrease fouling and increase efficiency.
So far, both static and recurrent neural networks have been tested.
Input parameters are time, TSS, COD, pH, SRT, HRT, MLSS, CFV, TMP,
backwash transmembrane pressure (TMPbw), reversible fouling rate as
ncrease in TMP over time (dTMP/dt), temperature and oxygen decay
n the aerobic zone. Output values were: TMP, permeation flux, COD
emoval and fouling resistance. It is important to note that operating
onditions such as the duration of filtration cycle (tc) and the duration
f backwash cycle (tbw) are not present in most of the studies. However,
uthors often search for relationships between physical parameters
s AlSawaftah et al. (2021) expose. The control over the membranes
emanded by Kamali et al. (2021) can only be obtained if operating
onditions are part of the equation. They can be altered as a conse-
uence of the observed and predicted output parameters such as fouling
esistance. Literature tends to merge the concepts of ‘‘modelling’’ and
‘prediction’’, assuming that the accuracy of the neural network mea-
ured over the training data set implies that a good model of the process
as been obtained and can be applied to predict future responses. Even
hough, input variables can be kept within the values taken during
raining, the very passage of time leads to different response values in
he future.
3

The use of neural networks to enhance the accuracy of alternative
odels has been applied to many other fields. State of charge (SOC)
etermination on batteries is one of them. Jiao et al. (2021) introduce
ifferent, and a-priori more precise, mechanisms to determine the
tatus of a battery and expose their its flaws. Then a neural network-
ased methodology is proposed. Similarly to our process, relationships
etween physical parameters change over time and need to be taken
nto account to produce accurate results.

This work has two major objectives:

• To obtain an accurate model of the filtration tank of an AnMBR
pilot plant.

• To extend the model to make predictions beyond the training set
in order to anticipate maintenance procedures on the membranes.
Different types of neural networks, along with data pre-processing
techniques not previously applied in this field, will be explored in
order to anticipate plant’s response as much as possible.

. Materials and methods

.1. AnMBR pilot plant

The AnMBR used in this work Fig. 1 was installed in the Cam-
ofrio Frescos slaughterhouse (Campofrio Food Group, Burgos, Spain)
t consisted of a down-flow anaerobic filter filled with plastic carriers
Biofill-C, Bio-fil) for biomass immobilisation, and an up-flow filtration
ank where a submerged hollow fibre membrane (Zenon Zeweed-10)
as placed. Anaerobic filter and filtration tanks were connected at the
ottom and at upper parts for mixed liquor recirculation. Diaphragm
ompressors (Secoh SV50) were used for gas sparging, for membrane
couring and gas-lift recirculation. A reversible wear pump (Micropump
agle Drive GJ-N21) was used for filtration and backwashing. Tempera-
ure of biological process was kept at 30±1.0 ◦C by means of an electric

heating blanket. Pressure sensors (PN 2569, IFM) monitored transmem-
brane pressure, and filtration and backwashing flux were measured
using inductive flow-meters (MIK 5NA, Kobold Mesura). Temperature
(TR2432, IFM), pH (Liquiline CM14, Endress+Hausser) and biogas pro-
duction (FCI ST75) were continuously monitored. The slaughterhouse
wastewater was characterised by oil and grease (O&G) concentrations
between 830 and 960 mg/L, COD and Total Organic Carbon (TOC)
concentrations of 2530–5210 mg/L and 1150–2030 mg/L, and Total
Nitrogen (TKN) of 830 960 mg/L. The bioreactor was previously op-
erated as internal gas-lift reactor treating slaughterhouse wastewater
during 4 months.

Our plant is integrated by an AnMBR experimental reactor com-
prising a biological reactor and a filtration tank with a volume of
0.016 m3 with a submerged hollow fibre membrane (Zenon Zeweed-
10) with pore size 0.04 μm and filtration area of 0.93 m2. A diaphragm
compressor was used for membrane scouring by biogas recirculation,
and a reversible wear pump was used for filtration and backwashing.
A detailed description of the AnMBR pilot plant can be found in Diez
et al. (2018). The filtration unit is what we aim to model by means of
a neural network.

