

Valorization of onion skin wastes: subcritical water extraction of pectin and membrane downstream processing

Ó. Benito-Román*, M.O. Ruiz, M.T. Sanz, S. Beltrán

BIOIND - Industrial and Environmental Biotechnology Research Group (www.ubu.es/bioind)

Department of Biotechnology and Food Science (Chemical Engineering Section). University of Burgos, Spain. *obenito@ubu.es

1. Problem and Solution proposed

Onion skin wastes (OSW) represent 10% of the onion production (104 Mt worldwide, 2020) and end up in landfills because they are not suitable for human consumption or animal feeding. OWS are a source of quercetin and pectin, a biopolymer of 1,4-D-galacturonic acid (GalA) highly demanded by the industry.

KEY ASPECTS

- Pectin has growing worldwide demand (40,000 t/y), increasing at 5% rate
- New sources of pectin and new recovery strategies are demanded

EXTRACTION

Subcritical Water, to promote the hydrolysis of onion skin wastes to extract pectin

Drawback: control of the experimental conditions which can lead to the formation of undesired degradation products

DOWNSTREAM PROCESSING

To remove the undesired products formed during the pressure-driven extraction, membrane diafiltration processes operation mode can provide a technically feasible alternative conventional to separation by precipitation

2. Experimental Results

2.1. Subcritical Water Extraction

Raw Material

Onion Skin Wastes (30% GalA)

Experimental Device

Batch 500 mL extractor; 15 g OSW + $350 \text{ mL H}_2\text{O}$

Experimental Conditions

• 105 to 165 °C, at 5MPa; up to 180 min

Analysis

- **HPLC:** free sugars + degradation products (formic & acetic acid; furfural) + GalA
- **GPC:** Pectin molecular weight (MW)

Calculations:

Pectin Yield: GalA extracted/GalA in **OSW**

OPTIMAL CONDITIONS

135 °C, 100 min; 49.7±0.6% GalA extraction yield

135 °C OSW hydrolysate composition

	mg/L
GalA	5169±58
Free sugars	324±4
Formic acid	407±9
Acetic acid	118±6
Furfural	41±2
pН	3.76±0.06

Complex MW distribution, up to 4 families ranging 85, 35, 20 and <6 kDa

- >99% impurities removed
- One single MW family
 - >85 kDa

2.2. Membrane Purification

Membranes

- Multichannel 100 kDa, 128 cm²
- Ceramic, TiO₂ (Tami Industries)

Operating Mode

- Diafiltration at 25 °C
- Diafiltration Volumes: up to 6

Fouling modelling

• Hermia's model:

$$\frac{\mathrm{d}J}{\mathrm{d}t} = -\mathbf{k} \cdot (\mathbf{J} - \mathbf{J}^*) \cdot \mathbf{J}^{2-n}$$

PERMEATE FLUX CURVE

J*: 9 L/h·m²; Fouling: cake layer formation (n=0)

3. Conclusions

- The extraction of pectin was temperature sensitive, reaching a maximum at 135 °C. Pectin suffered degradation during SubW extraction (complex molecular weight distribution) and organic acids and furfural were the main impurities formed
- Downstream processing (100 kDa ceramic membrane operated in diafiltration mode) provided a successful purification: a removal >99% of the impurities and one single pectin fraction (MW> 85 kDa) was obtained