3.2. Monitoring and control

Pressure sensors, liquid and gas flowmeters, temperature and pH-
meters were used for the AnMBR monitoring. An Arduino based PLC
is used to monitor and control the whole system. This is a low-cost
automation solution capable of operating the plant and to provid-
ing real time information on its performance. Information is serially
conveyed to a local PC for all time analysis and monitoring. The
desktop application (Fig. 2) created for this purpose also features also
command capabilities. The operations described ion this paper are
based on the data collected by this application. Our desktop applica-
tion has been programmed in Visual Basic.net language and features
pre-processing, storage and both local and remote monitoring and
command capabilities.
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Fig. 1. Schematic diagram of the jet loop Anaerobic Filter Membrane Bioreactor.
Fig. 2. Desktop application main screen.
3.3. Data selection

Three major factors determine the success of a neural network-based
model:

• The input and output parameters selected, though mainly the
input ones since results are usually determined by the objectives
of the model itself.

• The extent and representativity of the training dataset.
• The type and internal structure of the network itself.

As stated before, there are several parameters expected to influ-
ence membrane behaviour. Ideally, all those that produce a significant
impact should be considered. However, there are certain parameters
that are hard to obtain from the process in real time or even hard to
measure at all. Some previous researchers chose not to neglect this
information and decided to take samples at certain times, but this
procedure tends to ignore relevant information about the process that
is produced in between. This leads to a poor training data set, which
in turn compromises the accuracy of the model. Moreover, our goal is
to make dynamic predictions on how membranes are going to behave
in the future. This makes the use of easily measurable parameters
mandatory. Based on these constraints, the four following parameters
were chosen:

• Filtration time or cycle time (tc).
• Backwash time (t ).
bw

4

• Filtration flux (J).
• Backwash flux (Jbw).

We are aware that, among other input parameters that may influ-
ence the behaviour of the filtration unit, the concentration of solids is
particularly relevant. However, it cannot be measured during operation
so this parameter must be excluded.

When the status of membranes cannot be considered steady over
time, time itself can be taken as an input value. However, we choose
to take the overall volume of filtrated water as the value responsible
for changes in the filtration capacity of the membranes.

Output values are meant to represent the filtration capacity of the
membranes. These are:

• TMP0: transmembrane pressure at the beginning of the filtration
period.

• dTMP/dt: TMP variation over time.
• R0: hydraulic resistance at the beginning of the filtration period.
• dR/dt: R variation over time.

Transmembrane pressure TMP (Pa) was calculated according to
Martínez et al. (2020).

Real time operation involves, not only sending and receiving data,
but also its analysis. To do so, a set of mathematical methods was added
to the program. The most relevant of all was the implementation of a
robust regression function that converts each filtration/backwash cycle
into a slope-intercept pair that represents the evolution of performance
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Fig. 3. Typical transmembrane pressure profile where TMP at the backwash and at the beginning of filtration, reversible and irreversible fouling are detailed.
for further analysis such as the neural network training and testing.
Samples are taken every two seconds by the PLC and sent to the PC to
perform these calculations in real time.

Fig. 3 shows typical TMP profiles. TMPbw represents transmembrane
pressure during backwash step. Weakly attached materials that can be
removed by relaxation and backwash determine the reversible fouling
rate (dTMP/dt)rev, whereas materials firmly attached to the membrane
that can be removed only by chemical cleaning are responsible for the
irreversible fouling rate (dTMP0/dt)irr.

TMP0, (dTMP/dt)rev and (dTMP0/dt)irr were determined by robust
egressions by the Huber method to avoid the leverage of the minimum
quares linear regression method due to anomalous data associated to
ubbling and vibrations. A Huber tuning constant of 1.345 was used
ccording to 95% asymptotic efficiency rule.

Darcy’s law (Darcy, 1856) was used to determine the hydraulic
esistance at the start of the filtration period, R0 (m−1), Eq. (1), and
o calculate the reversible fouling rate on resistance basis (dR/dt)rev,
q. (2) (Martínez et al., 2021):

0 =
𝑇𝑀𝑃 0
𝜇 ∙ 𝐽

(1)

(𝑑𝑅
𝑑𝑡

)

𝑟𝑒𝑣
=
(𝑑𝑇𝑀𝑃

𝑑𝑡

)

𝑟𝑒𝑣

1
𝜇 ∙ 𝐽

(2)

ere, J is the filtration flux (m3 m−2 s−1) and 𝜇 the permeate viscosity
kg s−1 m−1).

Our desktop application performs all the calculations. The cal-
ulated values of TMP0, R0, dTMP0/dt and dR0/dt take the shape
isplayed in Fig. 4.

.4. Modelling

When no algorithmic model has been found, neural networks can
rovide a good approach to describe the behaviour of the system. Still,
inding out the most suitable type of network and its optimal design
sually demands a significant effort. Thankfully, literature has already
xplored this field so we can find meaningful hints for a good start.

Modelling of membrane bioreactors has been largely studied to
uite a large extent. Most previous workers agree that Feed-forward
eural Networks can provide a good solution. The training dataset
lays an important role in the success of the resulting model. There are
everal ways to determine both the number of hidden layers and the
umber of neurons per layer. Some authors have employed heuristic
5

Table 1
Neural network training parameters used in this work for the simulations
(with Matlab Deep Learning Toolbox).
Parameter Value

Training epochs up to 2000
Trainratio 0.70
Validation ratio 0.15
Test ratio 0.15
Data division random
Training Bayesian Regularisation
Performance Mean Square Error

methods such as genetic algorithms to find suboptimal configurations of
this structure. Most authors, though, rely on trial and error procedures
for this purpose. In this work, the latter approach has been followed,
based on a broad training dataset obtained from many previous ex-
periments conducted on the plant. A feed-forward back-propagation
multilayer network was finally selected. The computational complexity
of these and other networks has already been studied (Orponen, 2000).
The network has two hidden layers integrated by 14 neurons each
(Fig. 5). Matlab Deep Learning Toolbox was used for all the simulations
performed in this work. Table 1 describes the most relevant parameters
related to network training.

Table 2 shows the most relevant performance parameters of the
networks when modelling the four outputs which we need to consider:
R2 (Coefficient of determination), MSE (Mean Squared Error), RMSE
(Root Mean Squared Error), MAE (Mean Absolute Error), MAPE (Mean
Absolute Percent Error), SD (Standard Deviation) and EV (Explanatory
Variable) score. The number of training epochs and the time taken
to complete them all are also provided. These results are among the
best obtained by previous authors, even though the computational
complexity of the model has been kept low. Values of R2 (0.991) are
well above those obtained by (Hamedi et al., 2019) from ANN-MLP
models (0.5833) and as good as those obtained from LSSVM models
(0.99).

3.5. Fouling profile prediction

The second objective proposed in this work involves predictions of
the behaviour of the plant ahead in time. This is hard to achieve by
means of a feed forward network since we must assume future response
depends on the recent history of the filtration process. For these types
of applications, recurrent neural networks offer more promise.



J.M. Cámara, V. Diez and C. Ramos Engineering Applications of Artificial Intelligence 118 (2023) 105643

t

w
a
H
b
p
h
d

e
t
l
f
n
t
v
d

Fig. 4. Experimental patterns of TMP0 (a), dTMP0/dt (b), R0 (c) and dR0/dt (d) vs cycle.
Fig. 5. Feedforward, backpropagation 2 layer network.
Table 2
Performance metrics of our model: R2, MSE, RMSE, MAE, MAPE, SD and EV.

Output/Parameter R2 MSE RMSE MAE MAPE SD EV Epochs Time (s)

R0 0.9910 0.016 0.1030 0.0398 0.0205 0.1031 0.9910 835 15
TMP0 0.9946 6.5973 2.5685 0.8571 0.0169 2.5678 0.9946 700 12
dR0/dt 0.9671 0,00029295 0.0171 0.0052 0.5787 0.0148 0.9674 958 18
dTMP0/dt 0.9286 0,9380 0.9685 0.1722 1.0134 0.9686 0.9287 820 15
Predictions are the second goal of this work. This objective entails
wo approaches:

• Short-term predictions.
• Mid-term predictions.

A good model of our filtration unit enables us to predict its response
hen working settings are changed. This is useful for several purposes
mong which is the search for optimal filtration and backwash times.
owever, our principal aim is to predict how the filtration unit will
ehave later in time. By doing so, we will be able to anticipate when the
lant will need to undergo maintenance procedures. This upcoming be-
aviour will strongly depend on the previous sequence of input/output
ata already collected.

Recurrent networks are expected to somehow keep track of previous
vents and apply this knowledge to predict the upcoming ones. Among
he numerous types or neural recurrent networks available, both the
iterature and our early tests determine that the most suitable ones
or our purpose are Long–Short Term Memory (LSTM) networks. LSTM
etworks are a type of neural networks used for time series forecasting,
hat is, future states of an output can be predicted based upon the past
alues of inputs and outputs. Their ability to predict future events is
iscussed by Petneházi (2019).
6

Fig. 6. Evolution of R0 over 425 filtration cycles.

It is noted that LSTM networks are known to have difficulties when
dealing with either periodic or trending data. A typical behaviour is
depicted in Fig. 6 where real data representing the evolution of R0
over time is shown. R0 tends to increase in the long term but showing
significant oscillations in the short term.

This behaviour is hard to anticipate as our early attempts soon
revealed. The solution proposed to deal with this problem is to split
the data set in two, separating the general trend from the oscillations
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Fig. 7. Feedforward, backpropagation 3 layer network.
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s

.

hich involves some sort of filtering. The rest of the process will take
he following steps:

1. Separate the trend from the oscillations in the output data series.
2. Predict their evolution separately: the trending part will be

predicted by a static network, whereas the oscillating part will
undergo a dynamic prediction.

3. Sum up the two results.

Zhang and Qi (2005) studied the need for deseasonalization and
etrending datasets before making predictions based on artificial neu-
al networks. We do not experience seasonality in our patterns but
ertainly trending is an issue.

Yi et al. (2019) propose data separation to extract trends from time
eries data. Trend separation is performed by linearisation of different
tretches of the input data. Then prediction on trend and difference data
re performed by means of a simple recurrent neural network (RNN) in
oth cases. We have also tried these types of networks but, the results
btained were not as good as those presented in this work. That said, for
ur input data, this linearisation procedure would be unsuitable since it
ould be too hard to know in advance how many stretches we should

onsider or how long they should be.
From the experience of numerous trials conducted before those we

re about to present, the volume of water filtrated was not relevant for
he training process of this dynamic network. It was the same for the
est of the input parameters for the static one. We thus used cycle times
nd flow rates to train the dynamic network, and only volume of water
iltrated to train the static one.

The two hidden layer network used for modelling did not yield
o good results for prediction. A slightly more complex three hidden
ayer feed forward network with 10 neurons on each layer was used
or static prediction (Fig. 7). The rest of training parameters are still
hose presented in Table 1.

The dynamic prediction is performed by an LSTM network whose
nternal structure is the following. We paste the original Matlab code
or any interested reader:

ayers = [ ...
sequenceInputLayer(featureDimension)
lstmLayer(numHiddenUnits1,’OutputMode’,’sequence’)
fullyConnectedLayer(250)
dropoutLayer(0.0)
fullyConnectedLayer(numResponses)
regressionLayer];

Training settings are:

ptions = trainingOptions(’adam’, ...
’MaxEpochs’,maxEpochs, ...
’MiniBatchSize’,miniBatchSize, ...
’InitialLearnRate’,0.0005, ...
’GradientThreshold’,1, ...
’Shuffle’,’never’, ...
’Plots’,’training-progress’,...
’Verbose’,0);

Less complex networks do the job in many cases but, to make results
omparable, we keep the same settings in all prediction experiments.
raining times are much longer on the LSTM network so, it is rec-
mmendable to simplify its structure when possible. The number of
amples highly influences training times too.
7

.6. Preprocessing

Raw data obtained from the process has undergone two pre-proce-
sing processes before entering the modelling and prediction stages:

1. Calculation of the input parameters as explained in Section 3.3.
2. Digital filtering as explained in current section.

As stated before, LSTM neural networks struggle to make accurate
predictions on the prospective evolution of the filtration plant. This is
mainly due to the presence of an overall trend on long term fouling
conditions overlaying a set of oscillations caused by the different con-
ditions encountered on each cycle. An oscillating behaviour over time
is a much easier pattern to predict, whereas the overall trend poses
a challenge to our dynamic neural network. For this reason, we have
decided to split apart the training dataset. Oscillations, on one hand,
will train the LSTM neural network; the general trend on the other,
will train the multilayer feed forward static network.

The separation is performed by digitally filtering the training dataset
We implement a low pass FIR filter to do so. There are several
parameters that affect filter design and whose values merit discussion:

• Sample frequency: In our case, there is no actual sample rate
since values are taken once per cycle, each time our software
calculates TMP0 and R0. This cycle does not have a constant
duration.

• Cut-off frequency: Since our signal values are not taken at a
constant rate, we cannot properly state a certain value for this
parameter in Hz. Nevertheless the input parameter to the Matlab
function that implements the FIR filter is the normalised cut-
off frequency, which results from dividing the desired frequency
by half the sample frequency (Nyquist frequency). Although the
sample frequency concept has no physical meaning in our case,
this relative magnitude makes perfect sense. An empirically de-
termined suitable value for this normalised frequency would be
0.0008. Lower or higher values have yielded similar results in the
final accuracy of the network. Low cut-off frequencies result in
more oscillations filtered. Therefore, the obtained trend for the
static prediction tends to be smooth and easy to model, whereas
the oscillations that become input data for the dynamic part of
the prediction are higher and harder to predict. They are usually
well predicted though; the downside is that this requires a longer
training period for the neural network.

• Filter order: Higher order filters produce a more ideal response,
but involve more calculation and storage. A default Hamming
window is applied to the sample collection before filtering. A
number of samples equal to half of the filter order are smashed
by the window’s transfer function at each end of the collection.
This is not an issue for the initial part of the data, but for the final
one it is, since prediction will have to start before the identities
of smashed samples are known, despite their actual values being
established in the output.

• Group delay: Filtering introduces time delay in the signal. This
means that the output signal is time shifted with respect to the
input. This needs to be considered and solved otherwise our
training dataset will not match after filtering. This is simple
though: calculate group delay in terms of samples and shift the
output signal back in time the same amount before joining the

rest of the data for neural network training.
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. Results and discussion

.1. Characterisation of membrane status (modelling)

Some previous works have been based on a dataset collected through
ut a short period, so the age of the membrane could be considered
onstant. Other works have considered longer time spans and have
equired a measure of time as an approximation to the status of the
embrane to achieve accurate predictions. We can assure that not
oing so leads to a model that reflects short terms changes in output
ariables but fails to predict long term fouling.
 t

8

Time has been the ageing factor and therefore the input variable
n all previous works we have examined. To us it presents a problem
hough. Our process chains filtration and backwash periods with du-
ations that also change over time. Sampling the process at regular
ntervals as it is usually done, would yield a huge set of data conforming
confusing pattern. In Mirbagheri et al. (2015a) operating conditions

hange significantly over time but, in our case, they reverse many times
ithin the same experiment. Filtration and backwash cycles alternate
nd produce membrane fouling going up and down time and again. We
hus needed to come up with a different way to represent the current
tate of the membrane. In Geißler et al. (2005) an hourly average is
aken and seems to work well. However, we have preferred to take
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Fig. 9. 25 cycle prediction for TMP0 (a) and R0 (b); 50 cycle prediction for TMP0 (c) and R0 (d); 75 cycle prediction for TMP0 (e) and R0 (f).
Table 3
R2 and RSME for the hydraulic resistance at the start of the filtration period (R0) and transmembrane pressure at the beginning of the filtration period (TMP0) for both static and
dynamic predictions.

R0 TMP0

Static Dynamic Static Dynamic

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

25 cycles 0.9910 0.016 0.1030 0.0398 0.8878 10.7449 0.7455 16.1826
50 cycles −1,6909 0,6986 −1,5578 0,6812 0.3938 24.0764 0.3320 25.2735
75 cycles −0,2229 0.7066 −2,4458 1,0200 −1.1661 33.0519 0.3446 24.7785
samples at the end of each filtration + backwash period. We do not use
time as an input parameter; instead, we take filtration and backwash
cycle duration (tc, tbw) as inputs to the network.

Two more operating conditions are taken as inputs: filtration flux
J) and backwash flux (Jbw).

These are the four input variables we believe are paramount to
escribe the behaviour of the filtration unit. Nevertheless, a measure
f the status of the system is still to be defined. Time could be used but
 (

9

it would be a measure of the accumulated time after each filtration +
backwash cycle. A second option would be the use of the accumulated
volume of water already filtrated. Results were significantly better
when taking volume as an input, so we decided to use volume for the
rest of the work.

Fig. 8 compares the observed and simulated patterns for TMP0,
dTMP /dt) , R and (dR /dt) . The graphs on the right show
0 rev 0 0 rev
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Fig. 10. Mid-term prediction on R0 (75 cycles).

ow close the model is to the original behaviour of the membranes.
straight line in the form 𝑦 = 𝑥 would be the perfect result in this

ase.

.2. Short-term prediction

In this section we compare the predictions we can make for a set of
5, 50 and 75 cycles after having trained the networks on a 400, 375
nd 350-point datasets. R0 and TMP0 patterns are depicted in Fig. 9.

Table 3 shows a performance summary of these predictions. Train-
ng times are around 2 min for the static network and over 10 min for
he dynamic one. The number of training epochs has been set to 2000
or both.

Predictions on TMP0 are good enough up to 50 cycles ahead. The

ynamic network generates more accurate responses in both cases

10
hough. 25 cycle prediction on R0 is better when provided by a dy-
namic network but not so much when the output comes from the
static one. However, the dynamic network makes worse predictions
on R0 for longer periods. It suggests a rule that is confirmed in the
next experiments and will also lead our coming work: the dynamic
network produces a prediction that corresponds quite closely in shape
to the original data but separates gradually from it, whereas the static
network provides a prediction increasingly different in shape but,
fluctuating around the original data. Either way, predictions on the
behaviour of R0 are not reliable beyond the initial 25 cycle example.
For TMP0, this can be extended to the 50-cycle prediction example but
certainly not much further than that.

Each 25-cycle chunk accounts for approximately 4 h of continuous
operation. This is a good start but not our final goal. We aim to predict
the network’s behaviour at least a whole day of operation ahead. On
our dataset, the prediction is accurate enough again for approximately
4 h but, after that, predicted output deviates from the observed one.
Predicted values tend to settle after this relatively short period of time
whereas the observed ones keep steadily growing. The reason for this
is a widely accepted flaw on neural networks and LSTM networks in
particular: they fail to adjust to trending datasets and ours shows a clear
upward trend (Bandara et al., 2017).

Prediction of membrane resistance has revealed itself to be the most
challenging. For the rest of the work, we will stick to this parameter,
assuming that the decisions made for it will yield better results when
applied to the rest of outputs.

4.3. Mid-term prediction

As seen from the previous description, anticipating responses be-
yond a few hours is hard. Depending on the time evolution of the
dataset, some more extended predictions have been achieved but not
reliably enough, since different results were obtained on the same

dataset and with equal settings.
Fig. 11. 75 cycle prediction for R0 using data filtration.
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Fig. 12. Mid-term prediction on R0 (100 cycles). Experience 1.

We have trained an LSTM network on the first 350 data from the
reviously mentioned 425-point dataset. The purpose is to make a
rediction over the 75 remaining data and compare it with the observed
ata (Fig. 10). The network anticipates oscillations but fails to follow
he growing trend on the evolution of R0. We have conducted numerous
ests on different datasets and network settings. Accurate predictions do
ot reach beyond 4–6 h ahead.

.4. Prediction results

In this section we apply the separate prediction of general trend and
scillations over three different datasets, representing very different
ouling conditions:

• Experience 1: the 425 samples pattern presented in previous
sections corresponding to highly fouled membranes, particularly
for the second half of the dataset.

• Experience 2: an 880 samples dataset representing a situation
where membranes are clean, and the quality of the water is also
good.

• Experience 3: a 455 samples dataset representing an intermediate
situation.

Fig. 11 illustrates the whole process for experience 1: filtering, static
rediction of the overall fouling trend, prediction of fluctuations and
he final addition of the two previous predictions, compared with the
ctual behaviour of the membranes.

The new prediction over 75 cycles has clearly improved. Yet, it
s important to note that, due to the effect of the filtering process,
he first 25 of them need to be known beforehand so, the current
apacity to look ahead in time is only 50 cycles. Values of R2 and
MSE over the predicted data are 0,5589 and 0,2829 respectively. In
ig. 12 we see now what happens when trying to anticipate 25 more
ycles. Predictions are not accurate this time. Taking a closer look at
he pattern, it is normal though. As the training dataset is shortened at
ts most recent end, most of the information belongs to the initial less
teep trend so the network tends to predict a more settled behaviour.

Results of experience 2 are displayed in Fig. 13.
The two previous experiences correspond to two totally different

nd extreme states of the membranes in the filtration tank. The first
ne displays a highly fouled filtration unit, whereas in the second, the
embranes are clean and working under very mild conditions. A more

ommon scenario is presented in experience 3 (Fig. 14).
This prediction is clearly accurate, making it hard to tell real and

imulated data. The combined prediction works best for these types of
atterns. However, we do not know beforehand how they are going
o look. We then need to find a procedure to detect and correct
ispredictions.
 r

11
Fig. 13. Mid-term prediction on R0 (75 cycles). Experience 2.

Fig. 14. Mid-term prediction on R0 (75 cycles). Experience 3.

.5. Retraining

An early conclusion we extract from the previous experiments is
hat, beyond a certain amount training data, results do not get better.

e have tried 425, 455 and 880 cycle datasets and found no impact
f their length on the results. Apart from the graphs already displayed,
ore experiments conducted, point in the same direction. Furthermore,
hen working conditions of the membranes change over time, old
ehaviour may negatively influence network training. This is what we
ave found in our most challenging 425-cycle dataset. There, the initial
entle slope leads to wrong predictions when not enough cycles from
he second, steeper stretch of the output, are used for training.

The way this can be improved is by periodic and automated re-
raining of the network. Rapidly changing patterns will need more
requent retraining over relatively short datasets to avoid old patterns
rom influencing new predictions. Steady patterns require little or no
etraining at all. A sliding window of data has been used to illustrate
his procedure. This technique has already been introduced by Nam
t al. (2021). The decisions to be made are how many samples the
indow should include and how many cycles will the network antici-
ate based on those samples. From the three datasets proposed so far,
t makes more sense to work on the 425-cycle one, since it is the more
hallenging. The two decisions would make no significant effect on the

emaining. Several choices of number of training samples and cycles to
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Fig. 15. Prediction over 50 cycles and retraining every 25 samples. Observed values in blue and predicted values in red.
predict were tested. Here we present one of them: 150 samples training
set and 75 cycles predicted (50 actually, due to the windowing effect).
Retraining is performed every 25 cycles. Fig. 15 shows the evolution of
the predictions along the window.

Shorter training sets improve a network’s ability to adjust to chang-
ing operating conditions but, when too short, predictions on current
operating conditions may degrade. Short training sets reduce compu-
tational time, thus allowing more frequent retraining. The worst case
scenario occurs when the gradient of the curve shifts right after the
training dataset and before the predicted period. Predictions before and
12
long after the ‘‘corner’’ are reliable, whereas those close to it are not
accurate.

5. Conclusions

Feed forward and LSTM neural networks have been used for the
prediction of fouling in membrane bioreactors. Data preprocessing and
network retraining minimise the effects of fluctuations and the impact
of mispredictions.

The LSTM neural network produces accurate predictions of the
fluctuations of the data series based on cycle times and filtration flux.
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The feed forward network makes accurate predictions of the general
evolution of the membrane but is unable to anticipate severe changes
in fouling trend.

Up to 50 filtration cycles (between 8 and 12 h) can be predicted
accurately regardless of the fouling pattern and longer predictions are
also reliable under stable operating conditions. The networks have been
retrained every 25 filtration cycles (between 4 and 6 h) to minimise the
impact of mispredictions when shifts in fouling trend occur.

The computational complexity of the whole process is low enough
to allow real time operation. Preprocessing, static network training and
dynamic network training have taken 1.5 s, 2 s and 1069 s respectively,
whereas execution times account for less than 1 s. This real time
accurate fouling prediction capability opens up a new scope for the
application of neural networks to AnMBR treatment plants.

Further research needs to be done to select new input parameters
related to shifts in fouling trend in order to improve and extend the
prediction of membrane behaviour. The influence of the biological
processes involved in membrane fouling (Nam et al., 2021) and opti-
misation techniques such as gene expression programming and particle
swarm algorithm (Hamedi et al., 2019), should be explored to produce
more accurate predictions.
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